
2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3104624, IEEE Internet of
Things Journal

1

Design Guidelines and a Prototype Implementation
for Cyber-Resiliency in IT/OT Scenarios

based on Blockchain and Edge Computing

Eugenio Balistri1, Francesco Casellato1, Salvatore Collura1,
Carlo Giannelli2 Senior Member, IEEE, Giulio Riberto1, Cesare Stefanelli1 Member, IEEE

1Department of Engineering, University of Ferrara, Ferrara, Italy
2Department of Mathematics and Computer Science, University of Ferrara, Ferrara, Italy

The advent of the Internet of Things (IoT) and its spread
in industrial environments has changed production lines, by
dramatically fostering the dynamicity of data sharing and the
connectivity of machines. However, such increased flexibility (also
pushed by the adoption of edge devices) must not negatively affect
the security and safety of industrial environments. The proposed
solution adopts the Blockchain to securely store in distributed
ledgers topology information and access rules, maximizing the
cyber-resiliency of industrial networks. Topology information and
access rules are stored and queried in a completely distributed
manner, ensuring data availability even in case a centralized
controller is temporarily down or the network partitioned.
Moreover, Blockchain consensus algorithms foster a participa-
tive validation of topology information, to ensure the identity
of interacting machines/nodes, to securely distribute topology
information and commands in a privacy-preserving manner, and
to trace any past modification in a non-repudiable manner.
Finally, the adoption of configurable edge gateways allows to take
prompt countermeasures in case potential threats are identified,
by activating access rules stored in ledgers in a secure and
distributed manner. In addition to solution design guidelines and
architectural considerations, the paper also presents performance
results achieved with our CyberChain working prototype, with
the goal of not only demonstrating the feasibility of the proposed
solution but also its suitability in industrial environments.

Index Terms—Industrial IoT, Blockchain, Cyber-resiliency,
Edge Computing, Hyperledger Fabric

I. INTRODUCTION
1 Information Technology (IT) has been traditionally char-

acterized by an ever increasing push towards the connectivity
openness of services and their interconnection via the Inter-
net. In sharp contrast, Operational Technology (OT) related
to the monitoring and management of industrial plants and
production lines has been usually characterized by static and
closed networks: not only devices and machines within shop
floors were not able to connect to the Internet, but they
were also able to communicate one another only in a very
limited manner (or were not able to communicate at all).
Recently, the adoption of the Internet of Things (IoT) approach
and the integration of IT and OT have greatly increased

Corresponding author: C. Giannelli (email: carlo.giannelli@unife.it).
1An earlier version of this paper was presented at the IEEE

SMARTCOMP 2020 Conference and was published in its Proceed-
ings, https://ieeexplore.ieee.org/document/9239702, doi: 10.1109/SMART-
COMP50058.2020.00021.

the dynamicity of data sharing and the interconnection of
machines in industrial environments [1]. In fact, nowadays
industrial machines are able to dynamically provide a great
amount of context information, e.g., ranging from the time
required to separately produce each crafted piece to vibration
data provided by on-board sensors, and to receive commands,
e.g., from the type and amount of objects to be crafted to
the remote update of the firmware. In addition, the industrial
environment more and more is characterized by a greater and
more heterogeneous set of actors. In fact, the IT/OT integration
is pushing towards the (partial) connectivity openness of shop
floor borders, more easily integrating other devices, e.g., lap-
tops of external specialized technicians and small-size robots
that can be relocated as needed, to improve productivity or to
reduce maintenance costs.

However, the increased degree of flexibility and connectivity
openness of the industrial environment must not negatively
affect the security and safety of the shop floor. To this pur-
pose, traditional solutions ensure the security of devices and
transmitted data by adopting a centralized approach based on
a controller acting as network manager. The controller gathers
information about the topology, provides system administra-
tors with a unified point of view of the network, allows to
specify security access rules to network resources with a per-
subnet granularity, and interacts with gateways and firewalls
to deploy access rules. Such a solution greatly simplifies the
enforcement of network security, since the controller acts as
management entry-point for the whole IT/OT environment.
In this manner, it allows to easily take proper configuration
decisions based on a complete knowledge of the environment.
However, the controller also represents a single point of
failure, thus a likely target for an attacker.

As better detailed later, we state that to maximize the
resiliency of industrial networks it is of paramount importance
that a new controller replica should be able to easily gather
previous configurations at startup, to quickly restore provided
services. Moreover, machine and edge devices should be
able to provide and gather information without any service
disruption even during controller unavailability. Finally, there
is the need to also consider that the controller cannot easily
verify the truthfulness of received information, thus for an
attacker able to compromise a monitoring agent would be easy
to inject the controller with fake information.

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on January 03,2022 at 08:01:35 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3104624, IEEE Internet of
Things Journal

2

Based on these considerations, the paper originally con-
tributes to the state-of-the-art literature along three primary
directions:

1) first of all, the proposed solution adopts the Blockchain
to maximize the network resiliency (considering both
functionalities and data availability) and edge nodes
as monitoring agents and reconfigurable gateways. In
particular, the Blockchain distributed ledger supports
the creation and query of topology information in a
completely distributed manner, ensuring data availability
even in case the controller is temporarily down;

2) secondly, Blockchain consensus algorithms are used to
foster a participative management of topology informa-
tion validation. Such a solution allows to reciprocally
ensure the identity validity of interacting nodes and to
securely distribute topology information and commands,
also allowing to trace any past modification in a non-
repudiable manner;

3) finally, by exploiting edge nodes as agents and gateways
in charge of monitoring and controlling the traffic, it is
possible to achieve fine-grained traffic management by
selectively allowing/denying packet forwarding. In this
manner it is possible to isolate compromised (or po-
tentially legit but still unknown) devices by temporarily
dropping their packets.

In the rest of the paper we present our original architecture
that realizes the above idea of Blockchain-based solution for
increased cyber-resiliency in OT environments. By relevantly
extending our previous work [2], we detail how the target
topology derives from the adoption of cyber security stan-
dards identified by international organizations. In addition, we
present a detailed description of our CyberChain working pro-
totype based on Hyperledger Fabric and a thorough analysis
of an extensive set of performance results that quantitatively
show the suitability of our solution for industrial environments,
by also presenting the efficiency of our proposal in terms of
computing load and memory consumption.

II. SECURITY STANDARDS AND BEST PRACTICES
IN IT/OT ENVIRONMENTS

IT and OT integration has been the focus of recent standard-
isation efforts by international agencies such as the National
Institute of Standards and Technology (NIST) and the Inter-
national Electrotechnical Commission (IEC), with the primary
goal of providing a common framework of discussion together
with clear best practices to maximize the security of industrial
production environments.

In particular, NIST Special Publication 800-82 Revision
2 [3] recognizes that the integration of IT and related low-
cost and widely spread communication protocols with so
called Industrial Control Systems (ICS) reduces the traditional
isolation of industrial equipment. However, it also makes
easier for attackers to get unauthorized access to machines,
e.g., since wireless protocols may allow to interfere with
machine workflows even without actual physical access to
machines themselves. Moreover, NIST Special Publication
800-82 Revision 2 also stresses that OT environments greatly

differ from IT ones in terms of risk in case of attack, since
machine misbehavior within OT environments not only could
cause environment damage and production loss, but could also
represent a risk for human health and safety. In fact, in case
of OT environments strict safety and availability requirements
can sometimes overcome data privacy ones.

Based on these considerations, NIST identified several se-
curity objectives that should be achieved. Objectives most
relevant in relation to the proposed solution are: restricting
logical access to OT networks (e.g., by adopting unidirectional
gateways and firewalls), protecting individual machines from
exploitation (e.g., by disabling unused ports/services and by
tracking and monitoring machine reconfigurations), restricting
unauthorized data modification (both in transit and at rest),
identifying security incidents (e.g., by promptly detecting se-
curity events and potentially malicious activities), maintaining
functionality during adverse conditions (e.g., by ensuring that
in case a single component fails the rest of the system is
able to work, even if with some reduced functionalities), and
supporting to restore the system after an incident (e.g., by
allowing to quickly start a new controller in case the former
one has crashed).

The IEC 62443 Industrial Communication Networks - Net-
work and System Security standard [4] is composed of a series
of documents detailing technical and process-related aspects of
industrial cyber security. For instance, IEC 62443-1-1 focuses
on terminology, concepts, and models of so called Industrial
Automation and Control Systems (IACS), IEC 62443-3-2
introduces security risk assessment for system design, IEC
62443-3-3 presents technical control system requirements and
foundation requirements, and IEC 62443-4-2 makes an in-
depth analysis of technical security requirements for IACS.

While a detailed presentation of the IEC 62443 standard
family is out of the scope of the paper, let us present some of
the primary concepts it defines, i.e., zones and conduits. Zones
identify groups of logical components as well as physical
devices residing within a well-defined border (either physical
or logical) that are characterized by common security re-
quirements. Conduits logically group communication channels
sharing common security requirements and allow components
in different zones to exchange data. The definition of zones and
conduits stresses the importance of segmenting the topology
in multiple subnets, with the primary purpose of limiting the
capability of attackers to compromise the whole production
line in case they are able to compromise a single machine.

Another notable aspect of the IEC 62443 standard is the
definition of seven foundation requirements that industrial
environments should always satisfy: identification and authen-
tication control (to authenticate every user, not only humans
but also processes and devices), usage control (to authorize
every user action by enforcing assigned privileges), system
integrity (to ensure that there is no unauthorized manipulation
or modification of machines, devices, and processes), data
confidentiality (to ensure the confidentiality of information
both flowing through conduits or stored in repositories), re-
stricted data flow (to segment the overall systems in zones
communicating via conduits thus avoiding unnecessary traffic
flows), timely response to events (to promptly identify po-

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on January 03,2022 at 08:01:35 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3104624, IEEE Internet of
Things Journal

3

Fig. 1: Typical network topology in an industrial environment.

tential threats and notify authorities adequately), and resource
availability (to allow essential services to properly work also
in case of attack, even if in a degraded manner).

