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Abstract

The lack of power anomaly is an intriguing feature at the largest angular scales

of the CMB anisotropy temperature pattern, whose statistical significance is

not strong enough to claim any new physics beyond the standard cosmolog-

ical model. We revisit the former statement by also considering polarisation

data. We propose a new one-dimensional estimator which takes jointly into

account the information contained in the TT, TE and EE CMB spectra. By

employing this estimator on Planck 2015 low-` data, we find that a random

ΛCDM realisation is statistically accepted at the level of 3.68%. Even though

Planck polarisation contributes a mere 4% to the total information budget, its

use pushes the lower-tail-probability down from the 7.22% obtained with only

temperature data. Forecasts of future CMB polarised measurements, as e.g.

the LiteBIRD satellite, can increase the polarisation contribution up to 6 times

with respect to Planck at low-`. We argue that the large-scale E-mode polar-

isation may play an important role in analysing CMB temperature anomalies

with future mission.
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1. Introduction

CMB observations show anomalies at large angular scale of the temperature

map, see e.g. [1]. The statistical level of these signatures is around 2-3σ from

what expected in the concordance ΛCDM model. Not all of these anomalies are

independent and a certain degree of correlation exists [2]. Here we focus on the

lack of power anomaly: the temperature CMB anisotropy pattern exhibits less

power with respect to what foreseen by ΛCDM. This effect has been studied

with the variance estimator in WMAP data [3, 4, 5] and in Planck 2013 [6] and

Planck 2015 [7] data, measuring a lower-tail-probability of the order of few per

cent. Such a percentage can become even smaller, below 1%, once only regions

at high Galactic latitude are taken into account [5].

WMAP and Planck agree well on this feature, so it is very hard, albeit

not impossible, to attribute this anomaly to systematic effects of instrumental

origin. Moreover it is also difficult to believe that a lack of power could be

generated by residuals of astrophysical emission, since the latter is not expected

to be correlated1 with the CMB and therefore an astrophysical residual should

increase the total power rather than decreasing it. Hence, it appears natural to

accept this as a real feature present in the CMB pattern.

An early fast-roll phase of the inflaton could naturally explain such a lack

of power, see e.g. [8, 9, 10, 11, 12]: this anomaly might then witness a new

cosmological phase before the standard inflationary era (see e.g. [13, 14, 15]).

However, with only the observations based on the temperature map, this

anomaly is not statistically significant enough to be used to claim new physics

beyond the standard cosmological model. Therefore, it is legitimate to conser-

vatively interpret it as a statistical fluke of the ΛCDM concordance model.

The main point of this paper is to argue that future CMB polarisation data

1In particular they should be anti-correlated to produce a decrease of the total power.
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at low-` might increase the significance of this anomaly. In other words, consid-

ering the counterpart in polarisation of the lack of power currently observed in

temperature might be key to confirm it as a simple statistical fluke or to raise

it up at the level of manifestation of new physics2.

In this paper we propose a new one-dimensional estimator which combines

information from the CMB TT, EE and TE angular power spectra at the largest

angular scales, i.e. 2 ≤ ` ≤ 30, with ` being the multipole moment. Considering

Planck data in the whole harmonic range mentioned above, noise dominated

polarisation provides an information content at the level of 4% to this estimator

which, even though small, has a non-negligible impact on the analysis, the

lower-tail-probability shifting downward from 7.22% (obtained considering only

temperature data) to 3.68% C.L. (obtained considering jointly temperature and

polarisation data). We show that for future CMB observations, polarisation at

the largest angular scales can weight as much as ∼ 23% of the total information

entering our estimator.

We argue that the inclusion of large-scale E-mode polarisation could cru-

cially help in changing the interpretation from a simple statistical fluke into the

detection of a new physical phenomenon. Therefore, future CMB large-scale

polarised observations, which are typically aimed at primordial B-modes, might

provide signals of new physics also through the other polarised CMB mode, i.e.

the E-mode.

The paper is organised as follows: in Section 2 we introduce the algebra

needed to build the new estimator which condensates all the TT, EE and TE

information into a 1-D object; in Section 3 we elaborate on an optimised (i.e.

minimum variance) version of the proposed estimator; Section 4 is devoted to the

description of the dataset used and of the simulations employed; in Section 5 we

present the results on Planck data and provide estimates of the improvement

expected with future CMB polarised observations, as the LiteBIRD satellite

[16]; conclusions are drawn in Section 6.

