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Abstract

The “reaction” of an extended body to the passage of an exact plane gravitational

wave is discussed following Dixon’s model. The analysis performed shows several

general features, e.g. even if initially absent, the body acquires a spin induced by

the quadrupole structure, the center of mass moves from its initial position, as well

as certain “spin-flip” or “spin-glitch” effects which are being observed.
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1 Introduction

The equations of motion for an extended body in a given gravitational back-

ground were deduced by Dixon [1,2,3,4,5] (hereafter “Dixon’s model”) in mul-

tipole approximation to any order. In the quadrupole approximation they read

DP µ

dτU
=−1

2
Rµ

ναβU
νSαβ − 1

6
JαβγδRαβγδ

;µ ≡ F (spin)µ + F (quad)µ , (1)

DSµν

dτU
=2P [µUν] +

4

3
Jαβγ[µRν]

γαβ ≡ 2P [µUν] +D(quad)µν , (2)

where P µ = µUµ
p (with Up · Up = −1) is the total four-momentum of the par-

ticle, and Sµν is a (antisymmetric) spin tensor; U is the timelike unit tangent

vector of the “center of mass line” CU used to make the multipole reduc-

tion, parametrized by the proper time τU . The tensor Jαβγδ is the quadrupole

moment of the stress-energy tensor of the body, and has the same algebraic

symmetries as the Riemann tensor.

In this paper we limit our considerations to Dixon’s model under the fur-

ther simplifying assumption [6,7] that the only contribution to the complete

quadrupole moment Jαβγδ stems from the mass quadrupole moment Qαβ , i.e.

we write

Jαβγδ = −3U [α
p Qβ][γU δ]

p , QαβUpβ = 0 . (3)

In order the model to be mathematically consistent the following additional

condition should be imposed [1] to the spin tensor

SµνUpν = 0 , (4)

to ensure the correct definition of the various multipolar terms. It is also
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convenient to introduce the spin vector by spatial (with respect to Up) duality

Sβ = 1
2
ηα

βγδUα
p Sγδ , (5)

where ηαβγδ =
√−gǫαβγδ is the unit volume 4-form and ǫαβγδ (ǫ0123 = 1) is the

Levi-Civita alternating symbol, as well as the scalar invariant

s2 =
1

2
SµνS

µν = SµS
µ , (6)

which is in general not constant along the path.

Within this scheme, a general relation between U and Up can be obtained by

using Eqs. (1), (2) and (4) (see e.g. Eq. (2.17) of Ref. [7])

[

µ2 +
1

4
RλµνρS

λµSνρ
]

(Uσ − uσ) = Sσλ
[

F (quad)
λ +

1

2
Rλµνρu

µSνρ
]

, (7)

where

uσ = −(U · P )

µ2
P σ +

1

µ2
PλD

(quad)λσ . (8)

In the case of vanishing quadrupole tensor (i.e. F (quad)µ = 0 = D(quad)µν)

Eq. (7) reduces to the following one formerly discussed by Tod, de Felice and

Calvani (see Eq. (14) of Ref. [8])

Uσ = −(U · P )

µ2

[

P σ +
1

2µ2δ
SσλRλµνρP

µSνρ

]

, (9)

where

δ = 1 +
1

4µ2
RλµνρS

λµSνρ . (10)

In Dixon’s model there are no evolution equations for the quadrupole moments

of the body; therefore the system of equations (1) and (2), even if completed

with conditions (3) and (4), is not self-consistent and one must assume that

all unspecified quantities are known as intrinsic properties of the body under

consideration. Moreover, the test body assumption means that mass, spin
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and quadrupole moments (independent among each other) must all be small

enough not to contribute significantly to the background metric. Otherwise,

backreaction must be taken into account.

We investigate here how a small extended body, with its center of mass initially

at rest, reacts to the passage of an exact plane gravitational wave, extending

previous results [9,10] limited to the spinning structure of the body.

2 Motion of extended bodies in the spacetime of an exact gravita-

tional plane wave

Consider the metric of an exact plane gravitational wave propagating along

the z direction of a coordinate frame written in the form [11]

ds2 = ηαβdx
αdxβ −H(dt− dz)2 , xα = (t, z, x, y) , (11)

where ηαβ = diag[−1, 1, 1, 1] and

H = h1(t− z)xy +
1

2
h2(t− z)(x2 − y2) . (12)

with h1 and h2 two arbitrary functions associated with the two polarizations

of the wave. Units are chosen here so that c = 1 = G.

