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a b s t r a c t

The application of deep learning models to increasingly complex contexts has led to a rise in the
complexity of the models themselves. Due to this, there is an increase in the number of hyper-
parameters (HPs) to be set and Hyper-Parameter Optimization (HPO) algorithms occupy a fundamental
role in deep learning. Bayesian Optimization (BO) is the state-of-the-art of HPO for deep learning
models. BO keeps track of past results and uses them to build a probabilistic model, building a
probability density of HPs. This work aims to improve BO applied to Deep Neural Networks (DNNs) by
an analysis of the results of the network on training and validation sets. This analysis is obtained by
applying symbolic tuning rules, implemented in Probabilistic Logic Programming (PLP). The resulting
system, called Symbolic DNN-Tuner, logically evaluates the results obtained from the training and the
validation phase and, by applying symbolic tuning rules, fixes the network architecture, and its HPs,
leading to improved performance. In this paper, we present the general system and its implementation.
We also show its graphical interface and a simple example of execution.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Motivation and significance

With the increase in the complexity of Deep Neural Networks
DNNs), there is an increase in the number of hyper-parameters
HPs) to be set. But DNNs are very sensitive to the tuning of their
Ps. Incorrect values of some of its HPs (i.e., learning rate or batch
ize) can make the difference between good and bad training (and
onsequently between good and bad networks).
Due to these reasons, Hyper-Parameters Optimization (HPO)
lgorithms gained more and more attention from researchers.

∗ Corresponding author.
E-mail address: michele.fraccaroli@unife.it (Michele Fraccaroli).

Another way to tune DNNs HPs is to analyze the performance
of the network (in terms of accuracy, precision, loss, etc.). From
this analysis, it is possible to identify actions that can be applied
to choosing HP values in order to obtain a network with better
performance.
There are different HPO algorithms, and we can classify them

into different categories. There are exhaustive search algorithms
like Grid Search, evolutionary algorithms like Genetic Algorithms
[1] and Sequential Model-Based Optimization (SMBO) [2] algo-
rithms like Bayesian Optimization (BO) [3–5]. The algorithms in
the first category perform a brute-force search and guarantee to
find the optimal solution. The problem with these algorithms is
that they suffer from the curse of dimensionality (the number of

configurations to try is exponential w.r.t. the number of HPs to
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ptimize). Genetic Algorithms can be a good idea for HPs tuning
ut, they are slow to converge and they do not guarantee to
ind the optimal solution. SMBO algorithms like BO are state-
f-the-art in the task of deep learning HPs tuning. Specifically,
O uses a surrogate model such as an approximation of the
bjective function to optimize and try to fit previous experiments
o identify where the local minimummight be. BO consists of two
omponents: the probabilistic regression model (e.g., Gaussian Pro-
esses) and the acquisition function. The first component provides
posterior probability distribution that catches the uncertainty
n the surrogate model and the acquisition function selects the
ext point to evaluate by measuring the value of the objective
unction at the new point based on the posterior distribution [3].
he success of BO in optimizing the HPs of DNNs is due to the
act that it limits the number of training of DNNs spending more
ime choosing the next set of HPs to try. In literature, there are
ifferent works that apply this type of optimization to DNNs
Ps [5–7].
This work is about a software called Symbolic DNN-Tuner, that
rives the training of DNNs, analyzes the performance of each
NN’s training experiment and automatizes the choice of HPs
alues in order to improve the network’s performance as much
s possible. To do this, Symbolic DNN-Tuner exploits both manual
pproaches obtained with network performance analyses and an
MBO algorithm. In particular, in this work, BO is used as the
MBO algorithm.
BO was chosen because it limits the number of evaluations of

he objective function by spending more time choosing the next
et of HPs values to try. This is a perfect approach for DNNs. Given
hat the training phase is very expensive both in terms of time
nd energy, BO builds and uses a surrogate model of the objective
unction and quantifies the uncertainty in this surrogate using a
egression model. In the end, it uses an acquisition function to
ecide where to sample the next set of HPs values [3–6,8].
The goal of Symbolic DNN-Tuner is to provide software that
an drive the training phase of DNNs given only a neural network
rchitecture, the HPs search space and the dataset.
In the rest of the paper, we show the software description
xplaining its architecture and functionality in Section 2, an il-
ustrative example in Section 3 and the impact of the software in
ection 4.
For the experimental evaluation on literature and production
atasets, as evidence of performance improvements compared to
he BO alone, see [9].