Taking into consideration the above standards and related
requirements, we outline in Figure 1 primary components of
a typical OT environment. Machines (M nodes) are either
directly connected to the network or equipped with edge
devices (E nodes) providing network capabilities. The whole
multi-hop network is split into multiple subnets, connected one
another via edge nodes acting as gateways (GW nodes). In
addition, one or more gateways provide access to the Internet,
e.g., one via fiber another one via cellular to provide backup
connectivity, and to the network of other IT departments,
e.g., administrative offices. In each subnet there are agents
(A nodes) monitoring not only topology modifications but
also the traffic to detect anomalies and report them to the
controller. Finally, the controller resides close to the industrial
environment, e.g., in a Virtual Machine (VM) in the internal
datacenter, has full access to every subnet of the network,
receives topology and traffic information from agents, and
configures gateways. As briefly anticipated, network segmen-
tation aims at parcelizing the overall topology in tiny subnets,
to limit the visibility of each machine to a small subset of
deployed machines. In this manner, in case a machine (or an
edge device) is compromised, it is easier to limit horizontal
attack escalation, since only few other machines are in direct
visibility, thus reducing the negative impact of an attack.

Then, to ensure security and safety, OT solutions for indus-
trial control should follow an Authentication, Authorization,
and Accounting (AAA) approach, appropriately adapted to be
suitable for industrial environments. In particular:

• to join the network devices have to authenticate them-
selves, e.g., by providing a valid X.509 certificate, and
have to be in a list of known devices;

• once correctly authenticated, devices are authorized to
access local and remote resources in a selective man-
ner, based on permissions deployed and activated by
the controller on gateways. To this purpose, gateways
not only dispatch packets among different subnets but
also act as firewalls by filtering packets flowing among
different subnets as well as towards the Internet. To this
purpose, gateways adopt and enforce (usually coarse-

grained) access rules by considering, e.g., IP or MAC
addresses of devices;

• then, monitoring agents deployed within subnets oversee
the traffic generated and received by locally deployed
(and already authorized) devices to identify unusual traf-
fic patterns and rise alarms. For instance, if a machine
usually sending few packets per hour suddenly starts
receiving many huge packets then the agent sends an
alert, since it could mean that the machine is downloading
a malicious payload;

• finally, the controller traces any modification and event
that could be related to an anomaly. In fact, every relevant
event must be securely traced and logged, also taking note
of the identity of nodes generating the event. For instance,
it is required to ensure that a technician connecting to and
operating on the OT environment cannot later repudiate
its presence in the network. The final outcome is a clear
picture about how the network evolves, also to impute
eventual malfunctions to devices and technicians because
of either involuntary misconfigurations or on purpose
malicious attacks.

III. BLOCKCHAIN AND EDGE DATA MANAGEMENT FOR
IT/OT CYBER-RESILIENCY

To better present the proposed solution, Section III-A briefly
introduces most relevant characteristics of the Blockchain
technology [5]–[7]. Then, Section III-B outlines how the
adoption of a Blockchain-based solution coupled with re-
motely configurable fine-grained gateways greatly increases
the resiliency of OT environments while not limiting their
flexibility.

A. Blockchain technology overview

Blockchain represents an articulated ecosystem encompass-
ing several well-known technologies, ranging from symmetric
and asymmetric cryptography to peer-to-peer distributed man-
agement based on consensus algorithms.

First of all, it is worth noting that a Blockchain can store
information of any type, thus without any constraint in terms
of syntax and semantic. In particular, a Distributed Ledger
Technology (DLT) is a sequence of time-ordered transactions

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on January 03,2022 at 08:01:35 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3104624, IEEE Internet of
Things Journal

4

agreed among peers by adopting a distributed consensus
algorithm. A Blockchain specializes the DLT by grouping
transactions in immutable and linked blocks; each block is
strictly correlated to the block before and the block after
via secure hashes and cannot be modified once added to the
Blockchain. The first block, namely the genesis block, is the
only one without a previous block. New blocks can only be
added after the current last block, and only if (part of) nodes
hosting a copy of the ledger agree based on a given consensus
algorithm. Once a block is added at the head of the ledger
it cannot be modified, thus a Blockchain is an inherently
incremental DLT whose past data are immutable.

Each block contains a block payload with a set of ordered
transactions (each one with its own payload) and a block
header specifying, among other information, a timestamp
(when the block has been created), the hash of the previous
block (usually 0 for the genesis block), and the hash (or Merkle
tree) of the current block. Note that the hash of the current
block is generated by including the timestamp, the payload
(or the Merkle root of transactions’ hashes [8] to increase
efficiency), and even the hash of the previous block. In this
manner, the hash can be used not only to verify the integrity
of the current block, but also to securely chain this block with
the previous one, with the ultimate goal of creating a secure
chain of blocks.

In a Blockchain, smart contracts further specialize a DLT
by restricting how transactions can be generated and which
kind of information transactions can contain. For instance, a
smart contract can limit nodes to create a new transaction
only if some conditions apply, e.g., previous transactions of
the same ledger have some information and external entities
provide some resources. More technically, the creation of a
new transaction based on a smart contract imposes that some
code is executed on some data; the achieved output represents
the body of the new transaction.

Despite the Blockchain is exploited either to create a generic
DLT or to enforce a smart contract, to create a new transaction
nodes managing copies of the same ledger must cooperate and
agree one each other. To this purpose, when a node requires to
add some data to the ledger, it creates a new transaction and
sends it to other nodes (usually interacting in a peer-to-peer
fashion). Involved nodes apply a given consensus algorithm to
either accept or refuse the new transaction: in the former case,
the transaction is inserted into a block and eventually added
to every copy of the ledger, in the latter case the transaction
is discarded.

There is a plethora of consensus algorithms that can be
adopted [7] (of course, nodes collaborating to manage a given
Blockchain must exploit the same algorithm). Among the
others, the Proof of Work (PoW) allows to add a new block
of transactions to the Blockchain only after one of the nodes
involved in the consensus algorithm resolves a cryptographic
puzzle, e.g., finding a nonce that added to the new block allows
to get a hash with a given number of leading zeros. Such
cryptographic puzzles impose relevant computational effort
and time delay to create a new block and thus the longer
the ledger of the Blockchain the harder it is to modify any
of its blocks, ensuring the immutability of their transactions.

The node resolving the puzzle is usually rewarded, e.g., in
cryptocurrency, for its computational and energy effort. Prac-
tical Byzantine Fault Tolerance (pBFT) is another interesting
consensus algorithm. In this case, there is no cryptographic
puzzle (thus greatly reducing computational/energy overhead
and also reducing the time required to create a new block)
while the consensus is achieved by exchanging messages
among nodes involved in the management of the Blockchain.
However, since each node must send and receive multiple
messages to every node hosting a ledger replica, pBFT does
not scale well in huge environments with thousands of nodes
involved in transaction creation.

Another important distinction among Blockchain solutions
is permissionless vs. permissioned. In the former case, there is
no restriction on nodes joining the Blockchain. For instance,
this is the case of Bitcoin, a cryptocurrency allowing anyone
to create transactions to move crytpovalue from a wallet to
another. Since nodes do not know one each other (typically
identified by anonymous unique identifiers), there is the need
of adopting a consensus algorithm ensuring the correctness of
the Blockchain, even against cyber attacks. For this reason,
the PoW can be regarded as a valuable option, since a
Blockchain can be compromised only if an attacker has more
computational and energy power than half of the rest of
the nodes. In the latter case, only authenticated nodes can
participate in the network. The number of involved nodes is
typically limited while the level of trust higher, and thus it
is possible to adopt less computational and energy intensive
solutions such as the pBFT one.

B. Traditional solution issues and Blockchain-based solu-
tion benefits

Traditional industrial control solutions are usually based on
the assumption that i) it is granted the availability of a central-
ized node acting as controller gathering topology information
and sending access rules to firewalls and ii) monitoring nodes
are always trusted and behave in a regular manner by providing
correct information. However, we identify some paramount
issues in traditional control solutions that can greatly affect
the reliability of traditional solutions. In fact, an attacker
could target the controller with the purpose of limiting the
capacity of network administrators to receive alarms from
agents and to properly reconfigure firewalls. In addition, in
case of controller unavailability, it is harder to trace events
and to configure eventually added firewalls to limit damages
of an ongoing attack. In fact, administrators cannot access
the controller to add new topology information while the
remote deployment of access rules is not possible, imposing
to manually define rules and configure access rules by directly
interacting with firewalls. Moreover, an attacker could target
nodes with the purpose of providing untruthful information
about the topology. For instance, a compromised agent could
correctly authenticate itself and then send fake information
about the state of local links and network resources availability.

To ensure the achievement of requirements presented in
Section II (and with the final goal of maximizing OT network-
ing resiliency), there is the need of identifying and enforcing

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on January 03,2022 at 08:01:35 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3104624, IEEE Internet of
Things Journal

5

novel and more distributed and secure approaches, overcoming
aforementioned issues. In particular, we claim that in an
industrial environment it is of paramount importance to ensure
operational resiliency not only in case the controller is not
available anymore (e.g., an attacker specifically targets it)
by promptly activating a new controller replica, but also by
allowing the accessibility of topology information and access
rules even while the controller is not available.

In addition, to minimize the negative impact of an attack
it is required to ensure the typical best practices of network
segmentation in relation to network topology as well as
considering data spreading and accessibility. In this manner,
it is possible to limit the set of data a compromised machine
can access, e.g., by providing to gateways visibility only to
information related to the subnet they are connected to (rather
than the whole network).

Moreover, network reconfigurability via remotely control-
lable gateways should be always possible, even in case of a
(temporarily) partitioned network. The goal is to support fast
response to identified threats by properly applying required
countermeasures, not only mediated by technicians but also in
a completely autonomous and decentralized manner.

Finally, due to the increased connectivity openness of the in-
dustrial environment there is the need of validating information
provided by machines and edge devices. To this purpose, on
the one hand, information must be univocally associated to the
digital identity of the device generating it, to ensure authorship
and non-repudiability. On the other hand, information provided
by an authorized sender should be not granted for true (even
if the sender provides a valid digital identity) but should be
verified by other devices to be sure that a compromised node
cannot inject the controller database with fake information.

