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Simple Summary: NLRP3 inflammasome is a cytoplasmic multiprotein complex that assembles in
response to cellular distress and promotes maturation and release of the inflammatory cytokines
interleukin-1β and IL-18, which contribute to immune responses and inflammation. Aberrant NLRP3
activation has divergent roles in the pathogenesis of inflammation-associated diseases such as cancer,
as it can have both protumorigenic and antitumorigenic effects in a context-dependent and tissue-
specific manner. Therefore, the fine-tuning of the NLRP3 inflammasome in cancer cells, through a
wide range of agents including, such as inhibitors, antagonists and monoclonal antibodies, has been
suggested as a viable approach to cancer therapy.

Abstract: Inflammasomes are multiprotein complexes that regulate the maturation and secretion
of the proinflammatory cytokines interleukin-1beta (IL-1β and interleukin-18 (IL-18) in response to
various intracellular stimuli. As a member of the inflammasomes family, NLRP3 is the most studied
and best characterized inflammasome and has been shown to be involved in several pathologies.
Recent findings have made it increasingly apparent that the NLRP3 inflammasome may also play a
central role in tumorigenesis, and it has attracted attention as a potential anticancer therapy target.
In this review, we discuss the role of NLRP3 in the development and progression of cancer, offering a
detailed summary of NLRP3 inflammasome activation (and inhibition) in the pathogenesis of various
forms of cancer. Moreover, we focus on the therapeutic potential of targeting NLRP3 for cancer ther-
apy, emphasizing how understanding NLRP3 inflammasome-dependent cancer mechanisms might
guide the development of new drugs that target the inflammatory response of tumor-associated cells.

Keywords: inflammation; NLRP3 inflammasome; inhibitors; target-therapy

1. Introduction

An association between inflammation and cancer development has long been appreci-
ated, to the extent that the inflammatory response has been recognized to play a decisive
role in the development and progression of cancer [1]. In the last decade, the term inflam-
masome was coined to describe a cytoplasmic multiprotein complex that recognizes signals
of host cellular distress and activates proinflammatory caspases, which drive subsequent
immune responses and inflammation [2]. Among the inflammasomes, NLRP3 is the most
well studied and has been associated with the pathogenesis of multiple diseases, including
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neurodegenerative diseases (Alzheimer’s and Parkinson’s), atherosclerosis, hereditary
cryopyrin-associated periodic syndromes (CAPSs), metabolic diseases and cancer [3]. Thus,
considering the substantial role of NLRP3 in different inflammatory pathologies, it is not
surprising that strategies targeting this inflammasome are hot topics of research. In this
review, we will discuss the NLRP3 inflammasome as a double-edged sword in cancer, as
it can have both protumorigenic and antitumorigenic effects not only in different cancers
but also in a tissue-specific manner. Moreover, we will focus on current strategies for
targeting the NLRP3 inflammasome, including a diverse range of agents, such as inhibitors,
antagonists and monoclonal antibodies, which have potential for cancer treatment.

2. NLRP3 Inflammasome: Biology and Activation

The NLRP3 inflammasome is a critical component of the innate immune system and
consists of NLRP3 (NLR family protein containing a pyrin domain 3), the adaptor apoptosis-
associated speck-like protein (ASC, which contains a caspase activation and recruitment
domain, CARD) and the effector pro-caspase 1. NLRP3 comprises three domains: An
N-terminal pyrin domain (PYD), which interacts with the pyrin domain of ASC to initiate
inflammasome assembly [4]; a central nucleotide-binding and oligomerization (NACHT)
domain that is required for subsequent activation [5]; and a C-terminal leucine-rich repeat
(LRR) domain, which has been recently demonstrated to be nonessential for NLRP3 in-
flammasome assembly [6]. ASC recruits and binds pro-caspase 1 via their shared domains,
inducing autoproteolytic caspase-1 activation. Caspase-1 further induces the release of
the inflammatory cytokines interleukin-1beta (IL-β) and interleukin-18 (IL-18) and cleaves
gasdermin D (GSDMD), which in turn induces a form of programmed cell death known as
pyroptosis [7,8].

Although a consensus for the precise localization of the NLRP3 inflammasome and
its components has not yet been reached, several studies have indicated that, in resting
conditions, NLRP3 resides in the endoplasmic reticulum (ER) and cytosol [9]. Upon
activation, NLRP3 redistributes to mitochondria-associated membranes (MAMs) [10,11]
and mitochondria [12]; however, one study proposed a strictly cytosolic localization of
NLRP3 [13]. Although the NLRP3 inflammasome is the most studied and investigated, its
activation mechanism remains unclear. To date, two steps have been proposed to underlie
NLRP3 activation: priming and activation (Figure 1). The first step is triggered by the
engagement of Toll-like receptors (TLRs) by their ligands or endogenous molecules, such
as tumor necrosis factor (TNF) or IL-β, which leads to the transcription of NLRP3 and
pro-IL-1β via the regulation of nuclear factor-kB (NF-κB) [14]. Moreover, recent studies
have shown that the induction of NLRP3 expression during priming is also controlled by
FAS-associated death domain protein (FADD) and caspase-8 [15].