Let us introduce the family of static observers (with respect to the chosen coor-

dinate system) with four-velocity e0̂ = 1/
√
1 +H∂t and orthonormal adapted

spatial frame

e1̂ =
H

1 +H
∂t +

√
1 +H∂z , e2̂ = ∂x , e3̂ = ∂y . (13)

These observers are geodesic only when located at x = 0 = y.
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Let the “center of mass line” be generic, i.e. with timelike unit tangent vector

U given by

U = γ(e0̂+ ν âeâ) , γ = (1− ν2)−1/2 , ν2 = δâb̂ν
âν b̂ , a, b = 1, 2, 3 .

(14)

Analogously, let the total four-momentum P = µUp also have the general form

Up = γp(e0̂ + ν â
peâ) , γ = (1− ν2

p)
−1/2 , ν2

p = δabν
â
pν

b̂
p . (15)

Let us assume –without loss of generality– that the center of mass of the body

is initially at rest at the origin of the coordinates, i.e. the associated world line

U0 has parametric equations

t = τU0
, z(τU0

) = 0 , x(τU0
) = 0 , y(τU0

) = 0 , (16)

where τU0
denotes the proper time parameter, and hence the unit tangent

vector reduces to U0 = e0̂|x=y=z=0 ≡ ∂t. The passage of the wave (11) will

modify the kinematical state of the body (according to Dixon’s model), due

to the coupling between the wave and body’s structure parameters. In order

to avoid backreaction effects the natural length scales associated with the

body, i.e. the “bare” mass µ0, the natural spin length |Sα|/µ0 and the natural

quadrupolar length (|Qαβ|/µ0)
1/2, must be small enough if compared with

certain background scale, say LGW (this can be associated, in turn, with the

polarization functions h1 and h2 having both the dimensions of 1/length2).

Therefore, in solving the whole set of equations (1)–(3), we will neglect terms

which are higher order than the first in the spin as well as quadrupole length

scales, according to

µ = µ0 + µ̃ , U = U0 + Ũ , P = µ0U0 + P̃ , Sµν = S̃µν , Qµν = Q̃µν ,

(17)
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the tilde denoting first order quantities which therefore must be evaluated

along the unperturbed center of mass line (16). Hereafter, we will simply use

the expression “to first order” to mean that spin and quadrupole terms in the

various quantities are retained up to the first order only.

The tangent vectors (14) and (15) thus become

U = ∂t + ν̃ â∂â , Up = ∂t + ν̃ â
p∂â , (18)

where ν̃ and ν̃p are first order terms according to Eq. (17) and hence (γ, γp) ≃ 1

at that order.

The conditions (4) on the coordinate components of the spin tensor imply

S01 = S02 = S03 = 0 ; (19)

the remaining components can then be re-expressed in terms of the frame

components (with respect to the static observer, see Eq. (13)) of the spin

vector as

S23 = S 1̂ , S12 =
S 3̂

√
1 +H

, S13 =
S 2̂

√
1 +H

. (20)

Similarly, the conditions (3)2 on the quadrupole tensor imply

Q00 = Q01 = Q02 = Q03 = 0 . (21)

The spin force turns out to be

F (spin)=F (spin)2̂e2̂ + F (spin)3̂e3̂

=
1

2(1 +H)

[

(h1S
2̂ − h2S

3̂)e2̂ − (h1S
3̂ + h2S

2̂)e3̂
]

, (22)

to first order in the spin quantities.
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The quadrupole force turns out to be

F (quad) = F (quad)0̂e0̂+F (quad)1̂e1̂ = − 1

4(1 +H)3/2
(ḣ2f+2ḣ1Q

2̂3̂)[e0̂−e1̂] , (23)

to first order in the quadrupole quantities, where we have introduced the

quantity f = Q2̂2̂ − Q3̂3̂ and the overdot means derivative with respect to

time.

Eqs. (1) thus reduce to the following set

− dµ̃

dτU
=F (quad)0̂ , µ0

dν̃ 1̂
p

dτU
= F (quad)1̂ ,

µ0

dν̃ 2̂
p

dτU
=F (spin)2̂ , µ0

dν̃ 3̂
p

dτU
= F (spin)3̂ , (24)

so that the spin force affects only motion on the wave front, whereas the

quadrupole force acts along the direction of propagation of the wave itself.

The integration constants arising from the mass equation is fixed by imposing

µ̃(0) = 0. The three integration constants coming from the equations for the

linear velocities ν̃ â
p must be left indeterminate at this stage; in fact, they

will enter the following Eq. (25) for ν̃ â, and will be fixed by requiring that

ν̃ â(0) = 0, according to Eq. (16).