The adoption of Blockchain provides relevant benefits, by
taking advantage of its distributed and secure nature. In partic-
ular, the Blockchain dramatically increases network resiliency
by:

• improving data availability. Topology information and
network configuration are stored in distributed ledgers.
In this manner it is possible to increase data availability,
since in case of controller disruption nodes can still
securely store new information in and retrieve configu-
rations from the ledger. For instance, machines and edge
devices can add new topology information to the ledger
even if the controller is temporarily unavailable, since the
ledger is managed by nodes in a distributed manner;

• easy provisioning of fault tolerance in a seamless manner.
If the controller is down another node of the network can
start behaving as new controller immediately, by gather-
ing information from the Blockchain. In fact, once a new
controller is activated, it can gather every information
(even recently added ones while there was no active
controller) from any node hosting a copy of the ledger,
making its reactivation effortless. In this manner, on the
one hand, it is easier to ensure controller fault tolerance
(since related configuration data are securely distributed
on multiple nodes) and, on the other hand, it is possible
to also take advantage of information provided by agents
during the attack to the controller itself;

• ensuring both information authorship non-repudiation
and cross-verification. Information are added by creating
new transactions, associated with the digital identity
of the device (or the technician) generating the new
topology data or issuing the access rule. In this manner,
the Blockchain provides the notable benefit of securely
tracing the authorship of information, ensuring its non-
repudiability. In addition, to add a transaction (e.g.,
to insert a new topology information) a node has to
get the approval of other nearby nodes (based on a
Blockchain consensus algorithm), to ensure that a single
compromised node cannot inject fake information and
compromise the regular behavior of the controller. For
instance, a new link advertised by a node is actually added
to the topology only if other nodes of the same subnet
confirm the existence of such new link;

• allowing network segmentation in terms of data visibil-
ity. To support network segmentation, at each subnet is
associated a different ledger: nodes can access only the
ledger related to the subnet they are deployed in while the
controller has access to every ledger. In addition, there is
a separate ledger between the controller and gateways to
privately share access rules that should not be visible to
machines and edge devices;

• promptly enforcing countermeasures while ensuring pro-
duction line regular workflow. Every unknown new de-
vice should be quarantined, e.g., by greatly limiting its
bandwidth or by inhibiting its ability of sending and
receiving network traffic at all till not expressly allowed.
On the contrary, planned newly added devices should
be able to properly operate as soon as activated by OT
technicians, even in case of network unavailability. To
this purpose, default access rules as well as access rules
for new devices going to be activated should be stored
on ledgers directly accessible by gateways.

IV. SOLUTION ARCHITECTURE, IMPLEMENTATION
DETAILS, AND PERFORMANCE ANALYSIS

We have designed, implemented, and tested our CyberChain
prototype by following the design guidelines presented in the
previous section. In particular, CyberChain adopts Hyperledger
Fabric [9], an open source project providing features to create
a flexible permissioned Blockchain. Prior to present details of
the implemented prototype and achieved performance results,
the section introduces Hyperledger Fabric features most rele-
vant for the comprehension of the proposed solution and also
specifies why the adoption of Hyperledger Fabric is suitable to
improve the cyber-resiliency of the target scenario. Interested
readers can refer to [10] for an in-depth presentation of the
Hyperledger Fabric project.

A. Hyperledger Fabric primary features

In Hyperledger Fabric, the overall set of nodes is called
Blockchain network, supporting the coexistence of multiple
ledgers, each one called channel and identifying a different set
of involved nodes and a different set of smart contracts. By
exploiting channels, it is possible to segment one Blockchain

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on January 03,2022 at 08:01:35 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3104624, IEEE Internet of
Things Journal

6

network in multiple private Blockchains, each one with inde-
pendent consensus procedures and transaction managers, also
providing to nodes per-channel access to ledgers and related
data. Moreover, in Hyperledger Fabric nodes may belong to
different organizations and for each organization there is a
Membership Service Provider (MSP) managing credentials
and identities (embedded in an X.509 certificate).

Smart contracts related to the same application are typically
grouped in a unique Hyperledger Fabric chaincode [11]. Each
smart contract allows to specify how a new transaction can
be created, also detailing inputs and outputs. Once nodes have
successfully run a smart contract it means that it is possible
to create a new transaction, but it is the orderer (see below)
in charge of actually adding the transaction to a new block.

Delving into finer details, primary roles of nodes are:

• clients, requiring the creation of a new transaction based
on a specific endorsement policy, detailing how to select
nodes involved in a transaction creation procedure. To
this purpose, clients i) contact a subset of endorser peers
as specified by the endorsement policy, e.g., at least one
for each organization involved in the transaction, ii) wait
for a given amount of transaction endorsements, again as
specified by the endorsement policy, e.g., by adopting a
vote-based consensus algorithm requiring majority/unan-
imous vote, and iii) send the new transaction to orderers;

• peers, nodes maintaining a local copy of the ledger by
committing transactions and updating the ledger when-
ever they receive a new block. Peers can also execute
smart contracts and validate transactions provided by
clients;

• committers, nodes with the only role of maintaining the
ledger and updating it whenever they receive a new block;

• endorsers, specific peers that can execute smart contracts
whenever they receive a transaction proposal. During the
endorsement of a new transaction, endorsers securely sign
so-called endorsement messages (also containing trans-
action output, transaction id, endorser id, and endorser
signature) and send it to the client requiring the new
transaction;

• orderers, nodes collecting requests of new transactions
creations, grouping multiple transactions in a block, e.g.,
sorting concurrent transaction requests coming from dif-
ferent clients, and issuing commands to peers to add new
blocks on top of the ledger. Note that orderers are un-
aware of transaction semantics and exploit cryptographic
signatures of endorsers to create new blocks.

In conclusion, let us note that Hyperledger Fabric perfectly
fits the target scenario. First of all, its permissioned nature
restricts the set of users/devices allowed to join the network,
in compliance with basic security requirements of industrial
environments. In addition, the possibility of exploiting the
same Blockchain architecture to deploy multiple channels (i.e.,
different ledgers and smart contracts) allows to partition the
access to stored data, e.g., by ensuring segmentation among
different subnets. Finally, Hyperledger Fabric allows to define
a consensus policy based on votes provided by endorsers, also
specifying which nodes should be involved as endorsers and

how many votes should be gathered. In this manner, it is
possible to tune the endorsement policy, e.g., to require that
a transaction related to a topology modification of a subnet
must be always confirmed by at least one node of that subnet.

B. Hyperledger Fabric for industrial edge networks re-
siliency

Figure 2 presents primary Hyperledger Fabric components
we propose to adopt to maximize the cyber-resiliency of OT
environments. There are a single Gateway Ledger (GL) and
multiple Subnet Ledgers (SLs). GL stores information about
access rules gateways have to enforce. Each SL maintains
topology information related to a given subnet and is stored
(in addition to the controller) on agents, gateways, and edges
of the related subnet.

Typically, agents gateways, and the controller act as Hy-
perledger Fabric clients and create and/or store transactions
with topology information and access rules. In principle, even
machines could act as Hyperledger Fabric clients as well as
committers since these roles do not require high computa-
tional capabilities. However, it is advisable to avoid such a
solution to reduce software complexity, to avoid the frequent
need of software updates, and to save the local storage. In
fact, the Hyperledger Fabric component could interfere with
safety-critical industrial equipment processes and operations.
Moreover, the update of industrial equipment should be done
very seldomly, since an unsuccessful update could compromise
the industrial equipment with safety risks and monetary loss.
The adoption of additional software on industrial equipment,
e.g., Hyperledger Fabric libraries, would require more frequent
updates, thus increasing the risk of machine issues. Finally, it
is not advisable to locally store a copy of SL on industrial
equipment, since its size could become very huge, grater than
the available storage. In any case, machines not able to create
a new transaction can ask to their companion edge devices
to create a new transaction, but with the shortcoming that the
transaction will be signed with the digital certificate of the
edge device.

By delving into finer details, the controller has access to
every ledger, typically to query transactions from SLs and to
create new GL transactions to add access rules. Network ad-
ministrators access information by connecting to the controller
via an Hyperledger Fabric client. Finally, orderers run on
gateways and the controller. In case of new transactions with
topology information, local agents and gateways are involved
in the transaction consensus procedure to ensure the validity
of the new information. To this purpose, for every SL there
are always (at least) three nodes that contribute to the channel
consensus: the agent, the subnet gateway, and the controller.
For the GL, nodes participating to the consensus procedure
are every gateway and the controller. In every channel the
endorsement policy is based on "majority": 2 out of 3 for
Subnet Channels related to topology information and 3 out of
5 for the Gateway Channel related to access rules.

Let us note that the Blockchain architecture presented in
Figure 2 has been designed with the primary objective of
maximizing the cyber-resiliency of the industrial infrastruc-
ture. To better outline how the adoption of the Blockchain

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on January 03,2022 at 08:01:35 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3104624, IEEE Internet of
Things Journal

7

Fig. 2: Blockchain deployment in the industrial environment.

maximizes the resiliency of industrial networks, let us consider
four different situations that can may happen:

1) if an edge fails, the Subnet Channel will continue to
execute regularly, since the agent will be able to read
and write SL since all the nodes participating in the
consensus procedure (agent, gateway, and controller)
continue to participate in the channel;

2) if an agent fails, the channel will continue to execute
regularly, since 2 out of 3 of endorser peers (i.e., gateway
and controller) are still working;

3) if a subnet gateway fails, the network will be partitioned
and the subnet isolated from the rest of the network. It
will not be possible to add transactions to SL (preventing
from topology information modifications) both from the
subnet internal agent and from the controller. However,
it will be possible to query the ledger and retrieve
previous topology events, since nodes of the subnet and
the controller will continue to have access to a copy of
the SL;

4) if the controller fails, all the subnets can continue
to work regularly since there are always at least two
nodes participating in the consensus procedure for every
Subnet Channel. In this case, the controller does not
temporarily have an overall vision of the status of the
whole network (since the controller is the only one
with topology information of every subnet) but can
connect to one of the subnet gateways to check the status
of the related subnet. Finally, when a new controller
is activated it can gather the GL and every SL by
interacting with active gateways, thus quickly recovering
and providing to system administrators its functionalities
again.

With regards to the Gateway Channel, if either a gateway or
the controller node is compromised the network will continue
to properly work. In particular, if the controller has been
compromised a new instance of the controller will be able
to connect to a gateway node to keep querying the GL.

On top of the Hyperledger Fabric components we have
developed and deployed four different Hyperledger Fabric
applications, exploiting Fabric Client libraries to interact with
the Blockchain:

• NodeAdder resides on agent nodes and, when an agent

identifies the presence of a new device in its subnet, it
is responsible of the transaction request creation for its
own SL;

• RuleAdder runs on the controller and it listens to new
block creations on Subnet Channels. When a new block
with the data of the new device on the subnet is created,
it generates a GL transaction request with a network rule
for the specific node recently added on SL;

• GatewayUpdater resides on each gateway and listens to
new block creations on the Gateway Channel. When a
new rule is approved on GL, GatewayUpdater executes
the rule saved on the Blockchain and enables, disables,
or limits the traffic accordingly to the rule;

• AdminChecker runs in the controller node. It is the
system entry point for administrators, allowing to access
topology and network data stored in the Blockchain.