2Of course this argument might be used for any CMB anomaly.
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2. A new one-dimensional joint estimator: the dimensionless nor-

malised mean power

The idea of this joint estimator starts from the usual equations employed to

simulate temperature and E-mode CMB maps, see e.g. [17]:

aT`m =

√
CTT,th` ξ1`m , (1)

aE`m =
CTE,th`√
CTT,th`

ξ1`m +

√√√√CEE,th` −
(CTE,th` )2

CTT,th`

ξ2`m , (2)

where aT,E`m are the coefficients of the Spherical Harmonics (with `,m being

integers numbers so that ` ∈ {0, 1, 2, 3...} and −` ≤ m ≤ `), CTT,th` , CEE,th`

and CTE,th` are the theoretical angular power spectra (APS) for TT , EE and

TE and with ξ1,2`m being Gaussian random variables, uncorrelated, with zero

mean and unit variance:

〈ξ1`m〉 = 0 , (3)

〈ξ2`m〉 = 0 , (4)

〈ξ1`mξ2`′m′〉 = 0 , (5)

〈ξ1`mξ1`′m′〉 = 〈ξ2`mξ2`′m′〉 = δ``′ δmm′ . (6)

From equations (1),(2) one can compute the corresponding APS, defined as

CTT,sim` =
1

2`+ 1

∑̀
m=−`

aT`m(aT`m)? , (7)

CTE,sim` =
1

2`+ 1

∑̀
m=−`

aT`m(aE`m)? , (8)

CEE,sim` =
1

2`+ 1

∑̀
m=−`

aE`m(aE`m)? , (9)

where the label sim stands for “simulated”, i.e. realised randomly from the the-

oretical spectra CTT,th` , CEE,th` and CTE,th` , finding the following expressions,

CTT,sim` = CTT,th`

|~ξ(1)` |2

2`+ 1
, (10)
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CEE,sim` =
(CTE,th` )2

CTT,th`

[
|~ξ(1)` |2

2`+ 1
−
|~ξ(2)` |2

2`+ 1

]
+ CEE,th`

|~ξ(2)` |2

2`+ 1

+2a`
CTE,th`

CTT,th`

~ξ
(1)
` · ~ξ

(2)
`

2`+ 1
, (11)

CTE,sim` = CTE,th`

|~ξ(1)` |2

2`+ 1
+ a`

~ξ
(1)
` · ~ξ

(2)
`

2`+ 1
, (12)

where ~ξ
(1/2)
` are vectors with 2`+ 1 components, i.e.

~ξ
(1/2)
` =

(
ξ
(1/2)
−` , ξ

(1/2)
−`+1, ..., ξ

(1/2)
0 , ...ξ

(1/2)
`−1 , ξ

(1/2)
`

)
, (13)

and a` is defined as

a` ≡
√
CEE,th` CTT,th` − (CTE,th` )2 . (14)

It is easy to check that taking the ensemble average of equations (10),(11)

and (12) yields to

〈CTT,sim` 〉 = CTT,th` , (15)

〈CEE,sim` 〉 = CEE,th` , (16)

〈CTE,sim` 〉 = CTE,th` , (17)

since for each `, as a consequence of equations (5),(6),

〈
|~ξ(1)` |2

2`+ 1
〉 = 1 , (18)

〈
|~ξ(2)` |2

2`+ 1
〉 = 1 , (19)

〈~ξ(1)` · ~ξ
(2)
` 〉 = 0 . (20)

Equations (10),(11) and (12) can be inverted, giving the following set of

equations

|~ξ(1)` |2

2`+ 1
=

CTT`

CTT,th`

, (21)

|~ξ(2)` |2

2`+ 1
=

CEE`
a2`

CTT,th` −
CTT,th`

a2`

(
CTE,th`

CTT,th`

)2

CTT`
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−2
CTE,th`

a2`

[
CTE` −

CTE,th`

CTT,th`

CTT`

]
, (22)

~ξ
(1)
` · ~ξ

(2)
`

2`+ 1
=

1

a`

[
CTE` −

CTE,th`

CTT,th`

CTT`

]
, (23)

where we have dropped out the label “sim” for sake of simplicity. Now, we can

interpret CTT` , CEE` and CTE` as the CMB APS recovered by a CMB exper-

iment under realistic circumstances, i.e. including noise residuals, incomplete

sky fraction and finite angular resolution3. Once the model is chosen, i.e. once

the spectra CTT,th` , CEE,th` and CTE,th` are fixed, for example to ΛCDM, one

can compute the following objects

x
(1)
` ≡

|~ξ(1)` |2

2`+ 1
, (24)

x
(2)
` ≡

|~ξ(2)` |2

2`+ 1
, (25)

x
(3)
` ≡

~ξ
(1)
` · ~ξ

(2)
`

2`+ 1
, (26)

for the observations and/or for the corresponding realistic simulations.

