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This research proposes a high-performance algorithm for the compression rate of electrical power quality signals, 
using wavelet transformation. To manage the massive amount of data the telecommunications networks are 
constantly acquiring it is necessary to study techniques for data compression, which will save bandwidth and 
reduce costs extensively by avoiding having massive data storage facilities. First biorthogonal wavelet level six 
transform is applied, however after compression, the reconstructed signal will have a different amplitude and it 
will be shifted when compared to the original one. Then, normalization is used (for amplitude correction between 
the original signal and reconstructed one) by multiplying the reconstructed signal by the result of the division 
between the original signal maximum magnitude and the reconstructed signal maximum magnitude. Thirdly, 
the ripple in the reconstructed signal is eliminated by applying a moving average filter. Finally, the shifting 
is corrected by finding the difference between the maximum points in a cycle of the original signal and the 
reconstructed one. After the compression algorithm was performed the best rates are 99.803% for compression 
rate, RTE 99.9479%, NMSE 0.000434, and Cross-Correlation 0.999925. Finally, this works presents two new 
performance criteria, compression time and recovery time, both of them in a real scenario will determinate how 
fast the algorithm can perform.
1. Introduction

Human migration from rural places to urban areas has been a con-

stant phenomenon throughout human history. During the last decades, 
this phenomenon has evolved into migration from small cities to big 
ones. It is estimated that seven out of ten people will live in big cities 
over the next fifty years, this is by far the largest growth that metropo-

lis has suffered. Commonly this is referred to as Urbanization and its 
implications for the environment, human quality life and energy con-

sumption are a frequent topic for researchers around the world [3].

The fast pace of urbanization around the world is not entirely a good 
thing (millions of people overpopulating cities) because it might also 
drive to inequality resources distribution and lack of access to energy 
[3, 6]. To improve the quality of life for its inhabitants by managing 
efficiently its resources, cities are trying to figure it out the concept of 
“Smart Cities”. It is a widely accepted that a smart city final goal is to 
improve its inhabitant’s quality life with the use of technology as a tool 
for eco-management of resources [3, 8].

* Corresponding author.
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By getting access to new technologies (such as new cellular net-

works, and new techniques for big data processing), smart cities can 
mitigate the impact of urbanization in the environment; both academia 
and industry centre their efforts on different areas, being the most im-

portant efficient energy management. Among the different parameters 
related to energy management, power quality is considered the most 
important and practical aspects in a smart city [5].

As a result of the massive growth of urbanization, a significant num-

ber of nonlinear loads are integrated into the power systems which 
reduce the predictability. For this reason, monitoring and analysis are 
the focus (regarding power quality) as they are necessary to detect and 
classify disturbances at any particular point of the power system [3, 5, 
10].

Among the different reasons a disturbance might be caused, the 
most important ones could be attributed to systems electrical faults, 
capacitor-switching related events, switching events regarding non-

linear loads, transformers inrush and natural disruptions. All these 
events translate into a poor system power quality that is perceived for 
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the power system users in voltage sag, swell, harmonics, transients, volt-

age irruption, among others [5].

Any strategy to improve power quality begins with the power system 
being able to monitor all the electric variables (related to power quality) 
[7, 12]. For this purpose, it is necessary to deploy massive telecommu-

nication systems such as: home area networks (HAN), Neighbourhood

area networks (NAN), and Wide area network (WAN). Technological 
advantages have made it possible to have a massive number of sensors 
within these networks with a relatively low cost. However, a new chal-

lenge the communications networks are experienced is the capability 
to process, transport and store the enormous amount of data without 
losing any important information [4, 12].

Therefore, power quality control is possible, but to manage the mas-

sive amount of data the telecommunications networks are constantly 
acquiring it is necessary to study techniques for data compression which 
will save bandwidth (even with new technologies bandwidth is a lim-

ited resource) and also reduce costs extensively by avoiding to have 
massive data storage facilities [1, 5].

As previous works related to data compression techniques used for 
electrical signals in power quality management, the most important are 
listed as follows:

In [5], the author analyzes that flickers, harmonics, and transients 
provide non-stationary characteristics to the electrical power system, 
hence Fourier transform is not enough for non-stationary electrical sig-

nals analysis. This research uses a dual-tree complex wavelet transform 
(DTCWT). As a result, the compression ratio for voltage sag is 84%, 88% 
for voltage well, 82.87% for flickers, 68.75% for transients and 19.53 
for harmonics.

In [9], the author proposes a data compression method related to 
wavelet decomposition and spline interpolation to process power qual-

ity disturbances. The technique consists of four stages: signal decompo-

sition, thresholding of wavelet transform coefficients, the decimation of 
the last coefficient, and signal reconstruction using spline interpolation. 
As a result, the highest compression ratio of the signals is 63.99%.

