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Abstract: In this paper, we describe our study of the mixed convection of a Boussinesquian Bingham
fluid in a vertical channel in the absence and presence of an external uniform magnetic field normal to
the walls. The velocity, the induced magnetic field, and the temperature are analytically obtained. A
detailed analysis is conducted to determine the plug regions in relation to the values of the Bingham
number, the buoyancy parameter, and the Hartmann number. In particular, the velocity decreases
as the Bingham number increases. Detailed considerations are drawn for the occurrence of the
reverse flow phenomenon. Moreover, a selected set of diagrams illustrating the influence of various
parameters involved in the problem is presented and discussed.

Keywords: Bingham fluid; channel flow; mixed convection

1. Introduction

In recent years, magnetohydrodynamics has been the subject of many papers because
of its relevant industrial applications. The elements of many magnetohydrodynamic
devices are made in the form of long channels filled by rheological fluids. In this paper, we
detail our study of the steady flow in the absence or in the presence of a uniform external
magnetic field of an electrically conducting Bingham fluid in a vertical channel whose
walls are heated at constant different temperatures. We analyze the mixed convection by
continuing our previous study [1] in which we treated the natural convection.

Bingham fluids are non-Newtonian viscoplastic fluids that possess a yield stress below
which they behave as rigid solids and as viscous fluids if the shear stress exceeds the yield
stress. Therefore, they appear in the channel plug regions, which are a priori unknown and
have to be determined as part of the solution of the problem.

We recall that Bingham fluid is one of the simplest models of a viscoplastic fluid [2].
This kind of fluid modelizes many materials as, for example, muds used in oil extractive
industry, cements, ceramics, molten plastics in extrusion processes, and also biological
fluids in particular conditions.

Many papers are devoted to the study of Bingham fluids both from a theoretical and a
practical point of view. Existence of weak solutions for the system governing the motion is
investigated in [3], studies nonlinear stability of Poiseuille flow in pipes and plane channels
in [4], spatial decay estimates are obtained for the problem of entry flow in a pipe in [5],
and Couette–Poiseuille flow in a porous channel is studied with slip conditions in [6].
Some papers deal with the convective flow of a Bingham fluid in a vertical channel: the
natural convection is studied in [7] for the Couette–Poiseuille flow and in [8,9] for the
Poiseuille flow, the effect of internal and external heating on the free convective flow in a
porous channel is investigated using Pascal’s piecewise-linear law in [10], and the mixed
convection is analyzed in [11].
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In this research, the flow in the channel is steady and fully-developed, and the walls
are vertical and kept at uniform different temperatures. We suppose that the external body
forces are due to the gravity and the fluid is slightly compressible so that the Oberbeck–
Boussinesq approximation is adopted. Moreover, a constant vertical pressure gradient is
applied in order to have mixed convection.

This topic has been studied extensively for Newtonian fluids. A relevant characteristic
is that asymmetric wall temperatures produce a skewness in the velocity profile and, if the
buoyancy parameter is large enough, the reverse flow can occur near the walls ([12–15]).
As far as Bingham fluids are concerned, the unique study is due to Patel and Ingham ([11]),
who outline that three different profiles of the velocity are possible if one assumes that the
magnitude of the stress at the hot wall is greater than the yield stress.

In this paper, we complete the analysis developed in [11]. Actually, many considera-
tions in [11] are only sketched and the limitations to which the Bingham number B and
the buoyancy parameter λ must satisfy in order to have plug regions are not obtained. In
the second part of our study, we suppose the presence of an external uniform magnetic
field orthogonal to the heated walls. Such a magnetic field generates the Lorentz forces
that influence the motion as in the well-known Hartmann flow. We notice that literature in
this area of research is poor ([1,16–18]), and in most cases, the induced magnetic field is not
taken into account.

As previously mentioned, our paper is divided in two parts. The first one (Sections 2 and 3)
is devoted to study the mixed convection in the absence of the external magnetic field
in detail. We find that the stress depends on an integration constant C0 that is a priori
unknown. Unlike the natural convection in which the problem is symmetric ([1]), in the
mixed convection, we have to distinguish three cases depending on the value of the stress
on the coldest wall. We find the analytical expressions of the velocity in the three cases
mentioned above and the plug regions are determined together with the value of the
constant C0. In order to determine the value of C0, we match the expressions of the velocity
at the interfaces between plug regions and no plug regions. The plug regions depend
on the Bingham number B and on the buoyancy parameter λ. We obtain that the first
case is possible only if B < 1 without a priori restrictions on λ, whereas the other two
cases are possible only if λ > 2 while B may assume also values ≥ 1. In Section 3.1, the
velocity behavior is analyzed and the plug regions are described. In particular, the velocity
decreases as B increases and the maximum of the velocity increases as λ increases. In the
third case, the reverse flow phenomenon ([7,14,15]) can occur near the cold wall. This
situation happens when the magnitude of the buoyancy parameter is large enough.

The latter part concerns the flow in the presence of external the magnetic field
(Section 4). We point out that we do not neglect the induced magnetic field because
we do not impose restrictions on the magnetic Reynolds number. For this reason, it is much
more complex to treat the problem because there is another unknown field: the induced
magnetic field. In this situation, the significant component of the deviatoric part of the
stress tensor depends on the induced magnetic field, which is unknown, and so we cannot
obtain the plug regions in terms of the material parameters alone as we did in Section 3.
We find that the presence of the external magnetic field tends to prevent the reverse flow
as for a Newtonian fluid. The influence of B and λ on the velocity is analogous to that
of Section 3. As the Hartmann number M increases, the velocity decreases and the plug
region increases its thickness with M. As far as the induced magnetic field h is concerned,
the trend is similar to the Newtonian case ([14]). In particular, h is a decreasing function of
B and is a increasing function of λ, whereas the modulus of the induced magnetic field is
not monotone when M changes. In Section 6, we summarize the principal results obtained.

2. The Problem and the Governing Equations

In this section and in the next, we complete the study of the problem considered
in [11] on the fully developed steady flow of a homogeneous Bingham fluid. Actually,
many details in [11] are only sketched and the constraints that must be fulfilled by the
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Bingham number B and by the buoyancy parameter λ in order to have plug regions are not
given. Moreover, we study in the details the influence of B and λ on the velocity profile
and on the thickness of the plug regions.

Let us suppose that the motion occurs in the region S between two infinite rigid, fixed,
and vertical plates Π1, Π2 separated by a distance 2 d (Figure 1).

Figure 1. Physical configuration and coordinate system (T2 > T1).

