
Reducing Probabilistic Logic Programs

Damiano Azzolini1 and Fabrizio Riguzzi2

1 Dipartimento di Ingegneria - University of Ferrara, Via Saragat 1, I-44122, Ferrara, Italy
2 Dipartimento di Matematica e Informatica - University of Ferrara, Via Saragat 1, I-44122,

Ferrara, Italy
{damiano.azzolini,fabrizio.riguzzi}@unife.it

Abstract. The combination of the expressiveness of Probabilistic Logic Pro-
gramming with the possibility of managing constraints between random variables
allows users to develop simple yet powerful models to describe many real-world
situations. In this paper, we propose the class of Probabilistic Reducible Logic
Programs, in which the goal is to minimize the number of facts while preserv-
ing the validity of the constraints on the distribution induced by the program.
Furthermore, we propose a practical algorithm to perform this task.

Keywords: Probabilistic Logic Programming, Statistical Relational Artificial Intelli-
gence, Constraints

1 Introduction

In the last few years, the interest around Neural Symbolic integration shed new light
on Probabilistic Logic Programming (PLP) [7,13,14]. Since the beginning of the PLP
research field, that dates back to more than 25 years ago [17], several languages of
increasing expressivity and flexibility have been proposed [9,18,20]. Inference in PLP
usually adopts an approach called knowledge compilation [6], where the program is
converted into a compact form and then operations are performed on this alternative
representation.

Despite the maturity of the field, the integration between PLP and constraints on
random variables’ values have not yet been extensively explored: here, we propose a
new class of probabilistic logic programs, namely Probabilistic Reducible Logic Pro-
grams, where users can mark some probabilistic facts (or even all the facts) as reducible,
with the meaning that these facts may be removed from the program itself. The goal is
to remove as many reducible facts as possible while, at the same time, preserving the
validity of constraints involving random variable values.

Our work can be considered as a kind of structure learning, since we want to find
the minimum subset of facts of the program. However, we do not need a background
knowledge with positive and negative examples, since the search is driven by the im-
posed constraints.

Copyright c© 2021 for this paper by its authors. Use permitted under Creative Commons Li-
cense Attribution 4.0 International (CC BY 4.0)

A related idea can be found in [8], where the authors propose an algorithm to find
a small (i.e., with less than a number k of clauses) ProbLog program that maximizes
the likelihood of a set of positive and negative examples. It works by greedily remov-
ing one clause at the time from the whole theory, starting from the one that yields the
largest likelihood when removed. In this work, we do not use a set of positive and neg-
ative examples, but a set of target probability values, and we do not restrict a priori the
maximum number of clauses of the theory. Furthermore, their target is to maximize the
likelihood, while our target is to minimize the number of clauses (probabilistic facts),
and we also support constraints among probabilistic facts’ probabilities.

The task we introduce is also different from abduction: in abduction we need to
find a subset of abducible facts that explains a query (or, in a probabilistic scenario,
that maximizes the probability of a query), but usually constraints between probability
values are not considered. Similar differences can be found with the MAP (and MPE)
task [4], where the goal is to find the most probable values for a subset of random
variables given evidence on other variables, and with the k-best [11] and Viterbi tasks,
where the goal is to find the best k explanations for a query (for Viterbi, k is set to 1).

Another related approach is the one proposed in DTProbLog [5]: given a Proba-
bilistic Logic Program, the authors introduced the definition of decision facts, i.e., facts
that can be selected or not, and attach utility represented by a number (that can also
be negative) to a set of atoms. The goal is to find a strategy (a subset of utility facts)
that maximizes the overall utility. To solve the task, the probabilistic logic program
is converted into an Algebraic Decision Diagram (ADD) that is recursively traversed
to compute the optimal subset of decision facts. Differently from them, we do not use
ADDs and we introduce the possibility of managing constraints. Decision theory is also
considered in [12], where the authors combine both Probabilistic Logic Programming
and Constraint Programming, but limited to linear constraints over sum of Boolean de-
cision variables.