. Software description

As mentioned before, Symbolic DNN-Tuner drive the training
f DNNs analyzing the performance of each training and au-
omatizes the choice of HPs values. The tricks used in manual
pproaches are mapped into non-deterministic and probabilistic
ymbolic Tuning Rules (STRs). Each STRs identifies a Tuning Ac-
ion (TA), which has the aim of updating the HPs search space or
pdating the network architecture. Each STR has a probabilistic
eight that determines the probability of application of its TA to
he case that the associated problem is diagnosed. The aim of STRs
s to avoid typical DNNs problems like overfitting, underfitting,
ncorrect values of the learning rate, etc.
Symbolic DNN-Tuner has two main blocks: the Neural Compo-

ent and the Symbolic Component. The whole Neural Component
as developed in Python and the Symbolic Component in the
robabilistic logic language ProbLog1 [10]. In the Neural Compo-
ent, the TensorFlow Python library was used for implementing
nd working with the network architecture, for running training

1 ProbLog website: https://dtai.cs.kuleuven.be/problog/.

Table 1
Possible problems.
Behavior Network problem

Gap between accuracy in training and validation Overfitting
Gap between loss in training and validation Overfitting
High loss Underfitting
Low accuracy Underfitting
Loss trend analysis Increasing loss
Fluctuation of the loss Fluctuating loss
Evaluation of the shape of the loss Low learning rate

High learning rate

and validation and for the input pipeline. For BO, we have used
the Scikit-Optimize Python library.
The Neural Component manages the neural network, the HPs

search space, BO and the application of the TAs. The Symbolic
Component performs an analysis of the network’s metrics af-
ter the training and validation phases, diagnoses problems and
identifies the most probable TAs to be applied to the network
architecture or HPs search space. Initially, probabilistic weights
of STRs are set manually, and then they are refined, after each
training, via Learning From Interpretations (LFI) [11] (an inductive
algorithm available in PLP) based on the results obtained so far.

2.1. DNNs hyper-parameters, training problems and countermea-
sures

Each analysis performed on DNN’s performance is associated
with a possible diagnosis. This analysis is wholly implemented
in Prolog. After retrieving the diagnosis of the DNN’s problems,
Symbolic DNN-Tuner has a set of TAs associated with the di-
agnosis that one can take. To address the problem identified in
the analyses phase, the best TA to be applied to the network
architecture or the HPs search space is identified by the ProbLog
program. After the selection of the best TA, this is passed to
the Neural Component who will take care of patching the neural
network architecture or the HPs search space.
Tables 1 and 2 show the list of considered problems and the

corresponding analyses, and the association of the problem with
its TA respectively. In other words, the ‘‘Problem" column of
Table 1 is the set of problems that Symbolic DNN-Tuner is able
to detect. Table 3 reports the HPs that can be tuned and their
domains.

2.2. Software architecture

As mentioned, Symbolic DNN-Tuner is composed of two main
parts: the Neural Component and the Symbolic Component. The
Symbolic Component receives the network performance in terms
of metrics like loss and accuracy from Neural Component, per-
forms symbolic analyses and chooses the TAs to be applied to
the network. These TAs are taken by the Neural Component and
applied to the DNN architecture and/or HPs space. A schematic
representation of the execution pipeline and the two main blocks
of Symbolic DNN-Tuner are shown in Fig. 1.
The two parts of the software communicate thanks to the fact

that ProbLog is developed in Python and is usable as a Python
package that can be called directly in Python code.
Symbolic DNN-Tuner is composed of various software mod-

ules as shown in Fig. 2. The first is the Main module. It takes
the data, the definition of the HPs search space and manages
BO. The core module is Controller. It takes the data from the
Main module and manages the pipeline of starting the training of
the neural network (including the validation phase), the symbolic
analysis, LFI, and the application of selected TAs. Neural, Diag-
nosis and Tuning are stand-alone modules. Neural takes care of
2

https://dtai.cs.kuleuven.be/problog/
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Table 2
TA associated to the problems.
Problem TAs Acronyms

