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Abstract

A novel methodology is presented for the manufacturing cost and reliability-based optimisa-
tion of plate structures with the Boundary Element Method (BEM), with the aim of improving
the accuracy, robustness, and efficiency of the optimisation of aircraft structures. The BEM plate
formulations with respect to plate thickness are derived for the first time, and used as part of
an Implicit Differentiation Method (IDM), enabling the full shape optimisation of plate structures
with the BEM. These implicit derivatives are validated against derivatives obtained from the Finite
Difference Method (FDM) and from an analytical solution. Results indicate that the IDM is more
robust than the FDM and in excellent agreement with the analytical solution, and more accurate
than the FDM for most of the step-sizes investigated. To demonstrate the full shape optimisation
of plates with the newly developed IDM, a numerical example involving Reliability-Based De-
sign Optimisation (RBDO) and manufacturing cost optimisation is presented for a plate structure.
Results show that the newly developed IDM is more efficient than the FDM when performing this
optimisation.

1 Introduction
Structural mass is a very important consideration for aeronautical engineers, as small increases in
the mass of an aircraft can lead to significant increases in fuel consumption and carbon emissions.
Alongside mass, manufacturing costs are also a significant consideration for aeronautical engineers.
Reductions in manufacturing costs can enable aircraft manufacturers to divert more resources towards
improving safety and reducing the environmental impact of their aircraft. Reductions in costs could
also be passed down to consumers via reduced ticket prices. Reliability-Based Design Optimisation
(RBDO) can often provide designs for structures that are optimised in terms of mass and reliability,
but not necessarily in terms of manufacturing costs, especially for complex structures. This work
aims to develop a methodology that couples the RBDO of aircraft structures with a manufacturing
cost estimation approach.

Optimising a structure for manufacturing cost and reliability involves shape optimisation - optimising
the shape of a structure to minimise manufacturing cost and to maximise reliability. The Boundary
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Element Method (BEM) can be a very effective tool for shape optimisation. The BEM only discre-
tises the outer boundary of a structure, allowing the outer geometry to be varied without requiring the
entire structure to be resmeshed, saving both time and computational resources. An added benefit of
this feature is that it allows the sensitivities of the responses of a BEM model, with respect to changes
in the outer geometry, to be calculated in a very straightforward and computationally efficient manner,
making the BEM a very effective tool for the shape optimisation of engineering structures.

Previous work on the topic of shape optimisation with the BEM by the research community has
mostly considered 2D structures [1–11], and to a lesser-degree 3D structures [12–18]. Very few
previous works by the research community on the topic of shape optimisation with the BEM have
considered plate or shell structures. Where possible, modelling a structure as a plate or shell struc-
ture can have significant benefits over modelling the structure in 2D or 3D. This is because many
real-life engineering structures cannot be accurately modelled as 2D structures, and depending on the
engineering structure being modelled, it can often be more efficient to model a structure as a plate or
a shell structure, rather than as a 3D structure, without a noticable loss in modelling accuracy. An
example of this could be a curved stiffened panel from an aircraft fuselage, or a wingbox from an air-
craft’s wing. To the authors’ knowledge, there is only one previous work by the research community
on the topic of shape optimisation with the BEM with plate or shell structures; Babouskos et al. [19]
optimised the thickness distribution in a thin plate to regulate the dynamic response of the plate. The
thickness distribution of the plate was approximated via a surrogate model, and the optimal thickness
distribution in the plate was calculated using derivatives of this surrogate model. The derivatives of
the BEM formulations for plates were not calculated, and the remaining geometry of the plate was not
optimised. This current work aims to develop an Implicit Differentiation Method (IDM), which uses
the implicit/direct derivatives of the BEM formulations for plates, to enable the full shape optimisa-
tion of plate structures with the BEM, involving all of a plate’s geometry. By using the implicit/direct
derivatives of the BEM formulations, shape optimisation can be conducted in a much more accurate
and efficient manner than with other methods.

The first steps towards developing an IDM for plate or shell structures with the BEM were con-
ducted by Morse et al. in [20], in which the exact/implicit derivatives of the BEM plate formulations
with respect to geometrical variables were derived for the first time. These exact derivatives were only
applicable to geometrical variables that influence the nodal coordinates of the BEM plate mesh, such
as plate length or width, and so they were not applicable to geometrical variables that do not influence
nodal coordinates, such as plate thickness. Therefore, the full shape optimisation of plate structures,
involving all geometrical variables, was not possible. This current work aims to build upon the work
presented in [20] and enable the full shape optimisation of plate structures, involving all geometrical
variables. This is achieved by deriving the exact/implicit derivatives of the BEM plate formulations
with respect to plate thickness for the first time.

Previous work by the research community involving exact \implicit derivatives of BEM formulations
have focused on 2D structures [1,3,21–28], with some work conducted on 3D structures [13,29], and
one work so far on plate structures [20]. One notable example is Huang et al. in which the implicit
derivatives for the 2D Dual Boundary Element Method (DBEM), a version of BEM effective at mod-
elling cracks, were developed for the first time and used to estimate the reliability of 2D structures
using the First-Order Reliability Method (FORM). Another notable example is Brancati et al. [13],
in which the implicit derivatives of 3D boundary element formulations were used to optimise noise
levels in an aircraft cabin.

In summary, the main novelty of this work is that the exact/implicit derivatives of the BEM plate
formulations with respect to plate thickness have been derived for the first time, enabling the full
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shape optimisation of plate structures with the BEM. These implicit derivatives will be validated
against derivatives obtained from the Finite Difference Method (FDM) and from an analytical so-
lution. To demonstrate the full shape optimisation of plates with the BEM, a numerical example
involving Reliability-Based Design Optimisation (RBDO) and manufacturing cost optimisation is
presented.

The methodology behind manufacturing cost estimation is presented in section 2, followed by the
methodology used for RBDO in section 3. The implicit derivatives of the BEM plate formulations
with respect to plate thickness are presented in section 4, alongside the validation of these implicit
derivatives. The numerical example involving RBDO and manufacturing cost estimation is shown
in section 5. The implicit derivatives of the BEM plate fundamental solutions with respect to plate
thickness are presented in detail in the Appendix.
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2 Parametric Approach to Manufacturing Cost Estimation
The parametric cost estimation methodology used in this work is based on the parametric cost esti-
mation methodology described in detail in Appendix C of the NASA Cost Estimating Handbook [30].

A parametric model can be created to estimate the manufacturing cost of a structural component.
The parametric model used in this work is a linear regression of the following form:

Cost = β0 +β1x1 +β2x2 . . .+βkxk (1)

where Cost is the manufacturing cost of a structural component, and [x1,x2, . . .xk] are independent
variables that influence the manufacturing cost, also known as cost drivers. [β1,β2, . . .βk] are re-
gression coefficients. The cost drivers could be the dimensions of a structural component, such as
its length and width. The creation of this parametric model required the use of a historical database
containing the details of similar structural components, and could be created by collecting the details
of structural components from a range of similar aircraft models. In this work, this database is an
artificial database created by the authors.