Consider then the evolution equations (2) for the spin tensor. By using the

supplementary conditions (19) and Eq. (20) they give three algebraic relations

between the spatial linear velocities ν̃ â of U and ν̃ â
p of Up

ν̃ 1̂ = ν̃ 1̂
p −

1

2µ0

(h2f + h1Q
2̂3̂) ,

ν̃ 2̂ = ν̃ 2̂
p +

1

2µ0
(h1Q

1̂3̂ + h2Q
1̂2̂) ,

ν̃ 3̂ = ν̃ 3̂
p −

1

2µ0

(h2Q
1̂3̂ − h1Q

1̂2̂) , (25)
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plus three evolution equations for the spatial components S̃ â of the spin tensor

to be integrated together with the initial conditions S̃ â(0) = S̃ â
0 :

˙̃S 1̂=−1

2
(h1f − h2Q

2̂3̂) ,

˙̃S 2̂=
1

2
(h1Q

1̂2̂ − h2Q
1̂3̂) ≡ µ0(ν̃

3̂ − ν̃ 3̂
p) ,

˙̃S 3̂=−1

2
(h1Q

1̂3̂ + h2Q
1̂2̂) ≡ −µ0(ν̃

2̂ − ν̃ 2̂
p) , (26)

Note that the overdot, used to denote derivative with respect to the coordi-

nate time, coincides in this case with the differentiation with respect to the

proper time τU0
, as indicated in Eqs. (16). Eqs. (26) thus imply that even if

initially absent the spinning structure will be acquired by the body during the

evolution, due to its quadrupolar structure. Similarly, for a purely spinning

body the spin components are necessary constant.
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Summarizing, the whole set of equation is

(Mass) ˙̃µ =
1

4
(ḣ2f + 2ḣ1Q

2̂3̂) ,

(Momentum)























































˙̃ν 1̂
p =

1

4µ0
(ḣ2f + 2ḣ1Q

2̂3̂)

˙̃ν 2̂
p =

1

2µ0
(h1S

2̂ − h2S
3̂)

˙̃ν 3̂
p = − 1

2µ0
(h1S

3̂ + h2S
2̂)

,

(CM)























































ν̃ 1̂ = ν̃ 1̂
p −

1

2µ0
(h2f + h1Q

2̂3̂)

ν̃ 2̂ = ν̃ 2̂
p +

1

2µ0
(h1Q

1̂3̂ + h2Q
1̂2̂)

ν̃ 3̂ = ν̃ 3̂
p −

1

2µ0
(h2Q

1̂3̂ − h1Q
1̂2̂)

,

(Spin)























































˙̃S 1̂ = −1

2
(h1f − h2Q

2̂3̂)

˙̃S 2̂ =
1

2
(h1Q

1̂2̂ − h2Q
1̂3̂)

˙̃S 3̂ = −1

2
(h1Q

1̂3̂ + h2Q
1̂2̂)

.

(27)

The modification to the initial trajectory (16) of the body after the passage

of the wave is then obtained by integrating Eqs. (27), taking into account

that ν̃a = dxa/dτU with initial conditions xa(0) = 0, once the profile of the

polarization functions h1 and h2 is specified. We will explore below the two

complementary cases of single polarization for the wave.

2.1 Single polarization: case 1 (h1 6= 0, h2 = 0)

Let us consider the case of single polarization: h2 = 0. The whole set of

equations (24) and (26) reduces to
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˙̃µ =
1

2
ḣ1Q

2̂3̂ ,

˙̃ν 1̂
p =

1

2µ0
ḣ1Q

2̂3̂ , ˙̃ν 2̂
p =

1

2µ0
h1S

2̂ , ˙̃ν 3̂
p = − 1

2µ0
h1S

3̂ ,

ν̃ 1̂ = ν̃ 1̂
p −

1

2µ0

h1Q
2̂3̂ , ν̃ 2̂ = ν̃ 2̂

p +
1

2µ0

h1Q
1̂3̂ , ν̃ 3̂ = ν̃ 3̂

p +
1

2µ0

h1Q
1̂2̂ ,

˙̃S 1̂ = −1

2
h1f , ˙̃S 2̂ =

1

2
h1Q

1̂2̂ , ˙̃S 3̂ = −1

2
h1Q

1̂3̂ . (28)

In order to explore the physical content of this situation we assume that all the

nondiagonal frame components of the quadrupole tensor vanish, the remaining

ones being constant. Such hypotheses, which can be easily released only leading

to an increasing computational work, will allow to find out explicit solutions for

all quantities straightforwardly, without changing the physical interpretation.