The paper is structured as follows: Section 2 overviews PLP basic definitions. In
Section 3 we introduce Probabilistic Reducible Logic Programs, with the Probabilistic
Reducible Problem that can be solved with the algorithm proposed in Section 4 and
tested in Section 5. Section 6 concludes the paper.

2 Probabilistic Logic Programming

A Probabilistic Logic Program integrates a Logic Program with probabilistic facts, i.e.,
logical facts that can be true with a certain probability. The meaning of these facts may
not be straightforward, so several semantics have been proposed during the years: here
we follow the Distribution Semantics (DS) [17] for programs with a finite Herbrand
base (without function symbols). An atomic choice indicates whether a grounding of a
probabilistic fact is selected. A set of atomic choices is consistent if no pair of atomic
choices both selects and does not select the same probabilistic fact. If it is consistent, a
set of atomic choices is a composite choice, and if it contains one atomic choice for ev-
ery probabilistic fact it is a selection. Given a selection, we can identify a Logic Program
called world, whose probability can be computed as the product of the probabilities of
the atomic choices (since they are considered independent). A query q is a conjunction

of ground atoms and its probability can be computed as the sum of the probabilities of
the worlds entailed by it. In formula:

P(q) = ∑
w|=q

P(w)

A composite choice identifies a set of worlds and, if a query is true in each of them, the
composite choice is called explanation. A set of explanations is covering if every world
in which the query is true belongs to the worlds identified by the set.

Following the ProbLog syntax [9], a probabilistic fact is denoted with:

Π :: f act.

where Π is a probability value (in the range]0,1]) and f act is a term. For example,

0.4::tired.

states that tired is true with probability 0.4, and false with probability 1−0.4 = 0.6.
Similarly, Logic Programs with Annotated Disjunctions (LPADs) [20] allow the defini-
tion of disjunctive clauses of the form:

h1 : Π1;h2 : Π2; . . . ;hn : Πn :−b1, . . . ,bm.

where bis are logical literals composing the body of the clause, his are logical atoms, and
∑i Πi = 1. If this is not the case, there is an implicit atom with annotation 1−∑i Πi = 1.
Intuitively, the meaning is that the head hi is selected with probability Πi if the body is
true.

Consider now this illustrative example:

Example 1 (Toy).

0.8::good_product.

0.9::advertised.

0.6::receptive.

buy:- good_product.

buy:- advertised, receptive.

Here we have 3 probabilistic facts (good product, advertised, and receptive,
whose probabilities have been set to 0.8, 0.9, and 0.6 just to demonstrate the idea) and
a ground predicate buy/0 that is true if good product is true or if both advertised

and receptive are true. This simple program models a scenario where a user buys a
product if the product is good or if the user has been advertised and he/she is recep-
tive. The goal (query) may be to compute the probability that the user actually buys the
product. Figure 1 left lists all the possible worlds. The query buy is true in the worlds 4
up to 8, and its probability is 0.908.

When the number of probabilistic facts of a program is significant, a table represen-
tation of the world is not feasible since it requires 2n rows, where n is the number of
ground probabilistic facts. The goal of knowledge compilation [6] is to provide efficient

representations for problems with high memory or time requirements. Usually, proba-
bilistic logic programs are transformed into a more compact representation, such as
Binary Decision Diagrams (BDDs). A BDD is a direct acyclic graph where each node
has only two edges, true and false, often indicated with 1 and 0. Terminal nodes can be
false (0) or true (1) and have no edges. Some packages, such as CUDD [19] (which is
used in this paper), allow the definition of a third type of edge, the 0-complemented:
the function below this edge must be complemented. With this extension, only the 1-
terminal node is needed, since the 0-terminal can be obtained with a complemented
edge to 1. A representation of the program shown in Example 1 can be found in Fig. 1
right, where the 1 edge is indicated with a solid line (for instance, the one between
gp and 1), the 0 edge is indicated with a dashed line (the one between gp and ad),
and the 0-complemented edge with a dotted line (the one between ad and 1, for exam-
ple). Nodes gp, ad, and rc represent respectively the probabilistic facts good product,
advertised, and receptive of Example 1. In case of PLP, each node represents a
probabilistic fact: if we follow the 0 edge or the 0-complemented edge, the fact is false;
if we follow the 1-edge, the fact is true, thus obtaining different probabilities.