We assume that

S = {(x1, x2, x3) ∈ R3 : (x1, x3) ∈ R2, x2 ∈ (−d, d)},
Πi = {(x1, x2, x3) ∈ R3 : (x1, x3) ∈ R2, x2 = (−1)id}, i = 1, 2

and x1-axis is vertical upward.
The fluid is heat-conducting and the walls Π1,2 are kept at uniform temperature T1,2

with T1 < T2. Moreover, the fluid is assumed slightly compressible so that, under the
Oberbeck–Boussinesq approximation, the governing equations can be written as follows

ρ0v · ∇v = −∇p +∇ · TD + ρ0[1− α(T − T0)]g, (1a)

∇ · v = 0, (1b)

∇T · v = b4T (1c)

where v is the velocity, p is the pressure, TD is the deviatoric part of the stress tensor T, ρ0

is the constant mass density at the reference temperature T0 =
T1 + T2

2
, α is the thermal

expansion coefficient, T is the (absolute) temperature, g = −ge1 is the gravity acceleration,
and b is the thermal diffusivity.

In the energy Equation (1a), we have neglected the dissipative terms, as is usual in the
Oberbeck–Boussinesq approximation.



Fluids 2021, 6, 154 4 of 26

As known, the deviatoric part of the stress tensor satisfies ([2]):

TD = 2µD(v) +
√

2 τ
D(v)
|D(v)| ⇐⇒ D(v) 6= 0 (fluid behavior), (2a)

|TD| ≤
√

2 τ ⇐⇒ D(v) = 0 (plug region). (2b)

In the previous relations, D(v) = 1
2 (∇v +∇vT) is the stretching tensor, µ is the

dynamic viscosity, and τ is the yield stress (µ, τ positive constants).
We recall that (2b) means that the fluid behaves like a rigid body (i.e., D(v) = 0) for

small stresses. The regions where the Bingham fluid behaves like a rigid body are called
plug regions, and in them, the constitutive equation for the deviatoric stress tensor TD is
indeterminate.

We assume v, T ∈ C1(S) and T ∈ C2(S), while the second order derivatives of v are
discontinuous across the boundary of the plug regions.

We study the fully developed flow of the Bingham fluid by searching the velocity and
the temperature in the following form

v = v1(x2)e1, (3a)

T = T(x2) (3b)

so that v is divergence free.
To (1), we append the boundary conditions

v1(±d) = 0, (4a)

T(−d) = T1, (4b)

T(d) = T2. (4c)

As far as the temperature is concerned, from (1c), (3b), (4b), (4c), we obtain

T(x2) =
T2 − T1

2d
x2 + T0, x2 ∈ [−d, d]. (5)

By virtue of (3) and (1a), we deduce

p∗ = p∗(x1) = −Cx1 + p0, C, p0 some constants, (6a)

TD
12 = TD

21 = −Cx2 − ρ0gα
T2 − T1

4d
x2

2 + C̃0, TD
ij = 0 for i, j 6= 1, 2, (6b)

where p∗ = p + ρ0 g x1 (p∗ modified pressure) and C̃0 is an integration constant.
We recall that in the mixed convection, the flow is induced by the gradient of the

temperature together with the gradient of the modified pressure p∗, and so we assume
C 6= 0.

At this stage, it is convenient to rescale the variables of the problem in the follow-
ing way:

y =
x2

d
, v(y) =

v1(dy)
V0

, ϑ(y) =
T(dy)− T0

T2 − T1
, t12(y) =

d
µ V0

TD
12(dy),

V0 =
C d2

µ
, B =

τ d
µ V0

, λ =
ρ0 α g (T2 − T1)

C
, (7)
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where B is known as the Bingham number and λ is the buoyancy parameter. This latter
parameter influences in a relevant way the mixed convection in a vertical channel of
Newtonian and non-Newtonian fluids because if it is large enough, then the reverse flow
phenomenon may occur at cold wall if C > 0 or at hot wall if C < 0 ([11–15,19]).

By using (7), the temperature assumes the simple expression

ϑ(y) =
y
2

as in natural convection ([1]).
By virtue of (7), the Equation (6b) written in dimensionless form becomes

t12 = −λ

4
y2 − y + C0. (8)

As we will see, the integration constant C0 plays a fundamental role in studying the
problem. Finally, we suppose the constant C > 0 in (6) for the sake of simplicity.

3. Analytical Study of the Flow

By taking into account the previous considerations, the velocity v satisfies the follow-
ing equation outside the plug regions:

v′ ± B = −λ y2

4
− y + C0 (9)

where the prime ′ denotes differentiation with respect to y.
We suppose that near the hot wall (y = 1), the continuum behaves as a viscous fluid so

that |t12(1)| > B. Since for a Newtonian fluid in the mixed convection t12(1) < 0, similarly,
we assume

t12(1) < −B (10a)

⇒ C0 <
λ

4
+ 1− B. (10b)

By virtue of (10a) and the continuity of the stress tensor, we have that the continuum
behaves as a fluid near the hot wall.

If we denote by y2 the value of y closer to 1 such that t12(y2) = −B, then we have that
v must solve in the interval [y2, 1] the problem

v′ − B = −λ y2

4
− y + C0, v(1) = 0. (11)

The solution is given by

v(y) =
1− y

12

[
λy2 + (λ + 6)y + λ(1− 3 y2

2) + 6(1− 2 y2)
]
, ∀y ∈ [y2, 1] (12)

where

y2 =
2
λ

[
−1 +

√
1 + λ(C0 + B)

]
(13)

provided

− 1
λ
− B < C0. (14)

We notice that (10) assures that y2 < 1. Simple calculations show that v(y2) > 0 ∀λ > 0.
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Now, we study the flow in [−1, y2]. Unlike the natural convection in which the
symmetry of the problem imposes that t12(−1) > B ([1,8]), in the mixed convection, there
are not a priori restrictions on the value of t12(−1), and so we have to distinguish the
following cases

Case 1. t12(−1) > B;
Case 2. −B < t12(−1) < B;
Case 3. t12(−1) < −B.

Case 1.
From the expression of t12 given by (8), we get

λ

4
− 1 + B < C0. (15)

Inequalities (10) and (15) furnish

B < 1. (16)

As it is immediate to verify − 1
λ
− B <

λ

4
− 1 + B ∀λ > 0 , so that C0 must satisfy

λ

4
− 1 + B < C0 <

λ

4
+ 1− B. (17)

At this stage, we search if there exists some y1 ∈ (−1, y2) such that [y1, y2] is the plug
region. Precisely, y1 must be a solution of the equation t12(y) = B. Of course, we must
choose the largest of the two roots of this equation, which is

y1 =
2
λ

[
−1 +

√
1 + λ(C0 − B)

]
. (18)

We notice that inequalities (17) ensure that y1 is a real number and that

−1 < y1 < y2.