In [16], the author proposes an improved regularization sparsity 
adaptive matching pursuit algorithm (RCoSaMP), this algorithm has a 
better performance when compared to other greedy algorithms (based 
on reconstruction speed and accuracy indexes). As a result, the highest 
compression ratio of the signals is 72%.

In [2], the author proposes improvements over the main steps that 
are usually implemented for automatic monitoring of disturbances in 
power quality. The results demonstrate the high performance of seg-

mentation, classification and enhancements in power quality distur-

bance compression. As a result, the highest compression ratio of the 
signals is 25:1 with a performance of 56% better than traditional PQ 
compression techniques.

In [14] research, the author designs a method to restore lost signals 
under power failures events in transmission lines by using sensing tech-

niques. The algorithm allows recovering the original signal from 70% of 
the random samples. Also, matching pursuit allows recovering the same 
percentage, but with a significant lower restoration time. Finally, a or-

thogonal matching pursuit method recovers a slightly lower percentage 
with a higher number of samples, and also increases the recovery time.

In [15], the author proposes two concepts as data compression tech-

niques: a gapless power quality disturbance recorder (G-PQDR), and 
a novelty detector. The research works with signals of voltage sags, 
swells, even and odd harmonics. As the best result, the highest com-

pression ratio of the signals is 570:1, without compression, the total 
size to store the signal would be 9.25 MB, however after the compres-

sion by the G-PQDR the size is 16.22 kB.

Henceforth, this article is organized as it follows. Section 2 presents 
the formulation of the problem. Section 3 presents the results. Section 4

analyzes the results of the model and its simulation. Finally, in section 5

presents research conclusions.
2

2. Problem formulation

Based on previous research works from different authors, there are 
plenty of time signal compression techniques that use the same orthog-

onal base as the signal in analysis to develop the data compression. 
Among the most common techniques for data compression found in the 
literature review, the most relevant are: Fourier transform, discrete co-

sine transform, wavelet transforms and disperse signals representation 
through compressed sensing [15].

Compression data rates do not depend on a unique parameter and 
they vary depending on the selected compression technique, specific 
signal characteristics (voltage, flickers, harmonics), sample frequency, 
etcetera. Among the results found in the literature review, compression 
for electrical signals in the time domain varies from 19.53% to 99.82% 
[2, 15].

Even though compression rates indicate how good the developed 
compression techniques work, it is also important to analyze the re-

tained energy percentage (RTE) which is the relationship between the 
energy of the original signal (prior the compression) and the recon-

structed signal, ideally, they should be as identical as possible. Among 
the results found in the literature review, RTE varies from 97.80% to 
98.85% [2, 15].

Besides, the compression process must analyze the quality of the 
processed signals after the compression is done, the best and most com-

mon approach is to normalize the mean square error, therefore, a low 
NMSE corresponds to a small error between the reconstructed and the 
original one.

As for the time-series waveform itself, it is important to identify how 
similar is the reconstructed signal against the original one. Statistically, 
the cross-correlation is a measurement that tracks two variables relative 
to each other, therefore the cross-correlation in this paper will compare 
the pre-compressed signal and the reconstructed one, the range of this 
parameter varies from -1 to 1, the closer the value is to 1, the more 
close to each other the data sets are [11].

Thus, this research centres its focus on the improvement of com-

pression data from electrical signals originated in a micro-grid. The 
compression algorithm centres its analysis in three parameters: RTE, 
NMSE and XCOR. To accomplish the research goal, this paper uses 
biorthogonal wavelet.

The biorthogonal wavelet is made of two processes, decomposition 
and reconstruction with two different wavelets 𝜓 and 𝜓̂ . 𝜓 is used for 
the decomposition and 𝜓̂ is used for the reconstruction process, these 
two wavelets are dual and orthogonal with each other; this relationship 
is called biorthogonal. At the same time there are two scale functions 
𝜙 and 𝜙̂ related to the prior processes, these functions are also dual 
and orthogonal. In the same manner, one is used for decomposition and 
one for the reconstruction process. Therefore, by having two wavelets 
and two-scale functions, there are four filters in biorthogonal wavelet 
transform: decomposition low-pass filter 

{
ℎ𝑛

}
, decomposition high-pass 

filter 
{
𝑔𝑛
}

, reconstruction low-pass filter 
{
ℎ̃𝑛

}
and the reconstruction 

high-pass filter 
{
𝑔𝑛
}

[11, 13].