Eqs. (28) then imply ˙̃µ = 0 and ν̃ â = ν̃ â
p and

˙̃ν 1̂
p =0 , ˙̃ν 2̂

p =
1

2µ0

h1S
2̂ , ˙̃ν 3̂

p = − 1

2µ0

h1S
3̂ ,

˙̃S 1̂=−1

2
h1f , ˙̃S 2̂ = 0 , ˙̃S 3̂ = 0 ; (29)

The solution corresponding to the initial conditions µ̃(0) = 0, ν̃ â = 0 and

S̃ â(0) = S̃ â
0 implies µ̃ = 0 for the mass and

ν̃ 1̂
p = 0 = ν̃ 1̂, ν̃ 2̂

p =
1

2µ0

H1S
2̂
0 = ν̃ 2̂ , ν̃ 3̂

p = − 1

2µ0

H1S
3̂
0 = ν̃ 3̂ , (30)

for the center of mass world line, while

S̃ 1̂ = −1

2
H1f + S̃ 1̂

0 , S̃ 2̂ = S̃ 2̂
0 , S̃ 3̂ = S̃ 3̂

0 , (31)

for the spin, where we have introduced the notation

H1(τU) =
∫ τU

0
h1(ξ)dξ . (32)

As a result we see that the center of mass line generally moves, but not in

the direction of propagation of the wave. Moreover, in the case in which the
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spin is initially absent (S â
0 = 0) the center of mass remains at rest, but the

body acquires a varying spin in the direction of propagation of the wave due

to its quadrupolar structure. It is also interesting to note that the component

of the spin S̃ 1̂ along the direction of propagation of the wave can change its

sign if the duration of the wave is long enough, leading to a spin-flip which

can be eventually observed. Similarly, a suitable polarization function such

that H1(τU) vanishes as τU → ∞ guarantees that asymptotically the spin

component S̃ 1̂ goes back to its initial value, an interesting situation which will

be sketched in the next section.

The modified trajectory turns out to be only affected by the spinning structure

and is given by

t = τU , z = 0, x =
1

2µ0
H1S

2̂
0 , y = − 1

2µ0
H1S

3̂
0 , (33)

where

H1(τU) =
∫ τU

0
H1(ξ)dξ =

∫ τU

0
dξ

∫ ξ

0
h1(η)dη . (34)

The spatial orbit is then the line

y = −S 3̂
0

S 2̂
0

x . (35)

(1) Impulsive GPW:

In this case h1(ξ) = A1δ(ξ), so that

H1(τU) =
A1

2
, H1(τU) =

A1

2
τU , (36)

where the factor of 2 comes from integrating delta function over an in-

terval which has 0 as an extreme, as customary.

(2) Sandwich wave with finite amplitude:
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In this case h1(ξ) = B1[θ(ξ)− θ(ξ − ξ0)], so that

H1(τU) =























































B1τU 0 < τU < τ 0U

B1τ
0
U τU > τ 0U .

(37)

and

H1(τU) =























































1
2
B1τ

2
U 0 < τU < τ 0U

B1τ
0
UτU − 1

2
B1(τ

0
U)

2 τU > τ 0U .

(38)

2.2 Single polarization: case 2 (h1 = 0, h2 6= 0)

Let us consider the case of single polarization: h1 = 0. The whole set of

equations (24) and (26) reduces to

˙̃µ =
1

4
ḣ2f ,

˙̃ν 1̂
p =

1

4µ0
ḣ2f , ˙̃ν 2̂

p = − 1

2µ0
h2S

3̂ , ˙̃ν 3̂
p = − 1

2µ0
h2S

2̂ ,

ν̃ 1̂ = ν̃ 1̂
p −

1

2µ0

h2f , ν̃ 2̂ = ν̃ 2̂
p +

1

2µ0

h2Q
1̂2̂ , ν̃ 3̂ = ν̃ 3̂

p −
1

2µ0

h2Q
1̂3̂ ,

˙̃S 1̂ = −1

2
h2Q

2̂3̂ , ˙̃S 2̂ = −1

2
h2Q

1̂3̂ , ˙̃S 3̂ = −1

2
h2Q

1̂2̂ . (39)

Let us assume again that all the nondiagonal frame components of the quadrupole

tensor vanish, the remaining ones being constant. Eqs. (39) thus reduce to
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˙̃µ=
1