Figure 3 presents primary details of the CyberChain archi-
tecture. Note that only one node per type is represented in the
figure while in an actual deployment there will be n agent
nodes and n gateway nodes, with n the number of subnets in
the industrial environment. In particular:

• in every node there is an Hyperledger Fabric module
performing as both endorser and committer;

• orderers are deployed on gateway and controller nodes;
• agent nodes host only the SL related to their subnet,

gateway nodes the SL related to their subnet and the GL,
and the controller node n SLs related to every subnet and
the GL;

• agent nodes host the NodeAdder app, gateway nodes
the GatewayUpdater app, and the controller node both
AdminChecker and RuleAdder apps;

• gateway nodes are equipped with a firewall.
Agent, gateway, and controller nodes interact one another

in a peer-to-peer manner to perform endorsement and commit
procedures. In addition, gateway and controller nodes inter-
act via the orderer to put endorsed transactions within new
blocks. By focusing on intra-node interactions, NodeAdder
identifies the presence of a new node in its subnet and makes
a topology transaction request through the local endorser.
After the transaction has been added to the SL, the new
transaction event is notified to the RuleAdder in the controller
node, thus triggering a new access rule transaction. Then,

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on January 03,2022 at 08:01:35 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3104624, IEEE Internet of
Things Journal

8

Fig. 3: CyberChain architecture.

when this transaction is endorsed and added to the GL, the
GatewayUpdater is notified thus triggering the enforcement of
the new access rule on the firewall. Finally, the AdminChecker
allows authorized users to access information available in the
controller node, e.g., to retrieve the overall network topology
and the set of access rules.

By delving into finer details, Figure 4 outlines the sequence
diagram with the steps performed within the Blockchain
network whenever a new edge node joins a subnet, considering
both the new topology information in the SL and the new
access rule in the GL. Note that gateways are configured
following a hybrid blacklist/whitelist approach. Only previ-
ously identified and authorized devices and processes can
freely communicate. On the contrary, every newly added and
unknown device or process is considered as a potential threat,
by default limiting its bandwidth and by dropping every packet
to/from the device/process and the Internet. Then, the proposed
solution interacts with the controller (via Blockchain, see
details below) to verify if it is legit and, if not, it completely
denies any communication of that device.

When an agent detects a new edge node within its subnet,
it activates the Fabric NodeAdder application that 1) adds the
topology change by inserting a new transaction in the related
SL. This request 2) is notified to endorsers of the Subnet
Channel, i.e., agent, gateway, and controller nodes, and must
be approved by at least 2 out of 3 of them. In particular, the
subnet smart contract immediately endorses the transaction
request if the node performing the endorsement (and thus
running the smart contract) already noticed the new edge node;
otherwise, it performs a ping to verify its presence (eventually,
the transaction is rejected after a temporal deadline). Once
the endorsement phase is completed, 3) the signed transaction
is sent by the agent to the orderer service provided by the
controller and the gateways and then 4) the orderer service
inserts the transaction into the following block. When the

maximum number of transactions or a timeout is reached,
the block is propagated to the rest of the network. Finally,
5) the block is received from every subnet Blockchain node
(controller, gateway, agent, and edges) and is validated.

Once committed, the new block in the SL triggers the Fabric
RuleAdder application, registered as a ledger listener on the
controller node and waiting for new SL blocks. Once the
application is aware of the new edge node (gathering the
information from a transaction of the new block) it queries
a local database to verify if the new device is legit, e.g.,
by retrieving the list of devices that should be active in the
given subnet. If the device is not listed, the Fabric RuleAdder
application notifies the system administrator about the new
edge node via email, to require the manual definition of a
new access rule or, more in general, to signal a potential
threat. Moreover, it adds an access rule completely denying
any networking capability to the unknown device. If the device
is legit, the Fabric RuleAdder application verifies if system
administrators have setup a specific access rule, e.g., to limit
communication of that device only to a small set of other
devices; otherwise, it means that the device do not have
specific limitations.

In any case, 6) the Fabric RuleAdder application sends a
GL transaction request (with the access rule either allowing or
denying device communication) in the Gateway Channel, thus
requiring the endorsement of the controller and the gateways.
When the Fabric RuleAdder application 7) has received the
majority of responses signed by channel endorsers, 8) it sends
the signed transaction to the orderer service running on top
of the controller and the gateways, which will add the new
transaction into the following block. After the new block is
created, 9) it is sent to every node of the Gateway Channel to
allow its validation. Finally, once the controller and gateways
have validated the transaction with the access rule for the new
edge, 10) GL notifies to the Fabric RuleAdder application

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on January 03,2022 at 08:01:35 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3104624, IEEE Internet of
Things Journal

9

Fig. 4: Sequence diagram of subnet and gateway ledger transaction generation.

that the new block has been correctly added. Finally, Fabric
GatewayUpdater applications running on gateways act as block
listeners and are notified about new blocks in an event-driven
fashion. In this manner they receive new blocks (and related
transactions) as soon as available, allowing gateways to gather
and apply new access rules in a prompt manner.

C. CyberChain prototype implementation

To demonstrate the feasibility of the proposed solution, we
have implemented the CyberChain prototype, a Blockchain
solution based on the Hyperledger Fabric and on Forti-
gate and OPNsense programmable gateways2. The developed
Blockchain infrastructure is composed of a variable number
of Subnet Channels and a Gateway Channel. Each Subnet
Channel is composed of two edge nodes, an agent node, and
a gateway node, plus the shared controller one; the Gateway
Channel is composed of the controller and a variable number
of gateways (one for each subnet).

Every Subnet Channel adopts the same subnet chaincode to
create new transactions specifying a topology modification.
To test our infrastructure we have created addNode and
getNodes methods to insert a new node and to display every
subnet node, respectively. Both methods exploit an object
written in the Go language named “node”, consisting of an
identification name, a timestamp (when the node has been
added to the network), and an IP address. The addNode
method is invoked by endorsers validating transaction propos-
als provided by an agent that has identified a new node. The
getNodes method is invoked by the Fabric AdminChecker
application on top of the controller to get the list of available
nodes and to create an overall view of the whole topology.

2Developed source code, configuration files, and companion documen-
tation of our proof of concept CyberChain prototype are available at
https://github.com/DSG-UniFE/CyberChain

By delving into finer details, we have developed three
different versions of the addNode method: addNodeNaive
simply endorsing every new node transaction request (not
shown for the sake of briefness), addNodePing verifying
that the node actually exists, and addNodeVerify also
checking if the node is legit.

The addNodePing method receives as input three param-
eters, i.e., name, timestamp, and IP address (see Listing 1,
error handling omitted). Then, it invokes the support function
checkPing by passing the IP address (1, Point 1) and
executing the ping up to three times: if no reply is received,
checkPing returns an error and the endorsement phase is
aborted, otherwise (1, Point 2a) the host is active and thus
the new node can be added to the ledger, also triggering an
"addNode" event (1, Point 2b). Note that we decided to create
a dedicated asynchronous function (see "<-" symbol) to permit
the endorsement phase to wait for the ping check, otherwise
the chaincode would not wait for the ping reply.

Listing 1: addNodePing subnet chaincode.
func (s * N o d e s C o n t r a c t) addNodePing (

APIs tub shim . C h a i n c o d e S t u b I n t e r f a c e ,
a r g s [] s t r i n g) s c . Response {

name := a r g s [0]
t imes t amp := a r g s [1]
i p := a r g s [2]

/ / 1) Check p ing a s y n c h r o n o u s l y
p a c k e t s R e c v := <− checkP ing (i p)

/ / 2) Add node
g e t S t a t e , e r r := APIs tub . G e t S t a t e (name)
i f b y t e s . Equal (g e t S t a t e , [] byte (" ")) {

/ / 2a) Cr ea t e a new node
node := Node{name , t imes tamp , i p }
nodeB , m a r s h a l E r r := j s o n . Marsha l (node)
p u t E r r := APIs tub . P u t S t a t e (name , nodeB)

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on January 03,2022 at 08:01:35 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3104624, IEEE Internet of
Things Journal

10

/ / 2b) Emit " add node " e v e n t
e v e n t P l := " Addedd Node "+name+" i p "+ i p
p l := [] byte (P l)
e r r := APIs tub . S e t E v e n t (" addNode " , p l)

re turn shim . S u c c e s s ([] byte (
fmt . S p r i n t f (" Added %s " , name)))

}
re turn shim . E r r o r (" E r r o r i n addNode ")

}

The more sophisticated addNodeVerify method checks
not only if a node exists, but also if its type is legit (see
Listing 2, error handling omitted). Note that in this manner
the chaincode can perform a first-step coarse-grained filter,
complementary to the more fine-grained one performed by
the RuleAdder application on the controller, as depicted in
Section IV-B. To support the addNodeVerify chaincode,
OT technicians identify the list of industrial devices (i.e., their
models) that can be deployed in the plant. For each device
model, OT technicians gather the list of programs (and related
size) it is expected the device model hosts in the default system
directory and calculate the hash value. Then, the chaincode is
enriched with the list of hash values related to legit industrial
device models. The addNodeVerify method performs an
ssh connection to the device (Listing 2, Point 1), remotely
invokes a method to gather the list of installed programs
in /user/bin (Listing 2, Point 2), and calculate the hash
value (Listing 2, Point 3). In particular, the command ls -al
-time-style=long-iso /usr/bin changes the format
of the displayed timestamp while the utility awk keeps only
following parameters: permissions, size, timestamp, and name.

If the hash value is in the list of permitted hash values,
then it means the newly discovered device is one of the device
types expected to be in the plant, otherwise the endorsement
is refused (Listing 2, Point 4). Let us note that such a solution
imposes additional overhead, since it is required to enrich
the chaincode with the list of legit hash values and endorser
nodes have to perform an additional ssh connection to the
device, thus increasing the time required for the endorsement
procedure. Moreover, it is expected that devices are config-
ured with a local user with minimal permissions and known
credentials allowing the remote ssh connection and the remote
method invocation. However, we believe that such procedure
can greatly improve the resiliency of the OT environment,
since it allows endorsers not only to identify if a new device
actually exists, but also to assess if it is expected that the
device type is deployed in the plant.