In addition to control of NLRP3 activation via transcription, the priming step is also
able to control inflammasome activation at the posttranscriptional level, as suggested
by emerging evidence [16]. In particular, Schroder and colleagues demonstrated for the
first time that priming of the NLRP3 inflammasome with short lipopolysaccharide (LPS)
pretreatment could occur independently of NLRP3 protein expression induction [16].

It is well known that there are several NLRP3-activating stimuli and that they are
heterogeneous; however, it is unclear why seemingly unrelated molecules can activate
the same inflammasome. Given its heterogenous interaction partners, it is unlikely that
NLRP3 physically interacts with its activators. All inflammasome activators induce cellular
signaling that is sensed by the NLRP3 receptor. Numerous hypotheses for the origin of
this signal have been proposed, including calcium (Ca2+) signaling, potassium (K+) efflux,
effects of reactive oxygen species (ROS), lysosomal leakage, exposure to damage-associated
molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs), and
mitochondrial dysfunction [17,18].

Given that many stimuli, like nigericin, adenosine triphosphate (ATP) and particulates,
lead to Ca2+ mobilization, different studies have suggested the involvement of Ca2+ signal-
ing in NLRP3 inflammasome activation [19–21]. Ca2+ chelation using BAPTA-AM inhibits
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IL-1β release, but Ca2+ inhibition does not affect the activation of other inflammasomes,
such as NLRC4 or AIM2 [19,22].

Several stresses trigger a change in the intracellular ionic composition that induces a
conformational change in one of the inflammasome components, suggesting a role for K+

efflux in NLRP3 inflammasome activation [23,24]. Numerous studies agree that K+ efflux
is a crucial event for inflammasome activation. Among these studies, Petrilli et al. demon-
strated that in murine macrophages, NLRP3 inflammasome assembly occurs spontaneously
at low K+ concentrations (below 90 mM) but is prevented at higher concentrations [24].
Many stimuli, including ATP and nigericin, act through a mechanism dependent on K+

efflux [25].
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Figure 1. NLRP3 inflammasome priming and activation. The activation process of the NLRP3 inflammasome requires two
main signals: (i) signal 1 (priming), which leads to the activation of the transcription factor NF-κB and the subsequent
transcription of canonical and noncanonical NLRP3 inflammasome components; and (ii) signal 2 (activation), which is
responsible for NLRP3 complex assembly and the subsequent release of inflammatory cytokines (IL-1β and IL-18). Priming
is provided by exposure to pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharide (LPS) or by
endogenous cytokines that activate receptors at the cell membrane. The induction of NLRP3 expression during priming is
controlled by FAS-associated death domain protein (FADD) and caspase-8. NLRP3 activation is provided by a plethora
of stimuli, such as PAMPs or damage-associated molecular patterns (DAMPs), ATP, and viral RNA, that in turn trigger
downstream signaling events such as mitochondrial damage, mitochondrial ROS production, lysosomal disruption, and ion
(K+ and Ca2+) efflux. Mitochondrial antiviral signaling protein (MAVS) mediates the NLRP3 activation induced by RNA
viruses. Excessive Ca2+ released from the ER causes mitochondrial dysfunction and is implicated in NLRP3 inflammasome
activation. Chloride intracellular channel protein (CLIC)-mediated Cl- efflux promotes the NEK7-NLRP3 interaction and
subsequent NLRP3 inflammasome assembly. LPS can directly activate TLR4 to induce the transcription and activation of
caspase-11, which in turn cleaves the pore-forming protein gasdermin D (GSDMD), which can induce pyroptosis. IL-18:
interleukin-18; IL-1β: interleukin-1beta; IL-1R: interleukin 1 receptor; mt-DNA: mitochondrial DNA; ROS: reactive oxygen
species; TLR: Toll-like receptor. Created with BioRender.com accessed on 30 March 2021.

The involvement of mitochondrial dysfunction and ROS has been discussed for a
long time, and ROS have been identified as important activators of the NLRP3 inflam-
masome [11,26]; in addition, several chemical inhibitors of ROS can prevent NLRP3 in-
flammasome activation [27,28]. Moreover, numerous stimuli inducing cell death and
mitochondrial dysfunction promote mitochondrial DNA oxidation, which in turn activates
inflammasomes [29].

In recent years, other cellular mechanisms have been proposed for inflammasome ac-
tivation, such as chloride intracellular channel (CLIC)-dependent chloride (Cl-) efflux [30].
NLRP3 agonists induce K+ efflux, which causes mitochondrial damage and ROS produc-
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tion; in turn, mitochondrial ROS induce the translocation of CLICs to the plasma membrane
for the induction of Cl- efflux to promote inflammasome assembly and IL-1β secretion [31].

In addition to canonical NLRP3 inflammasome activation, a noncanonical inflamma-
some activated by LPS-induced caspase-11 has also been discovered. Caspase-11 activated
by LPS interacts with its substrate, the protein GSDMD, and thus mediates noncanonical
inflammasome activation [7].

