
Research Article
A Critical Analysis of Finite-Element Modeling Procedures for
Radial Bearing Stiffness Estimation

Alberto Gabrielli , Mattia Battarra , and Emiliano Mucchi

University of Ferrara, Engineering Department, Via G. Saragat 1, Ferrara 44122, Italy

Correspondence should be addressed to Emiliano Mucchi; emiliano.mucchi@unife.it

Received 1 April 2021; Accepted 11 August 2021; Published 30 August 2021

Academic Editor: Hui Wang

Copyright © 2021 Alberto Gabrielli et al. %is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Different strategies are commonly employed by researchers in order to decrease the computational effort associated with the
finite-element analysis of rolling-element bearings. %e purpose of this work is to review and analyze the procedures and
hypotheses that may be exploited to evaluate the nonlinear radial stiffness of these components. Techniques are utilized to develop
a meshing procedure aimed at balancing the computational effort and the accuracy of the results, to define a robust approach to
the problem.%e geometry is reduced by taking advantage of the available symmetry planes, by removing unloaded rollers, and by
substituting the shaft with an equivalent sinusoidal load. In addition, the element dimensions are adapted to the applied load
depending on the size of the contact area as computed bymeans of the Hertz theory.%e proposedmethodologymay be applied to
all bearing types provided that symmetry conditions and contact area dimensions are properly assessed. %e estimated stiffness is
compared against analytical formulae retrieved from the literature. Influence of different element types, roller position, cage, and
clearance on accuracy and computational time is discussed.

1. Introduction

Rolling-element bearings (REBs) are one of the most fre-
quently employed components in rotating machinery, where
they cover a major role in transmitting vibrations [1]. Due to
their relevance, REBs have been extensively studied, and vast
literature regarding their characteristics and behavior is
currently available. Nonetheless, the inherent complexity of
these components still provides challenges to overcome for
researchers and designers, such as the evaluation of their
radial stiffness. %is is usually a crucial input parameter for
further analyses, e.g., in the dynamic modeling of systems
containing bearings [2].

Radial stiffness is not a constant value, as the relative
displacement of the inner ring with respect to the outer ring
depends on the applied load and the position of the rolling
elements with respect to its direction. Over the years, the
estimation of this nonlinear stiffness-load relationship has
been faced by means of experimental, analytical, and nu-
merical approaches. Experimental techniques are commonly

divided into direct and indirect methods, depending on the
employed procedure. For the former, the direct measure-
ment of the displacement is required [3]. %e latter requires
other techniques, e.g., modal analysis [4]. Analytical for-
mulae may be derived empirically [5, 6] or by providing a
rigorous mathematical procedure typically based on the
Hertz contact theory [7–9]. Among the numerical tech-
niques, the most common approach involves the employ-
ment of in-house or commercial finite-element (FE)
software to model the bearing under exam.

FE simulations are usually exploited to determine rings
displacement and contact stresses. A common issue is the
complexity of the contact phenomenon, which leads to
challenging modelization and large computational effort.
%us, researchers strived to simplify the problem using a
variety of approaches. %e most straightforward approach
consists in reducing the original 3D model to a 2D problem.
Within this framework, Zhao [10] described a contact al-
gorithm to model roller bearing contacts in 2D simulations.
Influence of various parameters on load distribution was
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evaluated. Demirhan and Kanber [11] investigated stress and
displacement distribution on a roller bearing. A 2D mesh
with plane strain option was used to simplify the model.
Obtained results were validated against theoretical and
experimental data. Hao et al. [12] proposed a 2D FE model
that considered temperature effects and clearance change to
examine their influence on displacement, stress, and bearing
stiffness. %e relative displacement between inner and outer
ring obtained on a test rig was employed for validation.
Good agreement was found between FE and experimental
results, while analytical formulae departed from them. For
3D simulations, other methods were established. Kania [13]
employed truss elements to replace rollers in simulating
slewing bearings. %is technique allowed great reduction of
simulation time at the expense of additional effort in the
preprocessing phase. A similar approach has been utilized by
Daidié et al. [14] to analyze load distribution by employing
nonlinear traction springs instead of truss elements. %e
efficiency of this method encouraged other researchers
[15–18] to exploit it for slewing bearings modeling. Tech-
niques devoted to removing contacts in lower size bearings
were also studied by Molnar et al. [19]. In particular, two
methods to replace contact algorithms between rollers and
rings in needle bearings have been proposed. %e first one is
similar to the one employed by Daidié et al. [14], as rollers
are replaced by springs. %e second one consisted in
substituting the entire volume between rings with a fictitious
equivalent material replicating the same behavior of the row
of rollers. Obtained radial displacements were compared
with the full model involving contacts, demonstrating their
capability to considerably reduce the computational time.
Although these techniques were successful in speeding up
the solution process, other researchers followed different
strategies to model the phenomena occurring within the
contact area. Guo and Parker [20] developed a procedure
involving a combined surface integral and finite-element
method to solve the contact problem in rolling and ball
bearings. %ey computed radial, axial, and tilting stiffness to
obtain a fully populated 6× 6 matrix including cross-cou-
pling terms. Results were compared against data available
from the literature. Massi et al. [21] set up 2D and 3D
simulations of ball bearings to compute the contact stress
due to specific boundary conditions and relate them to
bearing degradation. %ey reduced the size of the problem
by modeling a portion of the bearing, with only one roller in
contact with the two races, noticing that the relative error
between 3D and 2D simulations was relevant due to con-
forming contact between ball and races. Lostado et al. [22]
studied the contact stress in tapered roller bearings. %ey
developed a procedure to adjust the original mesh by
generating subsequent nonlinear submodels with increas-
ingly smaller mesh densities. Relative displacement between
raceways was also analyzed and compared to experimental
data, showing good agreement. %e procedure was utilized
by Fernandez Martinez et al. [23] in combination with
machine learning techniques to determine the optimal
working conditions of the device. Murer et al. [24] presented
a FE model of their experimental setup to assess the rele-
vance of using capacitive probes for in situ measurements of

bearing deflection. Li [25] developed software to compute
the contact stress in ball and roller bearings by exploiting a
novel contact algorithm. Stress distribution on contact areas
was found to be different from results reported in previous
studies [20] and analytical formulae.

