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Abstract: Nitrate is a major groundwater inorganic contaminant that is mainly due to fertilizer
leaching. Compost amendment can increase soils’ organic substances and thus promote denitrification
in intensively cultivated soils. In this study, two agricultural plots located in the Padana plain
(Ferrara, Italy) were monitored and modeled for a period of 2.7 years. One plot was initially amended
with 30 t/ha of compost, not tilled, and amended with standard fertilization practices, while the other
one was run with standard fertilization and tillage practices. Monitoring was performed continuously
via soil water probes (matric potential) and discontinuously via auger core profiles (major nitrogen
species) before and after each cropping season. A HYDRUS-1D numerical model was calibrated and
validated versus observed matric potential and nitrate, ammonium, and bromide (used as tracers).
Model performance was judged satisfactory and the results provided insights on water and nitrogen
balances for the two different agricultural practices tested here. While water balance and retention
time in the vadose zone were similar in the two plots, nitrate leaching was less pronounced in the
plot amended with compost due to a higher denitrification rate. This study provides clear evidence
that compost addition and no-tillage (conservation agriculture) can diminish nitrate leaching to
groundwater, with respect to standard agricultural practices.
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1. Introduction

Groundwater nitrate (NO3
−) pollution below croplands is a long-term legacy [1–3], and not

surprisingly, NO3
− is considered the most widespread inorganic pollutant around the world [4,5].

Moreover, Ascott et al. [6] have recently pointed out that the vadose zone is an important stock of NO3
−

and this transient stock should be accounted for in N budgets for more robust policymaking. In fact,
long residence times in the vadose zone may delay the impact of changes in agricultural practices on
groundwater quality even in lowland catchments [7,8].

The mathematical formulation and the solutions of transient transport and transformation from
urea hydrolysis, ammonification, nitrification, and denitrification have been used for decades in soil
hydrology [9–12]. The numerous reactions involved in the N cycle in soils are substantially driven
by different microbial consortia that are usually modeled via first-order reaction kinetics, like in the
HYDRUS-1D model [13]. Although, there are many other numerical models that have been specifically
developed for N species transformation and transport in variably saturated media, such as DAISY [14]
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or COUP [15], the model choice is often driven by the aims of the research. In fact, agronomic
empirical models are usually devoted to quantifying crop yield fertilizer plant-uptake and C and N soil
turnover, like the EPIC model [16], while physically based models like HYDRUS-1D are better suited for
porewater fluxes, nitrogen balance and leaching calculations (nitrification, denitrification, volatilization,
mineralization). In this case, the aim of the research is to quantify the driving mechanisms of nitrate
leaching; thus, the physically-based model HYDRUS-1D was selected. However, despite the large
capabilities reached by physically-based models, N transformation processes are intrinsically complex
and difficult to quantify in field conditions since they are driven by site-specific parameters such as
soil water content, temperature, root presence, and redox conditions [17]. For the above-mentioned
reasons, physically-based models need to be calibrated and validated against a large amount of field
data to be considered robust and to effectively reproduce the ongoing site-specific N transformation
processes [18–20]. Thus, the last challenge is to use these well-established numerical models at
well-equipped field sites and over long-term periods, e.g., different hydrological years and different
crop growing seasons, to quantify the effects induced by different agricultural practices on both soil
hydrology and N transformations. Otherwise, without the quantification capacity for a field-validated
numerical model, it would be very challenging to infer how much soil N leaching is affected by
agricultural practice changes.