NLRP3 activation is regulated by different proteins, such as never in mitosis A (NIMA)-
related kinase 7 (NEK7), guanylate-binding protein 5 (GBP5) and double-stranded RNA-
dependent protein kinase (PKR, also known as EIF2AK2) [32–34]. Lu and colleagues
demonstrated for the first time that PKR physically interacts with inflammasome compo-
nents, including NLRP3, NLRP1, NLRC4, and AIM2, and broadly regulates inflammasome
activation [32]. Although a recent study suggested that PKR modulates inflammation by
regulating the expression of the NLRP3 inflammasome through the NF-κB pathway in
periodontal diseases [35], further studies are required to clarify the role of PKR in NLRP3
inflammasome activation. GBP5 seems to have a similar behavior in inflammasome acti-
vation, promoting selective NLRP3 inflammasome responses to pathogenic live bacteria
and soluble but not crystalline agents and double-stranded DNA [33]. However, the role of
GBP5 needs further clarification.

Growing evidence has shown a key role for NEK7, one of the smallest members
of the NRK family, which regulates mitotic progression and the DNA damage response.
NEK7 consists of a core kinase domain and a short N-terminal tail. Although the kinase
domains of NEK6 and NEK7 are notably conserved, with 87% sequence identity, it has
been demonstrated that NEK6 cannot control NLRP3 inflammasome activation like NEK7
can, suggesting the specificity of the NEK7-NLRP3 interaction [36].

In support of the idea that NEK7 is a selective upstream regulator of NLRP3 inflam-
masome activation, it has been demonstrated that when NEK7 is absent, the activation of
caspase-1 and IL-1β is abrogated after stimulation with NLRP3 inflammasome activators,
while this phenomenon is not observed for the NLRC4 or AIM2 inflammasome [37].

Under resting conditions, NEK7 activity is low, but any disruption of homeostasis may
be accompanied by the dysregulation of NEK7. Emerging evidence has revealed that NEK7
upregulation is caused by a subunit of NF-κB, p65. p65 binds to the NEK7 promoter region
via effects of the LPS-induced TLR4/NF-κB pathway and upregulates NEK7 expression [38].
Several studies have investigated the interaction between NLRP3 and NEK7. Previous
studies have revealed that both the NACHT and LRR domains of NLRP3 are involved
in the interaction with NEK7. Further works suggested that the N-terminal region of the
NEK7 catalytic domain mediates the NLRP3-NEK7 interaction [39].

However, despite being a widely studied area of research, many parts of this complex
mechanism are unclear. Clearly understanding the specific mechanisms of NLRP3 inflam-
masome activation could help broaden the field of NLRP3 inflammasome regulation and
provide more potential therapeutic targets.

3. Role of the NLRP3 Inflammasome in Cancer

In this section, we will provide a general overview of the involvement of the NLRP3
inflammasome in tumorigenesis (Table 1).

Table 1. Role of NLRP3 inflammasome in cancer.

Outcome Type of Cancer Experimental Models Impact on Cancer References

anti tumoral role

Colon cancer

Nlrp3-/-, Asc-/- and
Caspase1-/- mice

Increased DSS-induced colitis
inflammation and tumorigenesis [40–43]

Nlrp3-/- and Caspase1-/- mice Increased oxazolone-induced colitis [44]

Nlrp3R258W mutant mice Resist induced colitis and colorectal
cancer [45]

Ice−/− and Nlrp3-/- mice Enhanced colorectal cancer growth [46]

Caspase1-/- mice Enhanced AOM-DSS colitis CAC model [47]
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Table 1. Cont.

Outcome Type of Cancer Experimental Models Impact on Cancer References

Hepatic cancer

HCC and adjacent normal
tissue

Loss of the NLRP3 is correlated with a
Higher HCC Pathological Grade [48]

Nlrp3-/-and Caspase1-/- mice Highly susceptible to CRC liver
metastatic growth [46]

Lung cancer cells from LC patients and
controls

NLRP3 and caspase 1 levels were
decreased in LC cells [49]

Breast cancer Pten-/- mice NLRP3 deficiency promotes
chemotherapy resistance [50]

HNSCC HNSCC cell lines
CD38 triggers NLRP3

inflammasome-mediated pyroptotic cell
death

[51]

Chronic myeloid leukemia CML patients and controls Lower levels of IL-1β and NLRP3 in
CML patients compared to controls [52]

Multiple myeloma cells from MM patients and
controls

Downregulation of NLRP3
inflammasome in patients with MM

compared to controls
[53]

Chronic lymphocytic
leukemia

cells from CLL patients and
controls

Downregulation of NLRP3
inflammasome in patients with CLL

compared to controls
[54]

pro-tumoral role

Colon cancer

Nlrp3-/-, Asc-/- and Caspase1-/-

mice Protected from DSS-colitis model [55]

CRC tissue NLRP3-positive patients had a poor
prognosis. [56]