Then, we solve in [−1, y1] the problem

v′ + B = −λ

4
y2 − y + C0, v(−1) = 0 (19)

which furnishes

v(y) =
1 + y

12

[
−λy2 + (λ− 6)y + λ(3 y2

1 − 1) + 6(1 + 2 y1)
]
∀y ∈ [−1, y1]. (20)

The constant C0 has to be determined by requiring v(y1) = v(y2):

λ[2(y3
2 − y3

1)− 3(y2
2 + y2

1) + 2] + 6(y1 + y2)(y2 − y1 − 2) = 0 (21)

Therefore, analogously to the natural convection in [0, 1] ([1]), this first case occurs if
the parameters λ, B and the integration constant C0 satisfy the following conditions

B < 1,
λ

4
− (1− B) < C0 <

λ

4
+ 1− B. (22)

Finally, we notice that if −B < C0 < B then y1 < 0 < y2.
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We now summarize the solution of this case (Figure 2)

v(y) =


1+y
12
[
−λy2 + (λ− 6)y + λ(3 y2

1 − 1) + 6(1 + 2 y1)
]

if y ∈ [−1, y1),

(y2 − 1)2 λ+2λy2+6
12 if y ∈ [y1, y2] (plug region),

1−y
12
[
λy2 + (λ + 6)y + λ(1− 3 y2

2) + 6(1− 2 y2)
]

if y ∈ (y2, 1].

(23)

Figure 2. Plug region in Case 1; if −B < C0 < B then y1 < 0 < y2.

Case 2.
Let us consider now the second case: −B < t12(−1) < B.
This condition furnishes

λ

4
− 1− B < C0 <

λ

4
− 1 + B (24)

that we must associate to

− 1
λ
− B < C0 <

λ

4
+ 1− B (25)

which assures the existence of y2.
Since t12(−1) > −B, there exists a plug region near the wall y = −1. In this region

denoted by [−1, y0], the velocity vanishes and t12(y0) = B. This latter equation furnishes
two real roots provided C0 > − 1

λ + B and y0 is the smallest root given by

y0 =
2
λ

[
−1−

√
1 + λ(C0 − B)

]
. (26)

Taking into account these results, the condition on C0 given by (25) becomes

− 1
λ
+ B < C0 <

λ

4
+ 1− B. (27)

From (27), we deduce the following condition on the Bingham number

B <
(λ + 2)2

8λ
; (28)

moreover since y0 > −1 after some calculations we find

λ > 2. (29)

Now, we study the flow in [y0, y1] where

y1 =
2
λ

[
−1 +

√
1 + λ(C0 − B)

]
is the second root of the equation t12(y) = B. In this interval, v is the solution of the
problem

v′ + B = −λ

4
y2 − y + C0, v(y0) = 0 (30)

which gives

v(y) =
y0 − y

12
[λy2 + (λ y0 + 6)y + λ y0(y0 + 3 y1) + 6 y0], ∀y ∈ [y0, y1]. (31)
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Finally, we have to determine C0 by requiring v(y1) = v(y2), from which follows

λ[2y3
2 − 3y2

2 + (y1 − y0)(y2
0 + 4y0y1 + y2

1) + 1] + 6[(y2 − 1)2 + y2
1 − y2

0] = 0. (32)

Inequalities (24) and (27) may be summarized in the form

max{− 1
λ
+ B,

λ

4
− 1− B} < C0 < min{λ

4
− 1 + B,

λ

4
+ 1− B}. (33)

We then summarize the solution of this case (Figure 3)

v(y) =


0 if y ∈ [−1, y0] (plug region),
y0−y

12 [λy2 + (λ y0 + 6)y + λ y0(y0 + 3 y1) + 6 y0] if y ∈ (y0, y1),

(y2 − 1)2 λ+2λy2+6
12 if y ∈ [y1, y2] (plug region),

1−y
12
[
λy2 + (λ + 6)y + λ(1− 3 y2

2) + 6(1− 2 y2)
]

if y ∈ (y2, 1].

(34)

Figure 3. Plug regions in Case 2; y0 < 0 and if −B < C0 < B then y0 < y1 < 0 < y2.

We now discuss the consequences of inequalities (33), taking into account the four
possibilities and inequalities (28) and (29).

First, we assume that the max in (33) is given by− 1
λ
+ B. If the min in (33) is

λ

4
− 1+ B,

then we must have
(λ− 2)2

8λ
< B < 1, 2 < λ < 6 + 4

√
2.

If the min in (33) is
λ

4
+ 1− B, then, recalling that λ > 2, we deduce

if 2 < λ ≤ 6 + 4
√

2, then 1 ≤ B <
(λ + 2)2

8λ
,

if λ > 6 + 4
√

2, then
(λ− 2)2

8λ
< B <

(λ + 2)2

8λ
.

Alternatively, we suppose that the max in (33) is given by
λ

4
− 1− B. If the min in (33)

is given by
λ

4
− 1 + B, then we obtain

if 2 < λ < 6 + 4
√

2, then B ≤ (λ− 2)2

8λ
,

if λ ≥ 6 + 4
√

2, then B < 1.

Finally, if min in (33) is given by
λ

4
+ 1− B, then we have

1 ≤ B ≤ (λ− 2)2

8λ
, λ ≥ 6 + 4

√
2.

Moreover, we notice that y0 < 0 and if −B < C0 < B then y1 < 0 < y2.

Case 3.
We suppose t12(−1) < −B.
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This inequality, together with the condition for the existence of y2, implies that C0
must satisfy

− 1
λ
− B < C0 <

λ

4
− 1− B. (35)

We search now for the smallest y0 such that t12(y0) = −B. A simple calculation fur-
nishes

y0 = − 2
λ

[
1 +

√
1 + λ(C0 + B)

]
. (36)

We have that y0 > −1 if λ > 2.
We solve in [−1, y0] the problem

v′ − B = −λ

4
y2 − y + C0, v(−1) = 0 (37)

from which we get

v(y) =
1 + y

12
[−λy2 + (λ− 6)y + λ(3 y2

0 − 1) + 6(2 y0 + 1)]. (38)

The plug region is [y0, y1] with

t12(y1) = B, y1 = − 2
λ

[
1 +

√
1 + λ(C0 − B)

]
,

provided C0 > B− 1
λ

. Therefore, conditions (35) must be replaced with

− 1
λ
+ B < C0 <

λ

4
− 1− B (39a)

⇒ B <
(λ− 2)2

8 λ
. (39b)

In [y0, y1], the velocity takes the negative constant value v(y0) ∀ λ > 2, as it is easy
to verify.

At this stage, we search the interval [y1, y1] where v′ > 0 and y1 (< y2) is such that
t12(y1) = B. This latter condition gives

y1 =
2
λ

[
−1 +

√
1 + λ(C0 − B)

]
.