In this study, two experimental plots located in the lower end of the Po river plain (Italy),
were monitored and modeled for a period of 974 days (3 cropping seasons). One plot was amended at
the beginning of the study with 30 t/ha of compost, amended with synthetic fertilizers and cultivated
using no-tillage practices, following the conservation agriculture indications [21,22], while the other
one was run with a standard approach, namely, using synthetic fertilizers and deep tillage practices.
Here, the numerical model HYDRUS-1D was calibrated and validated versus field-observed data
to infer if soil hydrology and N transformations were substantially changed by the introduction of
conservation agriculture practices. As far as the authors are aware, this is the first study that uses
a combination of continuous soil moisture sensors, high-resolution tracer profiles, and soil NO3

−

content to calibrate and validate a numerical model in a compost/no-tillage field experiment. In fact,
other similar studies were only calibrated and validated versus observed soil NO3

− content [23,24] or
discontinuous soil moisture content and soil N content [25].

2. Materials and Methods

2.1. Site Location and Characterization

The agricultural test site is located in the Po River plain near the city of Ferrara (Northern Italy) at
the following coordinates: 44◦47′41′′ N and 11◦42′20′′ E (Figure 1). The soil is classified as hypocalcic
haplic calcisol. The site has been cultivated with a rotation of cereals (maize and winter wheat) and a
precession of beetroot. It is representative of large portions of the lower Po river valley.

The site was investigated as part of a research project supported by the Rural Development
Programme of the Emilia-Romagna Region (PSR 2014–2020), which aims to reduce the environmental
impact of agricultural practices by comparing the use of compost and no-tillage techniques versus the
classic fertilization and tillage techniques. A plot of 2500 m2 was amended with 30 t/ha of compost
incorporated in the soil with a minimum-tillage technique (15 cm). After that, the plot underwent a
no-tillage practice (No-till+CMP plot) for the whole duration of the experiment, while another plot
was cultivated with classic fertilization and tillage practices (STD plot). The field was cultivated with
(i) winter wheat, seeded on 30 October 2016 and harvested on 26 June 2017; (ii) maize, seeded 7 April
2018 and harvested on 24 August 2018; (iii) winter wheat, seeded on 20 October 2018 and harvested
on 28 June 2019. N fertilization was done via different fertilizers, as shown in Table 1, while compost
was incorporated in the No-till+CMP plot at the beginning of the experiment via minimum tillage
moldboard (10–15 cm deep).
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Figure 1. Satellite image sourced from Google Earth on 22 June 2017, with the location of STD (classic 

fertilization and tillage practices) and No-till+CMP (no-tillage practice) plots and of permanent 

instrumentation. 

Table 1. N fertilization events and rate in the STD and No-till+CMP experimental plots. 

Crops Date Fertilizer 
STD Plot  

(kg-N/ha) 

No-till+CMP Plot  

(kg-N/ha) 

Winter wheat 

13 October 2016 NH4NO3 40 92* 

23 February 2017 NH4NO3 85 40 

03 April 2017 Urea 46 46 

Maize 

29 March 2018 (NH4)3PO4 36 36 

07 April 2018 NH4H2PO4 3 3 

30 April 2018 Urea 115 115 

11 May 2018 Urea 115 115 

Winter wheat 

10 October 2018 (NH4)3PO4 36 36 

27 February 2019 NH4NO3 54 54 

04 April 2019 Urea 64 64 
* considering the N use efficiency from compost equals to 40%. 

A series of 5 soil samples (1 cm diameter and 20 cm long-cores) were collected using an 

Eijkelkamp Soil & Water M04 model hand-driven gouge auger corer (Giesbeek, The Netherlands) 

with a diameter of 30 mm. As it causes minimal disturbance of the sample, the gouge auger is 

frequently applied in profile research. Core samples were taken randomly in the field 10 m from each 

other at a depth of 0–20, 50–70 and 90–110 cm below ground level (b.g.l.) to assess the horizontal and 

vertical variability of the soil’s physical properties, NO3−, and NH4+ concentrations in both 

experimental plots. The collected soil samples were stored in polyethylene (PE) bottles and 

immediately frozen at −18 °C until analyzed. NO3− was analyzed with a Technicon Autoanalyser II, 

while NH4+ was analyzed using a double beam Jasco V-550 UV–vis spectrophotometer. 