Overfitting Regularization and Batch Normalization reg_l2 &
batch_norm

Increase dropout inc_dropout
Data augmentation data_augm

Underfitting Decrease the learning rate decr_lr
Increase the number of neurons inc_neurons
Addition of fully connected layers new_fc_layer
Addition of convolutional blocks new_conv_layer

Increasing loss Decrease the learning rate decr_lr_inc_loss
Fluctuating loss Increase the batch size inc_batch_size

Decrease the learning rate decr_lr_fl
Low learning rate Increase learning rate inc_lr
High learning rate Decrease learning rate dec_lr

Fig. 1. Symbolic DNN-Tuner execution pipeline with both Neural block and Symbolic block.

Fig. 2. Software modules of Symbolic DNN-Tuner.

he managing of the DNN. After training, it performs validation
nd applies the structural changes to the neural network. The

Diagnosis module is fully written in ProbLog and deals with the
analysis of the performance of the neural network, identifying
3
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Fig. 3. Symbolic DNN-Tuner’s dashboard for monitoring the whole optimization process: (a) page with the metrics, (b) page with the HPs used in each iteration of
the software.

Table 3
Hyper-Parameters (HPs).
Hyper-Parameter Domain

First convolutional layer 16–64 filters
Second convolutional layer 64–128 filters
First dropout 0.002–0.3
Second dropout 0.03–0.5
Fully connected layer 256–512 neurons
Learning rate 10−5–10−1
Activation function [ReLU, ELU, SELU]
Optimizer [Adam, Adamax, RMSprop, Adadelta]

problems. The Diagnosis module also applies LFI and chooses
the most appropriate TA to apply. Tuning applies the TAs and

updates the HPs search space or tells Neural what to change in
the network’s architecture.

2.3. Software functionalities

The main functionality of Symbolic DNN-Tuner is to drive
the training of DNNs to obtain as far as possible the network
with the best performance. The optimization process exploits the
analysis of the network’s performance after each training and
validation phase. After the analysis, LFI [11] is used to learn the
probability of the tuning rules and therefore dynamically change
the probabilistic logic program. This allows Symbolic DNN-Tuner
to favor the application of the rules that were more effective in
improving the performance of DNNs.
4
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.3.1. Dataset definition
Symbolic DNN-Tuner has a separate script dedicated to the
ataset definition. In this script, each dataset is a function that
eturns the dataset, divided into training and test set, and the
umber of classes. Listing 1 shows an example of the definition
f the CIFAR10 [12] dataset.

isting 1: CIFAR10 Dataset Definition

rom tensorflow . keras . datasets import c i far10
def c i far10_dataset ( ) :

num_classes = 10
# The data , s p l i t between t ra in and t e s t s e t s :
( x_train , y_tra in ) , ( x_test , y_test ) = c i far10

. load_data ( )
print ( x_tra in . shape [0 ] , ’ t ra in␣samples ’ )
print ( x_test . shape [0 ] , ’ t e s t␣samples ’ )

# Convert c l a s s vec to r s to binary c l a s s
matr ices .

y_tra in = t f . keras . u t i l s . to_categor i ca l (
y_train , num_classes )

y_test = t f . keras . u t i l s . to_categor i ca l ( y_test ,
num_classes )

return x_train , x_test , y_train , y_test ,
num_classes

Now, in the Main module, it is possible to obtain the split
ataset and the number of classes by simply calling
ifar10_dataset(). Through this script, it is possible to add
ny dataset that respects the output interface described in Listing
. In future work, we will enable the use of data generators to
anage large amounts of data in an optimized way.

.3.2. Tracking and monitoring of experiments
Symbolic DNN-Tuner has a dashboard developed with the
ash framework.2 and Netron3 ,4 Figs. 3 and 4 show the four
pages of the dashboard. During the execution, all events are
logged. All trained models, together with their weights, the diag-
nosis, the TAs applied, are saved. The Neural Component can also
log the training information to be monitored using TensorBoard5

if more details are needed on the performance of the networks.
Fig. 3 shows the tabs of metrics and HPs of the dashboard.