In the following we will call the variables x
(1)
` , x

(2)
` and x

(3)
` as APS of the

normal random variables or normalised APS (henceforth NAPS). The advantage

of using NAPS, instead of the standard APS, is that they are dimensionless and

similar amplitude numbers and can be easily combined to define a 1-D estimator

in harmonic space, which depends on temperature, E-mode polarisation and

their cross-correlation. A natural definition of this 1-D estimator, called P , is

the following

P =
1

(`max − 1)

`max∑
`=2

(
x
(1)
` + x

(2)
`

)
. (27)

The estimator P could be interpreted as a dimensionless normalised mean power,

which jointly combines the temperature and polarisation data. The expectation

value of P is

〈P 〉 = 2 , (28)

3In principle one can also include residuals of systematic effects.
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regardless of the value of `max. Note that a definition of the following type

S =
1

(`max − 1)

`max∑
`=2

(x
(1)
` + x

(2)
` + x

(3)
` ) , (29)

is expected to have less signal-to-noise ratio with respect to P because while S

and P have the same expectation value, the intrinsic variance of P is in general

smaller than the one of S.

We will see in the following that Eq. (27) is noise-limited for Planck data

due to x
(2)
` (its polarisation part) and in practice can be employed only up to

`max = 6. An optimised version of this estimator, given in Section 3, does

not suffer from this issue and can be employed up to the maximum multipole

considered in this analysis, i.e. `max = 30.

3. Optimised estimator

In equation (27) the NAPS x
(1)
` and x

(2)
` are combined with equal weights.

However the signal-to-noise ratios of the two NAPS are different even in the cos-

mic variance limit case: therefore one might wonder which are the best weights

that we can use in the definition of the joint estimator in order to make it opti-

mal, i.e. with minimum variance. It is possible to show, see Appendix A, that

the optimised estimator P̃ , defined as

P̃ ≡ 1

(`max − 1)

`max∑
`=2

(α`x
(1)
` + β`x

(2)
` ) (30)

has minimum variance when

α` = 2
var(x

(2)
` )− cov(x

(1)
` , x

(2)
` )

var(x
(1)
` ) + var(x

(2)
` )− 2cov(x

(1)
` , x

(2)
` )

, (31)

β` = 2
var(x

(1)
` )− cov(x

(1)
` , x

(2)
` )

var(x
(1)
` ) + var(x

(2)
` )− 2cov(x

(1)
` , x

(2)
` )

, (32)

where var and cov stand respectively for the variance and the covariance of

the variables which appear in the brackets. These coefficients, namely α` and

β` as defined in Eqs.(31-32), will be actually used to build the P̃ estimator.

Note that as done for P , P̃ , which depends on `max, has been normalised such
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that 〈P̃ 〉 = 2 for any value of `max. Note also, that P̃ can be employed up to

`max = 30 both for Planck and LiteBIRD-like simulated data: what changes

between the two cases is the set of the coefficients α` and β`, or, in other words,

the relative contribution of the temperature and polarisation data.

4. Dataset and simulations

We use the latest public Planck satellite CMB temperature data4 i.e. the

Planck 2015 Commander map with its standard mask (fTsky = 93.6) entering

the temperature sector of the low-` Planck likelihood5 [18]. In polarisation we

consider a noise-weighted combination of WMAP9 and Planck data as done

in [19]. This allows to gain some signal-to-noise ratio and to deal with a larger

sky fraction in polarisation (fPsky = 73.9). Temperature and polarisation maps

are sampled at HEALPix6 [20] resolution Nside = 16. For sake of simplicity we

will refer to this data set as the Planck-WMAP low-` data set.