Figure 2 depicts the meteorological conditions recorded during the study period, using data 

from a meteorological station located near the field site. Two irrigation events of 50 mm/day, 

performed during maize flowering with sprinklers (28 June and 13 July 2018), were also included. 

The reference potential evapotranspiration rate (Et0) was calculated using the Penman–Monteith 

equation [26]. The groundwater heads were monitored every 30 minutes and then averaged on a 

daily basis using a Soil & Water Diver Micro®  water level data-logger (Eijkelkamp, Giesbeek, The 

Figure 1. Satellite image sourced from Google Earth on 22 June 2017, with the location of
STD (classic fertilization and tillage practices) and No-till+CMP (no-tillage practice) plots and of
permanent instrumentation.

Table 1. N fertilization events and rate in the STD and No-till+CMP experimental plots.

Crops Date Fertilizer STD Plot
(kg-N/ha)

No-till+CMP Plot
(kg-N/ha)

Winter wheat
13 October 2016 NH4NO3 40 92 *

23 February 2017 NH4NO3 85 40
03 April 2017 Urea 46 46

Maize

29 March 2018 (NH4)3PO4 36 36
07 April 2018 NH4H2PO4 3 3
30 April 2018 Urea 115 115
11 May 2018 Urea 115 115

Winter wheat
10 October 2018 (NH4)3PO4 36 36

27 February 2019 NH4NO3 54 54
04 April 2019 Urea 64 64

* considering the N use efficiency from compost equals to 40%.

A series of 5 soil samples (1 cm diameter and 20 cm long-cores) were collected using an Eijkelkamp
Soil & Water M04 model hand-driven gouge auger corer (Giesbeek, The Netherlands) with a diameter
of 30 mm. As it causes minimal disturbance of the sample, the gouge auger is frequently applied in
profile research. Core samples were taken randomly in the field 10 m from each other at a depth of 0–20,
50–70 and 90–110 cm below ground level (b.g.l.) to assess the horizontal and vertical variability of the
soil’s physical properties, NO3

−, and NH4
+ concentrations in both experimental plots. The collected

soil samples were stored in polyethylene (PE) bottles and immediately frozen at −18 ◦C until analyzed.
NO3

− was analyzed with a Technicon Autoanalyser II, while NH4
+ was analyzed using a double beam

Jasco V-550 UV–vis spectrophotometer.
Figure 2 depicts the meteorological conditions recorded during the study period, using data from

a meteorological station located near the field site. Two irrigation events of 50 mm/day, performed
during maize flowering with sprinklers (28 June and 13 July 2018), were also included. The reference
potential evapotranspiration rate (Et0) was calculated using the Penman–Monteith equation [26].
The groundwater heads were monitored every 30 minutes and then averaged on a daily basis using a
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Soil & Water Diver Micro® water level data-logger (Eijkelkamp, Giesbeek, The Netherlands), corrected
for atmospheric pressure changes and placed in a 4.0-m deep piezometer situated between the two plots.
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Figure 2. Rainfall and irrigation events (blue line), groundwater head (red line), and reference
evapotranspiration (black line) observed at the field site.

An array of Watermark® soil moisture sensors (Irrormeter Company, Riverside, CA, USA) was
vertically inserted at 30, 60, and 90 cm b.g.l. into augered holes in each experimental plot. The soil
moisture sensors were used to monitor the matric potential (measurement range 0–25 m of water).
A copper-constantan thermocouple was inserted adjacent to each soil moisture probe to compensate
for the raw measurements of soil temperature since the probes are sensitive to temperature changes.
Moreover, to better observe the matric potential variation induced by the plants’ roots transpiration,
a TEROS 21® soil water potential sensor (Meter Environment, Pullman, WA, USA) was placed at
30 cm b.g.l. in both experimental plots (measurement range 0.9–100 m of water). The principal soil
parameters (Table 2) were sourced from a previous study [27], while the mineralogical composition of
these soils is quartz, K-feldspar, plagioclase, and calcite, associated with small amounts of dolomite;
the clay minerals are mainly smectite, chlorite, serpentine, and mixed layers [28]. Bromide (Br−) was
applied at the beginning of the project (30 October 2016) at a concentration of 1000 mg/l. More details
can be found in Colombani et al. [8].

