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ABSTRACT Nowadays, water leak control at different levels is a necessary tool for sustainable water
resource management. Research shows that more than one third of the world’s drinking water is lost during
its transfer to users, and that leakages on users’ properties vary between 2 and 13% of total residential
water demand, are very frequent and difficult to detect. Thanks to the advances in Internet of Things
solutions for smart metering devices, it is possible to gather household water consumption information with
high spatial and temporal resolution and to analyse them. This article applies several supervised Machine
Learning (ML) techniques for the automatic detection of leakages of different magnitudes - even smaller than
the meter sensitivity – in pipes within the dwelling, by using data collected by smart meters installed at the
connection of users to the distribution network in an Italian town. The results obtained are compared with the
performance of an ‘‘empirical algorithm’’ previously presented by the authors, able to automatically identify
leakages by checking if the hourly flow rate is never zero during the whole day, but not able to distinguish the
size of the leakages. Experimental results over about 40,500 records show that ML techniques significantly
improve the detection performance both in discriminating between presence and absence of leakages and in
discriminating different-size leakages.

INDEX TERMS Machine learning, predictive analytics, smart water metering, small leakage detection.

I. INTRODUCTION
In recent years, ensuring a balance between water demand
and availability is one of the most important issues that
governments and authorities must face. Around the world,
many countries adopt management policies that encourage
the adoption of strategies aimed at conserving and safeguard-
ing water resources [1]. In this context, water leak control
at different levels is a necessary tool for sustainable water
resource management. Research conducted by [2] shows that
more than one third of the world’s drinking water is lost
during its transfer to users. Other studies [3], [4] estimate
that leakages on users’ properties vary between 2 and 13%
of total residential water demand. Until recently, most of the
efforts have focused on leaks in water distribution networks
or district metered areas (DMA). However, nowadays, thanks
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to the advances in Internet of Things (IoT) solutions for
smart metering devices [5], based on new generation com-
munication protocols, it is possible to gather household water
consumption information with high spatial and temporal
resolution.

Several solutions have been developed at the infrastructure
level, with the objective of building data collection infrastruc-
tures to monitor water consumption at the urban consumer
level [6], [7]. Thus, these technologies represent powerful
tools for supporting water sustainability and are increasingly
being used by Water Utilities (WU) to implement their man-
agement strategies [8].

Less attention has received the analysis of data collected
by smart metering devices, sometimes gathered with very
high frequency, for the automatic detection of leakages.
Detection goes from large leakages due to broken pipes,
to medium-sized leakages due to the faulty operation of
plumbing systems and sanitary appliances, to small leakages
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FIGURE 1. Workflow from the acquisition of water consumption data to the detection of water leakages.

due to fitting dripping. In this work we applied several super-
vised Machine Learning (ML) techniques - Random Forest
andNeural Networks - for the automatic detection of leakages
of different magnitudes in pipes within the dwelling and com-
pared the results with a third methodology presented in [9].
In particular, our target is detecting leakages possibly smaller
than the meter sensitivity, an issue that has not been faced
in the literature yet. Data were collected by smart meters
installed at the connection of users to the distribution network
of a DMA in the town of Gorino Ferrarese (Italy), as part of
the research project GST4Water (Green Smart Technology
for Water1). The smart meters collected only the flow rate
of water in the pipe entering the house. The collected data
were used to train a Random Forest and several topologies of
Neural Networks.

Both the Random Forest (RF) and the Neural Net-
work (NN) classifiers significantly improve the perfor-
mance of [9] in discriminating between presence and
absence of leakages in water consumption records, but,
more importantly, NNs also show very high performance in
discriminating different-size leakages, especially the small
ones, achieving Accuracy, Precision and Recall in the range
92-96%, and Area under the PR and ROC curves between
97% and 99%.

The advantages of a Machine Learning based approach are
manifold:

• no knowledge about factors influencing water consump-
tion is required by experts to tune the system to improve
the quality of the classification;

• no knowledge is required about householders’ habits;
• RF and NN are designed using open-source frame-
works, so the approach does not require any proprietary
software;

• the resulting model, in particular NN, can be applied to
new unlabelled water consumption records and can dis-
criminate among leaks of different magnitudes without
any human intervention;

• the resulting model (both RF and NN) is small enough to
be stored also in the smart meter or used by amobile app,

1https://www.gst4water.it

facilitating the monitoring of the domestic water system
by the users themselves;

• the approach can be generalized to any set of time series
to detect unnecessary waste due to water leak within
the house at an early stage and can further improve
performance as more training data become available.

As far as we know, this is the first application of ML tech-
niques to the problem of automatic leak detection at domestic
level, that requires only household water consumption data
and can detect leaks of different size, especially lower than
the meter sensitivity.

The paper is organized as follows: Section II discusses
Internet-of-Thing approaches to the problem of smart water
metering, while Section III presents related work. Section IV
illustrates the machine learning techniques applied for leak
detection, and Section V gives the details of the experimental
evaluation. Finally, Section VI discusses the overall results
and Section VII concludes the paper.