The velocity is found solving in the interval [y1, y1] the problem

v′ + B = −λ

4
y2 − y + C0, v(y1) = v(y0), (40)

where v(y0) is computed using (38).
So, in the interval [y1, y1], the velocity is given by

v(y) = − λ

12
(1 + y3) +

1
2
(1− y2) + (

λ

4
y2

1 + y1)y +
1
2
(y2

0 − y2
1) +

λ

6
(y3

0 − y3
1) +

λ

4
y0(y2

0 + 1). (41)

In order to determine the constant C0, we have to solve the equation

v(y2) = v(y1)



Fluids 2021, 6, 154 10 of 26

where v(y2) is furnished by (12) with y2 given by (13): i.e.,

λ[(y2− 1)2(2y2 + 1)+ y1(y
2
1− 3y2

1)+ 2y3
1− 5y3

0− 3y0 + 1] + 6[(1− y2)
2 + (y1− y1)

2− y2
0− 1] = 0. (42)

Moreover, we notice that y0 < y1 < 0, and if −B < C0 < B, then y1 < 0 < y2.
Finally, we write the solution of this case (Figure 4)

v(y) =



1+y
12 [−λy2 + (λ− 6)y + λ(3 y2

0 − 1) + 6(2 y0 + 1)] if y ∈ [−1, y0),

(y0 + 1)2 2λy0−λ+6
12 if y ∈ [y0, y1] (plug region),

− λ
12 (1 + y3) + 1

2 (1− y2) + ( λ
4 y2

1 + y1)y + 1
2 (y

2
0 − y2

1) +
λ
6 (y

3
0 − y3

1) +
λ
4 y0(y2

0 + 1) if y ∈ (y1, y1),

(y2 − 1)2 λ+2λy2+6
12 if y ∈ [y1, y2] (plug region),

1−y
12
[
λy2 + (λ + 6)y + λ(1− 3 y2

2) + 6(1− 2 y2)
]

if y ∈ (y2, 1].

(43)

Figure 4. Plug regions in Case 3; y0 < y1 and if −B < C0 < B, then y0 < y1 < y1 < 0 < y2.

Remark 1. It is interesting to observe that, since v(y0) < 0, in case 3, the phenomenon of reverse
flow occurs at the cold wall.

Remark 2. Case 1 is possible only if B < 1 without a priori restrictions on λ, whereas cases 2 and
3 are possible only if λ > 2 while B may also assume values≥ 1. Thus, we have that the restrictions
on B are weaker than those of the isothermal case and the natural convection ([1,4,8]) .

Remark 3. We underline that the conditions on B and λ are only necessary if it is essential that
there exists C0 solution of (21), or (33), or (42) satisfying the restrictions (17), or (27), or (39a),
respectively.

3.1. Trend of the Velocity

In this subsection, we analyze the velocity and of the plug regions in the previous
three cases.

Table 1 and Figure 5 show that for every (λ, B), only one of the three cases occurs.

1 3 5 7 10

0.1

0.5

0.9

1

1.2

λ

B

 

 

Case 1

Case 2

Case 3

Figure 5. The position of the points in parameter space indicates which case occurs. The picture
shows only the couples (λ, B) of Table 1.
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Table 1. Values of C0 and of the boundaries of the plug regions when λ and B vary.

λ B Case C0 y0 y1 y1 y2

1.0 0.10 1 0.0923 −0.0077 0.1838
1.0 0.50 1 0.1441 −0.3948 0.5645
1.0 0.90 1 0.2245 −0.8607 0.9151
3.0 0.10 1 0.2732 0.1551 0.3039
3.0 0.50 1 0.4007 −0.1080 0.6161
3.0 0.90 2 0.6063 −0.8964 −0.4369 0.8995
3.0 1.0 2 0.6748 −0.7710 −0.5623 0.9697
5.0 0.10 1 0.4486 0.2625 0.3739
5.0 0.50 2 0.6082 −0.8966 0.0966 0.6230
5.0 1.0 2 0.8685 −0.6340 −0.1660 0.8864
5.0 1.20 2 1.0040 −0.4567 −0.3433 0.9868
7.0 0.10 3 0.6148 −0.9858 −0.8988 0.3273 0.4144
7.0 0.50 2 0.7716 −0.7724 0.2010 0.6133
7.0 1.0 2 1.0145 −0.5856 0.0142 0.8246
7.0 1.20 2 1.1306 −0.4905 −0.0809 0.9031

10.0 0.10 3 0.8570 −0.8502 −0.7855 0.3855 0.4502
10.0 0.50 3 0.9865 −0.9966 −0.6844 0.2844 0.5966
10.0 0.70 2 1.0721 −0.6345 0.2345 0.6653
10.0 1.20 2 1.3162 −0.4941 0.0941 0.8230

The profile of the velocity in Case 1 is plotted in Figure 6: v decreases as B increases
and the maximum of the velocity increases as λ increases.

In this case, the plug region is closer to the hot wall; its boundaries are shown in
Figure 7. We have that y1 decreases with B and increases with λ, while y2 increases with B
and λ. Hence, when B increases, the thickness of the plug region increases.
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Figure 6. Case 1: profile of the velocity.
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Figure 7. Case 1: plug boundaries (y1, y2).

Figure 8 shows the trend of v as the Bingham number B and the buoyancy parameter
λ vary in Case 2: the velocity decreases as B increases, as in Case 1.

In Case 2, we have two plug regions (Figure 9): one attached to the cold wall ([0, y0])
and one closer to the hot wall ([y1, y2]).

We have that y0 increases with B and λ such that the thickness of the plug region
[0, y0] increases with these two parameters. Furthermore, we see that the thickness of the
plug region [y1, y2] increases with B and decreases with λ.
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Figure 8. Case 2: profile of the velocity.
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Figure 9. Case 2: plug boundaries (y0, y1, y2).

Finally, the behavior of the velocity in Case 3 is shown in Figure 10, which underlines
that, in this case, the reverse flow phenomenon can occur near the cold wall. This phe-
nomenon has been studied in other physical situations (see, for example, [7,14,15]). This
situation occurs when the magnitude of the buoyancy parameter λ is large enough (λ > 6).
We notice that the reverse flow occurs for a Bingham fluid if λ takes values greater than
those concerning Newtonian fluids for which the critical value of λ is 6 ([15]). This fact is
physically reasonable.
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Figure 10. Case 3: profile of the velocity.

We recall that now we have two plug regions: the thickness of [y0, y1] and [y1, y2]
increases with B, while slightly decreases with λ (Figure 11).
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Figure 11. Case 3: plug boundaries (y0, y1, y1, y2).

4. Hartmann Flow with Mixed Convection

In this section, we assume that the Bingham fluid filling the channel S is electrically
conducting, in the regions outside S there is a vacuum, and the walls are nonelectri-
cally conducting.