Listing 2: addNodeVerify subnet chaincode.
func (s * N o d e s C o n t r a c t) addNodeVer i fy (

APIs tub shim . C h a i n c o d e S t u b I n t e r f a c e ,
a r g s [] s t r i n g) s c . Response {

name := a r g s [0]
t imes t amp := a r g s [1]
i p := a r g s [2]

/ / 1) Per form s s h c o n n e c t i o n
s s h C o n f i g := &s s h . C l i e n t C o n f i g {

User : " u s e r " ,

Auth : [] s s h . AuthMethod { s s h . Password (" p a s s ") , } ,
Hos tKeyCal lback : s s h . I n s e c u r e I g n o r e H o s t K e y ()

}
conn , e r r := s s h . D i a l (" t c p " , ip , s s h C o n f i g)
s e s s , e r r := conn . NewSession ()
d e f e r s e s s . C lose ()

/ / 2) E x e c u t e command on remote node
var b b y t e s . B u f f e r
s e s s . S t d o u t = &b
var cmd s t r i n g =

" l s − a l −−t ime − s t y l e = long − i s o / u s r / b i n /
| awk ’NR>=4 ’
| awk ’{ p r i n t $1 , $5 , $6 , $7 , $8 ; } ’ "

s e s s . Run (cmd) ;

/ / 3) Compute t h e hash o f t h e o u t p u t
h := sha256 . New ()
h . Wr i t e ([] byte (b))

/ / 4) V e r i f y i s t h e hash a u t h o r i z e d ,
/ / i f n o t t h e endorsemen t i s r e f u s e d
s t r _ h a s h := hex . EncodeToS t r ing (h . Sum(n i l))
_ , found := Find (G e t L e g i t H a s h L i s t () , s t r _ h a s h)
i f ! found {

re turn shim . E r r o r (fmt . S p r i n t f (
"ERROR: hash n o t found "))

}

/ / 5) Add node
g e t S t a t e , e r r := APIs tub . G e t S t a t e (name)
i f b y t e s . Equal (g e t S t a t e , [] byte (" ")) {

/ / 5a) Cr ea t e a new node
node := Node{name , t imes tamp , i p }
nodeB , m a r s h a l E r r := j s o n . Marsha l (node)
p u t E r r := APIs tub . P u t S t a t e (name , nodeB)

/ / 5b) Emit " add node " e v e n t
e v e n t P l := " Addedd Node "+name+" i p "+ i p
p l := [] byte (e v e n t P l)
e r r := APIs tub . S e t E v e n t (" addNodeVer i fy " , p l)

re turn shim . S u c c e s s ([] byte (
fmt . S p r i n t f (" Added %s " , name)))

}
re turn shim . E r r o r (" E r r o r i n addNodeVer i fy ")

}

In addition, the Gateway Channel adopts the addRule
chaincode to create new transactions containing access rules
(not presented for the sake of briefness). Each transaction
contains a Go object named "rule", consisting of an identi-
fication name, the rule creation timestamp, and the command
field containing the actual command gateways have to execute.
Since the proposed solution can adopt different programmable
gateways, we have defined a common and flexible syntax
for the representation of a generic access rule (see Listing
3). This representation is parsed by the GatewayUpdater,
in charge of transforming retrieved access rules in a format
suitable for the destination gateway. For example, Listing 4
represents an access rule that blocks the telnet service (port
23) from host A on subnet 192.168.50.50/24 to host B on
subnet 192.168.51.51/24.

Listing 3: Syntax for an access rule.
d a t a = {

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on January 03,2022 at 08:01:35 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3104624, IEEE Internet of
Things Journal

11

" d e s c r i p t i o n " : < s t r i n g > ,
" s r c i n t f " : [{ " name " : < s t r i n g >} , . . .] ,
" d s t i n t f " : [{ " name " : < s t r i n g >} , . . .] ,
" s r c a d d r " : [{ " name " : < s t r i n g >} , . . .] ,
" d s t a d d r " : [{ " name " : < s t r i n g >} , . . .] ,
" a c t i o n " : < s t r i n g > ,
" e n a b l e " : < s t r i n g > ,
" s c h e d u l e " : < s t r i n g > ,
" s e r v i c e " : [{ " p r o t o c o l " : < s t r i n g > ,

" s p o r t " : [< i n t e g e r > ,
. . .] } ,

{" p r o t o c o l " : < s t r i n g > ,
" r p o r t " : [< s t r i n g > ,

. . .] } ,
. . .]

}

Listing 4: Example of access rule.
d a t a = {

" d e s c r i p t i o n " : " Block t e l n e t s e r v i c e
from Host A t o Host B" ,

" s r c i n t f " : [{ " name " : " p o r t 1 " }] ,
" d s t i n t f " : [{ " name " : " p o r t 2 " }] ,
" s r c a d d r " : [{ " name " : " 1 9 2 . 1 6 8 . 5 0 . 5 0 / 2 4 " }] ,
" d s t a d d r " : [{ " name " : " 1 9 2 . 1 6 8 . 5 1 . 5 1 / 2 4 " }] ,
" a c t i o n " : " deny " ,
" e n a b l e " : " t r u e " ,
" s c h e d u l e " : " a lways " ,
" s e r v i c e " : [{ " p r o t o c o l " : " t c p " ,

" s p o r t " : [2 3] }]
}

The rule object also contains an identifier of the entity
issuing the access rule, based on the X.509 certificate of
the Fabric RuleAdders application on top of the controller
(together with an identifier of the technician that has added
the access rule). In this manner, it is possible to trace for each
access rule who and when has added it to the Blockchain.
Moreover, the addRule chaincode (running not only on the
controller but also on gateways endorsing new transactions
with access rules) also verifies the validity of the related X.509
certificate, thus making harder for an attacker to inject fake
access rules.

Finally, to enforce the application of access rules we
have adopted two programmable gateways: FortiGate virtual
appliances (FortiGate-VM) by Fortinet and the open source
OPNsense solution. The former is based on the proprietary
operating system FortiOS, specialized in security control by
providing network functionalities for the Next-Generation
Firewalls (NGFWs) offered by Fortinet. The latter implements
its routing and firewalling functionalities on the HardenedBSD
open source operating system. To interact with them, both
gateways provide a specific REST API interface handling all
the functionalities of the gateway. In particular, we used the
following endpoint specialized to handle firewall policies:

• Fortigate, api/v2/cmdb/firewall/policy/ to
insert, delete and apply a rule;

• OPNsense, /api/firewall/filter/addRule to
insert a rule, api/firewall/filter/delRule to
delete a rule and /api/firewall/filter/apply/
to apply a rule.

Based on the adopted programmable gateway, GatewayUp-
dater gathers access rules and adapts them accordingly, e.g.,

in case of access rule in Listing 4 it applies Listing 5 and
Listing 6 for Fortigate and OPNSense gateway respectively.

Listing 5: Fortigate rule.
d a t a = {

" name " : " Block t e l n e t s e r v i c e from h o s t A t o
h o s t B" ,

" s r c i n t f " : [{ " name " : " p o r t 1 " }] ,
" d s t i n t f " : [{ " name " : " p o r t 2 " }] ,
" s r c a d d r " : [{ " name " : " 1 9 2 . 1 6 8 . 5 0 . 5 0 / 2 4 " }] ,
" d s t a d d r " : [{ " name " : " 1 9 2 . 1 6 8 . 5 1 . 5 1 / 2 4 " }] ,
" a c t i o n " : " deny " ,
" s t a t u s " : " e n a b l e " ,
" s c h e d u l e " : " a lways " ,
" s e r v i c e " : [{ " name " : " T e l n e t " }] ,
" n a t " : " d i s a b l e " ,
" l o g t r a f f i c " : " a l l "

}

Listing 6: OPNsense rule.
d a t a = {

" d e s c r i p t i o n " : " Block t e l n e t s e r v i c e from
h o s t A t o h o s t B" ,

" i n t e r f a c e " : " p o r t 1 " ,
" s o u r c e _ n e t " : " 1 9 2 . 1 6 8 . 5 0 . 5 0 / 2 4 " ,
" p r o t o c o l " : "TCP " ,
" d i r e c t i o n " : " i n " ,
" d e s t i n a t i o n _ n e t " : " 1 9 2 . 1 6 8 . 5 1 . 5 1 / 2 4 " ,
" d e s t i n a t i o n _ p o r t " : " t e l n e t " ,
" a c t i o n " : " b l o c k "

}

D. Performance evaluation

Based on the implemented CyberChain prototype, we have
experimentally validated the proposed solution. The primary
goal is to quantitatively verify the latency (and related resource
consumption) of two primary steps of the sequence diagram
in Figure 4: the addition of a topology information in the
Blockchain when a new node is discovered and the application
of the related new access rule.

The testbed is based on OpenStack (Train version) VMs
running Ubuntu 18.04 LTS and characterized by either 1 vCPU
and 1 GB RAM or 2 vCPUs and 2 GB RAM. In this manner
it is possible to verify the scalability of the proposed solution
with nodes with reduced/average capabilities, thus not impos-
ing the deployment of expensive nodes within the industrial
topology. We have set Hyperledger Fabric orderers to create
blocks with one transaction, rather than waiting for additional
transaction requests. In this manner new blocks are created
without additional delay as soon as a new transaction request
is endorsed, allowing prompt spread of topology information
and access rules. This approach is also justified by the fact
that in real conditions topology and access rule changes of an
industrial subnet do not usually occur very frequently.

Figure 5 and Figure 6 present the average time (10 runs
for test) required to generate a new topology transaction at
increasing Transactions Per Second (TPS) by comparing per-
formance achieved with addNodeNaive, addNodePing,
and addNodeVerify chaincodes. The testbed is composed
of 3 VMs, one for the agent, one for the gateway, and one

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on January 03,2022 at 08:01:35 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3104624, IEEE Internet of
Things Journal

12

(a) Average transaction creation time (ms).

(b) Average CPU consumption (%).

(c) Average memory consumption (%).

(d) Traffic (KB).

Fig. 5: Topology transaction performance at increasing TPS
with 1 vCPU and 1 GB RAM.

for the controller. When exploiting VMs with 1 vCPU and
1 GB RAM the time to create a new topology transaction
(Figure 5a) does not considerably increase till 0.5 TPS, with
addNodeVerify imposing additional delay if compared
with simpler addNodeNaive and addNodePing solutions.