As it may be noticed from the literature review, there is a
tendency to reduce the size of the computational domain of
the problem whenever REBs modeling is involved. Typical
strategies involve taking advantage of symmetries
[10, 13–15, 18, 19, 22, 23], removing unloaded rollers [10],
and replacing contacts with equivalent elements [13–18]. As
far as the authors are concerned, only one symmetry plane is
employed in 3D analysis, although for most bearings two
symmetry planes are available under appropriate hypothe-
ses. Unloaded rollers are kept by most researchers but re-
moved by others, e.g., Zhao [10] and Murer et al. [24]. Cage
is commonly neglected, but, e.g., Murer et al. [24] accounted
for its effect by employing rigid connectors between rollers.
Load is applied on the center of the shaft [10–12, 19], on
rings [14, 18, 21], or on a central node connected with rigid
elements to the inner ring [15–17]. Problems are solved by
employing 2D and 3D approaches, usually exploiting
quadrilateral or hexahedral elements, respectively. Meshing
with tetrahedral elements is rare, and differences between
linear and parabolic elements are not addressed. Conver-
gence check is regularly performed, but some researchers
such as Demirhan and Kanber [11] only tested it for one load
value, although convergence rate depends on applied load,
especially at low force values. Concerning the post-process,
radial bearing stiffness may be computed considering the
approach of bearing rings [11, 12, 22] or the displacement of
the shaft axis [19].

While every reviewed method has proved to be suc-
cessful in different aspects of bearing analysis, there is a lack
of uniformity in the employed approaches. Based on this
observation, the purpose of this work is to review and an-
alyze some modeling choices that may be utilized by bearing
analysts to speed up and improve simulations involving
REBs, in particular in scenarios where a reasonable esti-
mation of the radial stiffness is needed. It is the authors’
opinion, in fact, that element choice, mesh size, exploited
symmetries, load definition, and displacement evaluation
location are not always accurately defined in research papers.
While this work should not be considered by any means a
comprehensive resource for bearing analysis, the aim is to
provide guidelines and define a robust approach to this
problem. In the light of this, only key points that have been
considered of primary importance will be discussed, while
more advanced topics are not covered here for the sake of
brevity and clarity. By optimizing the considered aspects, a
fast and efficient method for generating REBs mesh via FE
simulations is detailed. %e procedure involves the gener-
ation of a dedicated mesh for each load condition, in which
the element size is determined based on the estimated
contact area dimensions obtained by means of the Hertz
contact theory. %is methodology allows the estimation of
reasonable dimensions for the element in the contact area, so
that the contact phenomenon is captured while balancing
the computational time and the accuracy of the results. %e
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attained mesh should be utilized to determine radial bearing
stiffness only, as the convergence check is performed only in
terms of displacement of the inner ring.

A roller bearing is taken as reference for the analyses.
Despite the fact that the computations are carried out for this
particular bearing only, the proposed methodology is still
applicable for other bearings types. However, attention must
be paid when analysing different geometries, as there could
be only one symmetry plane available and not two as in the
reference bearing, e.g., in tapered roller bearings and self-
aligning double-row ball bearings. Concerning element type,
mesh size, unloaded roller removal, and load application
method, the proposed procedure may be adapted to all
bearing types. Nonetheless, it is worth noting that for ball
bearings different formulae must be employed when de-
termining the size of the contact area, since its shape is an
ellipse and not a rectangle as in the roller-raceway contact.

%e following section outlines general aspects regarding
the simulations described throughout this paper. Section 3 is
focused on convergence analysis for different element types.
Section 4 describes the procedures exploited to reduce the
size of the computational domain, along with stiffness results
determined by means of analytical and numerical methods.
In addition, results of simulations considering different
roller positions, inclusion of the cage and presence of di-
ametral clearance are reported. Finally, Section 5 is devoted
to concluding remarks.

2. General Considerations

2.1. Reference Geometry. A roller bearing, model SKF NU
202 ECP, is taken as reference for the analyses. Figure 1
shows the 3D geometry of the mechanical component,
whose geometrical data are reported in Table 1.%e reported
values refer to nominal dimensions, as clearance is not
included in the reported CAD model. Rollers have a straight
profile and are 6mm wide. Since edges are rounded with a
0.2mm radius, their effective length reduces to 5.6mm,
which is the length of the ideal contact line between roller
and races. A 0.1mm axial clearance between rollers and
flanges is considered. For all components, material is steel
with Young’s modulus E � 210GPa, density ρ � 7760 kg/
m3, and Poisson’s ratio ] � 0.28. %ese properties are
considered as constant values throughout the analyses.

2.2. Modeling Hypotheses and Considered Effects.
Simulations are carried out by using Simcenter 3D as pre/
post-processor and Simcenter Nastran as solver. In this
context, it is worth clarifying that Nastran static solution
SOL 101 is used to solve the model since it allows consid-
ering the nonlinear behavior given by the contact algorithm
and concurrently reducing the computational burden by
assuming a linear elastic material and small displacement.

Concerning the contact algorithm, two methods are
available, namely, segment-to-segment method and node-
to-segment method. Previous work by El-Abbasi and Bathe
[26] indicated that, while both methods provided stable
results, the latter did not pass the patch test [27], leading to
discretization errors that did not decrease with mesh

refinement. In addition, proof of the successful employment
of the segment-to-segment method in bearing simulation
may be found in [22, 28]. %ese results support the choice of
the first approach for REBs simulation. Bilinear Coulomb
friction model is chosen to take into account friction-related
contributions. Friction coefficient is set to 0.05, which in-
dicatively corresponds to a greased contact condition [29].
%is value is chosen for the sake of simplicity to represent a
common value encountered when grease is employed for
bearing lubrication. However, in case of particular lubri-
cating conditions, more accurate methods may be utilized to
determine the coefficient of friction and the resultant friction
force, e.g., exploiting the methods reported in [30].

%e proposed investigation exclusively takes into ac-
count the major phenomena concurring with the determi-
nation of the bearing radial stiffness. Based on this approach,
the hypotheses at the basis of the present study are here-
inafter detailed.

%e first aspect concerns possible plasticization of the
material in the neighborhood of the contact areas. Bearing
races, in fact, permanently deform at sufficiently high loads,
affecting the wear and degradation process of the races
[21, 29]. In this work, only deformations in the elastic range
are considered by employing a linear elastic material with
undefined yield stress.

A

A
SECTION A-A

Figure 1: Geometry of the roller bearing taken as reference case
study.

Table 1: Roller bearing design parameters.

Quantity Value Description
Z 11 Number of rollers
Dr 5.5mm Roller diameter
L 6mm Total roller length
Leff 5.6mm Effective roller length
di 15mm Inner ring internal diameter
do 19.3mm Inner ring external diameter
Di 30.3mm Outer ring internal diameter
Do 35mm Outer ring external diameter
W 11mm Ring width
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Moreover, as this paper focuses on radial stiffness, es-
timation methods for other components of the bearing
stiffness matrix will not be described, although axial and
tilting stiffness may be important when out-of-plane vi-
brations are dominant [20]. In this scenario, it is suggested
that the full 6× 6 stiffness matrix including cross-coupling
terms is determined.