II. IoT FOR SMART WATER METERING
Despite smart water metering being a relatively recent prac-
tice, there are several smart water meters available on the
market. The first generation of smart water meters adopted
low power short-range wireless protocols, such as Wireless
M-Bus, that operates over the unlicensed spectrum (169 or
868 MHz in Europe). These meters were designed to operate
in ‘‘Remote Meter Reading’’ systems, in which data collec-
tion can be performed without a dedicated networking infras-
tructure: operators equipped with portable receivers collect
data in the proximity of the smart meters either in walk-by or
drive-by mode. These systems do not allow either real-time
or automated consumption monitoring.

More recently, a second generation of smart water meters
that leverage low-power long-range wireless protocols, such
as LoRa (LongRange), which is designed for awider commu-
nication range both in urban and extra-urban environments,
hit the market [10], [11]. These meters were specifically
designed for ‘‘Automatic Meter Reading’’ systems, in which
data collection is fully automated: smart water meters peri-
odically transmit their consumption information to gateway
devices (such as Raspberry Pi 3) that gather the data from the
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in-range smart meters and re-transmit it to the utility manage-
ment typically using mobile communications (3G/LTE/4G).
In both cases, the consumption data are forwarded to a Cloud
platform, where they are available for processing by intel-
ligent tasks of data analysis to train the machine learning
model. The entire workflow is shown in Figure 1. Note that,
given the rather small size of the trained models, they can
be stored both at the level of the smart meter or at the cloud
level. As studies concerning the identification of leakages
at user level are still limited, an intelligent and possibly
automated analysis of the collected consumption data in this
field turns out to be of fundamental importance to pursue the
goal of avoiding waste of water and of a more sustainable
management of the water distribution network.

III. RELATED WORK
Several solutions have been proposed to identify household
water leakages, by relying on very different techniques.

Approaches based on smart meters are the ones
by [12], [13], who identify water leaks inside buildings
through simple algorithms implemented within smart meter
processing units. Nevertheless, these algorithms require spec-
ified input variables such as the maximum hourly flow rate
and the minimum number of hours during which a flow rate
of a certain entity may occur. Clearly, this aspect implies that
leakages can only be identified with low Accuracy due to
the high dependence of consumption on various factors such
as the characteristics of the household, the habits and needs
of users, and the characteristics of buildings (i.e., presence of
irrigation). Therefore, before setting up each smart meter with
ad hoc variables, it would be necessary to perform an accurate
analysis of each user’s typical consumption and of all the
variables affectingwater consumption, not necessarily known
by managing authorities. Furthermore, these algorithms may
fail to identify very small leaks, which is the goal of our work,
usually ignored also by users as not visually detectable.

However, smart meters are not the only solution that can
identify water leakages. In fact, some software exists such
as Trace Wizard R© [14], or those proposed by [15] and [16],
designed to disaggregate water consumption into end-uses,
including also household water leakages. However, as indi-
cated by [8] and [16], the use of these approaches can be
limited by several aspects. In fact, firstly, they require high
temporal resolution data, in the order of the second (while
we employ a 5-minute resolution). Furthermore, as indicated
by [8], Trace Wizard R©, prior to its application, requires a
calibration step for the design of specificmodels that consider
all factors affecting consumption of drinking water. Conse-
quently, the water consumption informationmust be collected
through audits and diaries, which obviously need the direct
involvement of users. Once collected, data are passed to a
decision tree algorithm, which applies a set of if-then-else
rules by checking boundary conditions. The values consid-
ered by these conditions depend on the investigation made
by the analyst, whose subjective interpretation can strongly
condition the quality of the final output. On the other hand,

the universal usability and compatibility of the tool by [15]
is limited by the fact that the algorithms were trained with
data originated from a specific water meter/data logger com-
bination and the data set employed for the training of the
proposed machine learning tool was obtained using Trace
Wizard R© software, which has limited capabilities for dis-
aggregating overlapped consumption events [16]. A similar
approach is also proposed by [17] that combines if-then-else
rules with k-Nearest Neighbour on data from flow sensors
with information such as the position of householders (at
home or not). The flow data, gathered with high frequency
and collected from sensors by a gateway, is stored and anal-
ysed in the cloud to detect large leaks. However, to properly
work, this approach needs to be calibrated on the specific
user, who must share the position through an application
installed on the personal mobile.

All the previously mentioned approaches are based on
flow measurements only. Other approaches have also been
proposed in the technical literature based on other kinds
of measurements, such as noise measurements. For exam-
ple, [18] presented a system to detect leaks in a home envi-
ronment on the basis of the sound produced by the water
in the pipes. The identification of the leaks is made by a
‘‘Shazam-like’’ approach: a sensor records the sounds made
by the water network and sends the records to a server which
contains a database of sounds. The server extracts the finger-
print of the sound and compares it with those in the database
to find the closest one, returning the label of the sound.
This approach clearly needs to install audio sensors in the
homewater systemwith an internet connection. The detection
quality highly depends on the quality of the database in the
server, which must contain recording for pipes of different
size, different material, and different flow.

Finally, Machine Learning techniques were applied to
water leakage detection in the water distribution system
(WDS), too. For instance, in [19] a convolutional NN has
been coupled with a Support VectorMachine system to detect
and localize leaks in aWDS. The same problem is considered
by [20], which uses a fully connected NN to localize a leak
in a pipeline. They consider a single pipe, of which the
inlet and outlet flow and the substance passing through are
known. These data can be used to approximate the changes
of pressure and flow in the pipe in presence or absence of
one or more leaks, also approximating their positions. This
approach is explicitly tailored for the WDS and must be built
on the specific pipe.