To minimise the effects of multicollinearity, a stepwise regression approach is taken when creat-
ing the regression model seen in equation (1). The most important cost drivers are identified based on
their Pearson correlations coefficient with respect to the manufacturing cost. The most important cost
driver is used as the sole independent variable of the first iteration of stepwise regression procedure.
In the following iterations, the next most important cost drivers are added to the model. If the addition
of a driver noticeably improved the model, it is kept in the model, otherwise it is removed. This is
repeated until all of the important cost drivers have been tried in the model. Therefore, the resulting
regression model will include only the very most important cost drivers, mitigating the effects of mul-
ticollinearity and providing an accurate parametric model for estimating the manufacturing cost of a
structure.
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3 Reliability-based Design Optimisation (RBDO)
In the field of reliability analysis, the boundary between succeeding or failing to meet a certain set of
criteria can be represented mathematically by a limit state function (LSF) g(Z). For example, if we
are looking at the probability of a structure failing due to load, the LSF will be:

g(Z) = R−S(Q) (2)

where Z is a vector of random variables (Z ∈ Rnr where nr is the number of random variables), and
Q is a subset of Z if R is a random variable, where R is the resistance of the structure to some load
S. If S(Q) > R then g(Z) < 0 and the structure is considered to have failed, while if S(Q) ≤ R then
g(Z)≥ 0 and the structure is considered safe.

The probability that the set of criteria has failed to be met is termed the probability of failure PF ,
while the probability that the set of criteria has been successfully met is termed reliability PR. In
the example outlined above, these probabilities would correspond to the probabilities of the structure
failing or being safe under the load S respectively. Reliability can be determined by evaluating the
following integral:

PR = 1−PF = P{g(Z)> 0}=
∫

g(Z)>0

fZ(Z)dZ (3)

where fZ(Z) is the joint PDF of Z. PR and PF are obtained by integrating over the failure region
(g(Z) < 0) and the safe region (g(Z) ≥ 0) respectively. All of the design variables are assumed to
be mutually independent. The integral seen in equation (3) can be difficult to evaluate if there are
many variables in X or if the boundary g(Z) = 0 is non-linear. Therefore, several methods have been
developed to evaluate the integral in equation (3). The most widely known are Monte Carlo Simula-
tions (MCS), the First-Order Reliability Method (FORM), and the Second-Order Reliability Method
(SORM). This work will focus on the FORM due to its efficiency.

The reliability PR shown in (3) can be represented in terms of a reliability index β as:

PR = 1−PF = 1−Φ(−β ) = Φ(β ) (4)

where Φ denotes the CDF of the standard normal distribution. A large value for the reliability PR
corresponds to a large value for the reliability index β . β can be found by rearranging the above
equation to yield:

β = Φ
−1(PR) = Φ

−1(1−PF) (5)

where Φ−1 is the inverse of the CDF of the standard normal distribution.

Reliability-based Design Optimisation (RBDO) involves optimising the design of a structure such
that the reliability of the structure achieves a certain level of reliability. There are two main ap-
proaches to RBDO, the Reliability Index Approach (RIA) and the Performance Measure Approach
(PMA).

3.1 Reliability Index Approach (RIA) to RBDO
In the RIA, the optimisation problem is:
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Minimise Cost(d) (6)
Subject to βFORM ≥ βtarget

dL ≤ d ≤ dU , d ∈ Rnd

where d is a vector of nd design variables (d ⊆ µ(Q) and nd ≤ nr), βFORM is the reliability index
from FORM, and βtarget is the target reliability index. dL and dU are vectors containing the lower and
upper bounds respectively of the design variables.

For a given vector of random variables Z, the RIA calculates the reliability index β via FORM for
each iteration of the optimisation procedure.

3.2 Performance Measure Approach (PMA) to RBDO
In the PMA, the optimisation problem is:

Minimise Cost(d) (7)
Subject to g(Z∗)≤ 0

dL ≤ d ≤ dU , d ∈ Rnd

where g(Z∗) is the value of the limit state function evaluated at the Most Probable Point (MPP)
found from the PMA. The PMA algorithm used in this work is the Hybrid Mean Value (HMV) algo-
rithm [31], due to its enhanced efficiency and stability.

The PMA can be thought of as the inverse of the RIA. For a given vector of random variables Z,
the PMA calculates the MPP point Z∗ for which βFORM = βtarget . This MPP Z∗ is then used by the
next iteration of the optimization procedure.

The PMA requires the derivatives of the constaints, i.e. the limit state function g in equation (7),
to be calculated. In this work, g will be a function of boundary stresses or internal displacements.
Therefore, the derivatives of the boundary stresses and internal displacements need to be derived.
Since the Boundary Element Method (BEM) is used in this work to calculate boundary stresses or
internal displacements, the derivatives of the BEM formulations for plate structures will need to be
derived. These derivatives have been derived for the first time and are presented in the next section.
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4 RBDO Constraint Derivatives
To improve the computational efficiency of conducting RBDO for plate structures using the PMA
approach, the exact derivatives of the response of a BEM plate model were derived for the first time.

In this work, Latin letter indexes (e.g. i, j, k) can take values from 1 to 3, while Greek letter in-
dexes (e.g. α , β , ρ , γ) can take values of either 1 or 2.

4.1 BEM Formulations for Plates
In this section, the BEM formulations for plates are presented.

Consider the plate of thickness h shown in Figure 1. The x1 − x2 plane is the middle surface
x3 = 0, or membrane, of the plate where −h/2 ≤ x3 ≤ +h/2. x3 can be described in terms of a
non-dimensional variable x̄3, such that x3 = x̄3h, where −1/2 ≤ x̄3 ≤+1/2.

Figure 1: Plate geometry [32].

The displacements of the plate are uα , where u1 and u2 are the displacements in the directions x1
and x2 respectively. The rotations of the plate are wα , where w1 and w2 are the rotations of the plate
in the directions x1 and x2 respectively. The displacement of the plate in the direction x3 is w3. The
tractions are denoted as tα and pi. tα are tractions due to membrane stress resultants Nαβ . pα are
tractions due to bending stress resultants Mαβ . p3 denotes traction due to shear stress resultants Qα .
A diagram explaining the sign convention of these displacements, rotations, and tractions for plate
bending can be seen in Figure 2.

Figure 2: Sign convection for displacement, rotations, tractions, and moments for shear deformable
plates [33].
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4.1.1 Boundary Integral Equations

From [34], the discretised BEM boundary integral equations for plate bending are shown below.

The discretised BEM boundary integral equation for the plate membrane is:

Cm
αβ

(xnc)uβ (xnc)+
Ne

∑
ne=1

M

∑
γ=1

Pm,neγ

αβ
(xnc)uneγ

β
(8)

=
Ne

∑
ne=1

M

∑
γ=1

Qm,neγ

αβ
(xnc)tneγ

β

where:

Pm,neγ

αβ
(xnc) =−

∫ +1

−1
T m

αβ
(xnc ,x(η))Sneγ(η)Jne(η)dη (9)

Qm,neγ

αβ
(xnc) =

∫ +1

−1
Um

αβ
(xnc ,x(η))Sneγ(η)Jne(η)dη (10)

where xnc , nc = 1,2, . . . ,Nc (where Nc = Nn) is the collocation node, Nn is the number of nodes, Ne is
the number of elements, and M is the number of nodes per element. M = 3 in the case of quadratic
elements. Superscript m indicates that an equation is for the plate membrane. Sneγ is the shape func-
tion of node γ of element ne, and Jne is the Jacobian of element ne. Pm,neγ

αβ
and Qm,neγ

αβ
are fundamental

solutions evaluated at node γ of element ne. uneγ

β
are in-plane displacements at node γ of element ne,

and tneγ

β
are tractions due to membrane stress resultants Nαβ at node γ of element ne.