CRC and adjacent normal
tissue

Polymorphisms in NLRP3 are associated
with poor survival [57]

macrophages surrounded
CRC tissue

NLRP3 activation increased migration of
CRC [58]

Pancreatic cancer

KC; Nlrp3-/-, Asc-/- and
Caspase1-/- mice

Protected from pancreatic ductal
adenocarcinoma [59]

PC and adjacent normal
tissue

NLRP3 promotes proliferation, invasion
of PC cells [60]

Nlrp3-/- mice The platelet NLRP3 promotes platelet
aggregation and tumor growth [61]

pancreatic cyst fluid high IL-1β levels in patients with
high-grade dysplasia or cancer [62,63]

Gastric cancer

GC and adjacent normal
tissue

Enhanced NLRP3 level correlates with
GC progression [64]

GC cells IL-1β promotes gastric cancer cell
migration and invasion. [65–69]

Hepatic cancer HCC cells
Downregulation of NLRP3, caspase-1,
IL-1β and IL-18 favor apoptosis of the

HCC cell
[48]

Endometrial carcinoma

Endometrial cancer and
adjacent normal tissue

NLRP3, ASC, caspase-1, and IL-1β
upregulation promote cancer progression

and poor survival.
[70]

Endometrial cancer and
adjacent normal tissue

Overexpression of NLRP3 and caspase-1
in human endometrial cancer [71]

Cervical cancer cervical cancer tissue HPV+
or HPV-

NLRP3 SNPs are associated to
progression to cervical cancer [72]

Epithelial Ovarian Cancer EOC and adjacent normal
tissue

Enhanced NLRP3 levels correlate with
EOC progression [73,74]

Lung cancer

exosomes of LC cells
NLRP3 inflammasome activation
promote LC progression by IL-1β

secretion
[75]

human LC cell lines Enhanced IL-1β levels correlate with
tumor cells proliferation and metastasis [76]

Nlrp3-/- mice
NLRP3 deletion inhibits

inflammation-driven mouse lung
tumorigenesis

[77]

Nlrp3-/- mice NLRP3 activation promotes lung
metastasis [78]

LC and adjacent normal
tissue

Enhanced NLRP3 levels in ADC and
SCLC [79]
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Table 1. Cont.

Outcome Type of Cancer Experimental Models Impact on Cancer References

Breast cancer

human breast CAFs NLRP3 facilitate tumor progression and
metastases [80]

BC and adjacent normal
tissue

NLRP3 expression in macrophages
correlates with survival and metastasis [81]

BC and adjacent normal
tissue

NLRP3 activation promotes BC bones
metastasis [82]

IL-1β-/- mice IL-1β regulates mammary tumor growth
and invasiveness. [83]

Nlrp3-/-and IL-1Rα mice NLRP3 and IL-1β promote tumor growth
and metastasis [84]

HNSCC HNSCC and adjacent normal
tissue

NLRP3 inflammasome is upregulated
and associated with carcinogenesis [85–87]

OSCC OSCC cell lines and tissue
Enhanced NLRP3, ASC and IL-1β levels

correlate with tumor growth and
metasases

[88,89]

melanoma
melanoma and adjacent

normal tissue
NLRP3 polymorphisms is associated

with melanoma susceptibility [90]

IL-1R1-/- and Caspase-1-/- Inflammasome-dependent production of
IL-1β favors tumorigenesis. [91]

Prostate cancer

Pca cell lines and tissue Enhanced IL-18 correlate with tumor
status [92]

Pca cell lines Enhanced IL-1β correlate with tumor
stage [93]

Glioma

glioma cell lines and tissue

Enhanced NLRP3, ASC, caspase-1 and
IL-1β levels correlate with with higher

glioma grades; NLRP3 promotes glioma
cell migration and invasion

[94]

glioma cell lines NLRP3 inflammasome contributed to
radiotherapy resistance in glioma. [95]

Acute myeloide leukemia

cells from AML patients and
controls

Enhanced NLRP3 levels in patients with
AML [96]

KrasG12D; Nlrp3-/- mice and
human leukemia cells

NLRP3 enhances myeloproliferation and
cytopenia [97]

Lymphoma lymphoma patients and
control

Polymorphism of IL-18 (rs1946518) was
significantly associated with lymphoma

susceptibility
[98]

Abbreviations: AML: acute myeloid leukemia; AOM: azoxymethane; BC: breast cancer; CAFs: cancer associated fibroblasts; CLL: chronic
lymphocytic leukemia; CML: chronic myeloid leukemia; CRC: colorectal cancer; DSS: dextran sodium sulphate; GC: gastric cancer; HCC:
hepatocellular carcinoma; HNSCC: head and neck squamous cell carcinoma; HPV: human papillomavirus; LC: lung cancer; MM: multiple
myeloma; OSCC: oral cavity squamous cell carcinoma; PC: pancreatic cancer; PCa: prostate cancer.