Particular attention should be paid to boundary con-
ditions. In this work, the external outer race of the bearing is
assumed to be connected to a rigid frame. As a matter of fact,
the adopted hypothesis represents a common scenario where
the frame is sufficiently rigid not to interfere with the bearing
properties, and the applied loads stay within the elastic
deformation range. For the sake of completeness, it has to be
clarified that actual applications might involve the instal-
lation on compliant frames or excessive loads leading to
large deformation of the outer race [8, 22, 31]. In such cases,
shaft misalignment may appear [32, 33], causing a significant
moment load on the bearing and the loss of one symmetry
plane from the system. %ese peculiar conditions require
dedicated analyses involving different solution schemes, and
therefore they do not fall within the purpose of the present
study.

Furthermore, thermal effects and preloading are not
considered. As a consequence, simulations are run con-
sidering constant properties at room temperature and ap-
plying a simple radial load only. It is worth noting, however,
that temperature may affect stress distribution and stiffness
[12], while preload is commonly employed to modify
bearing stiffness characteristics [34].

Finally, it should be noted that static methods are em-
ployable at low and moderate speed values only [20, 35] as
inertia effects cannot be neglected at higher velocities [36].

%e described hypotheses underline that several addi-
tional aspects not included in the present work may influ-
ence the actual REBs stiffness. Nevertheless, they may be
implemented starting from the concepts and insights given
in this paper. It is also worth noting that the proposed
analyses may be further extended, with appropriate modi-
fications, to other bearing types. In fact, the concepts and
methods hereinafter explained apply for all bearing types,
although some modifications have to be considered. For
instance, the main difference between ball and roller bear-
ings resides in the different contact area generated by ball-
raceway contact. As a result, only data obtained for the
reference roller bearing are compared in this work.

3. Element Choice and Mesh Size

Analyses are performed to quantify the influence of adopting
different mesh grids, with a specific focus on hexahedral and
tetrahedral elements. Comparisons are carried out in terms
of stiffness and associated computational time. %e goal of
the investigation is to determine an appropriate mesh size
that allows attaining a reasonable compromise between the
accuracy of the results and the computational effort. Within
this framework, particular attention is devoted to the de-
velopment of a methodology to determine a reasonable
element dimension based on an analytical formulation, in

order to reduce the time needed to check mesh convergence
in further analyses. %e problem with mesh size, in fact, is
that the element dimensions in the neighborhood of the
contact area should be sufficiently small to properly model
the contact phenomenon. According to Hertz theory [37],
the contact area for a roller of finite length Leff in contact
with a curved surface and loaded with a force F is a rectangle
of length Leff and half-width a. Let the contacting bodies be
labeled with 1 and 2. Req is their equivalent contact radius:

Req �
1

R1
+

1
R2

􏼠 􏼡

− 1

, (1)

where R1 and R2 are the radii of curvature of the contacting
surfaces. %ey may take positive or negative values if the
surfaces are convex or concave, respectively.

An equivalent Young’s modulus E∗, depending on ma-
terial properties of both components, may also be defined as

E
∗

�
1 − ]21

E1
+
1 − ]22

E2
􏼠 􏼡

− 1

. (2)

Parameter E∗ is needed to compute the indentation
depth d due to an applied load F:

d �
4F

πLeffE
∗, (3)

which may be eventually utilized to determine the contact
area half-width a as

a �
����
Reqd

􏽱
. (4)

According to (4), the contact area decreases as the load
reduces, leading to the need for smaller elements at lower
loads. Moreover, contact area half-width is wider for roller-
outer ring contact than for the inner ring contact, as the
diameter of the outer raceway is larger. Within this
framework, it has to be noted that Hertz theory does not
account for the edge effects caused by the finite length of the
components [17]. However, this theory is employed as it
provides straightforward formulae that may be used for a
rough estimation of the contact area. It is also worth noting
that a rectangular contact area is produced only if the roller
profile is straight. For fully or partially crowned profiles, a
different formulation should be employed to estimate the
contact area.

For the reference bearing with parameters reported in
Table 1, an operating load range within Fr � 0N and
Fr � 10 kN is assumed based on its basic static load rating
C0 � 10.2 kN. Fr is the radial load applied on the shaft and
transmitted to the inner ring. %e corresponding force on the
most loaded roller may be computed, in absence of diametral
clearance, by using the formula provided by Harris [8]:

Qmax �
Fr

0.2453Z
, (5)

leading to a value Qmax � 3706N when Fr � 10 kN. Figure 2
shows contact areas half-width for inner and outer ring
contact with the most loaded roller.
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3.1. Procedure for Mesh Size Performance Evaluation.
Convergence analyses are carried out to determine a rea-
sonable mesh size that allows obtaining a good estimation of
the radial bearing stiffness while maintaining a relatively low
computational time. An angular sector of the bearing is
taken as reference in order to evaluate elements with pro-
gressively reduced dimensions. Geometry is cut to consider
only half of the contact zone, whose length is Leff /2. %us,
only a quarter of the roller in contact with a portion of the
two races is modeled, as the system is symmetrical with
respect to two planes. %e angle span of the reduced model,
then, decreases to Δϕ � 360/(2Z) � 16.36∘. Figure 3 shows
the dimensions of the adopted angular sector. %e load is
applied by providing a sinusoidal load distribution on the
inner ring, which resembles the force exchanged with the
shaft. Bodies are meshed with either tetrahedral or hex-
ahedral elements, namely, CTETRA and CHEXA, in Nas-
tran environment. For both elements, linear and parabolic
formulations are available and identified by a number after
their name, defining their number of nodes. As a conse-
quence, element CTETRA4 indicates a linear tetrahedral
element with four nodes, while CTETRA10 defines a par-
abolic element with ten nodes. Similarly, element CHEXA8
indicates a linear hexahedral element with eight nodes, while
CHEXA20 defines a parabolic element with twenty nodes.