Fig. 3(a) displays metrics such as accuracy and loss during the
training and validation phases. Fig. 3(b) shows the HPs used
in each iteration of the software. The orange point is the last
iteration with its HPs. To see the whole history of the HPs used
in each iteration of Symbolic DNN-Tuner, you can follow the little
red arrow in the HPs graph.
Fig. 4 shows the tabs of probabilistic weights and network

architecture of the dashboard. Fig. 4(a) shows the page with
the probabilistic weights of the STRs. At each iteration of the
Symbolic DNN-Tuner, it is possible to see which TA was found to
be more effective during the HP optimization process. Fig. 4(b)
shows the integration with Netron for visualizing the network
architecture. Thanks to the integration with Netron, it is possible
to interact with the network and see more details for each layer
(e.g., activation, kernel size, kernel regularization, etc.).

2 Dash framework webpage: https://plotly.com/dash/.
3 Netron webpage: https://lutzroeder.github.io/netron/.
4 Netron GitHub repo: https://github.com/lutzroeder/netron.
5 TensorBoard website: https://www.tensorflow.org/tensorboard.

3. Illustrative examples

We now discuss an example of training performed on the
CIFAR10 [12] dataset. The dataset and the HP search space are
defined as in listings 2 and 3 respectively. Then the software
is ready to start the training of the neural network. Executing
python3 main.py starts Symbolic DNN-Tuner.
With the script for the definition of the dataset, it is possible to

import CIFAR10. As described in Section 2.3.1, the Main module
takes the split dataset returned by this function and the number
of classes of the dataset. These variables are passed to the Con-
troller. The Controller module passes them to the Neural module
which uses them to define the last layer of the neural network
and to perform the training and validation of the model. Listing 3
shows the definition of the HPs search space. Each element of the
list self.search_space refers to a specific HP in accordance
with the definition of the neural network (Listing 4).
BO initially uses random values from the HPs search space

defined in Listing 3 with the neural network objective function
to optimize. BO is implemented by the library Scikit-Optimize
and it takes as input a function to minimize. This function also
takes as input a list of parameters (network HPs) and returns a
single value of the objective function (in this case the value of
loss function), see Listing 5.
After running the main.py script, by simply launching Ten-

sorBoard on the logging directory at path log_folder/logs/,
it is possible to see the status of the training of the network.
Alternatively, by executing python3 dashboard/launcher.py,
it is possible to run the custom dashboard and monitor the status
of the training, the weights of the TAs and the HPs used at each
training (see Section 2.3.2).

Listing 2: dataset loading
from tensorflow . keraas . dataset import c i far10
def mnist ( ) :

num_classes = 10
( x_train , y_tra in ) , ( x_test , y_test ) = c i far10

. load_data ( )
y_tra in = t f . keras . u t i l s . to_categor i ca l (

y_train , num_classes )
y_test = t f . keras . u t i l s . to_categor i ca l ( y_test ,

num_classes )
x_tra in = x_tra in . reshape ( x_tra in . shape [0 ] ,

32 , 32 , 3)
x_test = x_test . reshape ( x_test . shape [0 ] , 32 ,

32 , 3)
return x_train , x_test , y_train , y_test ,

num_classes

Listing 3: HPs search space definition
from skopt . space import Integer , Real , Categor ica l
def search_sp ( s e l f ) :

s e l f . search_space = [
Integer (16 , 64 , name= ’ unit_c1 ’ ) ,
Real (0 .002 , 0 .3 , name= ’ dr1_2 ’ ) ,
Integer (64 , 128 , name= ’ unit_c2 ’ ) ,
Integer (256 , 512 , name= ’ unit_d ’ ) ,
Real (0 .03 , 0 .5 , name= ’ dr_f ’ ) ,
Real (1e−4, 1e−3, name= ’ learning_rate ’ ) ,
Integer (16 , 256 , name= ’ batch_size ’ ) ,
Categor ica l ( [ ’Adam ’ , ’Adamax ’ , ’ Adadelta ’ ] ,

name= ’ optimizer ’ ) ,
Categor ica l ( [ ’ re lu ’ , ’ elu ’ , ’ selu ’ ] , name= ’

ac t iva t ion ’ )
]

return s e l f . search_space
5

https://plotly.com/dash/
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Fig. 4. Symbolic DNN-Tuner’s dashboard: (a) page with the probabilistic weights of the STRs of the Symbolic Parts, (b) visualization of the network’s architecture
using Netron.