In order to build the estimators P and P̃ , as defined in equations (27) and

(30), we estimate the six CMB APS from 10000 simulated CMB-plus-noise

maps. The signal is extracted from the Planck fiducial ΛCDM model defined

by the following parameters

Ωbh
2 = 0.02224

Ωch
2 = 0.1187

100 θ = 1.04101

τ = 0.065

log[1010As] = 3.060

ns = 0.9673

4http://www.cosmos.esa.int/web/planck/pla.
5At the moment of writing the corresponding Planck 2018 likelihood code and correspond-

ing data set is not publicly available.
6http://healpix.sourceforge.net/.
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being Ωb the baryon density, Ωc the cold dark matter density, θ the angle sub-

tended by the sound horizon at recombination, τ the re-ionization optical depth,

As the amplitude and ns the spectral index of primordial scalar perturbations.

This set of parameters is obtained confronting data and models through the

likelihood function defined as the sum of the three following likelihoods (see

[18, 19] for further details):

• a pixel based low-` likelihood, 2 ≤ ` ≤ 29, where the Planck 2015 Com-

mander map enters the temperature sector and a noise-weighted combi-

nation of WMAP9 and Planck data enters the polarisation sector of this

likelihood7;

• a high-` Planck TT likelihood based on APS of Planck data in the range

30 ≤ ` ≤ 2500;

• the Planck lensing likelihood, based on the range 40 ≤ ` ≤ 400 of the

four-point correlation function of the temperature anisotropies.

The noise of the simulated maps is generated through Cholesky decomposition

of the total noise covariance matrix in pixel space, see Appendix B. Such

estimates are obtained over the observed sky fraction, with the optimal angular

power spectrum estimator BolPol [22]. Montecarlo simulations for the Planck-

WMAP low-` data set are validated in Figure 1, where the average of the NAPS

(x
(1)
` , x

(2)
` and x

(3)
` ) are shown respectively in the upper, middle and lower panels

along with their uncertainties of the means (σµ). Each panel displays also a

lower box where for each ` it is shown the distance of mean in units of standard

deviation of the mean itself.

Figure 2 shows the low-` estimates of x
(1)
` , x

(2)
` and x

(3)
` of the Planck-

WMAP low-` data set (red dots), with the contours at one, two and three σ as

estimated from simulations (blue regions).

7Note that the low-` data-set used to perform the analysis is exactly the same as the one

entering the low-` likelihood. This makes the whole investigation self-consistent.
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Simulations for a LiteBIRD-like noise level [21] are obtained following the

same procedure as described above but dividing the polarisation part of the

noise covariance matrix by a factor of 100.

The choice of the `max parameter, which enters the definition of P , see

eq.(27), is dictated by the signal-to-noise ratio of x
(2)
` since x

(1)
` is always signal

dominated in the whole range considered. In Figure 3 we display the signal-to-

noise ratio (S/N), see Appendix C, of the NAPS for the Planck-WMAP low-`

data set (see solid lines). While for x
(1)
` such a ratio grows monotonically (red

line), for x
(2)
` (solid blue line) it saturates around `max ∼ 6. Consequently we

will employ the estimator P with `max = 6 for the Planck-WMAP low-` data

set. The signal-to-noise ratio of x
(2)
` for the LiteBIRD-like noise level is instead

shown in Figure 3 as a dashed blue line. Since such a ratio grows monotonically,

in this case we can choose the maximum `max available in our simulations, i.e.

`max = 30.

Note that this limitation in the choice of `max does not apply to P̃ . In this

case the coefficients α` and β` adjust themselves automatically (depending on

the signal-to-noise ratio) such that noise-dominated multipoles do not contribute

to the estimator, see also Section 3 and 5.2.

5. Results of the analyses

5.1. Results for P

In Figure 4 we plot the empirical distribution expected in ΛCDM for P

with `max = 6 considering the Planck-WMAP low-` characteristics. The red

vertical line stands for the observed value of the Planck-WMAP low-` data

set. The lower-tail probability (LTP) of the observed value of P is 3.63%. Such

a value is smaller than the corresponding LTP of P when, still with `max = 6,

we neglect the contribution of x
(2)
` in eq. (27). In that case the LTP we obtain

is 17.63%. Similarly for the same maximum multipole, when we neglect the

contribution of x
(1)
` in P , we get a LTP of 6.71%. In short, the combination of

temperature and polarisation data provides a LTP smaller than what obtained
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with only temperature or only polarisation, although our findings cannot be

considered as statistically anomalous.