From a BDD, we can get an equation representing a query. Consider again the BDD
shown in Fig. 1 right: starting from the root, we can follow all the paths that arrive to
the terminal node with a direct edge, and we obtain the equation gp+(1−gp) ·ad · rc.
Each of these three variables can be substituted with its probability value (0.8 for gp,
0.9 for ad, and 0.6 for rc) to obtain the probability of the query buy (0.908). In other
words, we sum all the equations induced by every path from source to the terminal,
where every equation is given by the product of the encountered variables.

gp ad rc Probability
1 F F F 0.2 ·0.1 ·0.4 = 0.008
2 F F T 0.2 ·0.1 ·0.6 = 0.012
3 F T F 0.2 ·0.9 ·0.4 = 0.072
4 F T T 0.2 ·0.9 ·0.6 = 0.108
5 T F F 0.8 ·0.1 ·0.4 = 0.032
6 T F T 0.8 ·0.1 ·0.6 = 0.048
7 T T F 0.8 ·0.9 ·0.4 = 0.288
8 T T T 0.8 ·0.9 ·0.6 = 0.432

ad

gp

buy

1

rc

Fig. 1. Possible worlds and BDD for Example 1.

3 Probabilistic Reducible Logic Program

Here, we introduce the definition of Probabilistic Reducible Logic Program (PRLP)
and Probabilistic Reducible Problem. In both, constraints are expressed by means of
inequalities between terms, and we suppose, without loss of generality, that are of the

form eq > 0, where eq is a possibly non-linear equation involving the probability of
atoms.

Definition 1 (Probabilistic Reducible Logic Program). Given an LPAD L , a non-
empty set of reducible facts R, and a non-empty set of constraints C , the tuple (L ,R,
C) identifies a probabilistic reducible logic program.

Reducible facts are denoted with the special functor reducible and have the fol-
lowing syntax:

reducible Π :: a.

where a is a logical term, and Π is its probability (Π ∈]0,1]). To preserve the uniformity
of the notation with LPADs, also the syntax reducible a : Π is allowed.

Definition 2 (Probabilistic Reducible Problem). Given a Probabilistic Reducible Log-
ic Program (L ,R,C), the probabilistic reducible problem consists in finding the min-
imal subset of reducible facts such that the constraints in C are satisfied.

The task involves discrete variables (reducible facts) and possibly non-linear func-
tions (constraints), thus it can be classified as a mixed-integer nonlinear programming
(MINLP) problem. More formally, the goal can be expressed as:

R∗ = argmin
R⊆R

|R| subject to C

Consider the following motivating example:

Example 2 (Motivating Example - Viral Marketing, adapted from [5]). Suppose you
are in a viral marketing scenario, where you target a set of people to advertise your
product. The set of people can be represented as a graph, where there is uncertainty
whether two people know each other or not. On a higher level, nodes can represent
communities (groups of people linked by the same interests). Unfortunately, due to
an economic crisis, the number of targeted people must be reduced, and you need to
choose from a set of possible candidates (possibly the whole network). However, you
want to maintain a lower bound on the probability that one or more people still buy
the product. Overall, your final goal is to minimize the number of targeted people, to
reduce as much as possible the targeting costs. A person can buy a product if she/he
is directly targeted or if some trusted friend buys the product. The goal is to minimize
the function that counts the number of targeted friends, not minimizing the difference
between the original probability and the one obtained by removing facts. The following
program may represent this scenario:

reducible 0.9::target(a).

reducible 0.2::target(b).

reducible 0.6::target(c).

reducible 0.7::target(d).

knows(X,Y) :- friend(X,Y).

knows(X,Y) :- friend(Y,X).

0.8::friend(a,b).

0.7::friend(b,d).

0.6::friend(a,c).

0.5::friend(c,d).

buys(X):- target(X).

buys(X):- knows(X,Y), buys(Y).

