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Abstract: We construct an open set Ω ⊂ ℝN on which an eigenvalue problem for the p-Laplacian has no
isolated first eigenvalue and the spectrum is not discrete. The same example shows that the usual Lusternik–
Schnirelmann minimax construction does not exhaust the whole spectrum of this eigenvalue problem.
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1 Introduction

1.1 Framework

For an open set Ω ⊂ ℝN , we pick an exponent 1 < p <∞ and consider the p-Laplace operator

∆pu = div(|∇u|p−2∇u),

acting on the homogeneous Sobolev space D
1,p
0 (Ω). The latter is defined as the completion of C∞0 (Ω) with

respect to the norm

u → (∫
Ω

|∇u|p dx)
1
p

for u ∈ C∞0 (Ω).

The usual eigenvalue problem for the p-Laplace operator with homogeneous Dirichlet boundary condition is
the following: find the numbers λ ∈ ℝ such that the boundary value problem

− ∆pu = λ|u|p−2u in Ω, u = 0 on ∂Ω, (1.1)

admits a solution u ∈ D1,p
0 (Ω) \ {0}; see for example [5].

In this note, we want to consider the variant

− ∆pu = λ‖u‖p−qLq(Ω)|u|
q−2u in Ω, u = 0 on ∂Ω, (1.2)

where 1 < q < p. This problem has already been studied by the second author and Lamberti in [4]. At a first
glance, equation (1.2) could seem a bit weird, due to the presence of the Lq norm on the right-hand side. We
observe that this term guarantees that both sides of the equation share the same homogeneity, exactly like in
the standard case (1.1).
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Though the introduction of this term containing the Lq norm may look artificial, nevertheless it is easily
seen that (1.2) is a natural extension of (1.1). Indeed, eigenvalues of the p-Laplacian can be seen as critical
points of the functional u → ∫Ω|∇u|

p dx restricted to the manifold

Sp(Ω) = {u ∈ D1,p
0 (Ω) : ‖u‖Lp(Ω) = 1}.

In a similar fashion, eigenvalues of (1.2) correspond to critical points of the same functional, this time restric-
ted to the manifold

Sp,q(Ω) = {u ∈ D1,p
0 (Ω) : ‖u‖Lq(Ω) = 1}.

We define the (p, q)-spectrum of Ω as

Spec(Ω; p, q) = {λ ∈ ℝ : equation (1.2) admits a solution inD
1,p
0 (Ω) \ {0}},

and we call every element of this set a (p, q)-eigenvalue of Ω.
Let us assume that the open set Ω ⊂ ℝN is such that the embedding D

1,p
0 (Ω) → Lq(Ω) is compact. It is

known that Spec(Ω; p, q) is a closed set; see [4, Theorem 5.1]. It is not difficult to see that

λ ≥ λ1p,q(Ω) > 0 for every λ ∈ Spec(Ω; p, q),

where λ1p,q(Ω) is the first (p, q)-eigenvalue of Ω, defined by

λ1p,q(Ω) = min
u∈Sp,q(Ω)

∫
Ω

|∇u|p dx.

We recall that when Ω is connected, then λ1p,q(Ω) is simple, i.e. the corresponding solutions to (1.2) form
a vector subspace of dimension 1 (see [4, Theorem 3.1]).

Moreover, it is known that Spec(Ω; p, q) contains an increasingly diverging sequence of eigenval-
ues {λkp,q(Ω)}k∈ℕ\{0}, defined through a variational procedure analogous to the so-called Courant minimax
principle used for the spectrum of the Laplacian.

Let us be more precise at this point. For every k ∈ ℕ \ {0}, we define

Σkp,q(Ω) = {A ⊂ Sp,q(Ω) : A compact and symmetric with γ(A) ≥ k},

where γ( ⋅ ) denotes the Krasnosel’skiı̆ genus of a closed set, defined by

γ(A) = inf{k ∈ ℕ : there exists a continuous odd map ϕ : A → 𝕊k−1},

with the convention that γ(A) = +∞ if no such integer k exists. Then for every k ∈ ℕ \ {0}, one can define the
number

λkp,q(Ω) = inf
A∈Σkp,q(Ω)

max
u∈A
∫
Ω

|∇u|p dx.