In Figure 5 we plot the empirical distribution of P expected in ΛCDM with

`max = 30 for the Planck-WMAP low-` data set and for the LiteBIRD-like

noise level. In order to evaluate the improvement of the latter with respect to

the former, we build the ratios between the widths of the empirical distributions

of P , corresponding to the level of 68.3%, for the LiteBIRD-like noise level (σLB)

and for the Planck-WMAP low-` noise level (σPlanck). We find that the width

of the estimator P in the LiteBIRD case can be even 30 times smaller with

respect to what obtained in the Planck-WMAP low-` case, if `max & 20.

5.2. Results for P̃

In Figure 6 we plot α` and β` (see equations (31) and (32)) as a function of

` for the Planck-WMAP low-` data set (solid lines). Note how β` for ` > 7

go to zero (and consequently α` → 2 for same multipoles) because of the noise

level in polarisation. For `max = 6, even though the distribution of P̃ is ∼ 32%

narrower with respect to P shown in Figure 4, Planck-WMAP low-` data shift

a little so that the LTP is increased to 8.33%. However P̃ , as already mentioned,

is not limited in the choice of `max and still for the Planck-WMAP low-` data

at `max = 30 we obtain a LTP at the level of 3.68%. In Figure 7 we give the LTP

for P̃ at each `max, displayed in black, compared to a naive estimator defined

only with temperature data as

PT =
1

(`max − 1)

`max∑
`=2

x
(1)
` ,

shown in blue. It is interesting to note how the inclusion of the subdominant

polarisation part impacts on the analysis making the LTP of P̃ smaller then

PT for the whole `−range considered. In particular for PT at `max = 30 we

compute that the LTP is 7.22%.

Still in Figure 6 we plot α` and β` as a function of ` for the LiteBIRD-like

noise level (see dashed lines). Note that for this case none of the β` go to zero

and therefore polarisation data provide a contribution for each of the multipoles

11



considered at large scale. Correspondently temperature data will not saturate

the information entering P̃ for any considered multipoles.

In order to evaluate the impact of polarisation and temperature data on P̃

we define the following weights

wx(1)(`max) =
1

2(`max − 1)

`max∑
`=2

α` , (33)

wx(2)(`max) =
1

2(`max − 1)

`max∑
`=2

β` , (34)

such that wx(1)(`max) + wx(2)(`max) = 1 for every `max. For `max = 6 we

find that polarised Planck-WMAP low-` data contribute at the level of 21.4%

to the building of P̃ . This value increases to 47.9% for future LiteBIRD-like

polarised data at the same maximum multipole. At `max = 30 we forecast

that future LiteBIRD-like polarised data will weight as the 23.1% with respect

to the 3.8% obtained with Planck-WMAP low-` data, therefore providing an

increasing factor ∼ 6. The behaviour of wx(1) and wx(2) for each `max is given

in Figure 8.

We end this Section showing in Figure 9 how the standard deviation σ

of P̃ shrinks for each `max from current Planck data (solid blue) to future

LiteBIRD-like data (dashed blue). We compute that at low-` future data will

allow to build P̃ with a statistical uncertainty that will be around 20% smaller

with respect to current Planck data.

6. Conclusions

In this paper we have proposed a new one-dimensional estimator, i.e. P and

its optimised version P̃ , see equations (27) and (30), which is able to jointly test

the lack of power in TT, TE and EE. The main outcomes of this analysis are

listed below.

1. Considering Planck-WMAP low-` data it is interesting to note that the

inclusion of polarisation information through our new one-dimensional

estimator, either P or P̃ , provides estimates which are less likely accepted
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in a ΛCDM model than the corresponding only-temperature version of

the same estimator. In other words, polarisation though subdominant in

terms of signal-to-noise ratio with respect to temperature, plays a non-

negligible role in the evaluation of compatibility between data and the

standard model. However the LTP obtained are at the level of few per

cent and therefore still compatible with a statistical fluke. See for instance

Figure 7: even though the weight of polarisation data is only around 4% of

the total information budget, the LTP probability of P̃ is always smaller

than its corresponding temperature-only version PT .

2. E-modes at large angular scale still contain information which might be

capable to probe new physics beyond the standard cosmological model.

• We forecast that future CMB polarised measurements à la LiteBIRD

can tight the empirical distribution of P up to a factor of ∼ 30.