Probabilistic facts friend(A,B) represent that A is friend with B with a certain
probability, and predicate knows/2 states that A knows B if A is friend with B or B is
friend with A. Reducible facts target/1 represent the targeting of a person and they
may be removed: they have an associated probability since the targeting action may
fail for some reason. This value indicates the probability that the fact is true if it is not
removed, not the probability that it will be removed. Predicate buys(X) states that X
may buy a product if it is targeted or because it has a friend that buys the product.

As an example, with all the four reducible facts included, the probability of the
query buys(d) is 0.920. Suppose now that you want to reduce the number of targeted
people, while keeping the probability of the query above a certain threshold, say 0.9.
There are four possible people to remove and 24 possible combinations. The optimal
combination of selected people is given by

{target(a),target(c),target(d)}

(so, target(b) is removed from the program) and the probability of buys(d) is now
0.9131.

4 Algorithm

To solve the Probabilistic Reducible Problem, we extend the PITA reasoner used to per-
form inference in probabilistic logic programs [15] and introduce the special predicate
prob reduce/4 with the following signature:

prob_reduce(TermsList,ConstraintsList,Algorithm,Result)

where TermsList is a list of terms involved in the constraints, ConstraintsList is a
list containing one or more (possibly non-linear) constraints, Algorithm is the selected
algorithm (exact or approximate), and Result is a variable that will be unified with
the computed result (set of selected reducible facts). The first three variables are input
variables, while the last one is an output variable.

For example, given Example 2, if we want to maintain the probability of buys(d)
above 0.9, the query would be:

prob_reduce(

[buys(d)],

[buys(d) - 0.9 > 0],

exact,

Result

).

Here, exact selects the GEKKO solver [3] to compute the answer. However, other
solvers can be integrated. Alternatively, we also implemented a simple greedy algorithm
(that can be selected by specifying the keyword approximate), that iteratively removes
the fact that provides the least difference in probability for all the constraints when it is
removed.

Algorithm 1 illustrates the pipeline: first, we compute the equations for all the terms
in TermsList by computing the BDDs and traversing them. All the correspondent
equations obtained from the BDDs are stored in a list. Note that in program may also
contain probabilistic facts (such as friend/2 in Example 2): in this case, before travers-
ing the BDD, we reorder the variables to have the reducible facts first in the order. This
reordering is crucial, since it allows to directly call the algorithm to compute the prob-
ability from a BDD presented in [9], obtaining a more compact equation: during the
traversal, once we arrive to a probabilistic node, we know for sure that there are no
more nodes representing reducible facts below it, and so we can obtain a single prob-
ability value that will multiply the combinations of reducible variables represented by
the nodes in the previous levels. If the BDD is not ordered with reducible facts first,
this would not be possible. Furthermore, the reordering can be performed polynomially
in the size of the BDD [10] and, practically, it does not affect the execution time (it is
often negligible with respect to the traversing of the BDD)1.

After that, the terms in the ConstraintList are replaced with the correspond-
ing equations (line 10) and the selected solver is called. While the exact solver uses
GEKKO, the approximate algorithm goes as follows: at each iteration, we compute
the difference between the left part of the constraints (i.e., the part before > 0) with
and without every reducible facts that has not been already removed (line 22, function
COMPUTEDIFFERENCE). Then, we try to remove the fact that gives the least reduction
(line 29, function REMOVEONE): if this is not possible, we can stop the iteration. Oth-
erwise, once a fact has been removed by setting its probability to 0, these steps repeat
until no further removal is possible. If the removal of two facts brings the same proba-
bility value, the first one according to the testing order is removed in the approximate
algorithm. For the exact algorithm, this choice is directly managed by the solver.

To better understand the process, consider Example 2, represented by the BDD
shown in Figure 2, where the circular nodes in the first four levels are reducible, and
the remaining four are probabilistic. Overall, there are 19 paths that go to the termi-
nal node with an even number of complemented edges. After the construction of the
BDD, its equation is retrieved (omitted here for brevity). Note that, even if the pro-
gram may seem small, the resulting BDD does not have a negligible size. With all
reducible facts included the probability of the query buys(d) is 0.920. At the first
iteration, the following values are the result of the function COMPUTEDIFFERENCE
applied to all the four reducible facts: [0.0747, 0.0069, 0.0232, 0.1866]. The second
variable gives the least reduction of the probability while maintaining the constraint
true (0.920− 0.0069− 0.9 > 0), so it is removed (its probability is set to 0) by RE-
MOVEONE. At the next iteration, the computed values are [0.0928, -, 0.0262, 0.2027] (-
is a placeholder to denote a variable that has already been removed), and the probabil-