By [4, Theorem 5.2] we have

{λkp,q(Ω)}k∈ℕ\{0} ⊂ Spec(Ω; p, q) and lim
k→∞

λkp,q(Ω) = +∞.

We will use the notation
SpecLS(Ω; p, q) := {λkp,q(Ω)}k∈ℕ\{0}

for the Lusternik–Schnirelmann (p, q)-spectrum of Ω.
We recall that when p = q = 2, then the Lusternik–Schnirelmann spectrum coincides with the whole

spectrum of the Dirichlet-Laplacian; see for example [1, Theorem A.2]. In all other cases, it is not known
whether SpecLS(Ω; p, q) and Spec(Ω; p, q) coincide or not.
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1.2 The content of the paper

The humble aim of this small note is to shed some light on the relation between the two spectra. More pre-
cisely, in Theorem 3.1 below we construct an example of an open set B ⊂ ℝN such that for 1 < q < p the
following conditions hold:
∙ the embeddingD1,p

0 (B) → Lq(B) is compact (the setB is indeed bounded);
∙ SpecLS(B; p, q) ̸= Spec(B; p, q);
∙ Spec(B; p, q) has (at least) countably many accumulation points.
Actually, by using the same idea, in Theorem 3.2 below we present an even worse example, i.e. an open set
T ⊂ ℝN such that for 1 < q < p the following conditions hold:
∙ the embeddingD1,p

0 (T) → Lq(T) is compact;
∙ SpecLS(T; p, q) ̸= Spec(T; p, q).
∙ Spec(T; p, q) has (at least) countably many accumulation points;
∙ the first eigenvalue λ1p,q(T) is not isolated, i.e. there exists {λn}n ⊂ Spec(T; p, q) such that

λ1p,q(T) = lim
n→∞

λn .

Although we agree that our examples are quite pathological (in particular T could be bounded, but made of
infinitely many connected components) and strongly based on the fact that q

p < 1, we believe them to have
their own interest in abstract Critical Point Theory.

Remark 1.1 (More general index theories). For the sakeof simplicity, in this paperweconsider theLusternik–
Schnirelmann spectrum defined by means of the Krasnosel’skiı̆ genus. We recall that it is possible to define
diverging sequences of eigenvalues in a similar fashion, by using another index in place of the genus. For
example, one coulduse theℤ2-cohomological index [3] or theLusternik–SchnirelmannCategory [6, Chapter 2].
Our examples still apply in each of these cases since they are independent of the choice of the index.

2 Spectrum of disconnected sets

2.1 General eigenvalues

For the standard eigenvalue problem (1.1), i.e. when q = p, it is well known that the spectrum of a discon-
nected open set Ω is made of the collection of the eigenvalues of its connected components. For 1 < q < p,
this only gives a part of the spectrum, the general formula is contained in the following result.

Proposition 2.1. Let 1 < q < p <∞ and let Ω ⊂ ℝN be an open set such thatD1,p
0 (Ω) → Lq(Ω) is compact. Let

us suppose that
Ω = Ω1 ∪ Ω2,

with Ωi ⊂ ℝN being an open set such that dist(Ω1, Ω2) > 0. Then λ is a (p, q)-eigenvalue of Ω if and only if it is
of the form

λ = [( δ1λ1
)

q
p−q + ( δ2λ2 )

q
p−q ] q−pq for some (p, q)-eigenvalue λi of Ωi , (2.1)

where the coefficients δ1 and δ2 are such that

δi ∈ {0, 1} and δ1 + δ2 ̸= 0.

Moreover, if we set

|αi| = (
λ
λi
)

1
p−q , i = 1, 2,

each (p, q)-eigenfunction U of Ω corresponding to (2.1) takes the form

U = C(δ1α1u1 + δ2α2u2), (2.2)



710 | L. Brasco and G. Franzina, A pathological example in nonlinear spectral theory

where C ∈ ℝ and ui ∈ D
1,p
0 (Ωi) is a (p, q)-eigenfunction of Ωi with unitary Lq norm corresponding to λi

for i = 1, 2.

Proof. Let us suppose that λ is an eigenvalue and let U ∈ D1,p
0 (Ω) be a corresponding eigenfunction. For

simplicity, we take U with unitary Lq norm. Let us set

ui = U ⋅ 1Ωi ∈ D
1,p
0 (Ωi), i = 1, 2.