Listing 4: Neural network architecture definition through Keras
Functional API

def build_network ( se l f , params , new) :
" " "
Funct ion f o r de f ine the network s t ru c tu r e
: return : model
" " "
inputs = Input ( (32 , 32 , 3) )

x = Conv2D(params [ ’ unit_c1 ’ ] , (3 , 3) , padding
= ’same ’ ) ( inputs )

x = Act ivat ion (params [ ’ ac t iva t ion ’ ] ) (x )
x = Conv2D(params [ ’ unit_c1 ’ ] , (3 , 3) ) (x )
x = Act ivat ion (params [ ’ ac t iva t ion ’ ] ) (x )

x = MaxPooling2D( pool_size =(2 , 2) ) (x )
x = Dropout (params [ ’ dr1_2 ’ ] ) (x )

x = Conv2D(params [ ’ unit_c2 ’ ] , (3 , 3) , padding
= ’same ’ ) (x )

x = Act ivat ion (params [ ’ ac t iva t ion ’ ] ) (x )
x = Conv2D(params [ ’ unit_c2 ’ ] , (3 , 3) ) (x )
x = Act ivat ion (params [ ’ ac t iva t ion ’ ] ) (x )
x = MaxPooling2D( pool_size =(2 , 2) ) (x )
x = Dropout (params [ ’ dr1_2 ’ ] ) (x )

x = F lat ten ( ) (x )
x = Dense (params [ ’ unit_d ’ ] ) (x )
x = Act ivat ion (params [ ’ ac t iva t ion ’ ] ) (x )
x = Dropout (params [ ’ dr_f ’ ] ) (x )
6
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x = Dense ( s e l f . n_classes ) (x )
x = Act ivat ion ( ’ softmax ’ ) (x )

model = Model ( inputs=inputs , outputs=x )
return model

Listing 5: BO implementation
def object ive (params) :

to_optimize = cont ro l l e r . t ra in ing ( space )
return to_optimize

search_res = gp_minimize ( object ive , search_space ,
acq_func= ’ EI ’ , n_ca l l s =1 , n_random_starts =1 ,
ca l lback =[ checkpoint_saver ] )

4. Impact

We envision the application of this software to each exper-
ment that concerns DNNs. This software can be used by both
xperienced and inexperienced deep learning users. This is be-
ause Symbolic DNN-Tuner only needs the dataset, the HP search
pace and the neural network definition. Once these three ele-
ents have been defined, Symbolic DNN-Tuner will take care of
odifying the network to try to obtain the best possible per-
ormance. Moreover, thanks to the neural-symbolic integration
btained by the exploitation of Probabilistic Logic Programming,
his software can be used to obtain a form of explanation of the
ossible reasons for network malfunctioning.
This software has been tested not only on the classic bench-
ark datasets but also on a dataset provided by CIMA S.P.A.6 This
ataset was used to test Symbolic DNN-Tuner on an industrial,
eal case [9].

. Conclusions

We have presented Symbolic DNN-Tuner, a system for au-
omatically driving the training of DNNs, by automatizing the
hoice of hyper-parameters. This automation was achieved by
ombining BO with an analysis of the network’s performance
mplemented by rule-based programming. In particular, tuning
ules have been implemented in Probabilistic Logic Programming
nd their weights are tuned by exploiting Learning From Inter-
retation. Thus the software exploits probabilistic symbolic rules
or selecting after each network training, the best tuning action to
orrect the identified problems. These tuning actions update the

6 CIMA website: http://www.cima-cash-handling.com/it/.

network architecture and/or update the hyper-parameters search
space.
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