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Abstract

We analyze variations in α-diversity of benthic macroinvertebrate communities

in an Italian lagoon system using Bayesian hierarchical models with nested ran-

dom effects. Our aim is to understand how spatial scales influence microhabitat

definition. Tsallis entropy measures diversity and spike-and-slab regression se-

lects predictors.
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1. Introduction

The analysis of benthic assemblages is a valuable tool to describe the eco-

logical status of transitional water ecosystems. As some species are extremely

sensitive and respond to both microhabitat and seasonal differences, changes in

the composition of the macrobenthic community can be used as an “early warn-

ing” for environmental changes possibly due to climate variations and affecting

the economic and ecological importance of lagoons, through their provision of
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Ecosystem Services [1]. Lagoons are fragile ecosystems, highly sensitive to cli-

mate change. Their ecological status can then be considered a powerful tool

for climate monitoring. In this context, the appropriate definition of the spatial

scale of microhabitats is of crucial importance from a conservational point of

view. The objective of this work is to understand and describe the influence

that different microhabitat spatial scales have on the variation of the biodi-

versity of lagoons. In [2] the same data were analyzed: the variation of three

biodiversity indices was described using mixed effects models, including fixed

effects of biotic and abiotic factors and random effects ruled by nested sources

of variability, corresponding to alternative definitions of microhabitats. Some of

the questions addressed by [2] are worth some further investigation. A deeper

understanding of the spatial structure of the data at hand is required, but made

difficult by the small number of samples at the finest spatial scale. Building

upon [2], where a mixed effects model was estimated in a REML framework

[3], we turn to the hierarchical Bayesian modeling paradigm in order to achieve

a more complex specification of the spatial structure. In this framework, the

spike-and-slab approach [4] is considered for model selection. The latter returns

posterior inclusion probabilities of fixed effects, allowing variable selection in a

fully Bayesian framework. Inclusion probabilities are also used to produce a

ranking of the fixed effects according to their influence on the biodiversity vari-

ation. The composition of the macrobenthic community is measured by three

biodiversity indices corresponding to as many versions of the Tsallis entropy

[5, 2] and giving decreasing relevance to rare species (or singletons1).

1Species found at only one location regardless their abundace.
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2. The Data

Benthic macroinvertebrates were collected monthly during the period 1997-

2000 in the Po River Delta observation field. Samples were taken with 3 repli-

cates at each of 23 monitoring stations, divided in 10 areas belonging to 3 la-

goons (nested grouping structure) and abundance of each species was evaluated

as number of individuals per square meter. In the following, the mean abun-

dances of the 3 replicates are considered throughout. The selected sites present

from one to three dominant habitat types defined by a factorial classification

of sediment granulometry (sand, mud) and vegetation cover/type (without veg-

etation, submerged macrophytes, emerged macrophytes and macroalgae, here

recoded as with and without macroalgae) and for details see [2] and references

therein. A total of 47 taxa were identified. The total dataset size is 272 records.

3. The Tsallis Entropy

Information theory and entropy measures have extensively been applied to

ecological processes in areas as diverse as biodiversity assessment, evolution,

species interactions and landscape analysis. Within the common focus of mea-

suring ecosystem structural and functional complexity, the Tsallis measure has

considerable statistical relevance when used as biodiversity index; properties of

this measure were extensively studied in [6]. Given a discrete set of species

probabilities p = {pi} and any real number q, the Tsallis entropy of order q is

defined as

Hq(p) =
1

q − 1

(
1−

∑
i

pqi

)
(1)

Many known biodiversity measures, including the number of species, Shannon

and Simpson indices, are obtained by the deformed exponential transformation

of the Tsallis entropy with known values of q: Dq(p) = eq(Hq(p)). When
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x < 1
q−1 holds, the deformed exponential transformation of order q is defined

as eq(x) = [1 + (1 − q)x]
1

1−q that converges to the standard exponential when

q → 1. In the following, we consider the deformed exponential transformations

of the Tsallis entropy of order q = 0, 1, 2 as biodiversity measures. When q = 0

we obtain the number of species, q = 1 corresponds to the Shannon biodiversity

index and q = 2 to the Simpson index. Hence when q increases, decreasing

relevance is given to rare species. A consequence of this property is that with

increasing q the heterogeneity of the biodiversity measure decreases. Indeed,

with the data at hand and q = 0, 1, 2 we obtain the values of the inter-quartile

range reported in table 1. Notice that also the central position of the biodiversity

indices decreases when q increases, as is clearly shown in table 1 where the

medians by lagoon are also reported.