3.1. Role of NLRP3 in Tumors of the Gastrointestinal Tract
3.1.1. Colon Cancer

Colorectal cancer (CRC) is the third most common malignancy worldwide and has
a high mortality rate due to its typical rapid progression with diagnosis at an advanced
stage [99]. A Western diet, the aging of the world population and chronic inflammation
are the main factors related to bowel inflammation and colitis-associated cancer (CAC).
These factors lead to constant overproduction of pro-inflammatory cytokines such as IL-1β,
IL-18, IL-6, TNF-α and DNA-damaging reactive oxygen and nitrogen species. All these
molecules act as PAMPs and DAMPs that activate inflammasomes and promote intestinal
epithelial cell proliferation, survival and angiogenesis, leading to epithelial dysplasia and
invasive tumor formation [100].

The NLRP3 inflammasome and its activation in intestinal pathologies have been in-
vestigated predominantly in murine models of chemically induced intestinal inflammation.
Such models feature epithelial barrier damage that is induced by invasion of gut microflora
into the lamina propria and massive infiltration of inflammatory cells and upregulation
of proinflammatory cytokines, which are features that are comparable to those seen in
human ulcerative colitis [101]. However, the several studies that have been carried out in
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the last ten years depict a controversial role of NLRP3 in CRC, with some studies showing
a protective role while others demonstrate a negative effect of NLRP3 activation.

The protective role of NLRP3 was suggested by experiments that showed that azoxy
methane-dextran sodium sulfate (AOM-DSS) mice deficient in inflammasome components,
including Nlrp3, Asc, Caspase-1, Caspase-11, IL-18 and IL-18r, were more susceptible to CRC
than those without deficiencies and exhibited accelerated tumor growth accompanied by
attenuated levels of IL-1β and IL-18 [40–43]. Moreover, NLRP3 inflammasome-derived
IL-1β and IL-18 play a protective role against oxazolone-induced colitis [44], and a hyper-
active NLRP3 inflammasome (such as that in the Nlrp3 R258W mutant mouse line) confers
strong resistance to experimental colitis/CRC [45]. Intriguingly, the NLRP3 inflamma-
some suppresses CRC metastatic growth through IL-18 production by promoting hepatic
natural killer (NK) cell tumoricidal activity [46]. In line with these published reports,
Hu and colleagues reported data from a model in which caspase-1 deficiency enhanced
inflammation-induced CRC formation through regulation of the epithelial cell response to
injury; however, these effects were mediated through the NLRC4 inflammasome rather
than through NLRP3 [47].

In contrast with these findings, another study reported that the NLRP3 inflamma-
some is a critical regulator of intestinal inflammation in the DSS colitis model [55], and
Nlrp3-/- mice develop less severe colitis than wild-type mice and produce lower levels
of pro-inflammatory cytokines in colonic tissue [55]. Interestingly, administration of the
small molecule andrographolide (Andro), a natural compound, prevents tumorigene-
sis in a colitis-associated CRC model by inducing mitophagy, which results in NLRP3
inflammasome inhibition [102].

However, the inconsistent observations between these studies comparing wild-type
mice and Nlrp3-/- mice may stem from methodological differences between the experimental
models (DSS or AOM-DSS) as well as from differences in the composition of the intestinal
flora of the mouse lines used.

A crucial study found that NLRP3 expression was upregulated in human CRC tissues
compared to adjacent normal tissues and was associated with tumor invasion and poor
prognosis [56]. The NLRP3 signaling pathway might correlate with the mTOR-S6K1-MAPK
signaling pathway, which synergistically promotes the invasion and migration of CRC
cells [103]. This notion was supported by a genetic study that reported an association
between single nucleotide polymorphisms (SNPs) in the Nlrp3 gene and CRC patient
survival, with NLRP3 SNPs contributing to an increase in IL-1β and subsequent IL-6
levels and a poor outcome [57]. Other studies determined that NLRP3 upregulation could
contribute to CRC cell migration and invasion [58] via an inflammasome-independent
mechanism [104].

3.1.2. Pancreatic Cancer

Pancreatic ductal adenocarcinoma (PDA) is one of the most aggressive solid ma-
lignancies and has a devastating prognosis and limited therapeutic options. IL-1β is
frequently upregulated in patients with pancreatic cancer (PC) and is associated with poor
prognosis [62,63]. High NLRP3 signaling has been found in subsets of PDA-associated
macrophages in both humans and mice, in which it promotes accelerated progression of
PC [59]; moreover, increased NLRP3 expression correlates with proliferation and epithelial-
mesenchymal transition (EMT)-induced cancer cell invasion [60]. Interestingly, the long
noncoding RNA XLOC_000647 acts as a tumor suppressor and suppresses the progression
of PC by downregulating NLRP3 [60].