1 Here, the BDD is reordered by iteratively swapping two adjacent variables. We do not seek the
optimal BDD order, since it is an NP-hard task.

ity of the query is now 0.9131. None of the three remaining variables can be removed,
since the values of the left parts of the constraints inequalities would be respectively
-0.07978, -0.0131, and -0.1896, all being less than 0, so the solution shown in Exam-
ple 2 is returned. In this example, the approximate algorithm also computes the optimal
solution. In case there are multiple terms and multiple constraints, this description can
be directly extended.

Fig. 2. BDD for queries buys(b) (left) and buys(d) (right) of Example 2.

5 Experiments

To test our algorithm, we conducted multiple experiments on datasets having a graph
structure. The construction of BDDs is written in C, the implementation of the ap-
proximate solver is written in Python, and all the remaining parts are implemented
using SWI-Prolog [21] version 8.3.152. Experiments were conducted on a cluster3 with
Intel R© Xeon R© E5-2630v3 running at 2.40 GHz. The maximum execution time is 8
hours, and the maximum memory usage is set to 8GB. For GEKKO, we selected the
APOPT solver and set the following options: minlp maximum iterations = 100000,
minlp branch method = 2, minlp as nlp = 0, minlp integer tol = 0.00005,
minlp gap tol = 0.00001, nlp maximum iterations = 5000, and minlp max-

2 Source code and datasets available at: https://bitbucket.org/

machinelearningunife/prlp_experiments
3 https://www.fe.infn.it/coka/doku.php

https://bitbucket.org/machinelearningunife/prlp_experiments
https://bitbucket.org/machinelearningunife/prlp_experiments
https://www.fe.infn.it/coka/doku.php

Algorithm 1 Function MinimizeReducibles: minimizing the number of reducible facts.
1: function MINIMIZEREDUCIBLES(termsList,constraintsList,algorithm)
2: equationsList← []
3: for all term ∈ termsList do
4: bdd← COMPUTEBDD(term)
5: reorderedBdd← REORDER(bdd)
6: pathsList← COMPUTEALLPATHS(reorderedBdd)
7: symbolicEquation← CONVERTINTOSYMBOLICEQUATION(pathsList)
8: equationsList← equationsList ∪ [symbolicEquation]
9: end for
10: list← REPLACEWITHSYMBOLICEQUATION(ConstraintsList,equationsList)
11: if algorithm is exact then
12: assignments← SOLVEEXACT(constraintList) . Compute exact solution
13: else . Approximate algorithm is used
14: factsList← [term,true] for all term in termsList
15: endOpt← false
16: while endOpt is false do
17: gl← []
18: for all constraint in constraintsList do
19: g← []
20: for all [fact,selected] in factsList do
21: if selected is true then
22: g← g ∪ COMPUTEDIFFERENCE(fact,factsList,constraint)
23: else
24: g← g ∪ {-1}
25: end if
26: end for
27: gl← gl ∪ g . Add the current list of facts to the total list
28: end for
29: index← REMOVEONE(gl,constraintsList)
30: if index == -1 then
31: endOpt← true . No more variables can be removed
32: else
33: factsList[index].selected = false
34: end if
35: end while
36: assignments← factsList
37: end if
38: return assignments
39: end function

iter with int sol = 5000. Execution times are real time values obtained using
bash command time.

As a first experiment, we generated complete graphs (KN) of increasing size to test
the performance when the program has an exponentially increasing number of ground-
ings. In these types of graphs, each node is connected with all the other nodes by an
edge. The programs have the following structure:

buys(X):- target(X).

buys(X):- knows(X,Y), buys(Y).