The discretised form of the displacement boundary integral equation for bending is:

Cb
i j(x

nc)w j(xnc)+
Ne

∑
ne=1

M

∑
γ=1

Pb,neγ

i j (xnc)wneγ

j (11)

=
Ne

∑
ne=1

M

∑
γ=1

Qb,neγ

i j (xnc)pneγ

j +q3

Ne

∑
ne=1

Ob,ne
i (xnc)

where:

Pb,neγ

i j (xnc) =−
∫ +1

−1
T b

i j(x
nc,x(η))Sneγ(η)Jne(η)dη (12)

Qb,neγ

i j (xnc) =
∫ +1

−1
Ub

i j(x
nc ,x(η))Sneγ(η)Jne(η)dη (13)

Ob,ne
i (xnc) =

∫ +1

−1
Bb

i (x
nc ,x(η))Jne(η)dη (14)

where:

Bb
i (x

nc ,x(η)) =V b
i,α(x

nc,x(η))nα(x(η)) (15)

− ν

(1−ν)λ 2Ub
iα(x

nc ,x(η))nα(x(η))

where superscript b indicates that an equation is for plate bending. Pb,neγ

αβ
, Qb,neγ

αβ
, and Ob,ne

i are funda-

mental solutions evaluated at node γ of element ne. wneγ

j are the rotations and vertical displacement of

8



the plate (w1 and w2 are rotations, and w3 is vertical displacement) at at node γ of element ne. pneγ

α are
tractions due to bending stress resultants Mαβ , and pneγ

3 denotes traction due to shear stress resultants
Qα , at at node γ of element ne. q3 is constant uniform loading over the entire top surface of the plate.
ν is the Poisson’s ratio, and λ =

√
10/h is the shear factor, where h is the thickness of the plate.

In the above equations, T b
i j , Ub

i j, and V b
i,α are the fundamental solutions for plate bending, while

Tαβ and Uαβ are the fundamental solutions for the membrane. Expressions for these fundamental
solutions can be found in [32]. The integral symbol −

∫
represents Cauchy principal value integrals.

w1 and w2 denote rotations in the directions x1 and x2 respectively, and w3 denotes displacement in
the direction x3. u1 and u2 are the displacements in the directions x1 and x2 respectively. pk are the
bending and shear tractions with pα = Mαβ nβ and p3 = Qαnα . t1 and t2 are membrane tractions in
the directions x1 and x2 respectively where tα = Nαβ nβ . The integrations are carried out over the
boundary S of the structure’s domain. The terms Cm

αβ
and Cb

i j are free terms and their values can be
directly evaluated from a consideration of rigid body motion [32].

Since the fundamental solutions shown in the integral equations (9)-(10), and (49)-(52) are of the
order of ln(1/r) or 1/r, (where r is the distance between the collocation node and the field point)
mathematical singularities can occur when the collocation node lies within the same element as the
field point. Weakly singular integrals are defined as integrals with singularities of the order ln(1/r)
or 1/r such as those seen in equations (49)-(52) and (9)-(10). In this case, the transformation of
variable technique proposed by Telles [35] is used. For equations (49) and (9), rigid body motion is
also applied. For each of the integral equations seen above, when the collocation node is near to the
field point, but is not in the same element as the field point, the integral shows near-singular behaviour.
In this case, the element subdivision technique is used. Details on these methods can be found in [32].

The system of equations used in the BEM is of the form Hu = Gt. Where H is a (5Nn ×5Nn) matrix,
and G is a (5Nn ×5NeM) matrix. u is a (5Nn ×1) vector of known and unknown displacements, and t
is a (5NeM×1) vector of known and unknown tractions. The final system of equations can be written
as:

AX = F (16)

where A is a (5Nn ×5Nn) usually unsymmetric and dense coefficient matrix composed of parts of H
and G, X is a (5Nn ×1) vector containing all of the unknown boundary displacements and tractions,
and F is a (5Nn ×1) vector containing parts of G multiplied by known tractions and parts of H multi-
plied by known displacements. This system of equations, after applying the boundary conditions, can
be solved using LU decomposition.

An example of a BEM mesh for a simple plate structure can be seen in Figure 3.
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Figure 3: An example of mesh design for a square plate. Quadratic elements consisting of three
nodes are used. White circles indicate the location of nodes.

As seen in Figure 3, the boundary of a structure is discretised using continuous quadratic elements
except at the corners - where due to the non-uniqueness of the normals, semi-discontinuous quadratic
elements are used.

4.1.2 Displacements and Rotations at Internal Points

The displacements and rotations at internal points can be evaluated using the solution X to the system
of equations. The in-plane displacements at some internal point Xni , ni = 1,2, . . . ,Ni (where Ni is the
number of internal points) are:

uβ (Xni)+
Ne

∑
ne=1

M

∑
γ=1

Pm,neγ

αβ
(Xni)uneγ

β
(17)

=
Ne

∑
ne=1

M

∑
γ=1

Qm,neγ

αβ
(Xni)tneγ

β

where:

Pm,neγ

αβ
(Xni) =

∫ +1

−1
T m

αβ ,ρ(X
ni,x(η))Sneγ(η)Jne(η)dη (18)

Qm,neγ

αβ
(Xni) =

∫ +1

−1
Um

αβ ,ρ(X
ni,x(η))Sneγ(η)Jne(η)dη (19)

The rotations w1 and w2, and vertical displacement (out-of-plane displacement) w3, are:

w j(Xni)+
Ne

∑
ne=1

M

∑
γ=1

Pb,neγ

i j (Xni)wneγ

j (20)

=
Ne

∑
ne=1

M

∑
γ=1

Qb,neγ

i j (Xni)pneγ

j +q3

Ne

∑
ne=1

Ob,ne
i (Xni)

where:
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Pb,neγ

i j (Xni) =
∫ +1

−1
T b

i j(X
ni,x(η))Sneγ(η)Jne(η)dη (21)

Qb,neγ

i j (Xni) =
∫ +1

−1
Ub

i j(X
ni,x(η))Sneγ(η)Jne(η)dη (22)

Ob,ne
i (Xni) =

∫ +1

−1
Bb

i (X
ni,x(η))Jne(η)dη (23)

and:

Bb
i (X

ni,x(η)) =V b
i,α(X

ni,x(η))nα(x(η)) (24)

− ν

(1−ν)λ 2Ub
iα(X

ni,x(η))nα(x(η))

4.1.3 Boundary Stress Resultants

In shear deformable plate theory, the normal stress components σαβ are assumed to vary linearly
through the thickness of the plate. Therefore:

σαβ =
1
h

Nαβ +
12x3

h3 Mαβ (25)

where Nαβ are the membrane stress resultants, Mαβ are the bending stress resultants, and −h/2 ≤
x3 ≤+h/2 (see Figure 1).

In this work, an indirect approach is used to evaluate boundary stresses. The boundary stresses are
evaluated from boundary tractions and tangential strains. More detail on this method can be found
in [32]. A brief description of this method is outlined below.