An external uniform magnetic field H0 = H0e2 normal to planes Π1,2 (H0 > 0)
is applied.

We search the magnetic field H ∈ C2(S) in the form:

H = H1(x2)e1 + H0e2, (44)

so that H is divergence free.
The equations governing the motion now are

ρ0v · ∇v = −∇p +∇ · TD + µe(∇×H)×H + ρ0[1− α(T − T0)]g, (45a)

∇ · v = 0, ∇ ·H = 0, (45b)

ηe4H +∇× (v×H) = 0, (45c)

∇T · v = b4T (45d)

where µe, ηe are the magnetic permeability, magnetic diffusivity respectively (positive constants).
Boundary conditions for the induced magnetic field H1 are

H1(±d) = 0. (46)

As in the previous section, we write the problem in dimensionless form by adding
to (7) relation giving the rescaled induced magnetic field

h(y) =
H1(dy)

V0
√

σe µ
, σe = electrical conductivity. (47)

By virtue of (3), (44), and (45a), we deduce

P = P(x1) = −Cx1 + p0 C, p0 some constants,

TD
12 = TD

21 = −µeH0 H1(x2)− Cx2 + C̃0, TD
ij = 0 for i, j 6= 1, 2 (48)
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where P = p + ρ0gx1 + µe
H2

1
2

is the modified pressure, C > 0 and C̃0 is an integration
constant.

Using (7) and (47) and introducing the Hartmann number M given by

M = d µe H0

√
σe

µ
,

we have that the only significant component of TD is

t12 = −M h− λ

4
y2 − y + C0. (49)

Then, outside the plug regions, we have the system

v′ ± B = −M h− λ

4
y2 − y + C0,

h′′ + M v′ = 0,

while the dimesionless temperature ϑ is again given by ϑ(y) =
y
2

.
In order to study the flow, we adopt arguments and procedures analogous to those

used in the absence of magnetic field. However, as it is seen from (49), now t12 depends on
h which is unknown so that we cannot obtain the explicit expressions of the boundaries of
the plug regions in terms of B, C0, λ as in Section 3. For this reason, it is not possible to find
a priori restrictions on the buoyancy parameter λ.

As in the previous section, we assume t12(1) < −B so that from (46) and (49), we
obtain again condition (10b) on the integration constant C0.

The hypothesis on t12(1) assures that near the hot wall y = 1, there is a region where
the continuum behaves as a fluid.

We denote by [y2, 1] this region with y2 such that t12(y2) = −B. Then, we have to
solve in this interval the system

v′ − B = −M h− λ

4
y2 − y + C0, (50a)

h′′ + M v′ = 0 (50b)

with the boundary conditions

v(1) = 0, v′(y2) = 0, h(1) = 0. (51)

The solution is given by

v(y) = −c1 sinh(My)− c2 cosh(My) +
λ

2M2 y + c3, (52a)

h(y) = c1 cosh(My) + c2 sinh(My)− λ

4M
y2 − y

M
+

B + C0
M

− λ

2M3 ∀y ∈ [y2, 1] (52b)

where the constants c1, c2, c3 depend on C0, y2, which, for the moment, are unknown.
The expressions of c1, c2, c3 are given in the Appendix A.

In order to study the flow in [−1, y2], we have to distinguish the same three cases
examined in the absence of the magnetic field.

Case 1M: t12(−1) > B

This condition together (10b) furnishes

λ

4
+ B− 1 < C0 <

λ

4
− B + 1, B < 1. (53)



Fluids 2021, 6, 154 16 of 26

Now, we search y1 ∈ (−1, y2) such that t12(y1) = B and in [−1, y1] the continuum
behaves as a fluid. Therefore, in this interval, we have to solve the system

v′ + B = −M h− λ

4
y2 − y + C0,

h′′ + M v′ = 0 (54)

with the boundary conditions

v(−1) = 0, v′(y1) = 0, h(−1) = 0. (55)

The solution is

v(y) = −c4 sinh(My)− c5 cosh(My) +
λ

2M2 y + c6,

h(y) = c4 cosh(My) + c5 sinh(My)− λ

4M
y2 − y

M
+

C0 − B
M

− λ

2M3 ∀y ∈ [−1, y1] (56)

where the constants c4, c5, c6 are given in the Appendix A and they depend on C0, y1
which for the moment are unknown.

Unlike what happens in the absence of the magnetic field, y1 and y2 cannot be de-
termined explicitly as function of C0 (see (13) and (18)) so that we have three unknowns
y1, y2, C0 that we can determine by means of the following arguments.

First of all, we have that [y1, y2] is a plug region so that

v(y1) = v(y2). (57)

Moreover, also in this region Equation (50b) holds; hence, h′′ = 0 from which h′(y) =
h′(y1) = h′(y2) ∀y ∈ [y1, y2]. Then the induced magnetic field in the plug region is linear.
Precisely, we have

h(y) = h′(y1)y + h(y2)− h′(y2)y2 ⇒ h(y1)− h′(y1)y1 = h(y2)− h′(y2)y2. (58)

Finally, since h′ + Mv = constant in [−1, 1], then

h′(−1) = h′(1). (59)

Taking into account (57)–(59), we have that y1, y2, C0 are determined by solving the system

λ[M2 + 2− 2 cosh(M(1 + y1))]− 4M2(C0 − B + 1)
sinh(M(1 + y1))

+

λ[M2 + 2− 2 cosh(M(1− y2))]− 4M2(C0 + B− 1)
sinh(M(1− y2))

+ 2λ M(y1 − y2) = 0,

y1
λ[M2 + 2− 2 cosh(M(1 + y1))]− 4M2(C0 − B + 1)

sinh(M(1 + y1))
+

+ y2
λ[M2 + 2− 2 cosh(M(1− y2))]− 4M2(C0 + B− 1)

sinh(M(1− y2))
+ λ M(y2

1 − y2
2)− 8MB = 0,

λ[2− (M2 + 2) cosh(M(1 + y1))] + 4M2(C0 − B + 1) cosh(M(1 + y1))

sinh(M(1 + y1))
+

+
λ[2− (M2 + 2) cosh(M(1− y2))] + 4M2(C0 + B− 1) cosh(M(1− y2))

sinh(M(1− y2))
+ 4Mλ = 0. (60)

We now summarize the solution of this case (Figure 2)

v(y) =


−c4 sinh(My)− c5 cosh(My) + λ

2M2 y + c6 if y ∈ [−1, y1),
−c4 sinh(My1)− c5 cosh(My1) +

λ
2M2 y1 + c6 if y ∈ [y1, y2] (plug region),

−c1 sinh(My)− c2 cosh(My) + λ
2M2 y + c3 if y ∈ (y2, 1];

(61)
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h(y) =


c4 cosh(My) + c5 sinh(My)− λ

4M y2 − y
M + C0−B

M − λ
2M3 if y ∈ [−1, y1),

h′(y1)y + h(y2)− h′(y2)y2 if y ∈ [y1, y2] (plug region),
c1 cosh(My) + c2 sinh(My)− λ

4M y2 − y
M + B+C0

M − λ
2M3 if y ∈ (y2, 1].