L1 L2 L3
q = 0 6.000 (6.25) 16.015 (10.00) 8.000 (5.99)
q = 1 1.157 (0.77) 1.769 (0.57) 1.276 (0.64)
q = 2 0.570 (0.21) 0.768 (0.15) 0.634 (0.24)

Table 1: Median and inter quartile range (in parenthesis) of the Tsallis diversity for q = 0, 1, 2
by lagoon (L1=Comacchio, L2=Fattibello, L3=Goro).

4. Modeling biodiversity

In order to investigate the influence of alternative definitions of the micro-

habitats on the biodiversity of the Po River Delta, the deformed exponential

transformations of the Tsallis entropy of order q = 0, 1, 2 at 23 monitoring sta-

tions and 12 time points are considered as responses within Gaussian linear

mixed effects models, where the fixed effects part depends on habitat and sea-

sonal descriptors and the random part accounts for the nested spatial effects

of lagoons, areas and monitoring stations. Let Yiljs denote one of the three

biodiversity measures at time i (i = 1, . . . , 12), lagoon l (l = 1, 2, 3), area j
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(j = 1, . . . , 10), station s (s = 1, . . . , 23):

Yiljs|µY ljs, τY ∼ N(µY ljs, τY ) (2)

with

µY ljs = β1X1ljs + β2X2ljs + β3X3ljs + β4X4ljs + β5X5ljs + β6X6ljs + µljs (3)

X1, . . . , X6 are indicator variables for the winter, spring, summer and autumn

seasons, for the presence of macro algae and for muddy sediments. As for

the nested random effects µljs in equation (3), they are specified as follows:

µljs ∼ N(µjl, τS), µjl ∼ N(µl, τA), µl ∼ N(0, τL); where l = 1, 2, 3, j =

1, . . . , nl, s = 1, . . . , njs and
∑
l nl = 10 and

∑
j,s njs = 23. For the fixed effects

part of the predictor, in order to better appreciate the role of available covariates,

we adopt the spike-and-slab regression approach, described in [4] by Kuo and

Mallick for variable selection. Among the advantages of this approach is the

selective shrinkage property that allows the posterior mean of the coefficients

to shrink toward zero for truly zero coefficients, while for non-zero coefficients,

posterior estimates are similar to the ordinary least squares (OLS) estimates

[7]. Let βk = β̃k×γk for k = 1, . . . , 6, with γk’s being latent indicator variables.

Independent priors are then assumed for β̃k, γk and the error precision τY . β̃k ∼

N(µβ , τβ) , γk ∼ Bern(pk), pk ∼ Beta(ap, bp), and τY ∼ Gamma(a, b), where

k = 1, . . . , 6, µβ and τβ reflect prior beliefs about the distribution of β̃k’s, pk is

the preference to include the k-th predictor in the model, assumed to be Beta

distributed, ap, bp, a and b are user-defined tuning parameters. Notice that when

γk = 0, the updated value of β̃k is sampled from the full conditional distribution,

which is its prior distribution. Mixing will be poor if this is too vague and the

sampler will only rarely flip from γk = 0 to γk = 1. Furthermore, some tuning of
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the prior distributions is necessary to control for false positives (see for example

[8]). For these reasons, our final prior setting includes independent N(0, 10)

priors for all β̃k’s and a = 2, b = 0.001 for the error precision. In addition,

we consider pk ∼ Beta(5, 5), k = 1, . . . , 6 that favors equal probabilities for

all terms. Only with q = 2 a more informative Beta(50, 5) prior was chosen

for p5, to ensure 90% credible intervals for the corresponding β̃5 excluding the

zero value. These choices were carefully checked by sensitivity analysis with

alternative prior settings; the final selection of explanatory variables was highly

robust and largely independent on the priors. Prior knowledge on the precision

parameters is modeled in the same way for all q’s as τL, τS ∼ Gamma(2, 0.1)

and τA ∼ Gamma(2, 0.01). Notice that the prior for the precision of the random

effects of areas τA is more concentrated on larger values than those for lagoons

and monitoring stations. This is motivated by areas being not well defined in

terms of physical boundaries, actually intersecting each other, and plausibly

characterized by smaller internal variability.