Based on the necessity to determine the most convenient
element, a procedure to determine element performance is
established. %e proposed method is applicable to all tested
element types, with only few modifications needed to switch
from tetrahedral to hexahedral elements. Convergence
analysis is performed by decreasing the mesh size, which is
quantified as the average length of element edges, so that the
total number of nodes of the model progressively increases.
Mesh dimension in the contact area, l, is smaller than the
mesh size of the rest of the model, r. As the local dimension
is reduced, r is kept proportional to l by means of a constant
coefficient α so that l � αr.%e size of the contact area is kept
as a constant term for all load values. Its half-width is taken

to be w � 0.25mm, which is a conservative value obtained
through (4). %is area must be geometrically defined be-
cause, for the contact algorithm to work, the zone where
contact takes place must be specified. Parameter α is set to
0.14 for tetrahedral elements and 0.5 for hexahedral elements
in order to provide a sufficiently smooth transition in
passing from smaller to larger elements. Convergence is
evaluated on radial stiffness corresponding to two different
loads, specifically Q1 � 37N and Q2 � 3706N. According to
(5), they correspond to two radial loads Fr equal to 0.1 kN
and 10 kN. System stiffness ki corresponding to the applied
load Qi is computed as

ki �
Qi

δavg,i

, (6)

where δavg,i is the average displacement on the inner ring
surface on the plane of maximum load, i.e., the plane sec-
tioning the roller along the ideal line of contact.

In addition, an improved mesh with load-dependent
contact area and element dimension is proposed. %is
process is carried out based on the consideration that the
critical area for these simulations is the contact zone, whose
half-width a decreases as the applied load Q reduces.
%erefore, the involved elements should be sufficiently small
to properly address the contact phenomenon for a wide load
range. To tackle this problem, local mesh size l is changed at
each load step based on the value of a computed by using the
Hertz theory for that particular load. In this way, the contact
phenomenon may be captured at each load, and grids be-
come finer or coarser depending on the actual loading
condition. Parameters w and α are also changed at each Q in
order to maintain a low number of nodes. Results are
compared with the initial meshes generated with constant w

and α to assess advantages in terms of computational time.
%e improved meshing method will be employed to generate
the grid for the reference bearing, as its mesh should be
sufficiently light to attain a low computational time while
taking into account the multiple contacts occurring in the
bearing itself.
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Figure 2: Contact area half-width for roller-raceway contacts.
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It is worth noting that this work is focused on dis-
placement evaluation and not on trying to obtain accurate
pressure and stress distribution in the contact zones. To
accurately estimate them, a different mesh optimization shall
be performed. For this reason, the proposed convergence
checks are only performed on the radial displacement,
avoiding considerations regarding pressure and stresses.

3.2. Tetrahedral Elements: CTETRA4 vs. CTETRA10.
Figure 3(a) reports an example of the tetrahedral mesh
applied to the bearing slice. Five meshes are generated, each
denoted by different values of l and r. Table 2 reports their
values along with the corresponding number of nodes for
both 4-node and 10-node elements. Figures 4(a) and 4(b)
show the estimated radial stiffness at Q1 � 37N and
Q2 � 3706N, respectively. %e corresponding computa-
tional time values for each simulation are depicted in
Figures 4(c) and 4(d). At load Q2, the resulting stiffness is
consistently lower for parabolic elements. Moreover, a
constant trend is reached at a lower number of nodes. At
load Q1, stiffness evaluated with linear elements is unstable
for low number of nodes as the estimated value increases at
first and then starts to descend. On the contrary, parabolic
elements show a more stable trend which decreases as the
number of nodes increases. From this analysis, CTETRA10
elements appear to be more efficient and reliable than their
linear counterparts, in particular at higher loads.

%e contact area half-width, namely, w, is modified
based on the applied load according to the value estimated
by (4). Table 3 shows theoretical half-width computed with

(4), where subscript i refers to inner ring-roller contact,
while subscript o refers to outer ring-roller contact. Contact
area width w and local mesh size l are defined as propor-
tional to computed a values on both sides of the roller.
Parameter α is assumed to be equal to 0.06 at Q1 and 0.22 at
Q2 to efficiently adapt the dimension of the elements of the
rest of the model to local mesh size. %ree possible com-
binations of w and l are proposed. %ey are reported in
Table 4, along with the simulation results. Reported data
show that the differences in computational time are negli-
gible for load Q2, but they are relevant for load Q1, as the
third combination allows to great reduction of the com-
putational time in comparison with the other two combi-
nations. Stiffness change among these approaches is
relatively small, as the maximum percentage difference is
0.5% for Q1 and 0.2% for Q2. As a result, combination 3 is
the approach chosen to generate the mesh for the roller
bearing.

Stiffness and computational time values obtained with
the two improved meshes can be seen in Figure 4. At applied
load Q1 � 37N, the maximum percentage difference with
respect to the finest generated CTETRA10 grid is 0.1%, while
the computational time reduces by 82.6%. At applied load
Q1 � 3706N, instead, stiffness deviates by 1.8% and time
decreases by two orders of magnitude.

3.3. Hexahedral Elements: CHEXA8 vs. CHEXA20. %e
process carried out for tetrahedral elements is repeated for
hexahedral elements. In addition to dimensions l and r, a
further parameter is needed, which is represented by the

(a)

2.8 mm

16.36°

(b)

Figure 3: Grids of the reduced geometry employed for convergence testing: (a) tetrahedral elements; (b) hexahedral elements and di-
mensions of the adopted angular sector.
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number of subdivisions along the shaft axis direction,
nsubs. %is value is assumed to be equal to 4, as shown in
Figure 3(b). Such a value is chosen as a compromise
between the number of nodes along the contact line and
the local mesh size. It should be noted, in fact, that if
obtaining a certain number of grid points is required, as

Nsubs increases, l decreases accordingly. In addition, for
two grids with the same value of parameter l, computa-
tional time will depend on Nsubs as it affects the total
number of nodes and contacting elements. %us, it is
crucial to find a compromise between accuracy and
computational time.
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Figure 4: Convergence for CTETRA elements: (a) stiffness at 37N; (b) stiffness at 3706N; (c) computational time at 37N; (d) computational
time at 3706N.

Table 2: Mesh dimensions and number of nodes for models meshed with CTETRA4 linear elements and CTETRA10 parabolic elements.