(62)

Case 2M: −B < t12(−1) < B

This condition on t12 furnishes again (24). Since inequality (10b) holds, we have to
distinguish two cases:

B < 1 ⇒ λ

4
− 1− B < C0 <

λ

4
− 1 + B

B ≥ 1 ⇒ λ

4
− 1− B < C0 <

λ

4
+ 1− B. (63)

Since t12(−1) > −B, there is a plug region near the cold wall. We denote by [−1, y0]
this region where v = 0; y0 < y2 is the smallest solution of the equation t12(y) = B, i.e.,

Mh(y0) +
λ

4
y2

0 + y0 − C0 + B = 0. (64)

As far as the expression of the induced magnetic field is concerned, from h′′ = 0 we
deduce easily

h(y) = h′(y0)(y + 1) ∀y ∈ [−1, y0]. (65)

Of course, h′(y0) = h′(−1) and h′(−1) = h′(1) as we have explained in the Case 1.
Now, we suppose y > y0. By virtue of the continuity of v and taking into account that

v 6= 0 in [y2, 1) we search y1 such that v 6= 0 in (y0, y1]. As in the Section 2 we have that
y1 (< y2) is solution of the equation t12(y) = B.

Therefore, we have to solve the system (54) with the boundary conditions

v(y0) = 0, v′(y1) = 0, h(y0) = −
1
M

(
λ

4
y2

0 + y0 − C0 + B
)

. (66)

The solution is given by

v(y) = −c7 sinh(My)− c8 cosh(My) +
λ

2M2 y + c9, (67a)

h(y) = c7 cosh(My) + c8 sinh(My)− λ

4M
y2 − y

M
+

C0 − B
M

− λ

2M3 ∀y ∈ [y0, y1] (67b)

where the constants appearing in the solution have the expressions given in (A3).
Finally, in [y1, y2] the velocity is constant, i.e., v(y) = v(y1) = v(y2) and the induced

magnetic field is linear and given by h(y) = h′(y1)y + [h(y2)− h′(y2)y2].
At this stage, we must determine y0, y1, y2, C0 by means of the system

v(y1) = v(y2), h(y0) = h′(y0)(y0 + 1),

h′(y0) = h′(1), h(y1)− h′(y1)y1 = h(y2)− h′(y2)y2 (68)
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where h(y0) is given in (66), h′(y0) and h′(1) are obtained from (67b) and (52b). If we
explicit Equation (68), then we get

λ[M2 + 2− 2 cosh(M(1− y2))]− 4M2(C0 + B− 1)
sinh(M(1− y2))

+

2 λ
1− cosh(M(y1 − y0))

sinh(M(y1 − y0))
+ 2 λ M(y1 − y0) = 0,

2 λ(y0 + 1)[1− cosh(M(y1 − y0))

sinh(M(y1 − y0))
− λ M y0(y0 + 2)− 4M(C0 − B + 1) = 0,

λ[2− (M2 + 2) cosh(M(1− y2))] + 4M2(C0 + B− 1) cosh(M(1− y2))

sinh(M(1− y2))
+

+ 2 λ
1− cosh(M(y1 − y0))

sinh(M(y1 − y0))
+ 2λ M(1− y0) = 0,

y2
λ[M2 + 2− 2 cosh(M(1− y2))]− 4M2(C0 + B− 1)

sinh(M(1− y2))
+

+ y1
2 λ[1− cosh(M(y1 − y0))]

sinh(M(y1 − y0))
+ λ M(y2

1 − y2
2)− 8MB = 0. (69)

We now summarize the solution of this case (Figure 3)

v(y) =


0 if y ∈ [−1, y0] (plug region),
−c7 sinh(My)− c8 cosh(My) + λ

2M2 y + c9 if y ∈ (y0, y1),
−c7 sinh(My1)− c8 cosh(My1) +

λ
2M2 y1 + c9 if y ∈ [y1, y2] (plug region),

−c1 sinh(My)− c2 cosh(My) + λ
2M2 y + c3 if y ∈ (y2, 1];

(70)

h(y) =


h′(y0)(y + 1) if y ∈ [−1, y0] (plug region),
c7 cosh(My) + c8 sinh(My)− λ

4M y2 − y
M + C0−B

M − λ
2M3 if y ∈ (y0, y1),

h′(y1)y + h(y2)− h′(y2)y2 if y ∈ [y1, y2] (plug region),
c1 cosh(My) + c2 sinh(My)− λ

4M y2 − y
M + B+C0

M − λ
2M3 if y ∈ (y2, 1].

(71)

Case 3M: t12(−1) < −B

In this case, the condition on t12(−1) furnishes

C0 <
λ

4
− 1− B. (72)

Now, we study the flow in [−1, y2]; first of all we search the smallest y0 ∈ (−1, y2)
such that t12(y0) = −B, i.e.,

Mh(y0) +
λ

4
y2

0 + y0 − C0 − B = 0. (73)

We have to solve in [−1, y0] the system (50) with the boundary conditions

v(−1) = 0, v′(y0) = 0, h(−1) = 0 (74)

whose solution is

v(y) = −c10 sinh(My)− c11 cosh(My) +
λ

2M2 y + c12,

h(y) = c10 cosh(My) + c11 sinh(My)− λ

4M
y2 − y

M
+

C0 + B
M

− λ

2M3 ∀y ∈ [−1, y0] (75)

where c10, c11, c12 are given in the Appendix A.
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Now, we search the plug region [y0, y1] where y1 satisfies the equation t12(y) = B, i.e.,

Mh(y1) +
λ

4
y2

1 + y1 − C0 + B = 0. (76)

In this interval

v(y) = v(y0) = v(y1), h(y) = h′(y0)y + h(y1)− h′(y1)y1. (77)

The next step is to search the interval [y1, y1] where v′ > 0 and y1 < y2 is solution of
t12(y) = B.

The velocity and the induced magnetic field satisfy in [y1, y1] the system (54) with the
boundary conditions

v(y1) = v(y0), v′(y1) = 0, h(y1) = −
1
M

(
λ

4
y2

1 + y1 − C0 + B
)

. (78)

Hence v, h are given by (67) with the substitution of the constants c7, c8, c9 with
c13, c14, c15, respectively. In the Appendix A, we write the expressions of the arbitrary con-
stants.