With these filter coefficients 
{
ℎ𝑛

}
, 
{
𝑔𝑛
}

, 
{
ℎ̃𝑛

}
and 

{
𝑔𝑛
}

, fast wavelet 
transform can be performed. One wavelet, 𝜓̂ is used in the analysis and 
the coefficients of a signal s are:

𝑐𝑗,𝑘 = ∫ 𝑠(𝑥)𝜓̃𝑗,𝑘(𝑥)𝑑𝑥 (1)

The other wavelet, 𝜓 is used in the synthesis of the coefficients:

𝑠 =
∑
𝑗,𝑘

𝑐𝑗,𝑘 ∗ 𝜓𝑗,𝑘 (2)

Additionally, the two wavelets are related by duality in the following 
sense:

𝜓̃𝑗,𝑘(𝑥) ∗ 𝜓𝑗′ ,𝑘′ (𝑥)𝑑𝑥 = 0 (3)
∫
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As soon as 𝑗 ≠ 𝑗′ or 𝑘 ≠ 𝑘′ and:

∫ 𝜙̃0,𝑘(𝑥) ∗ 𝜙0,𝑘′ (𝑥)𝑑𝑥 = 0 (4)

As soon as 𝑘 ≠ 𝑘′.
In the present investigation, the moving average shown in equation

(5) was applied to eliminate the ripple. The value of N varies according 
to the wavelet levels used. For example, the value of N at level 1 is 33 
while the value of N at level 6 is 66.

𝑀𝑜𝑣𝑒𝑀𝑒𝑎𝑛 = 1
𝑁

𝑁∑
𝑖=1

𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑_𝑠𝑖𝑔𝑛𝑎𝑙𝑖 (5)

To evaluate the quality of the reconstructed signal the following 
quantities are used:

Equation (6) shows the percentage of retained energy (RTE), the 
reconstructed signal is more similar to the original one if the RTE is 
close to 1, which is also represented as 100%.

𝑅𝑇𝐸(%) =

𝑁∑
𝑛=0

𝑥[𝑛]2

𝑁∑
𝑛=0

𝑥̂[𝑛]2
(6)

or Equation (7) shows the percentage of recovery between two signals.

𝐸𝑛𝑒𝑟𝑔𝑦 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦(%) = 100 ⋅ ||𝑥̂||
||𝑥|| (7)

Equation (8) shows the Normalized Mean Square Error (NMSE), the 
algorithm performance is better if the reconstructed signal has a NMSE 
close to 0.

𝑁𝑀𝑆𝐸 = ||𝑥− 𝑥̂||2
||𝑥||2 (8)

Equation (9) shows the cross-correlation (XCOR) between the recon-

structed signal and the original signal, the reconstructed signal is more 
similar to the original one if the XCOR is close to 1, which is also rep-

resented as 100%.

𝑋𝐶𝑂𝑅 = 𝑥𝑇 ⋅ 𝑥̂

𝑥𝑇 ⋅ 𝑥
(9)

Algorithm 1 shows the initial process necessary for every electrical 
signal. First, data is acquired and stored in OS “Original Signal”. Then, 
the number of samples per signal and the number of signals are calcu-

lated and these values are stored in ROS “Row Original Signal” and COS 
“Column Original Signal” respectively. The next step consists in finding

the signal indexes, these values correspond to the zero-crossing and they 
are stored in A and B. The indexes represent an entire cycle of the orig-

inal signal (before compression), they allow calculating the maximum 
peak value of a cycle and its position; these indexes are stored in C and 
D. Finally, the number of samples per cycle is calculated and it is stored 
in the E index. It is important to emphasize that this process must be 
carried out for each phase of the electrical signals since they are 120 
degrees out of phase between each other.

Algorithm 2, shows the steps necessary for signal compression by 
using wavelets. The first step consists in taking one by one the orig-

inal electrical signals and applying them a wavelet bior1 level 6 for 
compression. The result is a compressed signal but as an effect of the 
wavelet, the compressed signal has a different amplitude from the orig-

inal one, also ripple and shifting are added when compared with the 
original signal. To correct the amplitude of the compressed signal, this 
signal is normalized by using the maximum peak value of the first cy-

cle previously calculated in Algorithm 1, and then it is divided by the 
maximum peak value of the first cycle of the compressed signal. Then, 
this result is multiplied by the compressed signal and the result is stored 
in SCN “Signal Compressed Normalized”, this is shown in Fig. 1 literal 
b. To eliminate the ripple, a moving average filter has been used; for 
3

Algorithm 1 Signal characteristics extraction.

1: Step 1: Acquire data from .csv file

2: 𝑂𝑆 = 𝑙𝑜𝑎𝑑(′𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒.𝑐𝑠𝑣′)
3: Step 2: Zero crossing

4: [𝑅𝑂𝑆, 𝐶𝑂𝑆] = 𝑠𝑖𝑧𝑒(𝑂𝑆)
5: 𝑓𝑜𝑟 𝑖 = 1 ∶ 𝐶𝑂𝑆
6: 𝐴(𝑖) = 𝑂𝑆(∶, 𝑖) < 0 𝑎𝑛𝑑 𝑂𝑆(∶ +1, 𝑖) > 0
7: 𝐵(𝑖) = 𝑂𝑆(∶, 𝑖) > 0 𝑎𝑛𝑑 𝑂𝑆(∶ +1, 𝑖) < 0
8: 𝑒𝑛𝑑𝑓𝑜𝑟