A local coordinate system can be defined on a boundary element ne such that êne
1β
(η) (where êne

1β
(η) =

nne
β
(η), β = 1,2) is a unit vector in the normal direction to the boundary element, and êne

2β
(η) is a unit

vector in the tangential direction to the boundary element. Therefore, the local coordinates of node γ

of element ne are:

x̂neγ

α = êneγ

1α
xneγ

1 + êneγ

2α
xneγ

2 (26)

where êneγ

αβ
= êne

αβ
(ηγ), and xneγ

β
are the global coordinates of node γ of element ne. Therefore, the

rotation matrix êαβ for node γ of element ne can be written as:

êneγ

αβ
=

[
êneγ

11 êneγ

12
êneγ

21 êneγ

22

]
=

[
nneγ

1 nneγ

2
−nneγ

2 nneγ

1

]
(27)

This local coordinate system can be seen in Figure 4.

x̂2

x̂1

Figure 4: Local coordinate system for boundary stress calculation.
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If ûneγ

β
, ε̂

neγ

αβ
, N̂neγ

αβ
, and t̂neγ

β
are the displacements, strains, stresses, and tractions for node γ of element

ne in local coordinates x̂β then the normal component of the local stress:

N̂neγ

1α
= t̂neγ

α (28)

The tangential component of the local stress is:

N̂neγ

22 =
1

1−ν

[
Eh

1+ν
ε̂

neγ

22 +ν t̂neγ

1

]
(29)

where ε̂
neγ

22 = ∂ ûneγ

2 /∂ x̂2, and is given by:

ε̂
neγ

22 =
êneγ

2α

Jne(ηγ)

M

∑
ρ=1

(
uneρ

α

(
dNneρ(η)

dη

)
η=ηγ

)
(30)

The local boundary stresses can now be calculated using equations (28) and (29). The global stresses
Nneγ

αβ
can be calculated from the local stresses N̂neγ

αβ
via:

Nneγ

αβ
= êρα êφβ N̂neγ

ρφ
(31)

Using the relationships in equation (27), the global membrane stress resultants can be obtained:

Nneγ

11 = (nneγ

1 )2N̂neγ

11 +(nneγ

2 )2N̂neγ

22 −2nneγ

1 nneγ

2 N̂neγ

12 (32)

Nneγ

12 = nneγ

1 nneγ

2 (N̂neγ

11 − N̂neγ

22 )

+
[
(nneγ

1 )2 − (nneγ

2 )2
]
N̂neγ

12

Nneγ

22 = (nneγ

2 )2N̂neγ

11 +(nneγ

1 )2N̂neγ

22 +2nneγ

1 nneγ

2 N̂neγ

12

The out-of-plane stress resultants can be calculated in a similar manner as the in-plane stress resul-
tants.

The normal components of the tractions at node γ of element ne are:

p̂neγ

1 = nneγ

1 pneγ

1 +nneγ

2 pneγ

2 (33)

The tangential component of tractions are:

p̂neγ

2 =−nneγ

2 pneγ

1 +nneγ

1 pneγ

2 (34)

The tangential component of the rotations are:

ŵneγ

2 =−nneγ

2 wneγ

1 +nneγ

1 wneγ

2 (35)

The local tangential strain is:

χ̂
neγ

22 =
êneγ

2α

Jne(ηγ)

M

∑
ρ=1

(
wneρ

α

(
dNneρ(η)

dη

)
η=ηγ

)
(36)

The local moments and shear stresses are:

M̂neγ

11 = p̂neγ

1 (37)

M̂neγ

12 = p̂neγ

2 (38)
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M̂neγ

22 = νM̂neγ

11 +D(1−ν
2)χ̂

neγ

22 +
q3ν

λ 2 (39)

Ŝneγ

11 = pneγ

3 (40)

Ŝneγ

22 =
D(1−ν)λ 2

2

[
ŵneγ

2 (41)

+
1

Jne(ηγ)

M

∑
ρ=1

(
wneρ

3

(
dNneρ(η)

dη

)
η=ηγ

)]

The global moment stress resultants for node γ of element ne are:

Mneγ

11 = (nneγ

1 )2M̂neγ

11 +(nneγ

2 )2M̂neγ

22 −2nneγ

1 nneγ

2 M̂neγ

12 (42)

Mneγ

12 = nneγ

1 nneγ

2 (M̂neγ

11 − M̂neγ

22 )

+
[
(nneγ

1 )2 − (nneγ

2 )2
]
M̂neγ

12

Mneγ

22 = (nneγ

2 )2M̂neγ

11 +(nneγ

1 )2M̂neγ

22 +2nneγ

1 nneγ

2 M̂neγ
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The global shear stress resultants for node γ of element ne are:

Sneγ

1 = nneγ

1 Ŝneγ

11 −nneγ

2 Ŝneγ

22 (43)

Sneγ

2 = nneγ

2 Ŝneγ

11 +nneγ

1 Ŝneγ

22 (44)

4.2 Derivatives of BEM Formulations for Plates with Respect to Plate Thick-
ness h

In this section, the BEM formulations for plates with respect to plate thickness h are presented.

4.2.1 Boundary Integral Equations

The derivatives of the Boundary integral equations seen in section 4.1 with respect to plate thickness
h are presented here.

The derivative of the discretised BEM boundary integral equation for the plate membrane (equation
(8)) with respect to plate thickness h is:

Cm
αβ ,h(x

nc)uβ (xnc)+Cm
αβ

(xnc)uβ ,h(xnc) (45)

+
Ne

∑
ne=1

M

∑
γ=1

Pm,neγ

αβ ,h (xnc)uneγ

β
+

Ne

∑
ne=1

M

∑
γ=1

Pm,neγ

αβ
(xnc)uneγ

β ,h

=
Ne

∑
ne=1

M

∑
γ=1

Qm,neγ

αβ ,h (x
nc)tneγ

β
+

Ne

∑
ne=1

M

∑
γ=1

Qm,neγ

αβ
(xnc)tneγ

β ,h

where:

Pm,neγ

αβ ,h (xnc) =−
∫ +1

−1
T m

αβ ,h(x
nc ,x(η))Nneγ(η)Jne(η)dη (46)

Qm,neγ

αβ ,h (x
nc) =

∫ +1

−1
Um

αβ ,h(x
nc,x(η))Nneγ(η)Jne(η)dη (47)
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where xnc , nc = 1,2, . . . ,Nc (where Nc = Nn) is the collocation node, Nn is the number of nodes, Ne is
the number of elements, and M is the number of nodes per element. M = 3 in the case of quadratic
elements.

The derivative of the discretised BEM boundary integral equation for bending (equation (11)) with
respect to plate thickness h is:

Cb
i j,h(x

nc)w j(xnc)+Cb
i j(x

nc)w j,h(xnc) (48)

+
Ne

∑
ne=1

M

∑
γ=1

Pb,neγ

i j,h (xnc)wneγ

j +
Ne

∑
ne=1

M

∑
γ=1

Pb,neγ

i j (xnc)wneγ

j,h

=
Ne

∑
ne=1

M

∑
γ=1

Qb,neγ

i j,h (xnc)pneγ

j +
Ne

∑
ne=1

M

∑
γ=1

Qb,neγ

i j (xnc)pneγ

j,h

+q3

Ne

∑
ne=1

Ob,ne
i,h (xnc)

where:

Pb,neγ

i j,h (xnc) =−
∫ +1

−1
T b

i j,h(x
nc ,x(η))Nneγ(η)Jne(η)dη (49)

Qb,neγ

i j,h (xnc) =
∫ +1

−1
Ub

i j,h(x
nc,x(η))Nneγ(η)Jne(η)dη (50)

Ob,ne
i,h (xnc) =

∫ +1

−1
Bb

i,h(x
nc ,x(η))Jne(η)dη (51)

where:

Bb
i,h(x

nc ,x(η)) =V b
i,αh(x

nc,x(η))nα(x(η)) (52)

− ν

(1−ν)λ 2Ub
iα,h(x

nc,x(η))nα(x(η))

+
2νλ,h

(1−ν)λ 3Ub
iα(x

nc ,x(η))nα(x(η))

In the above equations, T b
i j,h, Ub

i j,h, and V b
i,αh are the derivatives of the fundamental solutions for

plate bending, while Tαβ ,h and Uαβ ,h are the derivatives of the fundamental solutions for the mem-
brane. The expressions for these fundamental solutions have been derived for the first time in this
work and can be found in the Appendix. The terms Cm

αβ ,h and Cb
i j,h are the derivatives of the free

terms seen in equations (8) and (11) respectively and their values can be directly evaluated from a
consideration of rigid body motion.