In [21], [22] a NN is used to detect bursts in the Yorkshire
Water’s Keighley distribution system using time series con-
taining measurements of flow, pressure and possibly opacity
of the water to forecast the next state of the distribution
system in terms of a conditional density function. The results
reported in the paper show an Accuracy of 75% for leak
detection.

With respect to the detection of leakages inside homes,
the scenarios above mentioned tackle different issues and
analyse different kinds of data. Thus, a direct comparison
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between our technique and those works would not be signif-
icant. In fact, in our scenario, we collect the water consumed
by each household, thanks to a sensor positioned upstream
the house network. Thus, we cannot resort neither on residual
flows between two sensors, nor on sound or pressure data.

IV. MACHINE LEARNING FOR DETECTION OF
DIFFERENT-SIZE LEAKAGES
The collected records available in the cloud, representing
household water consumptions measured at the inlet point,
were labelled:

1) firstly, with a class variable indicating the absence
(label equal to 0) or presence (label equal to 1) of a
leak;

2) secondly, with a class variable indicating the magni-
tude of the leak: small (<=1 L/h), medium-sized (1 to
10 L/h), large (>=10 L/h); we Recall that small leaks
are mainly due to fitting dripping, medium-sized leaks
to faulty sanitary appliances, large leaks to damage to
pipes.

Pre-processing is detailed in Section V-A. The two datasets
thus obtained are suitable for the application of supervised
machine learning algorithms, with the goal of learning mod-
els able to detect whether new water consumption records
will contain a leak and of which magnitude. In the first case,
a binary classifier can be learnt that discriminates between
the negative class (label 0) and the positive class (label 1);
in the second case a multiclass classifier can be built so that
it is able to find, in particular, small leakages at domestic
level. Among the classification techniques, we considered
two well-known and extensively used approaches: (1) Ran-
dom Forest (RF), known for its good computational perfor-
mance and scalability, and (2) Neural Networks (NN), which
have proven to be very effective at modelling correlations
among many features. Random forest was trained on a Linux
machine equipped with an Intel(R) Core(TM) i7-8565U
CPU@1.80(1.99)GHz and 16GB of RAM,while neural net-
works on a Linux machine with 1 IBM POWER9 AC922 @
2.6(3.1) GHz and 16 GB of RAM.

A. RANDOM FOREST
A random forest is a meta estimator that fits a number of
decision tree classifiers on various sub-samples of the dataset
and uses averaging to improve the predictive Accuracy and
control overfitting [23]. We used the implementation avail-
able in the WEKA2 workbench (version 3.8.5) for machine
learning [24]. Given a training set X , learning a random forest
in WEKA involves the following steps [25]: (1) Bootstrap
samples Bi for every tree ti are drawn by randomly selecting
pairs of points with replacement from X until the sizes of Bi
and X are equal; (2) a random subset of features (attributes)
are selected for each Bi and used for the training of tree ti
in the forest; (3) an information gain metric is used to grow

2https://www.cs.waikato.ac.nz/ml/weka/

unpruned decision trees; and (4) the final classification result
is the most popular of the individual tree predictions.

The training phase was controlled by the following
settings:

– P 100: size of each bag, as a percentage of the training
set size; the default value of 100 was kept;

– I 100: number of iterations (i.e., the number of trees in
the random forest);

– num-slots 1: number of execution slots (thread) for
constructing the ensemble. The default 1 means no
parallelism;

– K 0: sets the number of randomly chosen attributes;
– M 1: the minimum number of instances per leaf;
– V 0.001: minimum numeric class variance proportion of

train variance for split (it was kept the default value);
– S 1: seed for random number generator (it was kept the

default value).

This combination of values achieved the best results in terms
of classification.

B. NEURAL NETWORKS
In the last decades, the use of Neural Networks has become
one of the most effective approaches to solve classification
tasks. This is principally due to their capability to identify
and model complex interactions among the entities to be
classified. The first architectures proposed were called Fully
Connected (Deep) Neural Networks, Artificial Neural Net-
works, orMultilayer Perceptron [26], [27], but have been later
extended in order to define more complex models, that may
be completely different.

Among them, Convolutional Neural Networks (CNNs),
first theorized by [28] who applied them to define his
LeNet5 [29], have come to the fore to solve problems where
data present spatial and/or topological structure. Hence,
they are specialized for processing data that have a known,
grid-like topology, such as time series [30] and images [31].
CNNs are built using convolutional layers, performing con-
volutions on the input data, and extracting features from it,
typically followed by some fully connected layers to carry out
the classification by considering only the extracted features
instead of the entire input data. The convolution operation
considers the input and a kernel, combining them to compute
a feature map, or simply feature. In practical scenarios the
input and the kernel functions are tensors, i.e., multidimen-
sional arrays, such as a 2D grid of pixels of a grayscale image
or a 1D vector of a time series. The result of a convolution
operation represents the features extracted from the input.
In CNNs, convolution operations are often followed by a sec-
ond operation, called pooling. This is used to reduce a feature
map by summarizing its information. This summarization
can be performed by, e.g., averaging neighbour values or
extracting from them the maximum value. The use of con-
volution and pooling operations allows the extraction of the
important features contained in the input data x, representing
them by smaller tensors. These features can be used to help
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classification, or the recognition of certain patterns contained
in the data, irrespectively of their position or scale. Indeed,
CNNs’ final layers are classical fully connected layers that
perform classification on the features extracted by the previ-
ous layers.