CTETRA4 CTETRA10
l (mm) r (mm) Nodes DOFs l (mm) r (mm) Nodes DOFs
0.05 0.357 9024 24075 0.15 1.071 12826 34857
0.025 0.179 32406 89121 0.1 0.714 22506 61677
0.02 0.143 49428 137050 0.05 0.357 58767 165134
0.01 0.071 213309 605785 0.025 0.179 220487 630646
0.0075 0.054 393876 1126264 0.02 0.143 341098 980308
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As for tetrahedral elements, five meshes are generated for
both linear and parabolic elements. Table 5 shows the number
of nodes for each one, as well as detailing element dimensions
for the contact area and the rest of the model. Stiffness results
are shown in Figures 5(a) and 5(b). At load Q2, both element
types provide a stable trend even for a low number of nodes.
At load Q1, parabolic and linear elements have opposite
trends, since the former decrease as the number of nodes
increases, while the latter behave in the opposite way. %ey
eventually stabilize for a similar number of nodes. Parabolic
mesh, however, allows obtaining stiffness values closer to
stabilized values at lower number of nodes compared to linear
elements. %e computational time, in this case, is comparable
for both element types. In fact, as shown in Figures 5(c) and
5(d), this parameter greatly increases for parabolic elements at
higher number of nodes, but for coarser grids the difference is
relatively low. Hence, CHEXA20 elements may be employed
to generate the improved mesh.

Such a mesh, which will be later used to model the
bearing, is generated by using the same method described in
Section 3.2. Further load-dependent meshes are generated
based on contact area dimensions calculated with (4) as
reported in Table 3. Parameter α is assumed to be equal to
0.06 at Q1 and 0.5 at Q2. Table 6 reports tested combinations
of parameters w and l along with the computed stiffness and
the associated computational time values. %e difference
between these values and the ones reported in Table 4, which
refers to tetrahedral elements, is worth noting. Hexahedral
elements, in fact, allow considerable reduction of compu-
tational time. %is is especially true at low load values, since
the number of elements may be controlled more efficiently
compared to tetrahedral elements.

Based on the results shown in Table 6, the third com-
bination is chosen to generate the improved mesh. Figure 5
shows evaluated stiffness obtained with the improved mesh.
With respect to the finest CHEXA20 grid, the stiffness
deviates by 0.5% for both loads. Computational time appears
to be reduced by one to two orders of magnitude. %ese
results show the benefits obtained by employing the pro-
posed meshing method. By considering a local element size
proportional to the contact area estimated through the Hertz
theory, meshes showing a good compromise between ac-
curacy and computational time may be obtained without the
need to carry out dedicated convergence checks. %e grids

obtained in this manner, in fact, allow attaining results
relatively close to converged ones but for a lower number of
nodes.

4. Evaluation of the Bearing Radial Stiffness

%is section is dedicated to the description of the procedure
adopted to model the reference bearing and to estimate its
radial stiffness. Procedures are exploited to generate the
bearing mesh along with the meshing method introduced in
Section 3. Various approaches to estimate the radial bearing
stiffness are proposed, and results obtained through nu-
merical and analytical procedures are reported. Influence of
rollers’ position is assessed by varying their location with
respect to the direction of maximum load. Additional
simulations in which the cage is inserted into the model are
run in order to determine if it is reasonable to neglect this
component in REBs modeling. Lastly, the model is further
improved to take into account the diametral clearance.

4.1.Model Reduction Strategy. %e size of the computational
domain is reduced by introducing a series of modeling
strategies. %e first one consists in taking advantage of the
available symmetry planes to reduce the bearing geometry.
%e first plane is commonly used to decrease the dimension
of the computational domain in bearing problems, and it is
the one passing through the shaft axis on the plane of
maximum load. It is available because of the geometry of the
mechanical component. %e second plane is the one normal
to the shaft axis by halving the bearing width. It may be
exploited only by assuming no misalignment effects and
pure radial load.

Unloaded rollers may be removed to reduce the number
of contacting bodies and consequently the number of grid
points. As a matter of fact, the number of rollers carrying the
load from one ring to the other depends on the extent of the
load zone, namely, ϕl, defined as [8]

ϕl � 2 cos−1 Pd

2δr

􏼠 􏼡, (7)

where Pd is the diametral clearance and δr is the radial
displacement. When Pd � 0, the angular extent of the load
zone is 180° as long as δr ≠ 0.%is means that only half of the

Table 4: Tested combinations of w and l for the model meshed with CTETRA10 elements.

Combination w (mm) l (mm) Q1 � 37N Q2 � 3706N
k (N/mm) t (s) k (N/mm) t (s)

1 1.5a 0.75a 80710 454 131673 8
2 1.25a 1.25a 81057 447 131446 4
3 1.5a 1.5a 81150 216 131765 4

Table 3: Contact area half-width a estimated by (4).

Q1 � 37N Q2 � 3706N
ai (mm) 0.0127 0.127
ao (mm) 0.0159 0.159
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Table 6: Tested combinations of w and l for the model meshed with CHEXA20 elements when nsubs � 4.

Combination w (mm) l (mm) Q1 � 37N Q2 � 3706N
k (N/mm) t (s) k (N/mm) t (s)

1 3a 0.5a 81420 66 129719 10
2 3a a 80920 31 130258 7
3 3a 1.5a 80604 22 130252 4

Table 5: Mesh dimensions and number of nodes for models meshed with CHEXA8 linear elements and CHEXA20 parabolic elements.

CHEXA8 CHEXA20
l (mm) r (mm) Nodes DOFs l (mm) r (mm) Nodes DOFs
0.05 0.1 16405 44603 0.1 0.200 16783 45797
0.025 0.05 61975 170899 0.05 0.100 61509 171151
0.015 0.03 167465 464526 0.035 0.07 122120 341903
0.0125 0.025 242310 673237 0.025 0.050 233825 657287
0.01 0.02 373235 1038541 0.02 0.040 364085 1025653
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Figure 5: Convergence for CHEXA elements: (a) stiffness at 37N; (b) stiffness at 3706N; (c) computational time at 37N; (d) computational
time at 3706N.
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rolling elements are effectively contributing to transfer the
load. %erefore, unloaded rollers may be removed to reduce
the number of nodes and decrease the quantity of contact
areas, leading to a substantial reduction in computational
time. For the reference bearing in Figure 1, the number of
modeled roller reduces from 11 to 3. It is worth noting that,
when Pd > 0, ϕl reduces, while it increases when Pd < 0. In
these cases, attention must be paid to how many rollers are
effectively loaded to avoid erroneously removing load-car-
rying rollers.

Concerning the boundary conditions, the reference bearing
is considered to be mounted on an infinitely rigid frame.%us,
it is clamped on the outer surface of the outer ring, meaning
that all DOFs for that node are restrained.