In [y1, y2] there is another plug region where

v(y) = v(y1) = v(y2), h(y) = h′(y1)y + h(y2)− h′(y2)y2. (79)

To conclude, we must determine C0, y0, y1, y2, y1 that are unknown.
By proceeding as previously, we have to solve the system

v(y2) = v(y1), h(y1)− h′(y1) y1 = h(y2)− h′(y2)y2, h′(y1) + M v(y1) = h′(−1),

h′(y0) + M v(y0) = h′(1), h(y0)− h′(y0)y0 = h(y1)− h′(y1)y1. (80)

After some calculations the previous system becomes

λ[M2 + 2− 2 cosh(M(1− y2))]− 4M2(C0 + B− 1)
sinh(M(1− y2))

+

+
2 λ[1− cosh(M(y1 − y1))]

sinh(M(y1 − y1))
+ 2λ M(y1 − y2) = 0,

y2
λ[M2 + 2− 2 cosh(M(1− y2))]− 4M2(C0 + B− 1)

sinh(M(1− y2))
+

+ y1
2 λ[1− cosh(M(y1 − y1))]

sinh(M(y1 − y1))
+ λ M(y2

1 − y2
2)− 8MB = 0,

λ[M2 + 2− 2 cosh(M(1 + y0))]− 4M2(C0 + B + 1)
sinh(M(1 + y0))

+

+
2 λ[1− cosh(M(y1 − y1))]

sinh(M(y1 − y1))
+ 2Mλ(y0 − y1) = 0,

λ[2− (M2 + 2) cosh(M(1 + y0))] + 4M2(C0 + B + 1) cosh(M(1 + y0))

sinh(M(1 + y0))
+

+
λ[2− (M2 + 2) cosh(M(1− y2))] + 4M2(C0 + B− 1) cosh(M(1− y2))

sinh(M(1− y2))
+ 4Mλ = 0,

y0
λ[M2 + 2− 2 cosh(M(1 + y0))] + 4M2(C0 + B + 1)

sinh(M(1 + y0))
+

+ y1
2 λ[1− cosh(M(y1 − y1))]

sinh(M(y1 − y1))
+ λ M(y2

0 − y2
1) + 8MB = 0. (81)

Finally, the solution of this case is given by (Figure 4)
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v(y) =



−c10 sinh(My)− c11 cosh(My) + λ
2M2 y + c12 if y ∈ [−1, y0),

−c10 sinh(My0)− c11 cosh(My0) +
λ

2M2 y0 + c12 if y ∈ [y0, y1] (plug region),
−c13 sinh(My)− c14 cosh(My) + λ

2M2 y + c15 if y ∈ (y1, y1),
−c13 sinh(My1)− c14 cosh(My1) +

λ
2M2 y1 + c15 if y ∈ [y1, y2] (plug region),

−c1 sinh(My)− c2 cosh(My) + λ
2M2 y + c3 if y ∈ (y2, 1];

(82)

h(y) =



c10 cosh(My) + c11 sinh(My)− λ
4M y2 − y

M + C0+B
M − λ

2M3 if y ∈ [−1, y0),
h′(y0)y + h(y1)− h′(y1)y1 if y ∈ [y0, y1] (plug region),
c13 cosh(My) + c14 sinh(My)− λ

4M y2 − y
M + C0−B

M − λ
2M3 if y ∈ (y1, y1),

h′(y3)y + h(y2)− h′(y2)y2 if y ∈ [y1, y2] (plug region),
c1 cosh(My) + c2 sinh(My)− λ

4M y2 − y
M + B+C0

M − λ
2M3 if y ∈ (y2, 1].

(83)

Remark 4. Taking into account the Maxwell equations, we have that to the magnetic field H an
electric field E is associated given by

E =
1
σe
∇×H + µeH× v

which furnishes

E = −µeH0V0

M
[h′(y) + Mv(y)]e3 = E0 e3,

where E0 is a constant, as a consequence of (50b). The value taken by E0 depends on the case
considered.

Since in the most of papers concerning MHD flows, the induced magnetic fied is
neglected, the presence of a uniform electric field orthogonal to the flow and to the magnetic
field is not highlighted.

Finally, outside the walls, where we assume that there is a vacuum, the electromagnetic
field is given by

E = E0e3, H = H0e2.

Remark 5. We furnish some physical characteristics of the flow in the three cases. These features
do not depend on the presence of the external magnetic field.

The Nusselt number at the walls is

Nu1,2 =
k1,2d

k
=

d
T2 − T1

dT
dx2
|x2=±d = ϑ′(±1) =

1
2

where k1,2 are the heat transfer coefficients of the walls.

The heat flux vector, which is related to the Nusselt number, is constant in the channel
and is given by

q = − (T2 − T1)k
2d

e2.

This expression is physically quite reasonable because the heat transfer occurs from the hot
wall to the cold one.
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The skin frictions τ1,2 at both walls are given by

τ1,2 = µ
V0

d
[∓(C0 −

λ

4
)− 1] e1.

5. Discussion

In this section we analyze the behavior of the velocity and determine the plug regions
in the three cases influenced by the presence of the external magnetic field.

In Table 2 we write which of the three cases occurs for (M, λ, B) fixed (we refer to
Figure 12 for better viewing).

Table 2. Values of C0 and of the boundaries of the plug regions when M, λ and B vary.

M λ B Case C0 y0 y1 y1 y2

0.10 5.00 0.05 1M 0.4328 0.2825 0.3389
0.10 5.00 0.10 1M 0.4491 0.2625 0.3740
0.10 5.00 0.20 1M 0.4846 0.2223 0.4411
0.10 7.00 1.00 2M 1.0147 −0.5856 0.0141 0.8246
0.10 7.00 1.10 2M 1.0709 −0.5406 −0.0309 0.8641
0.10 10.00 1.10 2M 1.2639 −0.5247 0.1247 0.7927
0.10 10.00 0.10 3M 0.8562 −0.8500 −0.7852 0.3864 0.4503
0.10 20.00 1.10 3M 1.9332 −0.8853 −0.5202 0.3206 0.6853
0.10 30.00 0.80 3M 2.6549 −0.7486 −0.5683 0.4353 0.6153
0.10 30.00 0.90 3M 2.6777 −0.7605 −0.5579 0.4249 0.6272
0.10 40.00 0.70 3M 3.4600 −0.6968 −0.5775 0.4778 0.5968
0.10 40.00 0.80 3M 3.4800 −0.7060 −0.5699 0.4702 0.6060
1.00 6.00 0.01 1M 0.5639 0.3380 0.3491
1.00 6.00 0.05 1M 0.5761 0.3224 0.3770
1.00 6.00 1.10 2M 1.0092 −0.5495 −0.1191 0.8984
1.00 7.00 1.00 2M 1.0306 −0.5864 0.0110 0.8286
1.00 7.00 1.10 2M 1.0815 −0.5407 −0.0333 0.8667
1.00 8.00 1.10 2M 1.1525 −0.5339 0.0310 0.8402
1.00 10.00 1.00 2M 1.2486 −0.5542 0.1507 0.7685
1.00 10.00 1.10 2M 1.2926 −0.5246 0.1217 0.7981
1.00 20.00 0.90 3M 1.8636 −0.8489 −0.5420 0.3850 0.6534
1.00 20.00 1.00 2M 1.9509 −0.5218 0.3221 0.6711
1.00 30.00 1.00 2M 2.6487 −0.5125 0.3821 0.6279
1.00 30.00 1.10 2M 2.6816 −0.5034 0.3727 0.6411