In our case, input data are sequences of real values rep-
resenting the households’ daily water consumption. When
classification is binary, usually one of the two classes is
considered as the positive class while the other as the negative
one. In this case, the final layer of the neural network has a
single output neuron, which adopts as activation function the
sigmoid function σ (z) = 1

1+e−z .
This function converts z into a value in [0, 1]: in this case,

this value is interpreted as the probability p(y = 1|x; θ ),
where y = σ (z), x is the input and θ the weights of the NN
used to compute z; this is equivalent to the probability of the
input belonging to the positive class 1.

This approach is known as logistic regression [26]. When
classification is multiclass (with C classes), the last layer of
the network used for binary classification is replaced with one
having C neurons, one for each class.
A successful approach to reducing the variance of neural

network models is to train multiple networks instead of a sin-
gle one, and to combine either the predictions or the weights
from these models. This is called ‘‘ensemble learning’’ and
not only reduces the variance of predictions, but it can also
result in predictions that are better than any single model.

1) SELECTION OF THE NETWORK TOPOLOGY
The performance of neural networks critically depends on
identifying a proper architecture and good values for the
hyper-parameters of the network. In order to find the best
network, different architectures were tested on the data set
for binary classification by varying several hyper-parameters.
TensorFlow framework version 2.0.0 with CUDA version
10.0 was used. TensorFlow is an open-source machine
learning platform written in Python, originally developed
by Google Brain, and later made publicly available under
Apache License 2.0 at the end of 2015 [32].

The following network topologies were evaluated:
• Fully Connected Networks (FCN), by varying the num-
ber of layers, of neurons per layer and the Dropout
probability;

• Convolutional Neural Networks, by varying the number
of convolutional layers, the number of feature maps
and the kernel size per convolutional layer. In this case
kernels are mono-dimensional, so given n, kernel size
is n× 1. After the convolutional layers, Global Average
Pooling (GAP) followed byDropout with varying proba-
bility was added. Finally, a varying number of FC layers,
a different number of neurons per layer and a variable
Dropout probability were tested;

• Recurrent Neural Networks (RNN), usually used to
analyse sequences such as written sentences, by varying
the number, the output size, and the direction (unidi-
rectional or bidirectional) of Long-Short Term Memory

(LSTM) layers [33]. Every LSTM layer used the tanh
activation function, and Dropout with a varying proba-
bility. For the final FC layers, a varying number of lay-
ers, neurons and Dropout probability value was tested;

• Hybrid Convolutional-Recurrent Neural Networks
(CNN-RNN), characterized by a set of convolutional
layers, a sequence of LSTM layers, and final FC layers
for classification. All hyper-parameters cited abovewere
varied and tested.

The different networks were constructed with randomly
selected hyper-parameters, a common approach in which
values in a given range are randomly chosen in order to cover
most of the search space. The hyper-parameters ranges are
shown in Table 1. In particular, when Dropout probability is
set to 0.0 it means that Dropout is not applied.

TABLE 1. Hyper-Parameter ranges (in square brackets) taken into
account during random search of the best neural network architecture.
Curly brackets are used for sets of values.

The number of convolutional layers was set to only three
possible values, i.e., {3, 6, 9}, as each set of three layers
contains the first and the third layer with a varying kernel size,
and the second one with a kernel size 1 × 1 and the number
of feature maps set to 10. Convolutional layers with kernel
size 1 × 1 were introduced by [34] for the Google Inception
network, with the purposes of reducing the number of filters,
aggregating them pixel by pixel, and applying ReLU on the
aggregated filters, hence speeding up training and making it
more stable. We noticed that the removal of the layers with
1 × 1 convolution or the addition of further convolutional
layers degraded the performance: in fact, during the training
phase, these networks entered an overfitting regime from the
first epochs. Kernel size and number of feature maps were
randomly selected so that the first one decreased layer after
layer while the second one increased: to do so, after each
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TABLE 2. Best results achieved for each type of neural network architecture in terms of precision (Pr), recall (R) and F-Measure (F). The hyper-parameters
of the best network for each architecture are abbreviated as: #CL = number of convolutional layers, KS = kernel size in order of layer, #FM = number of
feature maps, #RL = number of LSTM unidirectional and bidirectional layers, #ROS = LSTM output size, #FCL = number of fully connected layers,
#NS = number of neurons per layer, DP = dropout probability in bold the best results.

random selection, the hyper-parameter range was changed
accordingly.

For each architecture, 10 neural networks were generated
by randomly choosing the hyper-parameter values accord-
ing to a normal probability distribution. The number of
epochs was set to 1000, but thanks to early stopping this
value was never reached. For each of the four architectures,
the best network, with the highest values of Precision, Recall
and F-Measure (see also section C. Performance Analysis),
is reported in Table 2: it is easy to see that the best performing
neural network is the convolutional one.