Table 2. Sediment parameters and their standard deviation from quintuplicate samples. Data sourced
from Mastrocicco et al. [27].

Parameter 0–20 (cm b.g.l.) 50–70 (cm b.g.l.) 90–110 (cm b.g.l.)

Grain size (%)
Fine Sand (0.63–2 mm) 10.1 ± 1.8 8.1 ± 0.8 9.0 ± 1.3

Silt (2–63 µm) 55.8 ± 2.5 56.9 ± 3.5 47.5 ± 4.1
Clay (<2 µm) 34.1 ± 3.0 35.0 ± 2.4 43.5 ± 3.1

Dry bulk density (kg/dm3) 1.01 ± 0.05 1.31 ± 0.11 1.57 ± 0.20
Soil pH (−) 7.7 ± 0.1 7.8 ± 0.1 7.9 ± 0.1
SOM (%) 1.8 ± 0.4 0.5 ± 0.1 0.4 ± 0.1

Carbonates (%) 9.1 ± 0.6 11.5 ± 0.4 4.0 ± 0.3

2.2. Flow and Transport Modelling Approach

The finite element model HYDRUS-1D [13] was selected for simulating the one-dimensional movement
of water in variably saturated media. The code solves Richards’ equation for saturated–unsaturated water
flow via a numerical algorithm under the assumption that the air phase is negligible and thermal
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gradients can be ignored in the water flow process. Since an undisturbed soil column collected at
this field site [27] was already successfully simulated using the dual-porosity approach proposed by
Durner [29], the same approach was used to simulate this field experiment. This method splits the
porous medium into two overlapping regions, and for each of these regions, a van Genuchten–Mualem
type function [30] of the soil hydraulic properties is used.

The standard advection–dispersion equation (ADE) for dissolved species transport with linear
sorption was selected to simulate the fate and transport of N species in the vadose zone. The actual root
water uptake was simulated using the Feddes water stress response function [13]. Variable crop heights
depending on the phenological state and maximum rooting depths, defined by visual inspection during
core sampling, were used as input values. Passive nutrient uptake was simulated by multiplying root
water uptake with the dissolved nutrient concentration for soil solution concentration values below
a threshold concentration (Crmax). Passive nutrient uptake is thus zero when Crmax equals to zero,
while when the concentration is lower than Crmax, the solute is removed from the model, or when
the concentration is higher than Crmax, the solute is left in the soil. The Crmax was set very high for
nutrients (1000 mg-N/dm3) and lower for Br− (100 mg/dm3).

2.3. Flow and Transport Boundary Conditions

The numerical grid was discretized in 101 nodes of 40 mm each to form a regular grid 4.0 m
deep (Figure 3). At the soil surface, a variable pressure head/flux boundary condition was selected to
replicate variations in the infiltration rate due to different rainfall intensities. As a bottom boundary
condition, a variable pressure head/flux boundary also was specified.

In the transport model, a third-type (Cauchy) concentration flux boundary condition, with user-specified
liquid phase concentration of the infiltrating water, was selected as upper and lower boundaries.
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Figure 3. Scheme of the numerical model setup used to simulate both the STD and No-till+CMP
experimental plots.