9: Step 3: Amplitude and coordinates extraction in steady state

10: 𝑓𝑜𝑟 𝑖 = 1 ∶ 𝐶𝑂𝑆
11: [𝐶(𝑖), 𝐷(𝑖)] = 𝑚𝑎𝑥(𝑂𝑆(𝐴(𝑖) ∶𝐵(𝑖), 𝑖))
12: 𝑒𝑛𝑑𝑓𝑜𝑟

13: Step 4: Calculation of number of samples per cycle

14: 𝑓𝑜𝑟 𝑖 = 1 ∶ 𝐶𝑂𝑆
15: 𝐸(𝑖) = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑂𝑆(𝐴(𝑖) ∶𝐵(𝑖), 𝑖))
16: 𝑒𝑛𝑑𝑓𝑜𝑟

17: Return: 𝐴, 𝐵, 𝐶, 𝐷, 𝐸

the process, it is necessary to calculate the number of samples taken by 
the filter and this value is stored in N, in this paper N, is equal to 0.1% 
of the size of the compressed signal. Then, the result is stored in SCNA 
“Compressed Normalized Average Signal” and it is shown in Fig. 1 lit-

eral c. Finally, the shifting is corrected by calculating the difference in 
time between the indexes of the maximum peak values of the original 
signal and the compressed one. The result is stored in the SCNAS ma-

trix “Compressed Normalized Average Shifting Signal” and is shown in 
Fig. 1 literal d.

Algorithm 2 Wavelet compression of an electrical signal.

1: Step 1: Wavelet Compression Signal “SC”

2: 𝑓𝑜𝑟 𝑖 = 1 ∶ 𝐶𝑂𝑆
3: [𝑐, 𝑙] = 𝑤𝑎𝑣𝑒𝑑𝑒𝑐(𝑂𝑆, 𝑙𝑒𝑣𝑒𝑙, 𝑤𝑎𝑣𝑒𝑙𝑒𝑡_𝑡𝑦𝑝𝑒)
4: 𝑆𝐶(∶, 𝑖) = 𝑎𝑝𝑝𝑐𝑜𝑒𝑓 (𝑐, 𝑙, 𝑤𝑎𝑣𝑒𝑙𝑒𝑡_𝑡𝑦𝑝𝑒)
5: 𝑒𝑛𝑑𝑓𝑜𝑟

6: Step 2: Zero crossing (compressed signal)

7: [𝑅𝑆𝐶, 𝐶𝑆𝐶] = 𝑠𝑖𝑧𝑒(𝑆𝐶)
8: 𝑓𝑜𝑟 𝑖 = 1 ∶ 𝐶𝑆𝐶
9: 𝐹 (𝑖) = 𝑆𝐶(∶, 𝑖) < 0 𝑎𝑛𝑑 𝑆𝐶(∶ +1, 𝑖) > 0

10: 𝐺(𝑖) = 𝑆𝐶(∶, 𝑖) > 0 𝑎𝑛𝑑 𝑆𝐶(∶ +1, 𝑖) < 0
11: 𝑒𝑛𝑑𝑓𝑜𝑟

12: Step 4: Normalization, moving average, shifting correction “SCNAS”

13: 𝑓𝑜𝑟 𝑖 = 1 ∶ 𝐶𝑆𝐶
14: 𝑆𝐶𝑁(∶, 𝑖) = 𝑆𝐶(∶, 𝑖). ∗ (𝑚𝑎𝑥(𝑂𝑆(𝐴(𝑖) ∶𝐵(𝑖), 𝑖))∕(𝑚𝑎𝑥(𝑆𝐶(𝐹 (𝑖) ∶𝐺(𝑖), 𝑖))
15: 𝑆𝐶𝑁𝐴(∶, 𝑖) = 1∕𝑁

∑𝑁

𝑖=1 𝑆𝐶𝑁(1 ∶𝑁, 𝑖)
16: [𝐻, 𝐼] = 𝑚𝑎𝑥(𝑆𝐶𝑁𝐴(𝐹 (𝑖) ∶𝐺(𝑖), 𝑖))
17: 𝐷𝑇 = 𝐼 −𝐷(𝑖)
18: 𝑆𝐶𝑁𝐴𝑆(∶, 𝑖) = 𝑝𝑎𝑑𝑎𝑟𝑟𝑎𝑦(𝑆𝐶𝑁𝐴(∶, 𝑖), 𝐷𝑇 , 0,′ 𝑝𝑟𝑒′);
19: 𝑒𝑛𝑑𝑓𝑜𝑟

20: Return: 𝑆𝐶𝑁𝐴𝑆

Algorithm 3 presents the compression of the signals by using the 
windowing. The first step is to calculate the signals samples size, J and K 
are the number of samples per signal and the number of signals respec-

tively. In Algorithm 3, OSP represents one cycle of the original signal, 
SCP represents one cycle of the wavelet compressed signal. Then, the 
frequency of the original signal is compared one by one with all cycles 
of the compressed signal. If RTE is high, between 0.9999 and 1.0009 
when comparing the two signals, it indicates that both signals are iden-

tical and then zeros are placed in that signal cycle in the SCW matrix, 
by doing this process a vector is created, this vector represents an index 
that will later allow the reconstruction. On the contrary, if RTE is be-

low 0.9999, the values of the signal are placed for that cycle in the SCW 
matrix. By doing this process, equal signals (high RTE), are eliminated, 
allowing further compression of the signals.