2) TRAINING OF THE CONVOLUTIONAL NEURAL NETWORK
Once chosen the topology of the NN, i.e., the convolutional
one, a second random search on the best CNNwas performed.
The search used the values of the hyper-parameters shown
in Table 2 for the best CNN (#CL, KS, #FM, #FCL, #NS,
DP) as central values of new ranges to be used for random
selection, 10%wide with respect to the original ranges shown
in Table 1. Figure 2 shows the proposed architecture as a
result of the 2-step hyper-parameter search mechanism. The
detailed model layers are shown in Table 3.

Finally, the ensemblemethod via a 10-fold cross-validation
was applied to obtain a binary or multiclass classification
of the time series. The final model is obtained from the ten
trained CNNs by averaging their weights by means of the
Polyak-Ruppert averaging approach [35], [36].

Each of the ten CNNs was implemented with 11 layers,
of which 6 convolutional, 2 of pooling and 3 fully connected.
The first 8 layers perform 1D convolution and pooling to
extract an increasing number of features of decreasing size.
The first layer uses a kernel 50 × 1 to extract 10 feature
maps, followed by a 1 × 1 convolution and a 20 × 1 convo-
lution extracting respectively 10 and 50 feature maps. Then,
max pooling is performed using a 3 × 1 grid reducing the
size of the feature maps extracted so far. A second step
of 20 × 1 and 1 × 1 convolution is performed, extracting
respectively 70 and 10 feature maps. One last convolutional
layer returns 160 features by means of a 10 × 1 convolution.

These are passed through global average pooling returning a
tensor of 160 real values, each representing a specific feature.
Finally, three fully connected layers classify the examples
using the extracted features: the first two layers are composed
of 30 neurons, while the third one is the output layer with
one or four neurons according to the type of classification.
The ReLU activation function [37] is used on all the layers
except the final one, where the sigmoid function is used to
return the predicted class. The final network has a total of
103,432 weights to train.

Dropout was used after each fully connected layer and after
the global average pooling operation. Training was done by
the Adam optimizer [38] and guided by both Precision and
Recall.

Early stopping was used with 15 epochs of patience, i.e.,
the number of epochs that produced amodel with no improve-
ment in the loss, after which training was interrupted. More-
over, the learning rate, with a starting value of 0.01, was
reduced by a factor 0.1 every time the model did not improve
for 5 consecutive epochs, i.e., every time the model encoun-
tered a plateau in the loss function. This, called learning rate
decay, was done to fine-tune theweights and avoid at the same
time to escape the plateau and climb back the loss function.

As for multiclass classification, the architecture used is
the same except for the last layer of the network, which was
modified by introducing 4 neurons (as shown in Figure 2),
one for each class, and replacing the sigmoid function with
the softmax function, which acts similarly to the sigmoid for
multiclass classification.

C. PERFORMANCE ANALYSIS
The performance evaluation of an ensemble model is based
on several metrics derivable from the confusion matrix, that
can be built for any kind of classification; Table 4 shows its
structure for a binary classification problem.

By comparing the predicted class, i.e., the classification
returned by the model on the test set, and the relative
actual class, one can quantify the water consumptions with
actual presence of leaks (true positives or TP), those with
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actual absence of leaks (true negatives or TN), those with
non-existent leaks incorrectly found (false positives or FP)
and, finally, those with actual leaks not found (false negatives
or FN).

TP, TN, FP, FN are used to compute the following metrics,
whose range is in [0, 1]:

Accuracy =
TP+ TN

TP+ TN + FP+ FN

Recall =
TP

TP+ FN
Precision =

TP
TP+ FP

Specificity =
TN

TN + FP

Negative predictive val =
TN

TN + FN

F-Measure =
2 · Precision · Recall
Precision+ Recall

In particular, Accuracy represents the rate of records cor-
rectly classified by the model. However, when the dataset is

TABLE 3. Layer parameters of the proposed CNN architecture.

unbalanced, one should prefer other metrics, i.e., Precision
and Recall. The former quantifies the model’s ability to avoid
false positives, the latter the ability of avoiding false neg-
atives. Finally, F-measure provides an overall indication of
the balance between Precision and Recall: it is computed as
their harmonic mean, which ensures that the result is close to
the lowest value. Overall, the more all metrics take on values
close to 1, the more effective the model is in performing
classification.

Other metrics employed for performance evaluation are
the areas under the Precision-Recall (PR) and the Receiver
Operating Characteristics (ROC) curves [39], [40]. The PR
curve plots the Precision against the Recall and is a useful
measure of success of prediction when the classes are very
imbalanced; it shows the trade-off between Precision and
Recall for different thresholds (from 0 to 1). Analogously,
the ROC curve plots the Recall against the FP Rate (FP
divided by the total number of negatives) to graphically illus-
trate the performance of a classifier as its prediction threshold
varies. The ‘‘Area Under the Curve’’ (AUC) measures the
two-dimensional area underneath the entire ROC or PR curve
from (0, 0) to (1, 1), and ranges in value from 0 (predictions
100% wrong) to 1 (predictions 100% correct).