The reactive network used to simulate the sequential transformations of the N species (from urea
to NH4

+, NO2
−, and NO3

−) was the one initially proposed by van Genuchten [31], coupled with linear
sorption for NH4

+ and NH3 volatilization via a first-order reaction [13]. The organic N mineralization
rate of both compost and soil organic matter was accounted for using a zero-order production rate for
urea, here assumed as a generalized organic N source. NH4

+ and NO3
− deposition from precipitations

was included to account for a rate of 25 kg-N/ha/year [32], which is an intermediate value between the
lower 13 kg-N/ha/year [33] and upper 34 kg-N/ha/year [34] estimates for northern Italy. The nutrient
sources and amount were specified following the data shown in Table 1. Tillage operations can alter
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the Ks of the topsoil immediately after, but there was not enough data on Ks variations to include such
complexity; thus, Ks was treated as constant throughout the project. The initial species concentrations
were linearly interpolated throughout the model profile using the observed concentrations collected
every 50 cm. The linear sorption coefficient for NH4

+ (2.14 × 10−5 dm3/mg-N), ammonification
rate (0.28 1/day), nitritation rate (0.12 1/day) and nitratation rate (5.9 1/day) were sourced from
Mastrocicco et al. [27], while the first-order volatilization rate (0.66 1/day) was sourced from laboratory
experiments on NH3 volatilization conducted in nearby fields [12]. Diffusion values such as molecular
diffusion in water (1.0e−5 m2/day) and in air (1.52 m2/day) and the Henry equilibrium distribution
constant between liquid and gaseous phases for NH3 (0.01) were kept constant in all horizons.

2.4. Model Calibration and Validation Procedure

The model calibration target was to minimize the differences between the observed and calculated
values for matric potential and Br−, NO3

−, and NH4
+ concentrations from the plots in the first two

cropping years (from October 2016 to September 2018). The model was then validated using the
observations of the last cropping season (from September 2018 to June 2019). The flow and transport
parameters were assumed to be homogeneous throughout the soil column; thus, they were kept
constant within each model, except for vertical dispersivity (λv). The flow and transport model
parameters were automatically adjusted via an inverse modeling procedure present in HYDRUS-1D.
The latter uses a Marquardt–Levenberg type algorithm to optimize each parameter versus an objective
function made by all the available observations and their respective weights [13]. The optimized flow
parameters were residual soil water content (Qr) and the saturated soil water content (Qs) of the van
Genuchten [30] parametric functions in the 4 layers constituting the model domain, for a total of 8
parameters. The optimized transport parameters were λv (m) and denitrification rate (1/day). Other
reaction parameters listed in Table 3 were sourced by a similar model previously developed for this
soil [27].

The degree of model calibration was assessed by calculating and comparing the determination
coefficient (R2) and modeling efficiency (EF) calculated according to Nash and Sutcliffe [35]:

EF = 1−

∑n
j=1

(
O j − P j

)2

∑n
j=1

(
O j −O

)2 , (1)

where Pj is the calculated value corresponding to the observed Oj, and O is the mean value of the
observed data.

3. Results and Discussion

3.1. Flow Model Results

The flow model was calibrated versus the continuous monitoring of in situ matric potential
(Figure 4). Given that the observed values in the two different experimental plots were not dissimilar,
it was decided to average the daily values at the same depth to calibrate a single flow model capable
of reproducing the soil water fluxes in both plots. The dual-domain approach employed here was
indispensable to avoid water ponding and runoff, which was not observed after extreme rainfall events,
like the one recorded in September 2017 (see Figure 2).

The latter caused a sudden decrease of matric potential at all monitored depths (Figure 4) that
would not have been as well-represented by single porosity, which cannot allow rapid infiltration in low
hydraulic conductivity (Ks) soil despite the elevated precipitation rates [36]. The soil retention curve
parameters (Table 3) are essentially the ones retrieved from a previous intact soil column experiment
performed in the same field site [27], and the good model performance (R2 = 0.90 and EF = 0.85) proves
that undisturbed soil column experiments can be used to provide reliable estimates of soil retention
parameters provided the size of the column is large enough to account for macroporosity at the plot
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scale [37]. From Figure 4, it is also evident that the matric potential was influenced not only by the
roots’ water uptake but also by meteorological conditions that indeed contributed to decreasing matric
potential during summer 2017 and spring 2018 via frequent rainfall events.
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Figure 4. Comparison of the calculated (lines) and observed (open circles) pressure heads at different
depths (cm b.g.l.). The −30 cm observation point belongs to Layer 2, while −60 cm and −90 cm
observation points belong to Layer 3. Rainfall and irrigation events (blue line) are also plotted.