In BEM-based IDM the system of equations is H,hu+Hu,h = G,ht+Gt,h, where H, G, u, and t
are the same as defined in section 4.1, and H,h, G,h, u,h, and t,h are their derivatives. This system of
equations can be rewritten as:

AX,h =
[
F,h −A,hX

]
(53)

where A and X can be obtained from equation (16). Since the right-hand side of equation (53) is
known, LU decomposition can be used to obtain the unknown derivatives of boundary displacements
and tractions X,h.
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4.2.2 Displacements and Rotations at Internal Points

The derivatives of the displacements and rotations at internal points seen in section 4.1.2 with respect
to plate thickness h are presented here.

The derivatives of the in-plane displacements at some internal point Xni , ni = 1,2, . . . ,Ni (where Ni is
the number of internal points) are:

uβ ,h(Xni) (54)

+
Ne

∑
ne=1

M

∑
γ=1

Pm,neγ

αβ ,h (Xni)uneγ

β
+

Ne

∑
ne=1

M

∑
γ=1

Pm,neγ

αβ
(Xni)uneγ

β ,h

=
Ne

∑
ne=1

M

∑
γ=1

Qm,neγ

αβ ,h (X
ni)tneγ

β
+

Ne

∑
ne=1

M

∑
γ=1

Qm,neγ

αβ
(Xni)tneγ

β ,h

where:

Pm,neγ

αβ ,h (Xni) =
∫ +1

−1
T m

αβ ,h(X
ni,x(η))Nneγ(η)Jne(η)dη (55)

Qm,neγ

αβ ,h (X
ni) =

∫ +1

−1
Um

αβ ,h(X
ni,x(η))Nneγ(η)Jne(η)dη (56)

The derivatives of the rotations w1 and w2, and vertical displacement (out-of-plane displacement)
w3, with respect to plate thickness h are:

w j,h(Xni) (57)

+
Ne

∑
ne=1

M

∑
γ=1

Pb,neγ

i j,h (Xni)wneγ

j +
Ne

∑
ne=1

M

∑
γ=1

Pb,neγ

i j (Xni)wneγ

j,h

=
Ne

∑
ne=1

M

∑
γ=1

Qb,neγ

i j,h (Xni)pneγ

j +
Ne

∑
ne=1

M

∑
γ=1

Qb,neγ

i j (Xni)pneγ

j,h

+q3

Ne

∑
ne=1

Ob,ne
i,h (Xni)

where:

Pb,neγ

i j,h (Xni) =
∫ +1

−1
T b

i j,h(X
ni,x(η))Nneγ(η)Jne(η)dη (58)

Qb,neγ

i j,h (Xni) =
∫ +1

−1
Ub

i j,h(X
ni,x(η))Nneγ(η)Jne(η)dη (59)

Ob,ne
i,h (Xni) =

∫ +1

−1
Bb

i,h(X
ni,x(η))Jne(η)dη (60)

and:

Bb
i,h(X

ni,x(η)) =V b
i,αh(X

ni,x(η))nα(x(η)) (61)

− ν

(1−ν)λ 2Ub
iα,h(X

ni,x(η))nα(x(η))

+
2νλ,h

(1−ν)λ 3Ub
iα(X

ni,x(η))nα(x(η))
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4.2.3 Boundary Stress Resultants

The derivative of the through thickness stress in a plate (equation (25)) with respect to plate thickness
is:

σαβ ,h =− 1
h2 Nαβ +

1
h

Nαβ ,h (62)

+
12(hx3,h −3x3)

h4 Mαβ +
12x3

h3 Mαβ ,h

=− 1
h2 Nαβ +

1
h

Nαβ ,h −
24x3

h4 Mαβ +
12x3

h3 Mαβ ,h

where Nαβ ,h is the derivative of the membrane stress resultants, Mαβ ,h is the derivative of the bend-
ing stress resultants, and x3,h is the derivative of x3 where −h/2 ≤ x3 ≤ +h/2 (see Figure 1). As
mentioned in section 4.1, x3 can be described in terms of a non-dimensional variable x̄3, such that
x3 = x̄3h, where −1/2 ≤ x̄3 ≤+1/2. Therefore, x3,h = x̄3.

The derivative of the normal component of the local stress is:

N̂neγ

1α,h = t̂neγ

α,h (63)

The derivative of the tangential component of the local stress is:

N̂neγ

22,h =
1

1−ν

[
E

1+ν
ε̂

neγ

22 +
Eh

1+ν
ε̂

neγ

22,h +ν t̂neγ

1,h

]
(64)

where ε̂
neγ

22,h is given by:

ε̂
neγ

22,h =
êneγ

2α

Jne(ηγ)

M

∑
ρ=1

(
uneρ

α,h

(
dNneρ(η)

dη

)
η=ηγ

)
(65)

The derivatives of the global membrane stresses Nneγ

αβ ,h can be calculated via:

Nneγ

αβ ,h = êρα êφβ N̂neγ

ρφ ,h (66)

The derivatives of the global membrane stress resultants are:

Nneγ

11,h = (nneγ

1 )2N̂neγ

11,h +(nneγ

2 )2N̂neγ

22,h −2nneγ

1 nneγ

2 N̂neγ

12,h (67)

Nneγ

12,h = nneγ

1 nneγ

2 (N̂neγ

11,h − N̂neγ

22,h)

+
[
(nneγ

1 )2 − (nneγ

2 )2
]
N̂neγ

12,h

Nneγ

22,h = (nneγ

2 )2N̂neγ

11,h +(nneγ

1 )2N̂neγ

22,h +2nneγ

1 nneγ

2 N̂neγ

12,h

The derivatives of the out-of-plane stress resultants can be calculated in a similar manner as the in-
plane stress resultants.