By comparing memory consumption among the two differ-
ent cases presented in Figure 5c and Figure 6c, it can be seen
that the RAM is never saturated, with maximum occupancy
at 40-60% in case of 1 GB RAM and 20-30% in case of 2
GB RAM. By focusing on CPU consumption in Figure 5b and
Figure 6b, in case of 1 vCPU the utilization is about 30% for

(a) Average transaction creation time (ms).

(b) Average CPU consumption (%).

(c) Average memory consumption (%).

(d) Traffic (KB).

Fig. 6: Topology transaction performance at increasing TPS
with 2 vCPUs and 2 GB RAM.

every chaincode in case of 0.2 TPS, while it reaches about 60%
at 0.5 TPS, and finally it reaches the CPU saturation at 1.0
TPS with the addNodeVerify method, greatly increasing
the time required to generate new transactions and preventing
from the possibility of further increasing the TPS. Similarly,
in case of 2 vCPUs the CPU usage increases with higher
TPS, starting from a minimum of 15% for 0.2 TPS to values
of 60-70% at 2.0 TPS. However, it is worth noting that
with 2 vCPUs and 2 GB RAM (Figure 6) there is no CPU
saturation. In this case the overall time required to create new
transactions is considerably lower, allowing to reach 1.0 TPS

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on January 03,2022 at 08:01:35 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3104624, IEEE Internet of
Things Journal

13

TABLE I: Access rule enforcement (ms).

Average (ms) Standard
deviation (ms)

iptables 40 7
OPNsense 849 92
Fortigate 1086 1

without imposing relevant delays and successfully creating
new transactions also in the 2.0 TPS case, even if delays start
to increase.

Furthermore, we tested the traffic generated among nodes
while creating new transactions (see Figure 5d and Figure 6d).
To this purpose, we present the case of traffic between an agent
and a gateway while creating a new topology transaction, but
similar considerations can be done for other nodes and with
access rule transactions. In particular, we show the generated
traffic during 60 s periods while increasing the TPS. We
do not provide differentiated results for addNodeNaive,
addNodePing, and addNodeVerify since we focused
on the traffic among agent and controller nodes due to the
exchange of new transaction requests and new blocks, which
is the same despite the adopted method.

To ensure that the generated traffic is completely and cor-
rectly measured, we have performed tests while avoiding CPU
and RAM saturation by exploiting the less CPU demanding
addNodeNaive method. In fact, in case of saturation the
completion of some transactions may be greatly delayed,
possibly not allowing to fully detect the generated traffic. Also
note that even in case of no transaction creation there is a
constant background traffic of 33 KB every 60 s due to peer-to-
peer management communication among Hyperledger Fabric
nodes. As Figure 5d and Figure 6d show, the overall generated
traffic is limited, ranging from about 300 KB at 0.2 TPS to
about 2800 KB at 2.0 TPS. Based on achieved results, we can
affirm that the proposed solution does not relevantly impact on
networking capabilities of the industrial network, usually with
bandwidth of 100 Mbit/s or greater, thus ensuring its smooth
operation.

We have also verified the time required to apply a new ac-
cess rule, starting from when the Fabric RuleAdder application
(deployed on the controller node) requests to add a new access
rule transaction to when the access rule is actually enforced on
the gateway. To this purpose, we consider the case of a single
access rule (thus not increasing the TPS), since efficiency
and scalability considerations for the addRule chaincode
are similar to what presented above for topology transaction
creation with addNodeNaive chaincode. In particular, we
consider the case of a node with TCP traffic allowed only
on port 80. A new access rule imposes that only TCP traffic
on port 443 is allowed, therefore it is required to remove the
previous rule and then to add the new one.

The time required to add a new access rule transaction
and to spread it to nodes running the Fabric GatewayUpdater
application is 1610 ms with 85 ms standard deviation (VMs
with 1 vCPU and 1 GB RAM, average of 10 runs). Note that in
this case we have considered an industrial topology composed
of 3 different subnets. Thus, the gateway Blockchain involves
4 nodes, i.e., the controller plus one gateway for each subnet.

Fig. 7: Gateway access rule application.

The time required to actually enforce the access rule de-
pends on the adopted programmable gateway. Table I presents
the cumulative time required to remove a previous access
rule and apply a new one in case of exploiting Fortigate
and OPNsense. Note that we also show the baseline case of
adopting a trivial gateway we have implemented receiving
access rules in the Listing 4 format and applying them by
invoking the low-level iptables command. For each test we
have performed 10 runs, achieving 40 ms, 849 ms, and 1086
ms (standard deviations 7 ms, 92 ms, and 1 ms) for iptables,
OPNsense, and Fortigate respectively. Achieved results are
given by the sum of times required to remove a previous
rule, to add a new rule, and to actually apply the rule (details
in Figure 7). Iptables-based simple gateway imposes very
limited delay, while OPNsense and Fortigate take much more
time. Fortigate takes sightly more than OPNsense, with faster
remove and add procedures but with greater time to apply the
rule. Let us note that while iptables is much more efficient,
Fortigate and OPNsense programmable gateways provide a
wider set of capabilities, e.g., greater expressiveness to define
rules. In any case, presented results demonstrate that it takes
about less than 3 s to spread (1610 ms) and apply (1086 with
the slowest gateway) a new access rule.

Finally, to provide a comparative analysis we have also
deployed and tested a traditional solution based on a central-
ized controller. The main goal is to show if and how much a
traditional solution is more efficient than our Blockchain-based
one. To this purpose, we have deployed an IT/OT monitoring
and control solution based on widely adopted threat preven-
tion, detection, and response tools: Wazuh3 and ElastAlert 24.
The former is an open source platform based on Elasticsearch
supporting a plethora of features, e.g., monitoring of endpoints,
threat detection, and incident response. The latter is a reporting
framework interacting with Wazuh to retrieve information and
providing alerts in case it identifies anomalies, traffic spikes,
or other patterns that could be of interest.

In the deployed scenario Wazuh has been be used to aggre-
gate and analyze data sent from agents, in charge of sending
information about discovered nodes via the syslog protocol.
To make easier the comparison with the proposed CyberChain
solution, agents send to Wazuh information related to only one
new discovered node in each packet (since in each topology
transaction there is only one new topology information). In

3https://wazuh.com/
4https://elastalert2.readthedocs.io/en/latest/index.html

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on January 03,2022 at 08:01:35 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3104624, IEEE Internet of
Things Journal

14

TABLE II: Traditional centralized solution performance (ms).

addNode syslog ElastAlert 2 Method Total (Std. dev.)
Naive

32 578
0.4 610.4 (20.0)

Ping 6.0 616.0 (19.9)
Verify 543.0 1153.0 (20.1)

addition, we exploited ElastAlert 2 to verify if a discovered
node is either actually a new one or a node already known.
This verification is performed by enforcing methods discussed
in Section IV-C. Then, if required ElastAlert 2 interacts with
firewalls to activate access rules for newly discovered nodes.

In the traditional solution the centralized controller runs on a
2 vCPU 2 GB RAM node with CentOS 7 as operating system.
Tests focused on the time required to: send via syslog a newly
discovered node from an agent to Wazuh, the execution of
the ElasticAlert 2 query to retrieve information from Wazuh,
and the time to execute addNodeNaive, addNodePing,
and addNodeVerify methods. Table II presents achieved
performance results separately for each step, as well as the
total time average and standard deviation (10 runs for each
method). It takes 32 ms to send the message via syslog, 578
ms to execute the ElasticAlert 2 query, and 0.4 ms, 6.0 ms,
and 543.0 ms to execute addNodeNaive, addNodePing,
and addNodeVerify methods, respectively. Overall, it takes
610.4 ms for addNodeNaive, 616.0 ms for addNodePing,
and 1153.0 ms for addNodeVerify. Note that, as already
done when presenting CyberChain results in Figure 5 and
Figure 6, we have not considered the time required to invoke
firewall API, separately presented in Figure 7.

In conclusion, let us note that the centralized traditional
solution takes less time if compared with our CyberChain solu-
tion in case of no saturation. For instance, with 2 vCPUs 2 GB
RAM CyberChain takes 2146 ms for the addNodeVerify
topology transaction and 1610 ms for the access rule one,
while the traditional centralized solution takes 1153.0 ms
to dispatch topology information and it does not need to
distribute access rules on other nodes (since only stored in the
centralized controller, representing a single point of failure).
However, let us stress that, on the one hand, delays are
at the same order of magnitude, and on the other hand,
the traditional centralized solution does not support (among
other features) secure information cross-validation based on
Blockchain consensus algorithms, network resiliency in case
of network partitioning, and data immutability and traceability
as our CyberChain solution does.

E. Discussion

As presented above, the CyberChain solution successfully
achieves the objective of enhancing cyber-resiliency in IT/OT
environments by increasing information validation and data
availability. Moreover, achieved performance results demon-
strate its suitability in terms of TPS by considering the topol-
ogy variability of a typical industrial environment. However,
we recognize that the use of the Blockchain technology can
lead to drawbacks due to storage occupation if not correctly
set. To evaluate its feasibility we consider the storage required
in a real-world scenario, considering that the size of topology

and access rule transactions are 6.5 KB and 7.5 KB, respec-
tively. Considering a scenario with n subnets and assuming
that for each subnet agents identify r topology modifications
every day, each day there would be a memory occupation due
to new transactions equal to r∗6.5 KB for an agent node (since
storing only one SL), equal to r ∗ (6.5 + n ∗ 7.5) KB for a
gateway node (since storing an SL and the GL and considering
that every topology modification may require a new access
rule) and equal to r ∗ n ∗ (6.5 + 7.5) KB for the controller
(since storing every SL and the GL).

Considering a case with 4 subnets (n = 4) and every subnet
each day has 4 topology modifications (r = 4), after 10 years
there would be an occupation of less than 95 MB for agent
nodes, about 533 MB for gateway nodes, and about 818 MB
for the controller node. Considering the target scenario, it is
likely that the controller is hosted on a powerful machine,
without stringent storage constraints. Similar considerations
apply to gateway nodes, usually devices in charge of process-
ing high traffic rates and thus equipped with medium CPU,
memory, and storage capabilities. Finally, agent nodes could
be hosted on edge devices with limited storage capabilities, but
in any case required storage can be considered suitable even
for small single board computers. Considering a much more
challenging (and, in our opinion, unlikely) case, if topology
modifications happen in each subnet every 10 minutes, then
in 10 years the storage consumption would be 3.4 GB for
agent nodes, 19.2 GB for gateway nodes, and 29.4 GB for the
controller node. Even in this case, we believe that required
storage should not be a concern for a typical edge node,
possibly equipped with an additional memory card.