Algorithm 4 presents the reconstruction of the signal, the first step is 
to calculate the number of signals and the number of samples per signal, 
these data are stored in the variables L and M. A for loop is made from 1 
to M, allowing reconstruction of all signals. The second FOR loop from 
1 to E (i) indicates the actual size of each signal and how far the signals 
should be reconstructed. With the third FOR loop from 1 to the maxi-

mum number of indexes per signal, the indexes represent the number of 
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Fig. 1. Wavelet Faults.
Algorithm 3 Windowing for elimination of repeated signals.

1: 𝑐𝑜𝑛𝑡 = 1
2: [𝐽 , 𝐾] = 𝑠𝑖𝑧𝑒(𝑆𝐶𝑁𝐴𝑆)
3: 𝑓𝑜𝑟 𝑖 = 1 ∶𝐾
4: 𝑓𝑜𝑟 𝑖𝑖 = 1 ∶ 𝑓𝑙𝑜𝑜𝑟(𝐽∕𝐸(𝑖))
5: 𝑂𝑆𝑃 = 𝑂𝑆(𝐴(𝑖) ∶𝐵(𝑖), 𝑖)
6: 𝑆𝐶𝑃 = 𝑆𝐶𝑁𝐴𝑆(𝐴(𝑖) + (𝑖𝑖 − 1) ∗𝐸(𝑖) ∶𝐵(𝑖) + (𝑖𝑖 ∗𝐸(𝑖), 𝑖)
7: 𝑅𝑇𝐸 =

∑
(𝑂𝑆𝑃 )2∕ ∑(𝑆𝐶𝑃 )2

8: 𝑖𝑓 𝑅𝑇𝐸 > 0.9999 && 𝑅𝑇𝐸 < 1.00009
9: 𝐼𝑛𝑑(𝑖𝑖, 𝑖) = 𝑐𝑜𝑛𝑡

10: 𝑆𝐶𝑊 (𝐴(𝑖) + (𝑖𝑖 − 1) ∗𝐸(𝑖) ∶𝐵(𝑖) + (𝑖𝑖 ∗𝐸(𝑖), 𝑖) = 0
11: 𝑐𝑜𝑛𝑡 = 𝑐𝑜𝑛𝑡 + 1
12: 𝑒𝑙𝑠𝑒

13: 𝐼𝑛𝑑(𝑖𝑖, 𝑖) = 𝑐𝑜𝑛𝑡

14: 𝑆𝐶𝑊 (𝐴(𝑖) + (𝑖𝑖 − 1) ∗𝐸(𝑖) ∶𝐵(𝑖) + (𝑖𝑖 ∗𝐸(𝑖), 𝑖) = 𝑆𝐶𝑃

15: 𝑐𝑜𝑛𝑡 = 𝑐𝑜𝑛𝑡 + 1
16: 𝑒𝑛𝑑𝑖𝑓

17: 𝑒𝑛𝑑𝑓𝑜𝑟

18: 𝑒𝑛𝑑𝑓𝑜𝑟

19: Return: 𝑆𝐶𝑊 , 𝐼𝑛𝑑

repeating periodic signals and the order of repetition. The variable “ni” 
stores the value of the index. The variable SC stores the cycles of the 
SCW signal. If the value of variable “iii” is equal to index “ni”, the sig-
4

nal cycle stored in SC is placed. In other words, each cycle of the SCW 
signal is reviewed and the original signal is reconstructed based on the 
indexes. Finally, the RTE, Energy Recovery, NMSE and XCOR are calcu-

lated to verify the relationship indexes between the original signal and 
the reconstructed signal.

From the algorithm described 1, two values are obtained: steady-

state maximum magnitude value and position for both the original and 
the compressed signal. Finally, the reconstructed signal is multiplied by 
the result of the division between the original signal maximum magni-

tude and the reconstructed signal maximum magnitude as it is shown 
in Fig. 1 literal a.

The next problem to be solved is the ripple that exists in the recon-

structed signal as it is shown in Fig. 1 literal b, when zooming in on the 
maximum magnitude points of each electrical phase. To solve this prob-

lem, it is proposed to apply the moving average filter described in the

(5) or apply the moving average calculation.