Then these two functions are weak solutions of

−∆pui = λ|ui|q−2ui in Ωi , i = 1, 2.

We have to distinguish two situations: either both u1 and u2 are not identically zero or at least one of the two
identically vanishes.

In the first case, by setting αi = ‖ui‖Lq(Ωi) for i = 1, 2, we can rewrite the previous equation as

−∆pui =
λ

αp−qi
‖ui‖

p−q
Lq(Ωi)|ui|

q−2ui in Ωi , i = 1, 2,

which implies that λi := λαq−pi is an eigenvalue of Ωi, i = 1, 2. Using that αq1 + α
q
2 = 1, we can infer that

1 = αq1 + α
q
2 = λ

q
p−q [( 1λ1 )

q
p−q + ( 1λ2 )

q
p−q ],

which implies that λ has the form (2.1) with δ1 = δ2 = 1. Moreover, since λαq−pi = λi, this gives that the
eigenfunction U has the form

U = u1 + u2 = α1
u1
‖u1‖Lq(Ω1)

+ α2
u2
‖u2‖Lq(Ω2)

= (
λ
λ1
)

1
p−q u1
‖u1‖Lq(Ω1)

+ (
λ
λ2
)

1
p−q u2
‖u2‖Lq(Ω2)

,

which is formula (2.2).
Let us now suppose that u2 ≡ 0; this implies that U = u1 and u1 has unitary Lq norm. This automatically

gives that λ is an eigenvalue of Ω1, i.e. we have formula (2.1) with δ1 = 1 and δ2 = 0.
Conversely, let us now suppose that λi is a (p, q)-eigenvalue of Ωi with eigenfunction ui ∈ D1,

0 (Ωi) nor-
malized in Lq for i = 1, 2. We are going to prove that formula (2.1) gives a (p, q)-eigenvalue of Ω.

We first observe that we immediately get that λ1 and λ2 are eigenvalues of Ω, with eigenfunctions u1
and u2 extended by 0 on the other component. This corresponds to (2.1) with δ2 = 0 and δ1 = 0, respectively.

Now we set
U = β1u1 + β2u2 ∈ D

1,p
0 (Ω),

where β1, β2 ∈ ℝ \ {0} has to be suitably chosen. Using the equations solved by u1 and u2 and using that
these have disjoint supports, we get that

−∆pU = −|βi|p−2βi∆pui = |βi|p−2βiλi|ui|q−2ui
= |βi|p−qλi|U|q−2U in Ωi , i = 1, 2.

The previous implies that if we want U to be an eigenfunction of Ω with eigenvalue λ given by formula (2.1)
with δ1 = δ2 = 1, we need to choose β1, β2 in such a way that

|β1|p−qλ1 = λ‖U‖
p−q
Lq(Ω) = |β2|

p−qλ2. (2.3)

Since we have
‖U‖p−qLq(Ω) = (|β1|

q + |β2|q)
p−q
q ,

condition (2.3) is equivalent to require that

|β1|p−qλ1 = [(
1
λ1
)

q
p−q + ( 1λ2 )

q
p−q ] q−pq (|β1|q + |β2|q) p−qq
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and

|β2|p−qλ2 = [(
1
λ1
)

q
p−q + ( 1λ2 )

q
p−q ] q−pq (|β1|q + |β2|q) p−qq ,

that is,
|β1| = (

λ2
λ1
)

1
p−q |β2|.

Thus we get that U must be of the form (2.2) in the case δ1 = δ2 = 1. Moreover, we obtain that formula (2.1)
with δ1 = δ2 = 1 defines an eigenvalue of Ω.

We can iterate the previous result and get the following corollary.

Corollary 2.2. Let 1 < q < p <∞, let Ω ⊂ ℝN be an open set such that D1,p
0 (Ω) → Lq(Ω) is compact and let

# ∈ ℕ ∪ {∞}. Let us suppose that

Ω =
#
⋃
i=1

Ωi ,

with Ωi ⊂ ℝN being an open set such that dist(Ωi , Ωj) > 0 for i ̸= j. Then λ is a (p, q)-eigenvalue of Ω if and only
if it is of the form

λ = [
#
∑
i=1
(
δi
λi
)

q
p−q ] q−pq for some (p, q)-eigenvalue λi of Ωi , (2.4)

where the coefficients δi are such that

δi ∈ {0, 1} and
#
∑
i=1

δi ̸= 0.