5. Results

Posterior estimates of model parameters and predictions of random effects

were obtained as MCMC simulation summaries by a JAGS [9] implementation,

running 2 parallel chains of 250000 iterations with a burnin phase of 50000

and thinning by 10 (133.106 seconds computation time on a latest generation

computer with 16Gb Ram). To better comply with the Gaussian assumption,

the biodiversity index of order q = 0 (the number of species) is modeled on

the log scale. Posterior estimates of inclusion probabilities p̂k = 1
ns

∑ns
i=1 γki,

where ns is the number of MCMC samples, highlight the fundamental role

of the presence/absence of macroalgae, regardless of the biodiversity measure

chosen (see table 2). When the role of rare species is relevant (q = 0), both the
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presence of macroalgae and the sediment type have large posterior probabilities

of inclusion. Sediment is not included in models for q = 1, 2, with all alternative

priors used for sensitivity analysis suggesting that most of the variation of the

indices is explained by the spatial random effects (Figure 1). Again regardless

the choice of prior distributions and the index order, the posterior inclusion

probabilities indicate that the presence of macroalgae is the most informative

descriptor among those considered (p̂5 > 0.95). In Figure 1 the larger spatial

q = 0 q = 1

k β̃k β̃k,0.025 β̃k,0.975 p β̃k β̃k,0.025 β̃k,0.975 p
1 0.030 -0.455 0.453 0.324 0.011 -0.484 0.492 0.204
2 0.016 -0.471 0.461 0.274 0.002 -0.484 0.488 0.193
3 -0.064 -0.398 0.387 0.526 -0.052 -0.413 0.413 0.476
4 -0.002 -0.470 0.477 0.224 0.033 -0.451 0.455 0.340
5 0.496 0.211 0.749 0.977 0.375 0.155 0.584 0.970
6 0.520 0.097 0.860 0.946 0.209 -0.287 0.556 0.718

q = 2

k β̃k β̃k,0.025 β̃k,0.975 p
1 0.000 -0.507 0.504 0.082
2 0.003 -0.501 0.505 0.077
3 -0.009 -0.482 0.471 0.220
4 0.010 -0.475 0.478 0.233
5 0.150 0.009 0.290 0.951
6 0.059 -0.423 0.427 0.438

Table 2: Posterior estimates of fixed effects with 90% credible intervals and the posterior
inclusion probabilities p for three order of the Tsallis entropy.

random effects are always associated to lagoon 2, namely the Fattibello lagoon.

Indeed the overall biodiversity of this lagoon is larger than the other two, no

matter the order of the Tsallis biodiversity, i.e. the importance given to rare

species (see Table 1). Figure 2 shows that, regardless the order of the Tsallis

entropy, a larger portion of variance is always explained by the higher level of

spatial aggregation (lagoons), followed by the most detailed one (stations). The

intermediate spatial aggregation level (areas) is the least relevant in terms of
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Figure 1: Posterior predicted means (bullet) of latent spatial random effects (dots) with 90%
(squares) credible intervals for three orders of the Tsallis entropy. Bold thicks and labels
highlight the Fattibello lagoon effects.

spatial random effects variability.
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Figure 2: Boxplots of logs of posterior estimates of random effects variances (τ−1
L , τ−1

A , τ−1
S )

for three orders of the Tsallis entropy.

6. Concluding remarks

The main advantage of the proposed approach is the ability to account for

the relation across the spatial aggregation levels: stations within areas, areas

within lagoons. For this purpose, we adopt a hierarchical specification of spa-

tial random effects, where each spatial aggregation level influences the finer one.

This allows us to define spatial random effects at the finer station level, repre-

senting the intrinsic spatial variation within areas varying within lagoons. This

8



complex random spatial structure provides an alternative to the proper consid-

eration of a spatial correlation model accounting for site proximities. Indeed, a

spatially structured correlation model could not be used with the data at hand,

given that lagoons are not spatially connected. Hence we would need to model

the spatial effects of areas and monitoring stations within lagoons, with a very

small number of sampling points per lagoon: 2, 3, 5 areas, 5, 5, 13 monitor-

ing stations. In this paper, the spike-and-slab approach to posterior variable

selection proved to provide useful information on the relevance of seasonal and

habitat features. Posterior inclusion probabilities allow to rank the effects of ex-

planatory factors and analyze their relative importance in the explanation of the

response variation. Parameter estimation is readily obtained at the same time,

thus simplifying the entire process. A possible drawback of the spike-and-slab

variable selection is its computational complexity. However, the accuracy and

interpretability of the results further justify the choice. Possible alternative ap-

plications of the proposed methodology include understanding and quantifying

the geographic patterns of biodiversity in water body and landscape monitor-

ing for climate change assessment, in those cases where the number of spatial

samples is relatively small, e.g. in the analysis of water bodies status trough

isotope signature [10].
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