4
ḣ2f , ˙̃ν 1̂

p =
1

4µ0
ḣ2f , ˙̃ν 2̂

p = − 1

2µ0
h2S

3̂ , ˙̃ν 3̂
p = − 1

2µ0
h2S

2̂ ,

ν̃ 1̂ = ν̃ 1̂
p −

1

2µ0
h2f , ν̃ 2̂ = ν̃ 2̂

p , ν̃ 3̂ = ν̃ 3̂
p ,

˙̃S 1̂=0 , ˙̃S 2̂ = 0 , ˙̃S 3̂ = 0 , (40)

with solution

µ̃=
1

4
h2f , ν̃ 1̂

p =
1

4µ0
h2f , ν̃ 2̂

p = − 1

2µ0
H2S

3̂
0 , ν̃ 3̂

p = − 1

2µ0
H2S

2̂
0 ,

ν̃ 1̂ =− 1

4µ0
h2f , ν̃ 2̂ = ν̃ 2̂

p , ν̃ 3̂ = ν̃ 3̂
p ,

S̃ 1̂= S̃ 1̂
0 , S̃ 2̂ = S̃ 2̂

0 , S̃ 3̂ = S̃ 3̂
0 , (41)

where the initial conditions µ̃(0) = 0, ν̃ â = 0 and S̃ â(0) = S̃ â
0 have been

imposed and

H2(τU) =
∫ τU

0
h2(ξ)dξ . (42)

From the above relations we see that in this case the center of mass line

generally moves, without specific relations with direction of propagation of

the wave. Moreover, if the spin is initially absent (S â
0 = 0), the center of mass

moves along the direction of propagation of the wave due to the quadrupole,

but the spin of remains zero. In addition, the body acquires a varying mass.

The modified trajectory turns out to be

t = τU , z = − 1

4µ0
H2f, x = − 1

2µ0
H2S

3̂
0 , y = − 1

2µ0
H2S

2̂
0 , (43)

where

H2(τU) =
∫ τU

0
H2(ξ)dξ . (44)

The spatial orbit is then the line

y =
S 2̂
0

S 3̂
0

x . (45)
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The solution for this case can be found similarly to case 1 for both impulsive

GPW (h2(ξ) = A2δ(ξ)) and sandwich wave with finite amplitude (h2(ξ) =

B2[θ(ξ)− θ(ξ − ξ0)]).

3 Discussion and concluding remarks

We have studied how a small extended body, with the center of mass initially

at rest, interacts with an incoming exact plane gravitational wave. The body

is spinning and also endowed with a quadrupolar structure. We have discussed

its motion by assuming that it can be described according to Dixon’s model

and by solving the corresponding set of evolution equations in the case in

which the wave has a single polarization, for simplicity.

A number of interesting results have been discussed. For instance, in general

a) even if initially absent, the body acquires a spin induced by the quadrupole

tensor; b) the center of mass moves from its initial position and the projection

of the orbit on the wave front is a straight line, whose inclination depends

on the initial spin of the body; c) special situations may occur in which cer-

tain spin components change their magnitude leading to effects (e.g. spin-flip)

which can be eventually observed.

This interesting feature recalls the phenomenon of glitches observed in pul-

sars: a sudden increase in the rotation frequency, often accompanied by an

increase in slow-down rate (see e.g. [12,13,14] and references therein). Cur-

rently, only multiple glitches of the Crab and Vela pulsars have been observed

and studied extensively. Larger glitches in younger pulsars are usually followed

by an exponential recovery or relaxation back toward the pre-glitch frequency,
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while for older pulsars and small glitches the jump tends to be permanent.

The physical mechanism triggering glitches is not well understood yet, even if

these are commonly thought to be caused by internal processes.

If one models a pulsar by a Dixon’s extended body, then the present analy-

sis shows that a sort of glitch can be generated by the passage of a strong

gravitational wave, due to the pulsar quadrupole structure. In fact, from Eq.

(31) we see that the profile of a polarization function can be suitably selected

in order to fit observed glitches and in particular to describe the post-glitch

behavior.

We have just considered here a generic extended body, without exploring the

possibility that it could actually represent a real pulsar. In fact, the inte-

rior structure of a neutron star requires taking into account all the nuclear

and hydrodynamical processes. This is beyond the scope of our paper. Fur-

thermore, the observed slow-down of the period of a pulsar is expected to

be associated with gravitational wave emission, whereas we have neglected

backreaction effects on the background field. This analysis is enough to argue

that the phenomena of pulsar glitches are compatible in principle with a pure

relativistic model (Dixon’s model).

In view of getting in the next year (apparently) an enhanced phase for the in-

terferometric detection of the gravitational waves (for both LIGO and VIRGO

the sensitivity should be 5 times increased in comparison with the present one)

the effects discussed here –in a very simplified form– constitute an interesting

situation to be further explored.
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