Moreover, if we set

|αi| = (
λ
λi
)

1
p−q ,

each corresponding (p, q)-eigenfunction U of Ω has the form

U = C(
#
∑
i=1

δiαiui),

where C ∈ ℝ and ui ∈ D
1,p
0 (Ω) is (p, q)-eigenfunction of Ωi with unitary Lq norm corresponding to λi.

Remark 2.3. When # =∞, i.e. Ω has infinitely many connected components, formula (2.4) above has to be
interpreted in the usual sense

[
#
∑
i=1
(
δi
λi
)

q
p−q ] q−pq = lim

k→∞
[

k
∑
i=1
(
δi
λi
)

q
p−q ] q−pq

since the limit exists by monotonicity. We also observe that since q − p < 0, if δk = 1, then we have

[
#
∑
i=1
(
δi
λi
)

q
p−q ] q−pq ≤ λk < +∞.

On the other hand, since for every k ∈ ℕ the formula

[
k
∑
i=1
(
δi
λi
)

q
p−q ] q−pq

gives a (p, q)-eigenvalue of Ω, by recalling that λ1p,q(Ω) is the least eigenvalue, we obtain

[
#
∑
i=1
(
δi
λi
)

q
p−q ] q−pq = lim

k→∞
[

k
∑
i=1
(
δi
λi
)

q
p−q ] q−pq ≥ λ1p,q(Ω) > 0.
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2.2 The first eigenvalue

Thanks to the formula of Proposition 2.1, we can now compute the first (p, q)-eigenvalue of a disconnected
set. For ease of readability, we start as before with the case of two connected components.

Corollary 2.4. Let 1 < q < p <∞ and let Ω ⊂ ℝN be an open set such that D1,p
0 (Ω) → Lq(Ω) is compact. Let

us suppose that
Ω = Ω1 ∪ Ω2,

with Ωi ⊂ ℝN being an open connected set such that dist(Ω1, Ω2) > 0. Then we have

λ1p,q(Ω) = [(
1

λ1p,q(Ω1)
)

q
p−q + ( 1

λ1p,q(Ω2)
)

q
p−q ] q−pq . (2.5)

Moreover, each first (p, q)-eigenfunction of Ω with unitary Lq norm has the form

α1u1 + α2u2, where |αi| = (
λ1p,q(Ω)
λ1p,q(Ωi)

)
1

p−q , (2.6)

and ui ∈ D
1,p
0 (Ω) is the first positive (p, q)-eigenfunction of Ωi with unitary Lq norm for i = 1, 2.

Proof. From formula (2.1) we already know that we must have

λ1p,q(Ω) = [(
δ1
λ1
)

q
p−q + ( δ2λ2 )

q
p−q ] q−pq for some eigenvalue λi of Ωi . (2.7)

We now observe that the function

Φ(s, t) = [s
q

p−q + t q
p−q ] q−pq , (s, t) ∈ ([0, +∞) × [0, +∞)) \ {(0, 0)},

is decreasing in both variables (here we use that q < p). This implies that the right-hand side of (2.7) is
minimal when

δ1 = δ2 = 1, λ1 = λ1p,q(Ω1), λ2 = λ1p,q(Ω2),

i.e. formula (2.5). The representation formula (2.6) now follows from that of Proposition 2.1.

Remark 2.5. Under the assumptions of the previous result, we obtain in particular that Ω = Ω1 ∪ Ω2 has
exactly 4 first (p, q)-eigenfunctions with unitary Lq norm, given by

|α1|u1 + |α2|u2, |α1|u1 − |α2|u2, −|α1|u1 + |α2|u2, −|α1|u1 − |α2|u2.

In particular, although λ1p,q(Ω) is not simple in this situation, however the collection of thefirst eigenfunctions
on Sp,q(Ω) is a set of genus 1.