By considering the fixed boundary condition, the angular
extent of the load zone, and the absence of some rollers, a
portion of the outer and inner ring may also be removed. %is
is done by assuming that they do not make a significant
contribution to the radial displacement in the plane of max-
imum load, i.e., the monitored displacement for subsequent
stiffness assessment. As a consequence, the size of the com-
putational domain is effectively reduced to 1/8th of the original
geometry. In addition, since a 0.1mm axial clearance between
rollers and flanges is considered, the lateral flange is removed
from the remaining geometry as there is no contact between
the rollers and the flange itself. All these practical assumptions
allow great reduction of the number of nodes needed to
generate the mesh of the mechanical component.

Finally, attention is devoted to alternativemethods to apply
the radial load. As seen in Section 1, there are various methods
to apply the radial load, e.g., on the center of the shaft, on rings,
or on a central node connected with rigid links to the inner
ring. In order to decrease the number of grid nodes, it sug-
gested that the shaft contribution is modeled by means of an
analytical sinusoidal distribution which replicates the load
applied by a radially loaded shaft on the inner ring. Such load
also depends on the diametral clearance Pd of the bearing. In
absence of clearance, the load insists on a 180° angular sector as
depicted in Figure 6. %is permits the removal of one con-
tacting body while still taking into account its effect. %e ef-
ficiency of this assumption is verified in the next section, after
the definition of the bearing mesh.

It is worth noting that these model reduction strategies
are employed in this work for a cylindrical roller bearing but
they may also be exploited to generate the grid of other
bearing types. However, although assumptions concerning
load application, unloaded rollers removal, element type,
and mesh size are still applicable for all rolling-element
bearings subjected to a radial load, the symmetry plane
which halves the bearing width might not be always utilized,
e.g., for tapered roller bearing and self-aligning double-row
ball bearings. Consequently, the symmetry conditions
should be always checked before reducing the model ge-
ometry as they are not the same for every bearing.

4.2. Mesh Generation. Figure 7 shows examples of tetra-
hedral and hexahedral meshes exploiting all the model
reduction strategies defined in Section 4.1. Due to the

nonlinear relationship between load and displacement, a
certain number of load values must be applied to obtain
the stiffness curve. In this case, stiffness is evaluated for six
different load values, in particular 100 N, 500 N, 1000 N,
2500 N, 5000 N, and 10000 N. Meshes are generated
according to methods reported in Sections 3.2 and 3.3.
Consequently, a mesh is defined for each load and
characterized by different values of w, l, and α. Table 7
reports the values referring to both types of mesh for each
loading condition. It is worth noting that the contact area
semiwidth a is based solely on the value acting on the
maximum loaded roller, i.e., computed through (5). %e
other two rollers carry a smaller load, but contact area
dimensions are kept the same.

Hexahedral grids are chosen to verify the assumption
made on the application of the radial load. %e efficiency
of the method is demonstrated by evaluating the load
distribution on rollers. Results obtained by employing
the sinusoidal distribution are compared to distribu-
tions computed with the other two methods. %e first
one is the analytical formulation reported in [8], for
which the load distribution for Pd � 0 mm may be
computed as

F(ϕ) � Qmax[cos(ϕ)]
10/9

, (8)

where Qmax is calculated through (5). %e second method
consists in modeling the shaft and applying the total load
in its central node. Size of the elements in the shaft mesh is
the same as in the inner ring. Since the diametral clearance
is not considered, shaft and inner ring touch on the en-
tirety of the available contact surface. Two radial loads,
Fr1 � 0.1 kN and Fr2 � 10 kN, are applied. For the two FE
methods, load distribution is calculated for each roller as
the sum of the contact forces in the corresponding contact
areas. Results are shown in Figure 8, where the roller at
angle 0° is the one whose center is aligned with the di-
rection of maximum load. %e sinusoidal load allows
obtaining a load distribution which deviates by up to 3%
from analytical results. %e loaded shaft, on the other
hand, shows a similar difference for the rollers at 0° and
32.7° while it deviates by 8.3% at maximum for the roller at
62.4°. Besides, the addition of the shaft causes the com-
putational time to increase by 28.7% for Fr1 and by 56.8%
for Fr2. %ese results show that it is possible to remove the
shaft and substitute it with a sinusoidal load in order to
eliminate one contacting body and lead to a consistent
reduction in computational time.

4.3. Radial Stiffness Estimation: Analytical and Numerical
Results. Radial stiffness may be evaluated in two different
ways. %e work in [9] suggests computing it as

k1 �
Q

xr

, (9)

where xr is the radial displacement due to a radial load Q;
Guo and Parker [20], on the contrary, recommend using
partial derivatives
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k2 �
zQ

zxr

. (10)

Both methods require the evaluation of the displace-
ment-load relationship for different loads to obtain the
stiffness over a certain load range. Parameter k1 requires
one evaluation for each load, since only the displacement at
each load Q is needed. Parameter k2, on the other hand,
requires at least two displacement evaluations for each load

to compute the partial derivatives about load Q. %ese
displacements correspond to applied forces F1 � Q + δQ

and F2 � Q − δQ, where parameter δQ is a small distur-
bance which is arbitrarily assumed to be 0.01% of the load
Q for each loading condition. %erefore, stiffness k2(Q) is
computed as

k2(Q) �
F1 − F2

xr F1( 􏼁 − xr F2( 􏼁
. (11)

Qmax
Q(ϕ)

Figure 6: Sinusoidal load distribution acting on a 180° angular sector of the inner surface of the inner ring.

(a) (b)

Figure 7: Reduced bearing geometry meshed with (a) tetrahedral elements and (b) hexahedral elements.

Table 7: Contact area and average elements dimensions for CTETRA10 and CHEXA20 elements for different loading conditions.

Q (N) a (mm) CTETRA10 CHEXA20
w (mm) l (mm) α w (mm) l (mm) α

100 0.013 0.019 0.019 0.06 0.039 0.019 0.06
500 0.028 0.043 0.043 0.08 0.084 0.043 0.12
1000 0.040 0.060 0.060 0.12 0.120 0.060 0.17
2500 0.064 0.095 0.095 0.14 0.192 0.095 0.26
5000 0.090 0.135 0.135 0.17 0.270 0.135 0.36
10000 0.127 0.191 0.191 0.22 0.381 0.191 0.5
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%is process may be repeated for any number of loads.
%is means that, if N stiffness values are required, N sim-
ulations must be run for parameter k1 and 2N simulations
have to be performed for parameter k2 to obtain stiffness
estimations over the whole load range. Radial displacement
xr is evaluated as the average displacement of the nodes on
the plane of maximum load on the inner surface of the
inner ring.