TABLE 4. Confusion matrix for a binary classification problem.

In the case of multiclass classification, Precision, Recall
and F-measure must be computed separately for each class
and then averaged. There are two possible approaches:
Micro-average and Macro-average. The former computes the
metrics for each class using ‘‘one-vs-all’’ methodology: given
a class - considered as the positive one - it reduces the compu-
tation to a binary classification where all the other classes are
considered as negative. The latter computes the metrics for
each class considering each class separately. In both cases,
once computed the metrics values for each class, these are
averaged to obtain the final value of the metrics [41]. Note
that Macro-average does not take into account class imbal-
ance, so Micro-average is more suitable when considering
unbalanced data sets.

V. EXPERIMENTAL EVALUATION
Our case study relates to the water supply system of Gorino
Ferrarese, a village located in the province of Ferrara
(northern Italy) covering an area of about 3 km2. This water
distribution network, managed by CADF S.p.A., supplies
293 users of which 276 are residential and 17 are attributable
to public services and commercial or tourist activities.
In June 2016, the water managing authority carried out a

VOLUME 9, 2021 126141



R. Zese et al.: NN Techniques for Detecting Intra-Domestic Water Leaks of Different Magnitude

FIGURE 2. Proposed CNN architecture.

replacement campaign of traditional mechanical counters
with electromagnetic smart meters (Sensus iPerl). This type
of smart meter supplies a R800 metrology that ensures an
accurate measurement starting with variations of the volume
required by the user of 1 L in a specified time interval.
Moreover, these smart meters can identify water leaks either
when the flow rate is at least 25 L/h for at least 6 hours
or when the flow rate is at least 3750 L/h for at least
4 hours.

Thanks to the ability of the new smart meters to also per-
form the Data Logging function, it was possible to undertake
data collection campaigns using a RMR system in walk-by
mode. In particular, time series of the cumulative volumes
of water consumption by each user were collected from
June 29th, 2016, to January 7th, 2017, at 5-minute time step
and from January 8th, 2017, to January 9th, 2018, at 1 hour
time step. In this study was made use of the time series
collected at the 5-minute time step, for a total of more than
15,000,000 records.

The dataset is available as a comma-separated value
file (CSV) of 32, 5 MBs at https://github.com/rzese/Intra-
Domestic-Water-Leaks-Dataset.git.

A. DATA PRE-PROCESSING
The database was subjected to a preliminary cleaning step
that removed all data associated with commercial users
(Figure 3a), as these are characterized by a different con-
sumption behavior than domestic users (Figure 3b) and are
highly dependent on the type of commercial activity. In addi-
tion, the consumption time series of some residential users
were excluded because they were characterized by negative
consumption values, due to false logging caused by a set of
faulty meters provided by the producer.

The resulting database contains the 5-minute time series
of the cumulative volume of 211 residential users, for a
total of 11,667,456 records. Subsequently, the 5-minute time
series of cumulative volumes were converted into 5-minute
time series of flow rates for each user.

FIGURE 3. Pattern of hourly consumption coefficients: (a) commercial
user (aquaculture cooperative) and (b) residential user.

FIGURE 4. Example of the hourly water consumption pattern of a
domestic user.

Both types of time series were examined by an expert with
the goal to characterise the consumption behaviour of each
individual user. In general, most residential users show a stan-
dard consumption behaviour, in which larger consumptions,
mainly occurring in the daytime, alternate with lower (or even
zero) ones, especially during the night (Figure 4 shows this
variation during a week).

Unusual consumption behaviour was spotted when resi-
dential users were affected by the presence of water leaks
inside their homes. Regardless of the cause, while large water
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FIGURE 5. Time series of: (a) the hourly cumulative volume in case of a large leak, (b) the hourly flow rate in case of
medium leak, and (c) the 5-minute flow rate in case of a small leak.

leaks can be easily identified by analysing the cumulative
volume time series (Figure 5a), characterized by an abnormal
step in the cumulative time series of the consumed water
volume, smaller leaks require the observation of the flow rate
trend. In more detail, medium-sized leaks were identified by
analysing the hourly flow rate trend (Figure 5b), while the
small ones were detected by examining the 5-minute time
series of the flow rate (Figure 5c), as they involve a ‘‘sawtooth
behaviour’’ where null values of the flow rate alternate with
values of 12 L/h (i.e., variations of 1 L in a 5-minute time
interval).

Overall, this manual analysis spotted 211 water leaks, most
of them lastingmore than one day: among them, 26were large
(>10 L/h), 101 were in the 1 - 10 L/h range (medium-sized),
and 84 were small (<=1 L/h). The 5-minute time series of
flow rates, relative to each user, were divided into records
of 24 hours and each record was labelled:

1) with a two-value class variable to indicate the presence
or absence of water leaks, for the binary classification
task;

2) with a four-value class variable to indicate the presence
of small, medium-sized, large leaks or no leak, for the
multiclass classification task.