Finally, due to the characteristics of the wavelet transformation, 
specifically, change of scale and translation compared to the original 
signal, a slight shifting between the original signal and the recon-

structed signal can be evidenced when zooming in, as it can be seen 
in Fig. 1 literal c. To correct the shifting presented between the signals, 
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Fig. 2. Original signals.

Algorithm 4 Reconstruction.

1: [𝐿, 𝑀] = 𝑠𝑖𝑧𝑒(𝑆𝐶𝑊 )
2: 𝑓𝑜𝑟 𝑖 = 1 ∶𝑀
3: 𝑓𝑜𝑟 𝑖𝑖 = 1 ∶ (𝑅𝑂𝑆∕𝐸(𝑖))
4: 𝑓𝑜𝑟 𝑖𝑖𝑖 = 1 ∶𝑚𝑎𝑥(𝐼𝑛𝑑(∶, 𝑖))
5: 𝑛𝑖 = 𝐼𝑛𝑑(𝑖𝑖, 𝑖)
6: 𝑆𝐶 = 𝑆𝐶𝑊 (𝐸(𝑖) ∗ 𝑛𝑖, 𝑖)
7: 𝑖𝑓 𝑖𝑖𝑖 == 𝑛𝑖
8: 𝑆𝑅(𝐸(𝑖) ∗ 𝑛𝑖, 𝑖)) = 𝑆𝐶

9: 𝑒𝑛𝑑

10: 𝑒𝑛𝑑

11: 𝑒𝑛𝑑

12: 𝑅𝑇𝐸(∶, 𝑖) =

𝑅𝑂𝑆∑
𝑛=0

𝑂𝑆[𝑛]2

𝑅𝑂𝑆∑
𝑛=0

𝑆𝑅[𝑛]2

13: 𝐸𝑛𝑒𝑟𝑔𝑦 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦(%)(∶, 𝑖) = 100⋅||𝑆𝑅||
||𝑂𝑆||

14: 𝑁𝑀𝑆𝐸(∶, 𝑖) = ||𝑂𝑆 − 𝑆𝑅||2
||𝑂𝑆||2

15: 𝑋𝐶𝑂𝑅(∶, 𝑖) = 𝑂𝑆𝑇 ⋅𝑆𝑅
𝑂𝑆𝑇 ⋅𝑂𝑆

16: 𝑒𝑛𝑑

17: Return: 𝑅𝑇𝐸, 𝐸𝑛𝑒𝑟𝑔𝑦 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦, 𝑁𝑀𝑆𝐸, 𝑋𝐶𝑂𝑅

the approach this paper proposes is to use the positions of the maximum 
points calculated in a cycle of the signal in the original steady-state and 
the reconstructed one. The difference between the positions of these 
two points allows the reconstructed signal to be shifted until they stay 
in phase, as can be seen in Fig. 1 literal d.

3. Results

To analyze variables related to power quality, this research pro-

poses a 200 kHz sampling rate, this allows the measurement of very 
fast signals such as transients. Transients are produced by atmospheric 
discharges, they are presented as pulses with duration in the order of 
microseconds, and they typically can last from 50 ns to 1 ms. Besides, by 
using the same sampling rate, three more signals have been analyzed: 
voltage signals in steady-state, a three-phase fault and swell.

Each signal analyzed generates a 66168x4 matrix, every column car-

ries specific information regarding with time, voltage R, voltage S and 
voltage T respectively. Furthermore, the files generated have a size of 
1,889,931 bytes. Finally, the computer equipment used in the exper-

iment development has the following characteristics: Processor (Intel 
5
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Fig. 3. Different wavelet levels for reconstruction.

Table 1. Comparison of Compression results between different Wavelet levels.

Wavelet Compression in bytes

Signal Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

All signals 972,522 483,306 250,021 118,528 61,602 30,670

Compression % 48.5419 74.4273 86.7790 93.7284 96.740 98.377

Windowing in bytes

Steady State 41.547 21,504 30,624 16,035 8,793 3,723

Compression % 97.8017 98.8622 98.379 99.151 99.534 99.803

Lightning 117,321 59,706 39,954 30,579 20,559 4,959

Compression % 93.7923 96.8408 97.886 98.382 98.912 99.737

Fault 3Φ 269,043 135,867 87,885 40,089 20,757 13,329

Compression % 85.7644 92.8110 95.349 97.878 98.901 99.294

Swell 306,348 154,674 78,447 39,762 20,625 10,929

Compression % 83.7905 91.8159 95.849 97.896 98.908 99.421
(R) Xeon (R) E-2176M CPU @ 2.70GHz), and 64 GB RAM. Fig. 2 shows 
the representation of each signal as a function of time.

Fig. 3 literal a, shows the compressed signal in steady-state by us-

ing wavelet bior1.1, it can be seen that in steady-state, it is necessary to 
have the information from the first cycle and depending on the wavelet 
level, the algorithm selects the necessary signals for the subsequent re-

construction.