Results are compared against three different stiffness-
load laws obtained through methods found in the literature.
%ey are chosen since each one exploits a different approach
to determine bearing stiffness. Within this framework,
Harris’ formula [8] is based on an analytical approach,
Gargiulo’s [6] equation is based on empirical observations,
and Petersen et al.’s [38] method is derived from a lumped
parameter model of the bearing. With the exception of
Gargiulo’s equation, which directly provides the stiffness k1
due to load Q, these methods are adapted to allow com-
puting both k1 and k2.

Figure 9 compares stiffness values estimated with the
analytical methods and the finite-element method:
Figure 9(a) reports estimated k1 values, whereas Figure 9(b)
presents k2 values. For both charts, stiffness estimated with
two different element types provides similar results, as the
maximum difference between hexahedral and tetrahedral
elements is 3.7% for parameter k1 and 3.3% for parameter k2.
Furthermore, they assume values consistently between
Petersen’s and Harris’s estimations, which represent the
upper and lower boundary, respectively. Parameter k2 is
always higher than parameter k1 at all loads, for all con-
sidered methods. It is interesting to note the variety of
stiffness results provided by analytical and numerical
methods. FEM estimates deviate by up to 9.5% compared to
Harris’ formula and up to 13.2% with respect to Petersen’s
lumped parameter model. Moreover, Gargiulo’s equation

provides a consistently lower estimation which deviates by
up to 16.6%.

Computational time due to tetrahedral and hexahedral
element is shown in Figure 10(a) for tetrahedral elements
and in Figure 10(b) for hexahedral elements. %ey refer to a
single simulation for each load. By employing the proposed
procedure, the computational time at low loads greatly
increases as tetrahedral elements are utilized. %e simula-
tion, in fact, is considerably demanding as the dimension of
the elements in the contact area causes the number of nodes
to rapidly increase. Hexahedral elements, on the contrary,
are more suitable for simulations at low loads since the
number of nodes may be controlled more efficiently. At
higher loads, element type choice still has an influence on
computational time but the order of magnitude is compa-
rable. According to these results, hexahedral elements are
well-fitted to estimate radial stiffness at low loads, while for
higher loads the choice has less impact on the computational
time. It is worth noting that the employed approach requires
a longer setup time compared to traditional models as a
different grid has to be generated for each load. However,
this additional time is compensated by the decreased
computational time needed to solve the problem and the
lower time required to perform convergence checks, as the
element dimension is analytically determined.Moreover, the
setup process may be further accelerated by automatizing the
procedure in FE software. %en, despite the increased
number of generated grids, the computational time may be
lessened compared to traditional approaches.

%e validity of the assumptions made is verified by
comparing the full bearing model without any geometrical
modifications to the results obtained with the reduced
model. %e full bearing is meshed by employing hexahedral
elements, with the same load-dependent dimensions utilized
for the reducedmodel. Figure 11 shows parameters k1 and k2
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Figure 8: Load distribution on rollers evaluated for two different radial load values: (a) Fr1 � 0.1 kN; (b) Fr1 � 10 kN.
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for both models. It is worth noting that there is some dif-
ference between the estimated stiffness, especially at lower
loads where the deviation is up to 3.5%. %e computational
time, however, increases by two orders of magnitude at each
load, leading to a considerable rise of the total time needed to
run all the simulations. %ese results suggest that reducing
the computational domain by adopting the proposed model
reductions allows consistently decreasing the computational
effort, even if there may be a slight change in the estimated
stiffness.%e proposed method, in fact, is developed in order
to obtain an acceptable compromise between accuracy and
simulation time.

In addition to these results, it is worth noting that for this
kind of bearings the position of the rollers with respect to the

direction of maximum load has a slight influence on the
estimated bearing stiffness values. %is may be verified by
considering two different roller positions, namely, position 1
and position 2, and comparing the resulting radial stiffness
obtained with the proposed method. In position 1, the plane
of maximum loads passes through the middle of one roller,
as described in Section 4.2. In position 2, the plane is
centered between two consecutive rollers. Examples of
models meshed with parabolic hexahedral elements are
depicted in Figures 12(a) and 12(b). Figure 13 shows the
stiffness-load relationship for both positions. For parameter
k1, the estimated stiffness in position 2 is consistently lower
compared to position 1, up to 3.8% at Q � 10 kN. Parameter
k2 shows a less stable trend at position 1, with a maximum

k1 = Q / xr
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Figure 9: Bearing radial stiffness estimated with analytical and numerical methods, for two different evaluation methods: (a) k1 � Q/xr;
(b) k2 � zQ/zxr.
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Figure 12: Models meshed with CHEXA20 elements with different applied load directions: (a) through the middle of one roller; (b) between
two consecutive rollers.
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Figure 13: Bearing radial stiffness evaluated for two different roller positions: (a) k1 � Q/xr; (b) k2 � zQ/zxr.
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Figure 11: Comparison between the radial bearing stiffness evaluated for the reduced and the complete model, for two different evaluation
methods: (a) k1 � Q/xr; (b) k2 � zQ/zxr.
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percentage difference of 6.7% atQ � 1 kN.Whether different
load directions should be considered or neglected in REBs
analysis, then, depends on the required degree of accuracy.

4.4. Inclusion of the Cage. %e cage is often included in REBs
in order to maintain a constant distance between rolling
elements. Its presence, however, is commonly neglected in
FE modeling, as detailed in Section 1. To investigate the
influence of this component on radial bearing stiffness, its
effect is evaluated by performing simulations in which the
cage is effectively meshed and inserted into the model, as
shown in Figure 14. %e aim of the inquiry is to determine
whether it is acceptable not to include this component in a
FE model. %e cage is modeled so that each slot contacts a
roller on both sides in the circumferential direction, whereas
an axial clearance equal to 0.1mm prevents contact between
pockets and roller ends. Tetrahedral elements are used since
they allow modeling the complex cage geometry. Element
dimensions within the cage are kept proportional to l

through a coefficient, 2α, which varies with the load as
reported in Table 7. Results for both k1 and k2 are depicted in
Figure 15. %e maximum percentage difference between
simulations with and without cage is up to 2.1% for k1 and
3.7% for k2. It is worth noting, however, that 3.7% variation
for k2 is obtained for only one load value, while for the other
loading conditions the difference is below 1.4%. %e
drawback introduced by cage modeling, however, is the
increase in computational time, as the average time needed
to run the simulations increases by 2.4 times compared to
models neglecting this component. %erefore, these results
suggest that to avoid modeling the cage is a reasonable
expedient to reduce computational effort without com-
promising the accuracy of the results.