The derivative of the normal components of the tractions at node γ of element ne are:

p̂neγ

1,h = nneγ

1 pneγ

1,h +nneγ

2 pneγ

2,h (68)

The derivative of the tangential component of tractions is:

p̂neγ

2,h =−nneγ

2 pneγ

1,h +nneγ

1 pneγ

2,h (69)
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The derivative of the tangential component of the rotations is:

ŵneγ

2,h =−nneγ

2 wneγ

1,h +nneγ

1 wneγ

2,h (70)

The local tangential strain is:

χ̂
neγ

22,h =
êneγ

2α

Jne(ηγ)

M

∑
ρ=1

(
wneρ

α,h

(
dNneρ(η)

dη

)
η=ηγ

)
(71)

The derivatives of the local moments and shear stresses are:

M̂neγ

11,h = p̂neγ

1,h (72)

M̂neγ

12,h = p̂neγ

2,h (73)

M̂neγ

22,h =νM̂neγ

11,h +D,h(1−ν
2)χ̂

neγ

22 (74)

+D(1−ν
2)χ̂

neγ

22,h −
2λ,hq3ν

λ 3

Ŝneγ

11,h = pneγ

3,h (75)

Ŝneγ

22,h =
(1−ν)(D,hλ 2 +2Dλ,hλ )

2

[
ŵneγ

2 (76)

+
1

Jne(ηγ)

M

∑
ρ=1

(
wneρ

3

(
dNneρ(η)

dη

)
η=ηγ

)]

+
D(1−ν)λ 2

2

[
ŵneγ

2,h

+
1

Jne(ηγ)

M

∑
ρ=1

(
wneρ

3,h

(
dNneρ(η)

dη

)
η=ηγ

)]

The global moment stress resultants for node γ of element ne are:

Mneγ

11,h = (nneγ

1 )2M̂neγ

11,h +(nneγ

2 )2M̂neγ

22,h −2nneγ

1 nneγ

2 M̂neγ

12,h (77)

Mneγ

12,h = nneγ

1 nneγ

2 (M̂neγ

11,h − M̂neγ

22,h)

+
[
(nneγ

1 )2 − (nneγ

2 )2
]
M̂neγ

12,h

Mneγ

22,h = (nneγ

2 )2M̂neγ

11,h +(nneγ

1 )2M̂neγ

22,h +2nneγ

1 nneγ

2 M̂neγ

12,h

The global shear stress resultants for node γ of element ne are:

Sneγ

1,h = nneγ

1 Ŝneγ

11,h −nneγ

2 Ŝneγ

22,h (78)

Sneγ

2,h = nneγ

2 Ŝneγ

11,h +nneγ

1 Ŝneγ

22,h (79)
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4.3 Validation
To validate the derived BEM formulations, results were compared with an analytical solution for a
square simply supported plate subjected to uniform constant pressure presented in [36]. The square
plate has edges of length a and thickness h, it is subjected to a uniform pressure q3. All four edges of
the plate are simply supported such that w3 = 0 along the edges. The plate can be seen in Figure 5,
and details of the plate are shown in Table 1.

x2

x1

x3

a

a

h

q3

Figure 5: A square plate with edge length a and thickness h subjected to uniform constant pressure
q3. All four edges are simply supported such that w3 = 0 along the edges.

Table 1: Properties of the plate used for validation.

Property Description Value

a Plate edge length 1
h Plate thickness Variable
E Young’s modulus 1
ν Poisson’s ratio 0.3
q3 Uniform pressure 1

The maximum vertical deflection wmax
3 will occur in the centre of the plate. The solution given

in [36] for the square plate is:

wmax
3 = 0.00406

q3a4

D
(80)

where D is the flexural stiffness:

D =
Eh3

12(1−ν2)
(81)

The derivative of equation (80) with respect to the thickness h is:

wmax
3,h =−0.00406

q3a4D,h

D2 (82)

where D,h = 3D/h. Equation (82) is the exact solution for wmax,h.

The derivative wmax
3,h was also calculated via IDM and the FDM for a range of stepsizes, and at dif-

ferent values for h. The percentage differences between the exact solution for wmax
3,h and the values of
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Table 2: Percentage differences (%) between the IDM and the exact solution, and percentage
differences between the FDM and the exact solution, when calculating wmax

,h . The stepsize used with
the FDM is shown in brackets.

h/a FDM(1E-1) FDM(1E-2) FDM(1E-3) FDM(1E-4) FDM(1E-5) IDM

1/10 30.90 9.65 7.66 7.46 7.45 7.44
1/20 25.78 5.57 3.68 3.49 3.47 3.47
1/30 24.28 4.37 2.50 2.31 2.30 2.29
1/40 23.56 3.78 1.93 1.74 1.73 1.73
1/50 23.13 3.43 1.59 1.41 1.39 1.39
1/100 22.30 2.77 0.94 0.76 0.74 0.74

wmax
3,h obtained from the IDM and the FDM can be seen in Table 2. For both the FDM and the IDM,

a BEM model was created of the square plate consisting of 32 quadratic elements. It can be seen
that the stepsize used with the FDM has a significant impact on the difference between the FDM and
the exact solution for wmax

3,h . Higher stepsizes cause greater instability, while lower stepsizes provide
greater accuracy. The IDM results are in excellent agreement with the analytical solution.

In conclusion, the IDM has been successfully validated against an exact solution, and against the
FDM. The IDM was shown to be more accurate than the FDM for most of the stepsizes tested. Fur-
thermore, unlike the FDM, its accuracy was not dependent on the value of stepsizes, indicating the
IDM is more robust and stable than the FDM.
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5 Numerical Example
Section 4.3 demonstrated the high accuracy and robustness of the newly developed IDM. To now
demonstrate its efficiency, the IDM is employed as part of a numerical example featuring the plate
structure seen in Figure 6. In this numerical example, the geometrical design of this plate will be
optimised in terms of its manufacturing cost and its reliability. The optimisation procedures used in
this numerical example require the calculation of constraint derivatives, which can be calculated using
either the IDM or the FDM. To determine the efficiency of the IDM, a comparison is made between
the time required by IDM and the FDM to complete the optimisation at the end of this numerical
example.

t

t

W2

L2

r2

L1

W1

t

t

p

p

p

p

r1

h

Figure 6: A plate structure subjected to tension and bending moments.

The plate is simply supported around its outer edge such that the vertical defelction of the plate
is zero on its outer edge, and it is subjected to boundary tension and bending moments along this
outer edge. It is composed of Aluminum 6061-T6, an aluminium alloy commonly found in aircraft
structures due to its high strength and low weight. It has a Young’s modulus E of 68.9 GPa, a Poisson’s
ratio of 0.33, and a tensile yield strength of 276 MPa. Material properties of Aluminum 6061-T6 can
be found in [37]. The geometry of the plate is described by the geometrical variables: W1, L1, R1,
W2, L2, R2, and h. These geometrical variables, along with the boundary tractions, boundary bending
moments, and yield strength, are treated as random variables in the optimisation procedure. Details
of the random variables can be seen in Table 3. A total of 112 quadratic elements were used in the
BEM mesh of this plate structure.
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Table 3: Details of the random variables, including their units, mean, and Coefficient of Variation
(CoV).

Variable Description Units Mean CoV

W1 Outer width m [0.8, 1.2] 0.01
L1 Outer length m [0.8, 1.2] 0.01
R1 Outer radius m [0.08, 0.12] 0.01
W2 Inner width m [0.4, 0.6] 0.01
L2 Inner length m [0.2, 0.3] 0.01
R2 Inner radius m [0.04, 0.06] 0.01
h Thickness m [0.04, 0.06] 0.01
t Boundary traction MN/m 0.9 0.10
p Boundary moment MN 0.01 0.10
σy Tensile yield stress MPa 276 0.10

The manufacturing cost of the plate is estimated using the approach outlined in section 2. To use
this approach, a database was created that contains the details of 100 plates with a geometry similar
to the plate shown in Figure 6. Details of this database can be seen in Table 4. By using this database
with the approach outlined in section 2, the following formula for the manufacturing cost of the plate
can be obtained:

Cost =278.51+59.42ln(W1)+49.42ln(L1) (83)
+18.57ln(R1)−12.04ln(W2)

−7.44ln(L2)+64.43ln(h)

Table 4: Details of the database containing 100 plates with a geometry similar to the plate shown in
Figure 6. The minimum, mean, and maximum values of each cost driver in the database are shown.