Each record representing the flow rates for a specific day
(24 hours) and a specific user is a row in the data set and
is referred to as an ‘‘example’’ in the following. The resulting
data set for case (1) counted 40,428 examples, among which
30,744 were labelled as negative, i.e., absence of a leak, while
9,684 were labelled as positive, i.e., presence of a leak. The
number of positive examples may appear in contrast with the
number of water leaks spotted (211). However, as reported
above, among the 211 leaks detected, most of them lasted
more than 24 hours, therefore, in these cases, a single leak
is used to label a set of positive examples. The resulting
data set for case (2) counted 30,744 negatives and the posi-
tives divided into 3565 small leaks, 5511 medium-size leaks,
608 large leaks. As you can notice, the data sets are heavily
unbalanced, with a positive/negative ratio of 0.31: almost
24% of the examples are positive, while 76% are negative.
Both data sets were split in two parts, a training set containing
80% of the examples and a test set containing the remain-
ing 20%; the training-test split was stratified in both cases.
Therefore, each example in the data sets is a labelled time
series of 288 values, equivalent to a 1D tensor corresponding
to the water flow rates collected every 5 minutes in 24-hour
windows from 06/29/2016 to 01/07/2017.
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B. RANDOM FOREST RESULTS
Accuracy, Precision, Recall, F-Measure, AUC-PR, and
AUC-ROC averaged over the 2 classes, returned by the
model on the test set for binary classification, are shown in
the overview Table 5 together with the results obtained by
the convolutional neural networks, for the sake of compari-
son. Analogously, in Table 6 we report Accuracy, Precision,
Recall, F-Measure, AUC-PR, and AUC-ROC averaged over
the 4 classes, returned by the model on the test set for
multiclass classification. Table 7 shows the confusion matrix
obtained in this case.

Values closer to 1 for all metrics mean better performance.
In the binary case, the RFmodel (38Mb)was built in 96.90s

while the time for testing the model on the test set was 1.60s.
In the multiclass case, the RF model (57Mb) was built

in 98.75s while the time for testing the model on the test set
was 1.74s.

C. NEURAL NETWORKS RESULTS
In Table 5 we report Accuracy, Precision, Recall, F-Measure,
AUC-PR, and AUC-ROC achieved on the test set by the
ensemble model built for binary classification.

In Table 6 we report the same metrics (micro-averaged)
achieved on the test set by the ensemble model built for mul-
ticlass classification. Values closer to 1 for all metrics mean
better performance. Table 8 reports the confusion matrix
obtained in this case.

In the binary case, each network of the ensemble was
trained in about 10 minutes on average and inference time,
i.e., time for classifying an example, was about 7 ms.

In the multiclass case, each network of the ensemble was
trained in 22 minutes on average, while inference time took
about 0.372 ms.

The CNN models occupy a maximum of 2Mb.

TABLE 5. Results obtained by random forest (RF) and neural networks
(CNN) in terms of accuracy (ACC), precision (PR), recall (R), F-Measure (F),
AUC-PR and AUC-ROC on the test set used for binary classification in bold
the best results.

TABLE 6. Results obtained by random forest (RF) and neural networks
(CNN) in terms of accuracy (ACC), precision (PR), recall (R), F-Measure (F),
AUC-PR and AUC-ROC on the test set used for multiclass classification in
bold the best results.

TABLE 7. Confusion matrix for the multiclass classification task obtained
with random forest. Along the diagonal (in bold) the number of examples
correctly classified.

TABLE 8. Confusion matrix for the multiclass classification task obtained
with the CNN. Along the diagonal (in bold) the number of examples
correctly classified.

D. THE ‘‘EMPIRICAL ALGORITHM’’
In [9] an ‘‘empirical algorithm’’ was proposed to automati-
cally identify leakages at the individual user level by looking
for non-consumption in certain periods of the day. Specifi-
cally, the algorithm was originally developed to be applied to
hourly time series and classifies the consumption pattern as
a correct operation of the plumbing systems and the hygienic
and sanitary appliances if the hourly flow rate is equal to
0 at least once during the whole day. By contrast, it classifies
as a probable presence of water leakage if the hourly flow
rate is never zero during the whole day, so it behaves as a
binary classifier. In this paper, in order to be compared with
the ML approaches, the algorithm could be applied only on
the dataset for binary classification.

The algorithm performance, shown in Table 9, was esti-
mated by considering both the 5-minute time series of flow
rates as recorded by the smart meters (first column), and by
uniformly ‘‘spreading’’ aggregated information, such as the
hourly volume (second column, as done in the original publi-
cation) and the bi-hourly volume (third column) required by
the generic user, on 5-minute time intervals.
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The latter method was applied in order to improve the
ability of identifying small water leaks, which represents the
main goal of the paper. By constructing time series of hourly
averages and by turning these into 5-minute time series,
we could provide a constant flow rate in a generic hourly or
bi-hourly time interval, avoiding giving as input a 5-minute
time series characterized by the sawtooth behaviour.

TABLE 9. Results in terms of accuracy, precision, recall, and F-Measure of
the ‘‘empirical algorithm’’ on the test set for the binary classification task.

VI. DISCUSSION
The experimental evaluation presented in the previous
Section aimed at testing different ML algorithms with the
purpose of finding the best classifier both for binary leak
detection (presence vs absence of a leak) and for multiclass
leak detection: in the latter case, among the four classes of
leaks considered, we were particularly interested in the ones
under the meter sensitivity (that we called small for being
lower than 1L/h), which are themost difficult to automatically
detect.