This phenomenon disappears in the limit case p = q if the two componentsΩ1 andΩ2 have the same first
eigenvalue: indeed, in this case the first eigenfunctions on Sp(Ω) forms the set of genus 2,

{αu1 + βu2 : |α|p + |β|p = 1}.

More generally, we get the following result.

Corollary 2.6. Let 1 < q < p <∞ and let Ω ⊂ ℝN be an open set such that D1,p
0 (Ω) → Lq(Ω) is compact. Let

us suppose that

Ω =
#
⋃
i=1

Ωi ,

with Ωi ⊂ ℝN being an open set such that dist(Ωi , Ωj) > 0 for i ̸= j. Then we have

λ1p,q(Ω) = [
#
∑
i=1
(

1
λ1p,q(Ωi)

)
q

p−q ] q−pq .
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Moreover, each corresponding first (p, q)-eigenfunction of Ω with unitary Lq norm has the form

#
∑
i=1

αiui , where |αi| = (
λ1p,q(Ω)
λ1p,q(Ωi)

)
1

p−q ,
and ui ∈ D

1,p
0 (Ω) is a first (p, q)-eigenfunction of Ωi with unitary Lq norm corresponding to λi.

3 Construction of the examples
We are now ready for the main results of this note.

Theorem 3.1. Let 1 < q < p <∞ and 0 < r ≤ R. We take the disjoint union of balls

B = BR(x0) ∪ Br(y0), with |x0 − y0| > R + r.

Then
SpecLS(B; p, q) ̸= Spec(B; p, q). (3.1)

Moreover, the set Spec(B; p, q) has (at least) countably many accumulation points.

Proof. We observe that for every k ≥ 1 there exists a sequence {λn,k}n∈ℕ ⊂ Spec(B; p, q) such that

λkp,q(BR(x0)) = lim
n→∞

λn,k . (3.2)

Namely,

λn,k = [(
1

λkp,q(BR(x0))
)

q
p−q + ( 1

λnp,q(Br(y0))
)

q
p−q ] q−pq

is a (p, q)-eigenvalue ofB for all n ≥ 1, thanks to formula (2.1), and we have that

lim
n→∞

λnp,q(Br(y0)) = +∞.

From equation (3.2) we immediately deduce the second part of the statement since λkp,q(BR(x0)) belongs to
Spec(B; p, q) by formula (2.1). Moreover, (3.2) implies (3.1) as well. Indeed, if the two spectra were the same,
then

Spec(B; p, q) = {λkp,q(B)}k∈ℕ\{0}

would be an increasing sequence diverging to +∞ with (infinitely many) accumulation points, which is
impossible.

We can refine the previous construction and obtain that for our eigenvalue problem even the isolation of the
first eigenvalue may fail in general.

Theorem 3.2. Let 1 < q < p and let {ri}i∈ℕ ⊂ ℝ be a sequence of strictly positive numbers such that
∞
∑
i=0

r
pq
p−q +N
i < +∞. (3.3)

We then define the sequence of points {xi}i∈ℕ ⊂ ℝN by

{
x0 = (0, . . . , 0),

xi+1 = (2−i + ri + ri+1, 0, . . . , 0) + xi

and the disjoint union of balls (see Figure 1)

T =
∞
⋃
i=0

Bri (xi).
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Figure 1: The set T is a disjoint union of countably many shrinking balls.

Then
SpecLS(T; p, q) ̸= Spec(T; p, q).

and the set Spec(T; p, q) has (at least) countably many accumulation points. Moreover, the first eigenvalue
λ1p,q(T) is not isolated.

Proof. We first observe that condition (3.3) guarantees the compactness of D1,p
0 (T) → Lq(T); see [2, Theo-

rem 1.2 and Example 5.2]. The first statement follows as in the previous theorem.
In order to prove that λ1p,q(T) is an accumulation point of the spectrum, we can now use Corollaries 2.6

and 2.2 to construct a sequence of eigenvalues {λn}n∈ℕ such that λn converges to λ1p,q(T). We just set

λn = [
n
∑
i=1
(

1
λ1p,q(Bri (xi))

)
q

p−q ] q−pq .

This gives the desired sequence.

Remark 3.3. The examples above are given in terms of disjoint unions of balls just for simplicity. Actually,
they still work with disjoint unions of more general bounded sets.
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