10.00 1.00 0.50 1M 0.2094 −0.6567 0.7703
10.00 4.00 0.50 1M 0.8343 −0.0893 0.8154
10.00 8.00 0.10 1M 1.6431 0.4971 0.7288

We remark that the presence of the external magnetic field complicates the motion
and the search for the plug regions because we have to solve a system and no longer an
equation in order to get C0, y0, y1, y2, y3. Actually t12 depends on the induced magnetic
field which is unknown and so we cannot obtain the plug regions in terms of the material
parameters alone. Moreover, Table 2 shows that more M increases the more difficult it is to
get cases 2M and 3M; this is not surprising also bearing in mind that the presence of the
external magnetic field tends to prevent the reverse flow phenomenon [5,15].
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Figure 12. The position of the points in parameter space indicates which case occurs. The picture
shows only the couples (λ, B) for given M of Table 2.

The behaviour of the velocity in the three cases is showed in Figure 13. The Case 3M
shows the reverse flow phenomenon with λ very large (λ ∼ 80) due to the presence of the
magnetic field.

For the sake of brevity, we just show how the velocity and the induced magnetic field
are influenced by the three parameters in Case 1M (see Figures 14 and 15). We notice that
the influence of B and λ on the velocity is analogous to the case in which the magnetic field
is not present. As the Hartmann number M increases the velocity decreases and the plug
region increases its thickness with M. As far as the induced magnetic field is concerned, the
trend is similar to the Newtonian case. In particular h is a decreasing function of B and is a
increasing function of λ, while the modulus of the induced magnetic field is not monotone
when the Hartmann number changes (as showed in [14]).
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Figure 13. Profile of the velocity in the three cases.



Fluids 2021, 6, 154 23 of 26

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

y

v

λ =2, M =1.

 

 

B =0.01
B =0.05
B =0.1
B =0.5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

y

v

B =0.1, M =1.

 

 

λ =1
λ =1.5
λ =2
λ =5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

y

v

B =0.01, λ =1.

 

 

M =1
M =2
M =5
M =10

Figure 14. Case 1M: profile of the velocity.
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Figure 16 shows the boundaries of the plug regions: we have that y1 decreases with
B and increases with λ, while y2 increases with B and λ, as in the absence of the external
magnetic field. When M increases, y1 and y2 increase.

Figure 15. Cont.
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Figure 16 shows the boundaries of the plug regions: we have that y1 decreases with
B and increases with λ, while y2 increases with B and λ, as in the absence of the external
magnetic field. When M increases, y1 and y2 increase.
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6. Conclusions

The problem of the steady mixed convection of a Bingham fluid in a vertical channel
in the absence and in the presence of an external uniform magnetic field H0 is studied in
the details obtaining the analytical solution: the velocity, the induced magnetic field and
the temperature. The plug regions are determined: they depend on the Bingham number
B, on the buoyancy parameter λ and on the Hartmann number M. Moreover, the velocity
decreases and the thickness of the plug region increases as the magnetic field increases.
Due to the presence of the buoyancy forces, the reverse flow may occur, as it happens in
the case of a Newtonian fluid, but now the magnitude of λ must be very large (λ > 6 in the
absence of H0, λ ≥ 10 in the presence of H0). Finally, the magnetic field tends to prevent
the reverse flow phenomenon as for a Newtonian fluid.
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Appendix A

In this section we write the expressions of the constants obtained from the boundary
conditions in the presence of an external magnetic field.

c1 =
λ[2 sinh M− (M2 + 2) sinh(My2)] + 4M2(C0 + B− 1) sinh(My2)

4M3 sinh(M(1− y2))
,

c2 =
λ[(M2 + 2) cosh(My2)− 2 cosh M]− 4M2(C0 + B− 1) cosh(My2)

4M3 sinh(M(1− y2))
,

c3 = − λ

2M2 −
λ[2− (M2 + 2) cosh(M(1− y2))] + 4M2(C0 + B− 1) cosh(M(1− y2))

4M3 sinh(M(1− y2))
, (A1)

c4 =
λ[2 sinh M + (M2 + 2) sinh(My1)]− 4M2(C0 − B + 1) sinh(My1)

4M3 sinh(M(1 + y1))
,

c5 =
λ[2 cosh M− (M2 + 2) cosh(My1)] + 4M2(C0 − B + 1) cosh(My1)

4M3 sinh(M(1 + y1))
,

c6 =
λ

2M2 +
λ[2− (M2 + 2) cosh(M(1 + y1))] + 4M2(C0 − B + 1) cosh(M(1 + y1))

4M3 sinh(M(1 + y1))
, (A2)

c7 =
λ[sinh(My1)− sinh(My0)]

2M3 sinh(M(y1 − y0))
,

c8 = −λ[cosh(My1)− cosh(My0)]

2M3 sinh(M(y1 − y0))
,

c9 = − λ

2M2 y0 +
λ[1− cosh(M(y1 − y0))]

2M3 sinh(M(y1 − y0))
, (A3)
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c10 =
λ[2 sinh M + (M2 + 2) sinh(My0)]− 4M2(C0 + B + 1) sinh(My0)

4M3 sinh(M(1 + y0))
,

c11 =
λ[2 cosh M− (M2 + 2) cosh(My0)] + 4M2(C0 + B + 1) cosh(My0)

4M3 sinh(M(1 + y0))
,

c12 =
λ

2M2 +
λ[2− (M2 + 2) cosh(M(1 + y0))] + 4M2(C0 + B + 1) cosh(M(1 + y0))

4M3 sinh(M(1 + y0))
, (A4)

c13 =
λ[sinh(My1)− sinh(My1)]

2M3 sinh(M(y1 − y1))
,

c14 =− λ[cosh(My1)− cosh(My1)]

2M3 sinh(M(y1 − y1))
,

c15 =
λ

2M2 (y0 − y1 + 1) +
λ[1− cosh(M(y1 − y1))]

2M3 sinh(M(y1 − y1))
+

+
[λ(M2 + 4)− 4M2(C0 + B + 1)][1− cosh(M(1 + y0))]

4M3 sinh(M(1 + y0))
. (A5)
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