Variable Minimum value Mean value Maximum value

W1 (m) 0.85 1.00 1.15
L1 (m) 0.85 0.99 1.15
R1 (m) 0.085 0.099 0.115
W2 (m) 0.425 0.493 0.574
L2 (m) 0.213 0.252 0.287
R2 (m) 0.0426 0.0494 0.0574
h (m) 0.0426 0.0507 0.0574
Manufacturing cost (e) 42.55 60.77 92.02

When run with the database, this formula demonstrated a high coefficient of determination of R2 =
0.82 and Rad j = 0.81, indicating the high level of accuracy associated with this formula. By using this
formula, the optimisation of the plate structure can now be conducted with respect to manufacturing
cost.

To investigate the impact of optimising the plate with respect to reliability, two different approaches
are investigated for the optimisation of the plate structure:

• Approach 1: Both the manufacturing cost and the reliability of the plate are considered during
the optimisation procedure.
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• Approach 2: Only the manufacturing cost of the plate is considered during the optimisation
procedure.

Both approaches investigated in the following sections. It is expected that the optimal designs ob-
tained from approaches 1 and 2 will be significantly different.

5.1 Manufacturing Cost Optimisation and RBDO
In this section, both the manufacturing cost and the reliability of the plate are considered during the
optimisation procedure. In this case, the optimisation problem is:

Minimise Cost(d) (84)
Subject to g(Z∗)≤ 0

dL ≤ d ≤ dU , d ∈ Rnd

where d = [W1,L1,R1,W2,L2,R2,h] is the vector of design variables, and nd = 7 is the number of
design variables. The initial design of the plate is d0 = [1,1,0.1,0.5,0.25,0.05,0.05]. The lower and
upper bounds of the design variables are: dL = 0.8×d0 and dU = 1.2×d0, respectively. The limit
state function g(Z) is:

g(Z) = σmax(Q)−σy (85)

where Z = [W1,L1,R1,W2,L2,R2,h, t, p,σy] is a vector of the random variables from Table 3 that in-
fluence g, and Q = [W1,L1,R1,W2,L2,R2,h, t, p] is a vector of the random variables from Table 3 that
influence the maximum Von-Mises stress σmax in the plate structure (Q is identical to Z, except Q
lacks σy).

The IDM, with the Performance Measure Approach (PMA) outlined in section 3.2, is used to solve
the optimisation problem seen in equation (84). Similar to the previous section, the optimisation was
conducted using Matlab© with the nonlinear multivariable optimisation routine ’fmincon’. The opti-
mal plate designs from ’fmincon’ for a range of target reliability indices βtarget can be seen in Table
5, and diagrams of these optimal designs can be seen in Figure 7. It can be seen from Table 5 and
Figure 7 that the plate becomes thicker and wider as βtarget increases, which makes sense given that
the maximum stress is expected to occur at the corners of the central hole. To verify that these optimal
designs achieve the desired reliabilities, the reliability index from the FORM βFORM was calculated
for each of the optimal designs and are presented in Table 5. It can be seen that βFORM and βtarget are
in very good agreement; the difference between them is less than 0.1%.

Table 5: Optimisation results from the IDM for a range of target reliability indices.

βtarget W1 (m) L1 (m) R1 (m) W2 (m) L2 (m) R2 (m) h (m) Cost (e) βFORM

2 0.800 0.800 0.0800 0.400 0.200 0.0600 0.0409 24.29 2.000
3 0.800 0.800 0.0800 0.400 0.200 0.0600 0.0455 31.24 3.000
4 0.800 0.800 0.0800 0.400 0.200 0.0600 0.0514 39.13 4.000
5 0.800 0.800 0.0800 0.400 0.200 0.0600 0.0594 48.37 5.000
6 0.910 1.141 0.1200 0.400 0.200 0.0600 0.0600 81.75 6.000

The target reliability indices βtarget and the corresponding target probabilities of failure PF,target
for each of the optimal designs can be seen in Figure 8. It can be seen that the probability of failure
drops by a magnitude of 8 as the reliability index increases; the probability of failure corresponding
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(a) βtarget = 2 (b) βtarget = 3

(c) βtarget = 4 (d) βtarget = 5

(e) βtarget = 6

Figure 7: Optimal plate designs when both the manufacturing cost and the reliability of the plate are
considered during the optimisation procedure. The optimal designs are a range of target reliability

indices βtarget is shown. The designs are to scale.
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to a reliability index of 2 is 2.3%, while for a reliability index of 6 it is 9.9×10−8%. The cost on the
other hand, increases from 24.92 e for a reliability index of 2, to 81.75 e for a reliability index of 6,
a percentage increase of 236%.
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Figure 8: Target reliability indices βtarget and the corresponding target probabilities of failure PF,target
for each of the optimal designs.

The optimisation history from the IDM for a range of target reliability indices can be seen in
Figure 9. It can be seen that the significantly more iterations were required to obtain convergence for
the case with βtarget = 6. This can partly be explained by the fact that the jump in the probability
of failure between βtarget = 5 to βtarget = 6 was by a magnitude of 3, while previous jumps in the
probability of failure were only by a magnitude of 2 or 1. Therefore, significantly more alterations
were required to the geometry of the design, increasing the number of iterations needed.
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Figure 9: Optimisation history from the IDM for a range of target reliability indices βtarget .

Up until this point, only the optimisation results with the IDM have been presented. This is
because section 4.3 demonstrated the high accuracy and robustness of the IDM, and its excellent
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agreement with the FDM when calculating the constraint derivatives required by the optimisation
procedure. To demonstrate the efficiency of the IDM, the CPU time required by the IDM to optimise
the plate structure was compared to the CPU time required by the FDM. The average CPU time re-
quired by the IDM and the FDM to complete one optimisation iteration was calculated by averaging
over 100 optimisation iterations. The results are shown in Table 6. It was found that the IDM was,
on average, 19% faster than the FDM. For a single iteration or for a simple structure, this increase
in efficiency may not be significant, but it could be very useful for a more complex structure that
requires many iterations. In this case, the IDM could significantly reduce the total optimisation time.

A flowchart for designing the optimisation code used in this section can be seen in Figure 10.

Table 6: Mean CPU time to complete one optimisation iteration when using the FDM or the IDM.

Method titeration (s)

FDM 98.72
IDM 79.78

Figure 10: A flowchart for designing the optimisation code used in section 5.1.

5.2 Manufacturing Cost Optimisation
In this section, only the manufacturing cost of the plate is considered during the optimisation proce-
dure. In this case, the optimisation problem is:

Minimise Cost(d) (86)

Subject to dL ≤ d ≤ dU , d ∈ Rnd

where d = [W1,L1,R1,W2,L2,R2,h] is the vector of design variables, and nd = 7 is the number of de-
sign variables. The initial design of the plate d0, as well as the lower and upper bounds of the design
variables, dL and dU , are the same as in the previous section.
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The optimisation problem in equation (86) was conducted using Matlab© with the nonlinear mul-
tivariable optimisation routine ’fmincon’. The optimal plate design from ’fmincon’ can be seen in
Table 7, and a diagram of this optimal design can be seen in Figure 11. It can be seen that the values
of the design variables are equal to their lower or upper bounds, except for R2 which stayed at its
initial value since it is not included in the regression model seen in equation (83). The manufacturing
cost was reduced from 61.40 e for the initial design, to only 15.06 e for the optimal design; this
represents a significant reduction in cost. However, when evaluating the reliability of this design us-
ing the limit state function shown in equation (85), a probability of failure of PF = 99.6% is obtained.
This probability of failure is significantly higher than that the highest obtained from the previous sec-
tion, which was only 2.3%. Such a high probability is unacceptable, and highlights the importance of
taking into account both manufacturing costs and reliability when optimising the design of a structure.