There are two versions of this dataset: an easy one (directed graph), and a hard one
(undirected graph). For the easy one, the knows/2 predicate has the following structure
(directed graph):

knows(X,Y):- friend(X,Y).

where each target/1 is a reducible fact with an associated probability of 0.5. For the
hard one, the predicate knows/2 has an additional clause

knows(X,Y):- friend(Y,X).

allowing the relation to be bidirectional. In other words, all the programs have the struc-
ture of Example 2 but with a different number of reducible facts and different numbers
of probabilistic facts. By default, we used the exact solver, and fallback to the approxi-
mate algorithm when a solution cannot be computed (this is often the case, since equa-
tions are long and complex except for smallest datasets). Figures 3 and 4 show the
results. In particular, Figure 3 shows the execution time for complete graphs, both di-
rected and undirected. The query was buys(1) - 0.5 > 0 for all the sizes. The exact
solver was used only for graphs of size less than 8 for both directed and undirected
(this since, for bigger graphs, it fails to find a solution and returns an error caused by
the excessive length of the equation). Figure 4 shows the gap between the lowest ac-
ceptable value for the probability of the query and the actual computed probability. For
example, suppose that the constraint is buys(1) - 0.5 > 0 and the computed value
for buys(1) is 0.6. This gap is then 0.6 - 0.5 = 0.1. We selected values from 0.5 (as in
this example) up to 0.9 with step 0.1. Note that, for the graph on the left (KN directed)
with value 0.9, the gap is below 0, meaning that a solution cannot be computed, i.e.,
even with all the reducible facts included, the probability of the query is less than 0.9.
As expected, after a certain size (9 for undirected and 15 for directed), the execution
time explodes, due to the exponentially increasing number of groundings. The gap is in
the order of 0.05 except for the experiment with 0.6 as value, where it is about 0.15 for
both directed and undirected. This may happen due to the structure of the graph itself,
which does not allow a combination of facts such that the probability can be so low.

4 6 8 10 12 14 16

0

1,000

2,000

3,000

4,000

Size of the graph

E
xe

cu
tio

n
Ti

m
e

(s
)

KN

Directed
Undirected

Fig. 3. Execution time for directed and undirected complete graphs.

As a second experiment, we used the dataset probabilistic graph taken from [4]: it
consists of 10 sets of graphs, with a number of edges ranging from 50 to 500 with step
50. For each number of edges (10), there are 10 different graphs, since the generation
process of this dataset is not deterministic (each graph follows a Barabási-Albert model
where the number of edges to attach from a new node to existing node was set to 2).
All the edges are reducible facts and have probability 0.9. However, some of them
may not be involved in the computation of the probability of the query. The goal is

4 6 8 10 12 14 16

0

5 ·10−2

0.1

0.15

Size of the graph

G
ap

KN Directed

0.6
0.7
0.8
0.9

5 6 7 8 9
0

5 ·10−2

0.1

0.15

Size of the graph

A
cc

ur
ac

y

KN Undirected

0.6
0.7
0.8
0.9

Fig. 4. Computed gaps of the approximate algorithm on both directed (left) and undirected (right)
complete graphs.

to constrain the probability of the path between node index 0 and node of index size
of the graph - 1, to be greater than 0.5. Table 1 shows the result of the approximate
algorithm, where a dash indicates that a solution cannot be computed given time and
memory constraints described above. In general, the execution time increases as the
size of the graph increases, but, at the same time, the variance increases as well: since
the generation of these graphs is probabilistic, nodes may be more or less connected,
with possibly very complex structures.

Dataset 50 100 150 200 250 300 350 400 450 500
1 1.88 1.979 802.418 3523.055 3.121 1111.115 171.09 - 11.668 115.06
2 1.77 30.293 2.459 1249.843 7.834 4.052 6.264 7.179 301.37 -
3 4.78 115.845 3.58 14533.699 540.74 9.714 98.1 3.939 5.995 8265.052
4 1.8 2 3.823 190.697 - 103.688 30.582 192.336 145.644 16.393
5 26.33 1.756 1422.327 - 92.451 1692.265 - 9241.692 - -
6 1.669 2.027 1.981 4308.51 174.596 423.971 28.414 250.672 - -
7 2.7 16.654 1456.541 4.068 3.959 4.897 4.098 100.503 61.22 11.634
8 1.768 492.654 251.157 149.31 73.821 43.264 4689.642 21.82 18 17.5
9 1.705 1.772 2.131 2.431 459.622 57.278 11.003 78.667 10.95 136.639
10 2.852 2.624 88.738 3.39 6.841 330.987 419.668 92.207 - 627.594

Mean 4.72 66.76 403.51 2662.78 151.44 378.12 606.54 1109.89 79.26 1312.83
Variance 58.55 23642.07 359016.56 22501362.06 42731.49 330434.32 2362332.53 9305915.23 12070.10 9445459.51

Table 1. Execution time for probabilistic graph dataset.