4.5. Clearance Effect. Diametral clearance, namely, Pd, is an
additional factor that affects radial bearing stiffness. Equa-
tion (7), in fact, shows that for values of Pd greater than
0mm the extent of the load zone reduces, leading to a re-
distribution of the load among the rollers. In particular, the
maximum load on roller increases according to the following
equation [8]:

Qmax � Kn δr −
Pd

2
􏼒 􏼓

n

, (12)

where Kn is the load-deflection factor for a roller in contact
with two raceways, and the exponent n, associated with this
kind of contact, is equal to 10/9. FactorKn may be computed as

Kn �
1

2 1/Kl( 􏼁
(1/n)

⎡⎣ ⎤⎦
n

, (13)

where Kl is the load-deflection factor for a steel roller in
contact with a single steel raceway [8]:

Kl � 8.06 · 104􏼐 􏼑l
8/9
eff . (14)

For the reference roller bearing, the total load-deflection
factor is Kn � 172549N/mm. Furthermore, the number of

loaded rollers may decrease, depending on the applied load
and the angular span Δϕr between two consecutive rollers.
Consequently, the radial displacement δr increases, thus
diminishing the radial bearing stiffness. %e value of Qmax is
needed to compute the contact area at each load in order to
define the element size for the associated mesh, but (12)
cannot be directly solved since the radial displacement is not
initially known as it is equal to

δr �
Pd

2
+

Q

ZKnJr Pd, δr( 􏼁
􏼠 􏼡

1/n

, (15)

where Z is the number of rolling elements and Jr is a radial
integral depending on Pd and δr. Since Jr depends on the
radial displacement, (15) may be solved by means of an
iterative procedure. Once δr is known for each radial load,
Qmax is calculated by employing (12). Finally, contact area
semiwidth is computed through (4) while the loaded angular
sector is calculated via (7).

Clearance effect is assessed by means of numerical and
analytical approaches. A diametral clearance Pd � 0.04 mm
is considered and inserted between the components. Load-
dependent meshes to be employed for FE simulation are
generated according to the methods shown in Section 4.
Parabolic hexahedral elements are chosen and mesh di-
mensions l and r are selected according to the size of the
contact area, as detailed in Section 4.2. Contact area half-
width and angular extent of the load zone for different loads
are reported in Table 8. It is worth noting that, as the applied
load reduces, ϕl decreases since the radial displacement
diminishes accordingly. Hence, the number of loaded rollers
may reduce, depending on the ratio between ϕl and the
angular distance Δϕr, which is equal to 32.72° for the ref-
erence bearing. For a bearing in position 1 as in Figure 12(a),
three rollers are loaded at 1000N, but only two of them are
loaded between 500 and 5000N and a single one is loaded for
a radial force equal to 100N. At each load, unloaded rollers
may be removed from the FE model in order to lighten the
mesh. %e analytical sinusoidal load is not applied on a 180°
angular sector as in the simulations performed for Pd � 0
mm, but the angular span is changed at each load according
to ϕl values reported in Table 8.

Parameters k1 and k2 are evaluated, and FE results are
compared with Harris’ equation and Petersen et al.’s lumped
parameter model, as they both allow considering clearance
effect. Figure 16 shows the estimated parameters for various
loads. As expected, stiffness values evaluated with either k1
or k2 are lower than values obtained in absence of clearance,
as the ones depicted in Figure 9. For parameter k1, FEM
results deviate from Harris equation by 6.1% at most, while
the difference with Petersen et al.’s model is higher, up to
10.7% at load 2500N. For parameter k2, FEM results deviate
from Harris equation by 7.5% at most; hence, the difference
is similar to parameter k1. On the other hand, there is a
relatively high difference with Petersen et al.’s model, up to
31.1% at load 1000N. Influence of Pd on k2, in fact, is very
low on Petersen et al.’s model. %ese results suggest that the
FE method may be employed to quantify bearing radial
stiffness when Pd > 0mm. In this case, however, analytical
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Figure 14: Alternative bearing model considering cage presence. %e bodies are meshed with CTETRA10 elements.
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Figure 15: Bearing radial stiffness, numerically evaluated, taking into account the presence of the cage: (a) k1 � Q/xr; (b) k2 � zQ/zxr.
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Figure 16: Bearing radial stiffness computed by considering a diametral clearance Pd equal to 0.04mm: (a) k1 � Q/xr; (b) k2 � zQ/zxr.
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computations should be carried out to determine Qmax and
ϕl, leading to more calculations and a longer setup time
compared to the case in which Pd � 0 mm.

5. Conclusions

In this paper, procedures and hypotheses commonly
adopted in the FEmodeling of rolling-element bearings were
analyzed and discussed with the purpose of efficiently re-
ducing the size of the computational domain and concur-
rently providing a robust approach to evaluate their radial
stiffness. %e proposed methodology consists in generating
load-dependent grids, so that the mesh size in the contact
area is properly tuned according to the dimensions of the
analytically estimated contact zone between rolling elements
and raceways. %is strategy allows obtaining proper element
dimensions to capture the contact phenomenon for a wide
range of loads, while limiting the number of grid points and
curbing the computational time. Bearing meshes were
generated by employing either parabolic tetrahedral or
parabolic hexahedral elements. %e size of the computa-
tional domain was further reduced by taking advantage of
the available symmetry planes, by removing unloaded rollers
and replacing the shaft with an equivalent sinusoidal load
distribution. Radial stiffness values were then computed by
exploiting two different formulations, namely, k1 and k2,
based on the chosen stiffness expression. %e results showed
that both considered element types provided similar radial
stiffness estimates, although tetrahedral elements exhibited
considerably higher computational time at low loads. Good
agreement was also found by comparing these results with
different analytical approaches retrieved from the literature,
thus denoting the quality of the proposed methodology.

%e described bearing model was also employed to assess
the variation in stiffness due to different roller positions with
respect to the direction of maximum load. %e analysis
showed a deviation on the computed stiffness by up to 6.7%,
which indicates that the inclusion of this effect within the
analysis might become mandatory depending on the degree
of accuracy needed. It must be noted, however, that the total
computational time increases if multiple roller positions are
simulated. %e FE model was further utilized to evaluate the
stiffness variation caused by adding the cage as a meshed
body. Inserting this component led to a slight change in
stiffness, whereas the computational time consistently

increased. %erefore, modeling the cage is not suggested if
the goal is to attain a low computational time. Finally,
clearance effect was assessed by physically inserting it be-
tween the components and by changing the sinusoidal load
distribution in order to apply the load in a reduced angular
sector. Unloaded rollers were also removed when the load
angular span was sufficiently small. Numerical results were
in good agreement with analytical formulations.
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