• Considering the optimised version of the proposed estimator, i.e. P̃ ,

we evaluate that future LiteBIRD-like measurements can shrink the

statistical uncertainty by 23− 17% and at the same time increasing

the contribution of the polarisation part by a factor ranging from ∼ 2

to ∼ 6.

Future all-sky CMB experiments aimed at detecting primordial B-modes

(which in turn are related to the energy scale of inflation) are designed to ob-

serve CMB polarisation with exquisite accuracy and precision. In order to make

this possible, residual systematic effects both of instrumental and astrophysical

origin have to be carefully measured or, at least, kept under control. In this pa-

per we suppose that this is the case and that the statistical noise is the dominant

source of uncertainty. Under these circumstances, E-modes will be in practice

known at the cosmic variance limit at large angular scales. This is a great

opportunity, since E-mode polarisation might contain important information

about the lack of power anomaly currently observed only in the temperature

map, which could be tracing new physical phenomena beyond the standard

cosmological model in the early universe.
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Appendix A. Computation of the weights for P̃

We use the method of the Lagrange multipliers to minimise the variance of

P̃ , i.e. var(P̃ ), keeping fixed the expected value of P̃ . This can be achieved

requiring that

α` + β` = const = 2 , (A.1)

for each multipole `. Replacing the definition of P̃ , see equation (30), in the

expression of var(P̃ ), one obtains

var(P̃ ) ≡ 〈(P̃ − 〈P̃ 〉)2〉 = 〈(P̃ )2〉 − 〈P̃ 〉2 =

=
∑
`

var(P̃`) (A.2)

where the cross-terms among different multipoles goes exactly to zero in the full

sky case, and with var(P̃`) defined as

var(P̃`) = ᾱ2
`var(x

(1)
` ) + β̄2

` var(x
(2)
` ) + 2ᾱ`β̄`cov(x

(1)
` , x

(2)
` ) , (A.3)

where the barred quantities are defined as ȳ = y/(`max−1) and where var(x
(1)
` )

and var(x
(2)
` ) are the variance of x

(1)
` and x

(2)
` respectively, and cov(x

(1)
` , x

(2)
` )

is their covariance

cov(x
(1)
` , x

(2)
` ) = 〈(x(1)` − 〈x

(1)
` 〉)(x

(2)
` − 〈x

(2)
` 〉)〉. (A.4)

Because of Eq. (A.2), the minimisation of var(P̃ ) is equivalent to the minimi-

sation of each var(P̃`). As it is customary in the Lagrange multiplier method,

for each multipole ` we introduce a new variable λ̄`, known as the Lagrange

multiplier, and minimise the function F (ᾱ`, β̄`, λ̄`) which is defined as

F (ᾱ`, β̄`, λ̄`) = var(P̃`) + λ̄`

(
ᾱ` + β̄` −

2

(`max − 1)

)
. (A.5)

This is equivalent to minimise the variance of P̃` on the constrain given by

equation (A.1) (multiplied by 1/(`max − 1)). Therefore we compute the partial

derivatives with respect to the coefficients ᾱ`, β̄` and λ̄` and set them to be

14



zero:

∂F (ᾱ`, β̄`, λ̄`)

∂ᾱ`
= 2ᾱ` var(x

(1)
` ) + 2β̄` cov(x

(1)
` , x

(2)
` ) + λ̄` = 0, (A.6)

∂F (ᾱ`, β̄`, λ̄`)

∂β̄`
= 2β̄` var(x

(2)
` ) + 2ᾱ` cov(x

(1)
` , x

(2)
` ) + λ̄` = 0, (A.7)

∂F (ᾱ`, β̄`, λ̄`)

∂λ̄`
= ᾱ` + β̄` −

2

(`max − 1)
= 0 . (A.8)

This set of equations is solved by equations (31), (32) together with

λ̄` = − 2

(`max − 1)

 cov(x
(1)
` , x

(2)
` )+

+
var(x

(1)
` )var(x

(2)
` )− cov(x

(1)
` , x

(2)
` )

(
var(x

(1)
` ) + var(x

(2)
` )
)

var(x
(1)
` ) + var(x

(2)
` )− 2cov(x

(1)
` , x

(2)
` )

 . (A.9)