Fig. 3 literal b shows several signals that are necessary to reconstruct 
a disturbance caused by the phenomenon of atmospheric discharge. It 
can be seen that the number of signals per cycle increases compared 
6

to a single signal in steady-state; it is also shown that there are cycles 
in which the signals are zero because they are represented by another 
signal while maintaining a high level of RTE.

Fig. 3 literal c, represents the signal of a three-phase fault, it is ob-

served that the fault generates a phase shift when compared to the 
steady-state signal, this makes necessary a large number of signals rep-

resented by cycles to reconstruct the original signal.

Fig. 3 literal d, shows the result of the compression algorithm and 
the proposed windowing for disturbances such as sag, swell or harmon-

ics, this solution is proposed by considering that after a certain time the 
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Fig. 4. Signals reconstruction.
system tends to stabilize itself and future signals can be represented by 
specific signals in certain cycles.

Finally, in all figures (a, b, c and d), it can be observed that as the 
wavelet level increases, fewer sample cycles are necessary because some 
characteristics of small amplitude signals are lost, allowing just a few 
signals (being necessary) to represent the whole set.

Fig. 4 shows the reconstruction of each of the analyzed signals repre-

sented in the six levels of the wavelets. Literal a shows the compressed 
signal in steady-state, literal b shows the compressed signal in light-

ning impulse, literal c shows the compressed signal in 3 Φ fault, literal 
d shows the compressed signal in swell. It can be noted that there is 
a similarity between the different levels of each of the signals, thus, 
corroborating the results shown in Tables 1 and 2.

Table 1 shows the compression performed by the wavelet at each 
level. From the data shown in Table 1, it is evident that the compression 
percentage for each signal is the same at every level, furthermore, this 
percentage does not depend on the characteristics of the signal to be 
analyzed. In the windowing section, the size of each signal is presented 
in bytes and it can be seen that the compression level does not only 
depend on the wavelet level but also on the characteristics of each of 
the signals to be analyzed.

Table 2 provides a summary of the results obtained from the signals 
analyzed: steady-state, atmospheric discharge, three-phase faults and 
swell. The results of RTE, NMSE, and Cross-correlation are shown for 
each wavelet level (these four parameters are found in the literature 
review). In addition, this research considers it important to analyze 
7

two additional parameters that have not been considered in previous 
works. These parameters are: “Compression Time” which is the time 
taken from the moment the file (with the original data) is loaded until 
the generation of a new file with the compressed signal; and, “Recovery 
Time” which is the time from the moment the file with the compressed 
signal is loaded until the generation of a new file with all the informa-

tion of the reconstructed signal.

4. Analysis of results

The Q1 quartile high impact investigation [15], has been taken as a 
reference goal to be achieved and surpassed, this is because, in the liter-

ature review, the mentioned work has the best results so far (consider-

ing data compression) considering SCOPUS, ELSEVIER and SPRINGER 
databases. A summary of the article is shown in Table 3, these values 
will help to contrast the results obtained in the present investigation.

The Q3 quartile investigation [2] is another work that has been 
taken as a reference goal to be achieved and surpassed. A summary 
of the article results is shown in Table 4, to contrast with the values 
obtained in the present investigation.

Also, in Table 5 a summary is presented with the best results of the 
experiment carried out in the present investigation.

The results that are shown in Table 5, evidence that the compression 
level exceeds 99.294% in all the proposed scenarios. These results excel 
previous works form the papers, Q1 and Q3 in three cases (Tables 3
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Table 2. Compression results: RTE, NMSE, Cross correlation Compression Time 
and Recovery Time.