To better test the exact algorithm, we selected some datasets taken from [16]: ca-
netscience, power-494-bus, rt-retweet, and webkb-wisc. These programs consist of (as
before) directed graphs, and the goal is to constrain the probability to reach a random
destination to be greater than 0.1. We selected 10 random pairs source-destination and
set the number of reducible facts to half of the total probabilistic facts. Both probabilis-
tic and reducible facts have probability 0.9. Results are shown in Table 2. Since the
datasets have a small ratio Edge / Nodes, the resulting BDD for the query is usually
small (this is evident since the execution time is of the order of seconds).

Dataset Nodes Edges (total) Execution Time (s)
ca-netscience 379 914 3.80

power-494-bus 494 586 1.94
rt-retweet 97 117 1.83

webkb-wisc 265 530 7.17
Table 2. Results for exact algorithm.

Overall, the exact algorithm is practical only for BDD with few nodes, since the
complexity of the equation quickly increases. In general, the approximate algorithm
offers a good trade-off between execution time and the gap of the computed solution.
However, to better test the accuracy, the knowledge of the optimal solution (if it can be
computed) is required, but it is often very difficult to have, given the complexity of the
task.

6 Conclusions

In this paper, we proposed the class of Probabilistic Reducible Logic Programs with
the related Probabilistic Reducible Problem. The goal is to select the smallest subset
of probabilistic facts such that constraints on random variables’ probabilities are not
violated. Several experiments, both on synthetic and real-world datasets, show the ef-
fectiveness of our proposal. In the future, we plan to test other exact solvers, and to
integrate the possibility to perform also approximate inference [1,2] to reduce the exe-
cution time.

References

1. Azzolini, D., Riguzzi, F., Lamma, E.: A semantics for hybrid probabilistic logic
programs with function symbols. Artificial Intelligence 294, 103452 (2021).
https://doi.org/10.1016/j.artint.2021.103452

2. Azzolini, D., Riguzzi, F., Lamma, E., Masotti, F.: A comparison of MCMC sampling for
probabilistic logic programming. In: Alviano, M., Greco, G., Scarcello, F. (eds.) Proceedings
of the 18th Conference of the Italian Association for Artificial Intelligence (AI*IA2019),
Rende, Italy 19-22 November 2019. Lecture Notes in Computer Science, Springer, Heidel-
berg, Germany (2019). https://doi.org/10.1007/978-3-030-35166-3 2

3. Beal, L., Hill, D., Martin, R., Hedengren, J.: Gekko optimization suite. Processes 6(8), 106
(2018). https://doi.org/10.3390/pr6080106

4. Bellodi, E., Alberti, M., Riguzzi, F., Zese, R.: MAP inference for probabilistic logic
programming. Theory and Practice of Logic Programming 20(5), 641655 (2020).
https://doi.org/10.1017/S1471068420000174

5. Van den Broeck, G., Thon, I., van Otterlo, M., De Raedt, L.: DTProbLog: A decision-
theoretic probabilistic Prolog. In: Fox, M., Poole, D. (eds.) Proceedings of the Twenty-Fourth
AAAI Conference on Artificial Intelligence. pp. 1217–1222. AAAI Press (2010)

6. Darwiche, A., Marquis, P.: A knowledge compilation map. Journal of Artificial Intelligence
Research 17, 229–264 (2002). https://doi.org/10.1613/jair.989

https://doi.org/10.1016/j.artint.2021.103452
https://doi.org/10.1007/978-3-030-35166-3_2
https://doi.org/10.3390/pr6080106
https://doi.org/10.1017/S1471068420000174
https://doi.org/10.1613/jair.989