IL-1β increases tumor infiltration of immunosuppressive macrophages and myeloid-
derived suppressor cells (MDSCs), thereby promoting immune evasion, neoangiogenesis
and tumor development [105]. IL-1β neutralization promotes intratumoral CD8+ T cell
infiltration and function and sensitizes PDA to immunotherapy, confirming that the effects
of tumor cell-derived IL-1β are NLRP3-dependent and identifying a tumor-supportive role
for NLRP3 in PC [105]. In line with this notion, PC cell lines and tumor cell-conditioned
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macrophages are able to activate ASC and to induce the release of IL-1α and IL-1β which
are crucial for the secretion of thymic stromal lymphoprotein (TSLP) by cancer-associated
fibroblasts (CAFs), promoting Th2 inflammation [106] and increasing NF-κB activity and
survival [107]. Treatment with anakinra, an IL-1R antagonist, in an orthotopic mouse
model induced a reduction in TSLP expression with a downregulation of Th2 immunity,
resulting in improved overall survival [106]. Intriguingly, the NLRP3 inflammasome can
also control platelet activation, a key feature in PDA, by promoting platelet aggregation and
cancer progression and interfering with patient survival [61]. Pharmacological inhibition of
NLRP3 with MCC950 significantly inhibits platelet activation and aggregation and tumor
progression [61].

Collectively, these data suggest that NLRP3 signaling accelerates the progression of
pancreatic neoplasias and that targeting NLRP3 is a promising therapeutic strategy.

3.1.3. Gastric Cancer

Gastric cancer (GC) is a common malignancy in the digestive system. Most of the
evidence regarding GC and the NLRP3 inflammasome is derived from studies involving
Helicobacter pylori (H. pylori): gastric infection with H. pylori is one of the most relevant
factors implicated in GC development. H. pylori appears to activate the NLRP3 inflam-
masome [108,109], leading to IL-1β and IL-18 secretion [110,111], which regulates gastric
immunity. Following H. pylori infection, NLRP3 expression is dramatically enhanced, and
IL-1β secretion by macrophages is increased [64]. MiR-22 acts as a suppressor of NLRP3
expression in both gastric epithelial cells and macrophages and attenuates H. pylori-induced
gastric carcinogenesis [64]. The mucin MUC1, known for its functions as an epithelial
barrier, protects against H. pylori-induced gastritis by inhibiting NLRP3 activation [112].
Therefore, elimination of H. pylori infection seems significant for preventing GC; by contrast,
H. pylori seems to prevent the critical activation of NLRP3 in human immune cells [113].

In addition to H. pylori, Mycoplasma hyorhinis also induces IL-1β secretion in an NLRP3-
dependent manner both in vitro and in vivo, and it appears capable of promoting GC
cell migration and invasion depending on inflammasome activation [65]. Notably, IL-
1β-mediated inflammation has been linked to gastric carcinogenesis [66–68], and poly-
morphisms in the IL-1β and IL-18 genes that lead to an increase in the levels of these
pro-inflammatory factors increase the susceptibility to the development of GC [114–117].

In conclusion, NLRP3 seems to have a definite role in promoting gastric carcinogenesis,
but its role in other gastrointestinal malignancies is still debated.

3.1.4. Hepatic Cancer

Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors world-
wide. Studies that have directly assessed the intrinsic role of NLRP3 in the development
and progression of HCC have depicted a complex scenario in which its role appears to
be twofold.

The expression of all NLRP3 components is significantly downregulated in human
HCC, and this deficiency correlates with advanced stage and poor pathological differentia-
tion [48]. Moreover, 17b-estradiol (E2) and estrogen receptor beta (ERβ) protect against
HCC by activating the NLRP3 inflammasome [118] and by triggering pyroptotic cell death
and inhibiting protective autophagy [119,120]. Interestingly, NLRP3 is required for the
suppression of CRC metastatic growth in the liver, and its tumor-suppressive function is
mediated by IL-18 production, which acts on NK cells [46].

In sharp contrast with these notions, there are several studies that support protu-
moral activity of NLRP3 in the pathogenesis of HCC. Luteoloside, a natural flavonoid
with several pharmacological activities, reduces intracellular ROS accumulation and thus
suppresses NLRP3 inflammasome activation, limiting the proliferation and metastasis of
HCC cells [121]. In line with this, the NLRP3 inflammasome pathway has been described to
have a procarcinogenic effect in hep3B cells, in which tumor-suppressive miR-223 promotes
apoptosis and inhibits the proliferation of HCC cells by negatively regulating NLRP3 and
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downstream cytokines [122]. Mice treated with diethylnitrosamine (DEN), a potent liver
carcinogen, display elevated levels of NLRP3 and IL-1β, which have been associated with
inflammatory conditions. Combination therapy with celastrol and metformin suppresses
NLRP3 and IL-1β, enhances anti-inflammatory and antioxidant activities, and downreg-
ulates angiogenesis, metastasis and proliferation markers [123]. Similarly, anisonamide
suppresses the growth of HCC and induces apoptosis by inhibiting NLRP3 expression and
further inhibiting the activation of the NLRP3 inflammasome, thus reducing the production
of IL-1β [124]. Recently, Brocker and colleagues provided evidence for a mechanism by
which proliferator-activated receptor α (PPARα) suppresses hepatic inflammation during
metabolic stress by targeting the lncRNA Gm15441 [125]. Gm15441 suppressed TXNIP and
thus TXNIP-NLRP3 inflammasome activation, caspase-1 cleavage and the expression of
IL-1β [125]. The authors speculate that Gm15441 is a plausible therapeutic target for the
treatment of inflammatory disorders, potentially including HCC [125].