Bior 1.1 RTE (%) NMSE Cross 
Correlation

Compression 
Time

Recovery 
Time

Steady State Signal

Level 1 99.9143 0.019565 0.990646 0.259778 0.290082

Level 2 99.9059 0.001650 0.999645 0.092780 0.443042

Level 3 99.9357 0.001768 0.999437 0.082618 0.134150

Level 4 99.9315 0.001972 0.999356 0.048862 0.049667

Level 5 99.9486 0.002044 0.998720 0.039826 0.086259

Level 6 99.9479 0.001902 0.998788 0.036617 0.101389

Lightning Signal

Level 1 99.8847 0.011983 0.994585 0.283787 0.445981

Level 2 99.8620 0.001972 0.999704 0.130686 0.482466

Level 3 99.8861 0.002771 0.999183 0.042138 0.089791

Level 4 99.8814 0.000380 0.999216 0.039053 0.114254

Level 5 99.9988 0.000098 0.999944 0.039361 0.231550

Level 6 99.9415 0.000434 0.999925 0.048162 0.115147

Fault 3Φ Signal

Level 1 99.77542 0.013614 0.992070 0.244907 0.246346

Level 2 99.90412 0.006783 0.996128 0.120452 0.445679

Level 3 99.93682 0.008608 0.995380 0.039305 0.110532

Level 4 99.95180 0.007468 0.996024 0.054989 0.091779

Level 5 99.84289 0.003184 0.997622 0.074945 0.097257

Level 6 99.84292 0.002965 0.997731 0.052374 0.113188

Swell Signal

Level 1 99.9383 0.004697 0.997960 0.521757 0.794249

Level 2 99.9103 0.003014 0.998941 0.089559 0.409472

Level 3 99.9314 0.004772 0.997957 0.050329 0.126874

Level 4 99.9210 0.003857 0.998466 0.116466 0.065097

Level 5 99.9595 0.000132 0.999731 0.077322 0.157097

Level 6 99.9825 0.001105 0.999534 0.036522 0.144762

Table 3. Previous work from literature review: Gapless Power-Quality Distur-

bance Recorder [15].

Summary: Q1 paper

Signal RTE (%) NMSE Cross 
Correlation

Compression

Steady State 97.80 0.0277 0.989 99.776

Sags, Swells 98.37 0.0343 0.991 99.159

harmonics 98.54 0.0270 0.992 99.824

frequency 
variation

98.85 0.0700 0.992 97.872

Table 4. Previous work from literature review: Advances in Classification and 
Compression of power quality Signals [2].

Summary: Q3 Paper

Signal RTE (%) NMSE Cross 
Correlation

Compression

Steady state Not specified 1.0 ×10−5 Not specified 94.117

Sags, Swells Not specified 1.0 ×10−5 Not specified 97.297

harmonics Not specified 1.0 ×10−5 Not specified 96.296

frequency 
variation

Not specified 1.0 ×10−5 Not specified 97.297

Table 5. Most important results obtained in the present paper.

Present work Summary

Signal RTE (%) NMSE Cross 
Correlation

Compression

Steady state 99.9479 0.001902 0.998788 99.803

Lightning 99.9415 0.000434 0.999925 99.737

Fault 3Φ 99.84292 0.002965 0.997731 99.294

Sags, Swells 99.9825 0.001105 0.999534 99.421

and 4). Only the harmonic compression in article Q1 (Table 3) exceeds 
the results of the present investigation.

The RTE obtained in the present investigation exceeds 99.84% in 
all the scenarios carried out, so it can be concluded that there is a bet-

ter reconstruction of the signal compared to article Q1, which presents 
98.85% as its best result
8

Table 6. Used variables.

Matrix

OS Original Signal

SC Compressed Signal

SCN Compressed normalized signal(ripple eliminated)

SCND Compressed normalized signal(ripple eliminated and shifting correction)

SVC Compressed signal during windowing

SR Reconstructed signal

Variables

A Original signal beginning index cycle

B Original signal ending index cycle

C Original signal maximum value (in a cycle)

D Original signal maximum value index (in a cycle)

E Number of samples per cycle

c Wavelet decomposition vector

l Bookkeeping vector

F Compressed signal beginning index cycle

H Compressed single ending index cycle

I Compressed signal maximum value (in a cycle)

J Compressed signal maximum value index (in a cycle)

NC Number of cycles of the compressed signal

ni Index of the number of cycles

sni Indexes length

The cross-correlation in the present investigation exceeds 0.992, 
which is precisely the best value of the contrasted article (Q1).

The highest NMSE in the present investigation is 0.00296, improving 
the values of the contrasted article that at its best presents 0.0270 (Q1 
article).

Although the NMSE of the article “Advances in Classification and 
Compression of Power Quality Signals” is lower when compared to this 
research results; in this work, the compression levels are obtained by 
using the wavelet transform, therefore the compression levels of this 
are higher.

5. Conclusions and future works

Electrical power signal compression through the proposed algorithm 
allows obtaining compression ratios of 99.803%.

In the literature review, most of the authors concluded at first 
glance, that the reconstructed signal is similar to the original one, how-

ever, they have not taken into account aspects such as the change in 
amplitude, the ripple generated or the shift in the signal, all caused by 
characteristics of wavelets, this research eliminates those effects as it is 
described in Algorithm 2.

The algorithms proposed in this research (before performing the 
windowing) have made it possible to improve the quality indices of the 
reconstructed signal such as RTE, NMSE, and X-COR when compared to 
previous results cited in the literature review [15].

Finally, the proposed windowing in which signals that are repeated 
by cycles are searched has allowed getting higher compression ratios 
and by doing this, improving the indexes proposed in the literature 
review.

For future works, it is proposed to apply compressed sensing tech-

niques to show if there is the possibility of further compressing the 
signal (by getting higher compression ratios) while maintaining or im-

proving the RTE, NMSE COR parameters.

Nomenclature

The Table 6 presents a summary of the power flow analysis, includ-

ing the power source, the load installed in each zone, the conductor 
ampacity, and the losses in lines, conductors and transformers.
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