Another possible drawback that could represent a limitation
in the deployment and adoption of the proposed solution is the
degree of software customizability of nodes involved in the
target environment. In fact, the CyberChain solution requires
to deploy and run custom software modules on agent, gateway,
and controller nodes, as described in Figure 3. In particular,
Hyperledger Fabric libraries should run on gateway nodes to
make them capable of taking part of the endorsement phase.
Let us note that while agent and controller nodes typically
support software customization, industrial gateway nodes also
acting as firewalls could be less flexible to ensure node
security. For instance, by considering Fortigate and OPNsense
only the latter allows the installation of software modules via
the pkg package manager, by downloading packages from
a software repository managed by OPNsense. Furthermore,
to install external software modules not available in the
repository there is the need of exploiting specific compiling
and building tools. On the one hand, we believe that in the
future the degree of gateway flexibility will increase, thus
allowing to customize their behavior. On the other hand, to
easily address this issue even in case of closed gateways it
is possible to deploy companion edge devices (coupled with
the gateway node) in charge of running required CyberChain
software modules.

V. RELATED WORK

Blockchain has been recently proposed in several indus-
trial use cases, pushed by its capability of logging events

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on January 03,2022 at 08:01:35 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3104624, IEEE Internet of
Things Journal

15

in a distributed and secure manner without requiring any
trusted centralized authority. For instance, Blockchain has
been adopted in real estate to guarantee data reliability in
management workflows [12] or in supply chains to remove
any central authority while supporting tracing, tracking, and
business transactions [13]–[15]. To this regard, [16] presents
a survey of recent state-of-the-art contributions exploiting
Blockchains to increase efficiency, reliability, and transparency
of the supply chain.

The Blockchain has also been adopted in IoT environ-
ments [17] to support the security of processes and data
management. For instance, [18] outlines how the adoption
of the Blockchain can support the secure sharing of data
among flying unmanned autonomous vehicles, while [19]
exploits the Blockchain to share partial models among smart
home environments to securely adopt a federated learning
solution. The HomeChain solution [20] focuses on smart-
home scenarios and supports mutual authentication among
devices in the same environment. In particular, it exploits
Blockchain, group signature, and message authentication to
provide a range of features, from auditing of users’ activity
in a reliable manner to authentication of home gateways.
Fortified-Chain [21] adopts Blockchain in the Medical IoT
(MIoT) scenario to store Electrical Health Records (EHR)
in a decentralized manner while not compromising system
security and privacy. In particular, the proposed architecture
introduces an hybrid computing paradigm with Blockchain-
based Distributed Data Storage System (DDSS) to avoid the
exploitation of a cloud-centric EHR, typically characterized
by high latency, high storage cost, and single point of failure.
In addition, the adoption of smart contracts allows to alert
medical emergency services in an automatic manner.

Recent contributions started to focus on Industry 4.0 sce-
narios [22], [23]. For instance, [24] analyzes benefits of
adopting the Blockchain in the automotive industry to sup-
port trusted and cyber-resilient information distribution among
currently non-collaborative organizations. [25] presents a so-
lution adopting the Blockchain to support servitization of ice
cream machines, by exploiting smart contracts to ensure the
validity of data related to machine usage. Similarly, in [26]
the Blockchain is used to allow machine owners to share
idle machines capacity, by securely storing in the Blockchain
relevant events related to machine usage. [27] supports actors
of the manufacturing supply chain to make agreements and
payments based on the Blockchain in a secure and distributed
manner, without any intermediary. Since agreements are stored
in transactions and thus impose the payment of a fee, the
proposed solution adopts an hybrid approach by allowing
actors to pay only for agreements that actually need to be
secured. [28] exploits the Blockchain to ensure data privacy
of IoT devices by adopting smart contracts to validate con-
nection rights based on predefined privacy permission settings
predefined and on the availability, for each IoT device, of a
set of stored of known misbehaviours. The BPIIoT solution
[29] exploits the Blockchain to develop an IIoT platform, with
the notable benefit of addressing issues related to the lack of
security, trust, and island connectivity typical of many IIoT
environments. In particular, BPIIoT exploits Blockchain smart

contracts as a mechanism to achieve an agreement among
service consumers and manufacturing resources supporting the
delivery of on-demand manufacturing services. The BASA
solution [30] allows cross-domain authentication IIoT envi-
ronments. In particular, it allows to authenticate devices by
other devices even if in a different administrative domain,
also without requiring to expose identity information. In this
manner, BASA is able to ensure trust in untrusted domains
without the need of adding any third party entity.

While recent research efforts have focused the attention in
adopting the Blockchain to support several industrial use cases
(as above reference demonstrate), in the literature only few
work specifically proposes networking-related solution based
on Blockchain. For instance, the Blockchain has been adopted
to dynamically manage 5G slices and, e.g., avoid double-
spending of the same radio frequency slice [31]. [32] outlines
that the Blockchain can represent a common negotiation
platform in factory environments, by allowing involved actors
to save coordination and transaction costs, speed up slicing
agreements, and also ensure a level of trust enough to enable
automatic agreements. [33] manages the Software Defined
Networking (SDN) control layer on top of a distributed ledger,
by supporting the authentication of IoT devices and ensuring
their secure access. Moreover, it exploits the Blockchain to
securely store traces and provide them for following forensic
analysis. The DistBlockNet solution [34] jointly exploits SDN
and Blockchain in IoT environments to manage networking
information in a peer-to-peer, secure, and verifiable manner. In
particular, DistBlockNet is able to efficiently detect attacks in
the IoT network by taking advantage of the peer-to-peer nature
of the Blockchain while also limiting the imposed overhead.
Note that this solution focuses on the efficient distribution
and management of OpenFlow information, while our solution
adopts a more general point of view with the paramount
objective of maximizing the resiliency of industrial networks
notwithstanding (part of) network nodes are compromised.
[35] considers trust issues between data and control planes in
SDN environments. The proposed solution adopts an efficient
mechanism based on Blockchain and edge computing to
securely verify that SDN flows are legit. Readers interested in
an in-depth analysis of Blockchain adoption in IoT scenarios
can refer to [36], [37].

Similarly to our approach, the BoSMoS solution [38] aims
at defending OT environments from cyber-attacks, by focusing
on unauthorized software updates. To this purpose, it securely
stores in the Blockchain a snapshot of the legit machine
software status, thus it can later verify either if it is the same
or if has been changed by an intruder. Thus, this solution
allows to identify threats, but it does not allow to increase
the resiliency of the OT environment. The IoTCop solution
[39] considers the possibility that part of IoT devices in
the same environment can be compromised, e.g., based on
malicious firmware attacks, with the need of isolating them.
To this purpose, it adopts Hyperledger Fabric to ensure the
possibility of identifying compromised devices and enforce
security policies, as long as the majority of devices are not
compromised.

In conclusion, papers above demonstrate the current inter-

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on January 03,2022 at 08:01:35 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3104624, IEEE Internet of
Things Journal

16

est of academic and industrial researchers in adopting the
Blockchain technology in industrial environments. We believe
that the proposed solution represents a relevant contribution,
originally proposing Blockchain to ensure network cyber-
resiliency by ensuring data availability and fast recovery
of functionalities even in case the network is temporarily
partitioned.

VI. CONCLUSIONS

The increasing integration of IT and OT environments is
pushing towards dynamicity and connectivity openness of in-
dustrial solutions, paving the way for the fourth industrial rev-
olution. However, as demonstrated by recent standardization
efforts of international organizations such as NIST and IEC,
there is the need of identifying and enforcing suitable man-
agement solutions ensuring the cyber-resiliency of industrial
environments, also in case (part of) nodes are compromised or
the network partitioned. To this purpose, the paper originally
proposes the adoption of Blockchain and edge computing to
ensure data availability (and fast recovery of functionalities)
by spreading topology information and access rules in a peer-
to-peer and secure fashion. In addition, the adoption of the
Blockchain pushes for a participative validation of topology
information and non-repudiability of issued commands, based
on consensus algorithms reducing the risk of injection of fake
information by compromised nodes.

We believe that presented solution guidelines and archi-
tectural considerations together with the availability of our
CyberChain working prototype based on the Hyperledger
Fabric Blockchain represent a solid contribution to support the
resiliency of industrial environments. Furthermore, presented
performance results achieved with our prototype demonstrate
the feasibility of the proposed solution and encourage in
further investigating this novel cyber-resiliency approach. In
particular, we are considering the possibility of adopting the
SDN approach to autonomously gather traffic information
and manage routing rules based on the OpenFlow protocol.
Moreover, we intend to widen our performance analysis by
testing the proposed solution in real-world industrial plants.

ACKNOWLEDGMENT

Partially funded by POR-FESR Emilia Romagna 2014-
2020, "I4S: Industria 4.0 Sicura" project and "SmartChain"
project.

REFERENCES

[1] A. Corradi et al., "Smart Appliances and RAMI 4.0: Management and
Servitization of Ice Cream Machines", IEEE Transactions on Industrial
Informatics, vol. 15, no. 2, pp. 1007-1016, Feb. 2019.

[2] E. Balistri, F. Casellato, C. Giannelli, C. Stefanelli, "Blockchain for
Increased Cyber-Resiliency of Industrial Edge Environments", 2020
IEEE International Conference on Smart Computing (SMARTCOMP),
Bologna, Italy, 2020, pp. 1-8.

[3] K. Stouffer. S. Lightman, V. Pillitteri, M. Abrams, A. Hahn, "Guide
to Industrial Control Systems (ICS) Security, SP 800-82 Rev. 2", May
2015.

[4] International Electrotechnical Commission, "IEC 62443: Industrial net-
work and system security", available online at https://www.iec.ch/cyber-
security

[5] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System”, avail-
able online at https://bitcoin.org/bitcoin.pdf, 2008.

[6] D.J. Yaga, P.M. Mell, N. Roby, K. Scarfone, “Blockchain Technology
Overview”, NIST Interagency/Internal Report (NISTIR) - 8202, 2018.

[7] M. Belotti, N. Božić, G. Pujolle, S. Secci, “A Vademecum on Blockchain
Technologies: When, Which and How”, IEEE Comm. Surveys & Tuto-
rials, 2019.