7. De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S. (eds.): Probabilistic Inductive Logic
Programming, LNCS, vol. 4911. Springer (2008)

8. De Raedt, L., Kersting, K., Kimmig, A., Revoredo, K., Toivonen, H.: Com-
pressing probabilistic Prolog programs. Machine Learning 70(2-3), 151–168 (2008).
https://doi.org/10.1007/s10994-007-5030-x

9. De Raedt, L., Kimmig, A., Toivonen, H.: Problog: A probabilistic prolog and its application
in link discovery. In: Veloso, M.M. (ed.) IJCAI. pp. 2462–2467 (2007)

10. Jiang, C., Babar, J., Ciardo, G., Miner, A.S., Smith, B.: Variable reordering in binary decision
diagrams. In: 26th International Workshop on Logic and Synthesis. pp. 1–8 (2017)

11. Kimmig, A., Santos Costa, V., Rocha, R., Demoen, B., De Raedt, L.: On the effi-
cient execution of ProbLog programs. In: 24th International Conference on Logic Pro-
gramming (ICLP 2008). LNCS, vol. 5366, pp. 175–189. Springer (December 2008).
https://doi.org/10.1007/978-3-540-89982-2 22

12. Latour, A.L.D., Babaki, B., Dries, A., Kimmig, A., Van den Broeck, G., Nijssen, S.: Com-
bining stochastic constraint optimization and probabilistic programming. In: Beck, J.C. (ed.)
Principles and Practice of Constraint Programming. pp. 495–511. Springer International Pub-
lishing, Cham (2017). https://doi.org/10.1007/978-3-319-66158-2 32

13. Manhaeve, R., Dumancic, S., Kimmig, A., Demeester, T., De Raedt, L.: Deepproblog: Neural
probabilistic logic programming. In: Advances in Neural Information Processing Systems.
pp. 3749–3759 (2018)

14. Riguzzi, F.: Foundations of Probabilistic Logic Programming. River Publishers, Gistrup,
Denmark (2018)

15. Riguzzi, F., Swift, T.: Tabling and answer subsumption for reasoning on logic programs
with annotated disjunctions. In: Technical Communications of the 26th International Con-
ference on Logic Programming (ICLP 2010). LIPIcs, vol. 7, pp. 162–171. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik (2010). https://doi.org/10.4230/LIPIcs.ICLP.2010.162

16. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph analytics and
visualization. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelli-
gence. p. 42924293. AAAI Press (2015)

17. Sato, T.: A statistical learning method for logic programs with distribution semantics. In:
Sterling, L. (ed.) Logic Programming, Proceedings of the Twelfth International Conference
on Logic Programming, Tokyo, Japan, June 13-16, 1995. pp. 715–729. MIT Press (1995)

18. Sato, T., Kameya, Y.: PRISM: a language for symbolic-statistical modeling. In: 15th Inter-
national Joint Conference on Artificial Intelligence (IJCAI 1997). vol. 97, pp. 1330–1339
(1997)

19. Somenzi, F.: CUDD: CU Decision Diagram Package Release 3.0.0. University of Colorado
(2015)

20. Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic programs with annotated disjunctions.
In: Demoen, B., Lifschitz, V. (eds.) 20th International Conference on Logic Programming
(ICLP 2004). LNCS, vol. 3131, pp. 431–445. Springer (2004). https://doi.org/10.1007/978-
3-540-27775-0 30

21. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. Theory and Practice of
Logic Programming 12(1-2), 67–96 (2012). https://doi.org/10.1017/S1471068411000494

https://doi.org/10.1007/s10994-007-5030-x
https://doi.org/10.1007/978-3-540-89982-2_22
https://doi.org/10.1007/978-3-319-66158-2_32
https://doi.org/10.4230/LIPIcs.ICLP.2010.162
https://doi.org/10.1007/978-3-540-27775-0_30
https://doi.org/10.1007/978-3-540-27775-0_30
https://doi.org/10.1017/S1471068411000494

	Reducing Probabilistic Logic Programs