Appendix B. Noise generation through Cholesky decomposition

Given a noise covariance matrix N defined over the observed pixels, it is

possible to generate a noise map, mn, statistically compatible with N, through

the following expression

mn = Ly , (B.1)

where L is the lower triangular matrix of the Cholesky decomposition [23] such

that

N = LLt , (B.2)

and y is a vector with the same dimension as mn and whose entries are randomly

extracted from a normal distribution. In this waymn turns out to be statistically

compatible with N since

〈(mn)(mn)t〉 = 〈(Ly)(Ly)t〉 = L〈yyt〉Lt = LILt = N , (B.3)

where I is the identity matrix and 〈...〉 stands for ensamble average.
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Appendix C. Signal-to-noise ratio

The total signal-to-noise ratio (S/N)
2
`max

contained in x
(1)
` or x

(2)
` up to a

maximum harmonic scale `max, is defined summing up (S/N)
2
l over the multi-

poles ` from 2 to `max as: (
S

N

)2

`max

=

`max∑
l=2

(
S

N

)2

l

(C.1)

where (
S

N

)2

l

=
〈x(i)` 〉2

〈
(
x
(i)
` − 〈x

(i)
` 〉
)2
〉

=
1

〈
(
x
(i)
` − 1

)2
〉
, (C.2)

since 〈x(i)` 〉 = 1, for i = 1, 2.
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Figure 1: Averages of x
(1)
` (upper panel), x

(2)
` (middle panel) and x

(3)
` (lower panel) as

a function of ` obtained from MonteCarlo simulations corresponding to the Planck-

WMAP low-` data. Error bars represent the uncertainties associated to the averages.

Each panel displays also a lower box where for each ` it is shown the distance of mean in

units of standard deviation of the mean itself. Dashed horizontal lines represent what

theoretically expected for the averages of x
(1)
` , x

(2)
` and x

(3)
` , see equations (18),(19)

and (20).
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Figure 2: Red dots represent x
(1)
` (upper panel), x

(2)
` (middle panel) and x

(3)
` (lower

panel) as a function of ` obtained from the Planck-WMAP low-` data set. Error

bars (blue regions) represent the uncertainties associated to the estimates. Dashed

horizontal lines represent what theoretically expected for the averages of x
(1)
` , x

(2)
` and

x
(3)
` , see equations (18),(19) and (20). Each panel displays also a lower box where for

each ` it is shown the distance of the estimates in units of standard deviation of the

estimate itself.
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Figure 3: Signal-to-noise ratio of x
(1)
` (red curve) and x

(2)
` as a function of `max for

the Planck-WMAP low-` data set (solid blue line) and for the LiteBIRD-like noise

level (dashed blue line). While the signal contained in x
(1)
` grows monotonically in

the considered range, x
(2)
` saturates at `max ∼ 6 for the Planck-WMAP. Instead the

signal-to-noise ratio of x
(2)
` for the LiteBIRD-like noise level grows monotonically, and

therefore, in this case, we can choose the maximum `max available in our simulations,

i.e. `max = 30.
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Figure 4: Empirical distribution of the P estimator, see eq. (27), for `max = 6. The red

and the black vertical lines represent the values of the Planck data and of the ΛCDM

model respectively. The black, red and green dashed lines indicate the boundaries of

the 68.3%, 95.5% and 99.7% confidence regions respectively.

21



10 5 0 5 10 15

P
0

1000

2000

3000

4000

5000

6000

co
un

ts
68.3%
95.5%
99.7%

CDM MODEL
Planck
LiteBIRD-like

Figure 5: Empirical distribution of the P estimator, see eq. (27), for `max = 30. Blue

histogram refers to the Planck-WMAP low-` data set, while the red one is for the

case of the LiteBIRD-like noise level.
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Figure 6: The behaviour of the coefficients α` (blue line) and β` (red line), see

eqs. (30),(31) and (32) for their definitions, as a function of ` for the Planck-WMAP

low-` data set (solid lines) and for the LiteBIRD-like noise level (dashed lines).
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Figure 7: LTP of P̃ (in black) and of PT (in blue) as a function of `max for the Planck-

WMAP low-` data.
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Figure 8: wx(1) (in blue) and wx(2) (in red) as a function of `max for the Planck-

WMAP low-` data set (solid) and the LiteBIRD-like case (dashed).
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Figure 9: Standard deviation σ of P̃ versus `max for Planck-WMAP low-` data set

(solid) and the LiteBIRD-like case (dashed).
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