Table 3. Flow parameters obtained by inverse modeling in the STD and No-till+CMP experimental plots.

Parameter Layer 1 Layer 2 Layer 3 Layer 4

Qr 0.03 0.04 0.05 0.05
Qs 0.44 0.54 0.53 0.35

n (-) 1.71 1 1.71 1 1.71 1 2.80
α (1/m) 0.51 1 0.52 1 0. 52 1 0.05

Ks (m/day) 0.08 0.07 0.03 2 0.90 2

w (-) 0.5 1 0.5 1 0.5 1 0.5
n−2 (-) 1.5 1 1.5 1 1.5 1 2.80
α−2 (1/m) 0.20 1 0.20 1 0.20 1 0.05

1 Initial value taken from [27]. 2 Initial value taken from [8].
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3.2. Nonreactive Transport Model Results

Figure 5 shows the results of the natural gradient tracer test started at the beginning of the project
and the Br− concentrations simulated by the nonreactive transport model. The model was fitted
versus the observed Br− concentrations sourced from a previous study on environmental tracers [8].
The center mass was recovered at approximately −0.4 m b.g.l. in both experimental plots, near the
maximum plowing depth. Thus, it was decided to calibrate a single nonreactive transport model
capable of reproducing the solute advection and dispersion in both plots. It should be noticed that the
water table was always lower than −0.8 m b.g.l. and vertical solute transport in the vadose zone was
much slower than in saturated conditions. Moreover, the data and their modeling allow us to infer
that the conservation agriculture practices did not significantly alter the solute transport in the vadose
zone with respect to standard practices, at least according to the available data. A change in physical
parameters influencing solute transport, e.g., Ks, should be expected only after different years from the
introduction of the conservation agriculture practices [38,39].
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Figure 5. Comparison of the calculated (black line) and observed (open circles) Br− concentrations
profiles collected on 27 March 2018 in both the experimental plots. Calculated Br− concentrations using
a Crmax of ±15% (dashed black lines) and minimum and maximum groundwater heads (dashed blue
lines) are also plotted.

The vertical distribution of Br− concentration was well fitted using the standard ADE equation
(Figure 5), with a calculated R2 of 0.88 and an EF of 0.81. Thus, for the principle of parsimony in
numerical models [40], there was no need to use more complex approaches like the mobile−immobile
physical nonequilibrium approach [41]. The obtained λv values are relatively large in the upper soil
layers (Table 4), indicating a greater soil heterogeneity in the plowed horizon; these values are in line
with the value of 20.3 mm previously obtained for the column experiment [27]. In addition, the obtained
values are also within the range of the observed λv values for tilled agricultural soils [39]. Finally,
it should be mentioned that Crmax for Br− largely influences the simulation results, so after a trial
and error calibration (since Crmax cannot be automatically calibrated), a best-fit value of 103 mg/dm3

was obtained. The cumulative mass taken up by roots was 22.1% of the Br− mass, a value generally
consistent with the literature data of 8.1% [41], 10.0% [42], or even higher (from 11% to 38%) [43,44].
Nevertheless, this parameter should be better characterized in future tracer studies and included in
inverse modeling procedures, given that a simple sensitivity analysis variating the calibrated Crmax

value of ± 15% shows very different calculated Br− concentration profiles (Figure 5).
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Table 4. Vertical dispersivity values obtained by inverse modeling in the STD and No-till+CMP
experimental plots.