Taken together, these results unveil a dual role for the NLRP3 inflammasome in
the pathogenesis of HCC, and additional studies are essential to deeply understand the
relationship between HCC progression and the NLRP3 inflammasome.

3.2. Involvement of NLRP3 in Gynecological Cancers
3.2.1. Endometrial Carcinoma

Among gynecological cancers, endometrial carcinoma is the most common in devel-
oped countries, and its incidence is increasing [126]. Studies on inflammasome complexes
have strengthened the correlations between estrogenic stimulation, inflammation and the
development of endometrial neoplasia. Recently, the expression of NLRP3, its inflam-
masome components and ERβ was analyzed in endometrial cancer tissue samples from
31 patients [70]. Molecular analysis showed that estrogens enhanced the proliferation of
endometrial cancer cells by upregulating NLRP3 expression via ERβ. On the other hand,
knockdown of NLRP3 expression inhibited the growth of cancer cells and reduced caspase-
1 activation and IL1β maturation. Therefore, the different roles of estrogen/ERβ/NLRP3
inflammasome activation may be related to estrogen levels and ERβ expression in endome-
trial cancer patients [70].

Moreover, Yang et al. confirmed the hyperexpression of NLRP3 and related proteins
in endometrial cancer in an attempt to link them with the pyroptosis pathway [71].

3.2.2. Cervical Cancer

Cervical cancer is the second most common neoplasia in females worldwide. Its
genesis is related to high-risk human papillomavirus (HR-HPV) infection [127]. However,
HPV itself seems to be insufficient to induce the malignant transformation process. Chronic
inflammation, along with HPV infection, is involved in carcinogenesis [128,129]. In 2016,
Pontillo et al. investigated 12 SNPs in 7 inflammasome-related genes as possible risk
factors for HPV infection susceptibility and/or progression to cervical cancer [72]. They
found a statistically significant association between the Nlrp3 variant rs10754558 and
HR-HPV resistance. Their results demonstrate that inflammasome genetics can affect
HPV/host interactions in terms of virus susceptibility, virus persistence and cervical cancer
progression [72]. Furthermore, the membrane glycoprotein CD200 of the immunoglobulin
superfamily, and its soluble formulation CD200 fusion protein Fc (CD200Fc), has been
demonstrated to play an active role in the suppression of the inflammatory activity of
the TLR4-NF-κB and NLRP3 inflammasome pathways in LPS-induced cervical cancer cell
lines [130].

3.2.3. Ovarian Cancer

Ovarian cancer is the third most common gynecological malignancy and has the
highest mortality rate. Epithelial ovarian cancer (EOC) is the pathological subtype of more
than 90% of cases [131].
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Several factors including molecular pathway dysfunctions, such as deregulation of
oxidoreductase activity, metabolism, hormone activity, the inflammatory response, the
innate immune response, and cell–cell signaling have been involved in its pathogenesis.
Only a few studies have so far investigated the role of NLRP3 in the pathogenesis of EOC.
One study investigated the molecular mechanism involved in the malignant transformation
of endometriosis nodules into clear cell and endometrioid EOC, analyzing a list of 18 genes
related to the inflammasome complex, and indicated a role of inflammation/immunity
in EOC transformation [73]. The study explored the correlation between these genes
and patient survival, demonstrating a statistically significant correlation between high
expression levels of NLRP3 and poor prognosis. These results suggest that inflammasome
dysregulation could play a fundamental role in modulating malignant transformation of
endometriosis and that NLRP3 signaling concomitant with persistent sterile inflammation
could indicate the initial stage of ovarian carcinogenesis [73].

Luborsky et al. studied whether NLRP3 inflammasome components and their corre-
sponding cytokine products were increased in ovarian tumors by analyzing chicken and
human normal ovaries and ovarian tumors [132]. They found that the expression of caspase-
1, IL-1β and IL-18 was higher in ovarian cancer tissues than in normal tissues; however,
they found no difference in NLRP3 expression. The reasons why immune reactions may
differ during the development and progression of ovarian tumors remain to be determined,
but this study laid the foundation for future evaluation of the relationship between tumor
initiation and early inflammatory events involved in ovarian cancer development [132].
Recently, the correlation between the survival of EOC patients and the expression levels of
inflammasome components and their related genes has been investigated, emphasizing
that high expression levels of NLRP3 are associated with poor patient prognosis [74].

All these results and some additional evidence [133] support the usage of NLRP3
inflammasome genes and their corresponding proteins as potential markers of EOC pro-
gression and prognosis and as potential therapeutic targets.

3.3. NLRP3 Inflammasome Involvement in Other Types of Cancer

The NLRP3 inflammasome complex has attracted considerable attention for its role in
the development of several other cancer types, but this role remains unclear and controversial.