Comparison between RF, CNNs and the empirical algo-
rithm on the binary classification task highlights that
convolutional neural networks better discriminate between
presence and absence of water leakages inside homes, with
a 95.7% Accuracy, a 92.5% Precision and areas under the
PR and ROC curves near to 99%; Recall and F-measure are
comparable for RF and CNN. RF comes second, with all
performancemetrics that are always above 91% (see Table 5).
Finally, as Table 9 shows, the ‘‘empirical algorithm’’ of [9],
applied to the 5-minute time series recorded by smart meters,
is pretty inaccurate, since Recall and F-measure are close
to 0, while Accuracy is close to the lower bound (0.76)
obtainable with the data set used for binary classification.
This is due to a large number of actual leakages not identified
by the algorithm, occurring mainly when residential users are
affected by leakages lower than 1 L/h. These are the hardest
to be detected because they fall below the meter’s sensitivity.
In fact, the 5-minute time series are mainly characterized by
a sawtooth behaviour where null values irregularly alternate
with sporadic flow rate values of 12 L/h (equivalent to the vol-
ume of 1 L in a 5-minute interval), as shown in Figure 5c. This
leads the empirical algorithm to confuse the trend of the time
series with the user’s ordinary consumption, where non-zero

flow rates in discontinuous and typically brief time intervals
alternate with long time periods of null consumption. In other
terms, the sawtooth behaviour is not related to the user’s water
demand but is caused by the fact that the meter records a
change in the cumulative volume after detecting the transition
of a certain volume of water (in the case of Sensus iPerl equal
to 1 L) in a fixed time interval.

Instead, the ‘‘empirical algorithm’’ is precise in classifying
absence of leakages as true negatives (high Precision). This
is due to the fact that during each generic 5-minute time
interval a null flow rate is recorded. The performances of
the algorithm increase if aggregated data are used as input
and are more in line with - even though slightly worse than -
those shown in [9], but it is worth Recalling that the data set
considered in this paper is slightly different than in [9] where
small leakages, lower than 1 L/hour, had not been considered.
Considering the hourly volume required by the user spread
on 5-minute intervals, the number of actual leakages not
identified by the algorithm decreases, as shown by Recall
and F-measure, as well as Accuracy which increases by about
20%. Considering the bi-hourly volume spread on 5-minute
intervals, it is possible to observe a further improvement.
However, in this case, a reduction in Accuracy is observed,
due to an increase in the number of false positives.

As for the multiclass classification task, Table 6 demon-
strates that CNNs overcome RF in distinguishing different-
magnitude leakages under all performance metrics: RF
ranges between 84.3% and 95%, while CNNs range between
92.4% and 99%. Also, the confusion matrices obtained by
the two ML techniques in the multiclass classification task
highlight (Tables 7 and 8) how RF poorly detects small
leakages w.r.t. CNN, by confusing a lot of records without
leak (570) or with medium-sized leaks (98) as small leaks.
However, the classification of small leakages remains the
hardest task for neural networks, too: Table 8 shows that the
greatest difficulty is discriminating between absence of leak
and small leaks. We also computed the Specificity and the
Negative predictive value to measure the ability of the RF
and NN models to reliably recognize non-leakages, in order
to avoid false alarm rate of the leak detection algorithm. Also,
in this case CNNs perform better with Specificity and Nega-
tive predictive value near 84%, while RF comes still second
with Specificity and Negative predictive value near to 70%.

Firstly, it is worth noting that, although household water
leakages can vary in size from tens of litres to less than a
litre, the detection of the latter still may have a significant
economic and environmental impact due to the very nature
of the small leaks that, difficult in being discovered, can
persist over time and represent a substantial amount of the
final user’s residential loss. Therefore, small leaks may have
an impact in terms of environmental sustainability as well as
larger ones. Our approach is specifically targeted to automat-
ically detect leaks of different size, especially lower than the
meter sensitivity.

Secondly, smart water meters are being increasingly
deployed in aqueducts [6], [8] for real-time monitoring of
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the flow rate in order to send warnings about eventual losses.
The proposed approach can be extremely energy efficient for
such battery powered devices, as neural network models are
very small (a few Megabytes) and can be easily stored in
them, directly allowing for small leakages control in the urban
context as well.

VII. CONCLUSION
In this work we presented the application of several Machine
Learning techniques to water consumption time series col-
lected through an IoT infrastructure at user level in Gorino
Ferrarese (Ferrara, Italy) based on smart meters, for the
automatic detection of different-size water leaks within the
households. The approach is specifically targeted to auto-
matically detect leaks of different size, especially lower than
the meter sensitivity. Convolutional Neural Network models
demonstrate to be the best in detecting both the presence or
absence of water leaks, but also in discriminating their class
among small, medium-sized, and large. Both the models,
given the daily water consumption, return whether there is
a leak and, in this case, if the leak is small, medium, or large
if multiclass classification is performed. Both the models also
return a numeric value representing the probability of the
prediction, the highest the probability the most accurate is the
detection. Training and test phases are fast, and results show
that the model is able to classify water leaks with Accuracy,
Precision, Recall, F-measure, and area under the PR and ROC
curves taking values ranging from 92% to 99%.
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