Parameter Name Optimized Value

λv layer 1 (mm) 11.9
λv layer 2 (mm) 6.1
λv layer 3 (mm) 3.0
λv layer 4 (mm) 3.0

3.3. Reactive Transport Model Results

From Figure 6, the vertical profiles of NO3
− in the STD experimental plot were reproduced with

sufficient quality by the numerical model, with a calculated R2 of 0.68 and an EF of 0.59, although the
model failed to accurately simulate NO3

− concentrations between 0.5 and 0.7 m b.g.l., which is below
the interface between the tilled and untilled soil horizons.
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− and NH4

+

concentrations profiles collected at selected dates in the STD experimental plot. Error bars represent
the standard deviation over 5 replicates.

In addition, the No-till+CMP model suffered from poor model performance (Figure 6), with
a calculated R2 of 0.69 and an EF of 0.58. This could be due to a number of reasons, such as root
distribution heterogeneities in both space and time, seasonal variation of organic N mineralization
rate that was taken as constant here, complex behavior of the uptake rate by plants’ roots modeled
here as passive root water uptake, variations of soil denitrification determined by seasonal variation
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of substrates’ availability, and soil moisture and saturation. Nevertheless, both simulations were
capable of capturing the overall NO3

− and NH4
+ fate in the subsurface, and in particular, the NO3

−

concentrations were always lower in the No-till+CMP respect to the STD experimental plot, except
for the initial season when the compost was incorporated into the topsoil (Figure 7). This is a clear
indication that the conservation agriculture practices have less impact on the environment than the
standard ones, in agreement with previous studies [24,25]. In fact, NO3

− concentrations below the
maximum rooting zone (0.9 m b.g.l.) were always lower in the No-till+CMP experimental plot.

Moreover, the organic N mineralization rates (Table 5) were capable of producing≈45 Kg-N/ha/year
for the No-till+CMP plot and ≈5 Kg-N/ha/year for the STD plot. The large difference between the
two N mineralization rates is due to the low reactivity of soil organic matter in intensively cultivated
fields [45]. In the No-till+CMP, despite the higher organic N mineralization rate induced by the
compost addition, the large pool of available organic carbon also triggered denitrification. In fact,
the calibrated values for the No-till+CMP plot are nearly two times higher than the denitrification
rate used for the STD plot. Besides, to achieve a good calibration, denitrification was also activated in
Layer 3 of the No-till+CMP model (Table 6).
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Table 5. Mean yearly N balance obtained in the STD and No-till+CMP experimental plots.

STD plot
(kg-N/ha/year)

N input N output

Fertilizer N input 223 Crop N uptake 139
N deposition 25 Denitrification 20

N mineralized 5 N volatilized 2
Sum of N input 254 Sum of N output 161
In-out difference 93

No-till+CMP plot
(kg-N/ha/year)

N input N output

Fertilizer N input 191 Crop N uptake 141
N deposition 25 Denitrification 67

N mineralized 45 N volatilized 2
Sum of N input 262 Sum of N output 210
In-out difference 52

Table 6. N mineralization rates and denitrification rates (1/day) obtained by inverse modelling in the
STD and No-till+CMP experimental plots.