[8] M. Wu, K. Wang, X. Cai, S. Guo, M. Guo, C. Rong, "A Comprehensive
Survey of Blockchain: From Theory to IoT Applications and Beyond",
IEEE Internet of Things Journal, vol. 6, no. 5, pp. 8114-8154, Oct. 2019.

[9] "Hyperledger Fabric: a Blockchain Platform for the Enterprise", avail-
able online at https://hyperledger-fabric.readthedocs.io/en/release-2.3/

[10] E. Androulaki et al, “Hyperledger Fabric: A Distributed Operating
System for Permissioned Blockchains”, Proceedings of the 30th EuroSys
Conf. (ACM EuroSys ’18), April 2018.

[11] “Smart Contracts and Chaincode”, available online at
https://hyperledger-fabric.readthedocs.io/en/release-2.3/smartcontract/
smartcontract.html

[12] M. Lia, L. Shenc, G.Q. Huangc, “Blockchain-enabled workflow operat-
ing system for logistics resources sharing in E-commerce logistics real
estate service”, Computers & Industrial Eng. (Elsevier), vol. 135, 2019.

[13] K. Salah, N. Nizamuddin, R. Jayaraman, M. Omar, “Blockchain-Based
Soybean Traceability in Agricultural Supply Chain”, IEEE Access, vol.
7, 2019.

[14] M. I. S. Assaqty et al., "Private-Blockchain-Based Industrial IoT for
Material and Product Tracking in Smart Manufacturing", IEEE Network,
vol. 34, no. 5, pp. 91-97, September/October 2020.

[15] W. Alkhader, N. Alkaabi, K. Salah, R. Jayaraman, J. Arshad and M.
Omar, "Blockchain-Based Traceability and Management for Additive
Manufacturing", IEEE Access, vol. 8, pp. 188363-188377, 2020.

[16] G. Perboli, S. Musso, M. Rosano, "Blockchain in Logistics and Supply
Chain: A Lean Approach for Designing Real-World Use Cases", IEEE
Access, vol. 6, 2018.

[17] D. Miller, “Blockchain and the Internet of Things in the Industrial
Sector”, IT Professional (IEEE), vol. 20, no. 3, 2018.

[18] P. Abichandani, D. Lobo, S. Kabrawala. W. McIntyre, "Secure Com-
munication for Multiquadrotor Networks Using Ethereum Blockchain",
IEEE Internet of Things Journal, vol. 8, no. 3, pp. 1783-1796, 1 Feb.,
2021.

[19] Y. Zhao et al., "Privacy-Preserving Blockchain-Based Federated Learn-
ing for IoT Devices", IEEE Internet of Things Journal, vol. 8, no. 3, pp.
1817-1829, 1 Feb., 2021.

[20] C. Lin, D. He, N. Kumar, X. Huang, P. Vijayakumar and K. R.
Choo, "HomeChain: A Blockchain-Based Secure Mutual Authentication
System for Smart Homes", IEEE Internet of Things Journal, vol. 7, no.
2, pp. 818-829, Feb. 2020.

[21] B. S. Egala, A. K. Pradhan, V. R. Badarla and S. P. Mohanty, "Fortified-
Chain: A Blockchain Based Framework for Security and Privacy As-
sured Internet of Medical Things with Effective Access Control", IEEE
Internet of Things Journal (accepted for publication).

[22] T.M. Fernández-Caramés, P. Fraga-Lamas, "A Review on the Applica-
tion of Blockchain to the Next Generation of Cybersecure Industry 4.0
Smart Factories", IEEE Access, vol. 7, pp. 45201-45218, 2019.

[23] J. Leng et al., "Blockchain-Secured Smart Manufacturing in Industry
4.0: A Survey", IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 51, no. 1, pp. 237-252, Jan. 2021.

[24] P. Fraga-Lamas, T. M. Fernández-Caramés, "A Review on Blockchain
Technologies for an Advanced and Cyber-Resilient Automotive Indus-
try", IEEE Access, vol. 7, pp. 17578-17598, 2019.

[25] E. Balistri et al., "Servitization in the Era of Blockchain: the Ice
Cream Supply Chain Business Case", 2020 International Conference
on Technology and Entrepreneurship (ICTE), Bologna, Italy, 2020, pp.
1-8.

[26] S. Geiger, D. Schall, S. Meixner, A. Egger, "Process traceability in
distributed manufacturing using blockchains", Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing (SAC 19), New York,
NY, USA, 2019, 417-420.

[27] B. Kaynak, S. Kaynak and O. Uygun, "Cloud Manufacturing Architec-
ture Based on Public Blockchain Technology", IEEE Access, vol. 8, pp.
2163-2177, 2020.

[28] F. Loukil, C- Ghedira-Guegan, K. Boukadi, A.N. Benharkat, E. Benkhe-
lifa, "Data Privacy Based on IoT Device Behavior Control Using
Blockchain", ACM Trans. Internet Technol. 21, 1, Article 23, January
2021.

[29] L. Bai, M. Hu, M. Liu and J. Wang, "BPIIoT: A Light-Weighted
Blockchain-Based Platform for Industrial IoT", IEEE Access, vol. 7,
pp. 58381-58393.

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on January 03,2022 at 08:01:35 UTC from IEEE Xplore. Restrictions apply.

2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3104624, IEEE Internet of
Things Journal

17

[30] M. Shen et al., "Blockchain-Assisted Secure Device Authentication
for Cross-Domain Industrial IoT", IEEE Journal on Selected Areas in
Communications, vol. 38, no. 5, pp. 942-954, May 2020.

[31] D.B. Rawat, "Fusion of Software Defined Networking, Edge Computing,
and Blockchain Technology for Wireless Network Virtualization", IEEE
Communications Magazine, vol. 57, no. 10, pp. 50-55, October 2019.

[32] J. Backman, S. Yrjölä, K. Valtanen, O. Mämmelä, “Blockchain network
slice broker in 5G: Slice leasing in factory of the future use case”, 2017
Internet of Things Business Models, Users, and Networks, 2017.

[33] M. Pourvahab, G. Ekbatanifard, "An Efficient Forensics Architecture
in Software-Defined Networking-IoT Using Blockchain Technology",
IEEE Access, vol. 7, pp. 99573-99588, 2019.

[34] P.K. Sharma, S.Singh, Y. Jeong, J. H. Park, "DistBlockNet: A Distributed
Blockchains-Based Secure SDN Architecture for IoT Networks", IEEE
Communications Magazine, vol. 55, no. 9, pp. 78-85, Sept. 2017.

[35] J. Hu, M. Reed, N. Thomos, M. F. AI-Naday and K. Yang, "Secur-
ing SDN-Controlled IoT Networks Through Edge Blockchain", IEEE
Internet of Things Journal, vol. 8, no. 4, pp. 2102-2115, 15 Feb., 2021.

[36] K. Peng, M. Li, H. Huang, C. Wang, S. Wan and K. -K. R. Choo,
"Security Challenges and Opportunities for Smart Contracts in Internet
of Things: A Survey", IEEE Internet of Things Journal (accepted for
publication).

[37] W. Zhao, C. Jiang, H. Gao, S. Yang and X. Luo, "Blockchain-Enabled
Cyber-Physical Systems: A Review", IEEE Internet of Things Journal,
vol. 8, no. 6, pp. 4023-4034, 15 March, 2021.

[38] S. He, W. Ren, T. Zhu and K. R. Choo, "BoSMoS: A Blockchain-
Based Status Monitoring System for Defending Against Unauthorized
Software Updating in Industrial Internet of Things", IEEE Internet of
Things Journal, vol. 7, no. 2, pp. 948-959, Feb. 2020.

[39] S. S. Seshadri et al., "IoTCop: A Blockchain-Based Monitoring Frame-
work for Detection and Isolation of Malicious Devices in Internet-of-
Things Systems", IEEE Internet of Things Journal, vol. 8, no. 5, pp.
3346-3359, 1 March, 2021

Eugenio Balistri received his B.Sc degree in man-
agement and computer engineering from the Univer-
sity of Palermo, Italy and his M.Sc. in computer and
automation engineering from the University of Fer-
rara, Italy. He is currently a research assistant at the
Engineering Department of the University of Ferrara.
His research activities currently focus on Industrial
Internet of Things, Blockchain technologies, smart
water metering, and 5G networks.

Francesco Casellato received his B.Sc. degree in
computer engineering and his M.Sc. degree in com-
puter science engineering from the University of
Ferrara, Italy. He was a research assistant at the
Engineering Department of the University of Ferrara
until July 2021. His research interests focus on smart
cities, smart water metering, Industrial Internet of
Things, blockchain and private cloud.

Salvatore Collura received his B.Sc degree in man-
agement and computer engineering from the Uni-
versity of Palermo, Italy and his M.Sc. in computer
and automation engineering from the University of
Ferrara, Italy. He is currently a research assistant
at the Engineering Department of the University
of Ferrara. His research activities currently focus
on Industrial Internet of Things, cyber security and
cyber resiliency in Industry 4.0 and smart utility
applications.

Carlo Giannelli received the Ph.D. degree in com-
puter engineering from the University of Bologna,
Italy, in 2008. He is currently an Associate Professor
in computer science with the University of Ferrara,
Italy. His primary research activities focus on In-
dustrial Internet of Things, Software Defined Net-
working, Blockchain technologies, cyber security in
Industry 4.0, location/based services, heterogeneous
wireless interface integration, and hybrid infrastruc-
ture/ad hoc and spontaneous multi-hop networking
environments.

Giulio Riberto received his B.Sc. degree in informa-
tion engineering and his M.Sc. degree in computer
science engineering from the University of Ferrara,
Italy. He is currently a research assistant at the
Engineering Department of the University of Ferrara.
His research interests focus on smart cities, smart
utility applications, Industrial Internet of Things,
cyber security, and cyber resiliency of Industry 4.0
plants.

Cesare Stefanelli received his Laurea degree in
electronic engineering and his Ph.D. in computer
science engineering from the University of Bologna,
Italy. He is currently a full professor of computer
science engineering in the Engineering Department
of the University of Ferrara. His research interests
include distributed and mobile computing, adaptive
and distributed multimedia systems, network and
systems management, and network security.

Authorized licensed use limited to: Universita degli Studi di Bologna. Downloaded on January 03,2022 at 08:01:35 UTC from IEEE Xplore. Restrictions apply.