A flowchart for designing the optimisation code used in this section can be seen in Figure 12.

Table 7: Optimal plate design when only the manufacturing cost of the plate is considered during the
optimisation procedure.

W1 (m) L1 (m) R1 (m) W2 (m) L2 (m) R2 (m) h (m) Cost (e)

0.800 0.800 0.0800 0.600 0.300 0.0500 0.0400 15.06

Figure 11: The optimal plate design when only the manufacturing cost of the plate is considered
during the optimisation procedure.
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Figure 12: A flowchart for designing the optimisation code used in section 5.2.

6 Conclusions
In conclusion, this paper presented a novel methodology for the manufacturing cost and reliability-
based optimisation of plate structures with the Boundary Element Method (BEM), with the aim of
improving the accuracy, robustness, and efficiency of the optimisation of plate structures. The deriva-
tives of the BEM plate formulations, with respect to plate thickness, were derived for the first time
and used as part of an Implicit Differentiation Method (IDM), enabling the full shape optimisation of
plate structures with the BEM. These implicit derivatives were validated against derivatives obtained
from the Finite Difference Method (FDM) and from an analytical solution. The IDM was found to
be in excellent agreement with the analytical solution, and more robust and accurate than the FDM
for most of the step-sizes investigated. To demonstrate the efficiency of the newly developed IDM,
it was employed as part of a numerical example involving the Reliability-Based Design Optimisation
(RBDO) and manufacturing cost optimisation of a plate structure. The design parameters in the opti-
misation included all the geometric parameters describing the shape of the structure. Results indicate
that the IDM is 19% faster, on average, in terms of CPU time than the FDM when performing this
optimisation. Such results represent a significant reduction in the computation time associated with
the optimisation of complex structures.
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Appendix A Formulations for the BEM-based IDM
The fundamental solutions for the membrane and for plate bending can be found in [32]. The deriva-
tives of these fundamental solutions with respect to plate thickness h have been derived for the first
time in this work and are presented in this Appendix.

A.1 Useful Definitions
The following relationships are used in the fundamental solutions derived in this work.

rα = xα − x′α (87)

r =
√

r2
α =

√
r2

1 + r2
2 (88)

r,α =
rα

r
(89)

∂ r
∂n

= r,n = nαr,α = n1r,1 +n2r,2 (90)

Derivatives with respect to direction xα :

∂ f (r)
∂xα

=
∂ f (r)

∂ r
∂ r

∂xα

=
∂ f (r)

∂ r
r,α (91)

r,αβ =
1
r

(
δαβ − r,αr,β

)
(92)

(r,n),α =
1
r

(
nα − r,αr,n

)
(93)

Useful definitions for plate bending:

λ =

√
10
h

(94)

z = λ r (95)

B =
Eh

1−ν2 (96)

D =
Eh3

12(1−ν2)
(97)

C =
D(1−ν)λ 2

2
(98)

where λ is the shear factor, h is plate thickness, and B, D, and C represent the tension stiffness, bend-
ing stiffness, and shear stiffness of the plate respectively.

Their derivatives with respect to plate thickness h are:

λ,h =−
√

10
h2 =−λ

h
(99)

z,h = λ,hr =−λ r
h

=− z
h

(100)
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B,h =
E

1−ν2 =
B
h

(101)

D,h =
3Eh2

12(1−ν2)
=

3D
h

(102)

C,h =
(1−ν)(D,hλ 2 +2Dλ,hλ )

2
=

D(1−ν)λ 2

2h
=

C
h

(103)

We also have:

A(z) = K0(z)+
2
z

[
K1(z)−

1
z

]
(104)

B(z) = K0(z)+
1
z

[
K1(z)−

1
z

]
(105)

where K0(z) and K1(z) are modified Bessel functions of the second kind.

A,h(z) = K0,h(z)−
2λ,hrK1(z)

z2 +
2K1,h(z)

z
+

4λ,hr
z3 (106)

B,h(z) = K0,h(z)−
λ,hrK1(z)

z2 +
K1,h(z)

z
+

2λ,hr
z3 (107)

where K0,h(z) and K1,h(z) are:

K0,h(z) =−λ,hrK1(z) (108)

K1,h(z) =−λ,hr

(
K0(z)+

K1(z)
z

)
(109)

A.2 Membrane Fundamental Solution Derivatives
The derivatives of the membrane fundamental solutions with respect to plate thickness h are:

Uαβ ,h =− 1+ν

4πEh2(1−ν)

[
r,αr,β − (3−4ν)ln(r)δαβ

]
(110)

Tαβ ,h = 0 (111)

A.3 Plate Bending Fundamental Solution Derivatives
The derivatives of the plate bending fundamental solutions with respect to plate thickness h are:

For Ub
i j,h:

Ub
αβ ,h =−

D,h

8πD2(1−ν)

{[
8B(z)− (1−ν)(2lnz−1)

]
δαβ −

[
8A(z)+2(1−ν)

]
r,αr,β

}
(112)

+
1

8πD(1−ν)

{[
8B,h(z)−2(1−ν)

z,h
z

]
δαβ −

[
8A,h(z)+2(1−ν)

]
r,αr,β

}
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Ub
α3,h =−

D,h

8πD2

(
2lnz−1

)
rr,α +

1
4πD

z,h
z

rr,α (113)

Ub
3α,h =−Ub

α3,h (114)

Ub
33,h =−

D,hλ +2λ,hD
8π(1−ν)D2λ 3

[
(1−ν)z2(lnz−1)−8lnz

]
(115)

+
1

8π(1−ν)Dλ 2

[
(1−ν)(2lnz−1)z,hz−8

z,h
z

]

For T b
i j,h:

T b
αβ ,h =− 1

4πr

[
2
(

2A,h(z)+ z,hK1(z)+ zK1,h(z)
)(

δαβ r,n + r,β nα

)
+4A,h(z)r,αnβ (116)

−4
(

4A,h(z)+ z,hK1(z)+ zK1,h(z)
)

r,αr,β r,n

]

T b
α3,h =

2λλ,h

2π

[
B(z)nα −A(z)r,αr,n

]
+

λ 2

2π

[
B,h(z)nα −A,h(z)r,αr,n

]

T b
3α,h =−(1+ν)

4π

z,h
z

nα (117)

T b
33,h = 0 (118)

For V b
i,βh:

V b
α,βh =−

D,hr2

128πD2

[(
4lnz−5

)
δαβ +2

(
4lnz−3

)
r,αr,β

]
+

r2

32πD
z,h
z

[
δαβ +2r,αr,β

]
(119)

V b
3,βh =

D,hλ +2λ,hD
128πD2(1−ν)λ 3 rr,β

[
32
(
2lnz−1

)
− z2(1−ν)(4lnz−5)

]
(120)

− 1
64πD(1−ν)λ 2 rr,β

[
32

z,h
z
− z,hz(1−ν)(4lnz−3)

]
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