Parameter Name Optimized Value STD Optimized Value No-till+CMP

Organic N→ NO3
− Layer 1 1.03 × 10−3 0.11

Organic N→ NO3
− Layer 2 1.00 × 10−3 0.10

Organic N→ NO3
− Layer 3 1.00 × 10−3 1.00 × 10−3

Organic N→ NO3
− Layer 4 0.0 0.0

NO3
−
→ N2 Layer 1 1.93 × 10−3 3.36 × 10−3

NO3
−
→ N2 Layer 2 1.93 × 10−3 3.36 × 10−3

NO3
−
→ N2 Layer 3 0.0 3.36 × 10−3

NO3
−
→ N2 Layer 4 0.0 0.0

These values are in agreement with previous experiments that have reported limited denitrification
for STD soil [27] and enhanced denitrification rates when the same soil is amended with labile organic
substrates, such as acetate [45] produced by roots exudates, mineralization of crop residues, or organic
soil improvers such as compost. Finally, Figure 8 shows the cumulative N mineralization and
denitrification rates calculated for both experimental plots. Here, it is evident that denitrification was
able to remove up to 180 kg-N/ha during the 3 cropping seasons in the No-till+CMP plot, while only
120 kg-N/ha was produced by N mineralization processes. In the STD plot, denitrification was able to
remove only 53 kg-N/ha, while less than 13 kg-N/ha was produced by N mineralization processes.
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An elevated denitrification rate in organic-matter-amended soils is seen as a positive mechanism
for the protection of surface and ground waters from diffused NO3

− pollution. However, from
an agronomical perspective, it is evidently a negative feature, as this also means a net loss of N
fertilizer from the field. Therefore, with the aim of developing management strategies for both
environmental and economic sustainability, the model results shown in Figure 8 have to be considered
by taking into account both perspectives. To do so, it must be considered that denitrification is
not an independent process, but is fully integrated into the N cycle in agricultural soils. In fact,
in soil, when water saturation leads to O2 scarcity, anaerobic processes are favored and denitrification
becomes important [45]. The heterotrophic denitrification rate is then constrained by the availability
of both organic substrates and NO3

−. Thus, in the presence of great availability of labile organic
substrates, such as in the No-till+CMP plot, the mean yearly denitrification rate is higher than for
standard agricultural practices (Table 6). However, from a long-term perspective, the adoption of
agriculturally conservative practices, aimed at increasing and maintaining soil organic matter, would
lead to a slow but continuous release of mineral N (Table 6). This would allow the reduction of the
intensity of synthetic fertilizer applications, leading to basal N concentrations much lower than the
peak values that usually are recorded below agricultural lands fertilized with synthetic urea, as done
in conventional agriculture. A situation of this type, characterized by low basal NO3

− concentrations,
would correspond to a limitation of electron acceptors for denitrification and, therefore, to a reduction
of N losses from the field. Therefore, the increase of soil organic matter has a dual positive role: in
the short term, to enhance denitrification as a buffer to prevent losses of NO3

− to surface and ground
waters, and in the long term, to increase the efficiency of N fertilization in agriculture by increasing the
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basal N supply, a feature that allows the reduction of the intensity of synthetic fertilizers distribution.
This could avoid the formation of NO3

− excess in topsoil, preventing denitrification and N losses to the
atmosphere in the form of both N2 gas and hazardous N protoxide. Finally, it must be mentioned that
the main limitation of the proposed approach, and in general of the physically-based models, is that
the large amount of data necessary to calibrate and validate these models are extremely expensive
and time-consuming, although, without such models, the quantification of mutual biogeochemical
processes is extremely challenging. Future studies should focus on increasing the vertical resolution of
samples to better capture the sharp concentration gradient fronts that can develop in these soils.

4. Conclusions

In this study, a HYDRUS-1D simulation of soil NO3
− accumulation and leaching in conventional

and conservation agriculture cropping systems was successfully calibrated and validated against
continuously observed matric potentials, and against Br−, NO3

−, and NH4
+ soil profiles. The model

provided insights on the water and nitrogen balance in the two monitored cropping systems, especially
quantifying the long residence times in the vadose zone. This approach could be applied in many
other lowland agricultural environments with similar soil and climate characteristics. One of the main
outcomes is that the water balance and retention time in the vadose zone were similar in the two
agricultural plots. However, to better identify advective and dispersive mechanisms, future studies
should pay more attention to Br− uptake rates by roots since this parameter largely controls Br− soil
concentrations. This study provides clear evidence that compost addition and no-tillage practices
(conservation agriculture), but using the standard fertilization practices, can trigger the denitrification
rate and thus diminish nitrate leaching into groundwater. Future studies should also focus on carbon
cycling to add more information to the effective availability of electron donors for denitrification.
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