3.3.1. Lung Cancer

Lung cancer (LC) is a major cause of death in industrialized countries. The most fre-
quent form is non-small-cell lung cancer (NSCLC), representing 85% of cases [134]. Several
studies have established the link between chronic inflammation and LC, but they depict
a setting in which the involvement of the NLRP3 inflammasome is controversial [135].
Alveolar macrophages (AMs), critical in local lung inflammation, from patients with LC
show downregulation of NLRP3/caspase-1 inflammasome activation, which is charac-
terized mainly by the impairment of IL-1β production [49]. Conversely, tumor-derived
exosomal TRIM59 has been shown to rewire macrophages towards a protumoral pathway
by degrading ABHD5 protein and exacerbating NLRP3 inflammasome activation, which
promotes LC cell proliferation and invasion [75].

Overexpression of IL-1β in lung adenocarcinoma (ADC) cells results in the promotion
of experimental lung metastasis via enhanced expression of adhesion-, invasion- and
angiogenesis-related molecules [76]. In line with this, NLRP3 promotes the mouse lung
tumorigenesis induced by benzo(a)pyrene and LPS [77] and favors experimental lung
metastasis development by affecting the ability of host NK cells to control the tumor [78].
Polydatin, a natural component, suppresses the proliferation and migration of NSCLC cells
via the NF-κB pathway, inhibiting NLRP3 inflammasome activation [136,137]. In contrast,
experimental metastasis is more pronounced in mice lacking IL-1β than in wild-type mice
due to the increased number of regulatory T cells in mice lacking IL-1β, which favors the
malignant process [138].
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Interestingly, NLRP3 inflammasome elements were overexpressed in high-grade ADC,
which is an NSCLC subtype, and in small-cell lung cancer (SCLC) [79], suggesting that
they could be crucial biomarkers for LC as well as potential modulators of the biological be-
haviors of LC. Recently, the association between genetic variants in NLRP3 inflammasome
genes and the survival of NSCLC patients has been assessed; two novel genetic variants (in
BIRC3 and NRG1) have been associated with NSCLC and may affect patient survival [139].

Altogether, these data correlate the NLRP3 inflammasome with LC development;
however, the exact molecular mechanisms linking the NLRP3 inflammasome to LC devel-
opment are still unclear, and further investigation is needed.

3.3.2. Breast Cancer

Breast cancer (BC) is the leading cause of mortality in women, with BC accounting for
14–15% of all female cancer deaths worldwide [140].

Current studies underline the central role of the microenvironment and infiltrating im-
mune cells in the migration and invasion of BC cells [141,142]. CAFs are an abundant pop-
ulation in the microenvironment of BC and take a center stage in tumorigenesis [143,144].
Recently, it has been proposed that CAFs sense DAMPs and thus activate the NLRP3
inflammasome pathway, leading to proinflammatory signaling and IL-1β release, which
promote tumor progression and lung metastasis [144]. Targeting the NLRP3-IL-1β pathway
activated by CAFs may be a beneficial approach for BC treatment. Accordingly, transcrip-
tion factor EB (TFEB) modulates tumor-associated macrophage (TAM) gene expression in
BC through several pathways, for example, by promoting NLRP3 inflammasome degra-
dation [80]. Moreover, NLRP3 expression in tumor-infiltrating macrophages has been
correlated with the survival, lymph node invasion and metastasis of mammary carci-
noma patients [81]. Human BC tissues display unc-51-like autophagy activating kinase 1
(ULK1) deregulation that contributes to mitochondrial ROS accumulation and thus NLRP3
activation, which in turn promotes BC osteolytic bone metastasis [82].

In contrast with this view, Huang and colleagues demonstrated that NLRP3 activation
is necessary to induce antitumor immunity in patients with BC [50]. Mechanistically,
they identified that myeloid PTEN determines chemotherapy efficiency by activating the
NLRP3 inflammasome, suggesting that manipulating the NLRP3-IL-1β axis might be able
to overcome chemotherapy resistance in patients with tumors with PTEN loss [50].

The definitive functions of the NLRP3 inflammasome in mammary malignancy are
still unknown, but several studies have demonstrated the pivotal function of IL-1β in
tumorigenesis and neoplasm growth [145,146]. The inflammatory cytokine IL-1β positively
regulates mammary tumor growth and invasiveness by affecting the nature of myeloid
cells and promoting TAM differentiation [83]. In a transgenic mouse model, inducible
fibroblast growth factor receptor 1 (iFGFR1) induces an increase in IL-1β that in turn regu-
lates cyclooxygenase-2 expression, which promotes cell migration and favors mammary
lesions [147].

Increased IL-1β levels in primary tissues and metastatic sites have been detected in a
spontaneous murine mammary gland tumor model, suggesting that the IL-1β pathway pro-
motes tumor growth and metastasis [84]. Significantly, IL-1R blockade with an antagonist
reduces tumor growth and inhibits human BC progression [84].

Although further studies are needed, these data depict a clear protumoral role for
NLRP3 in mammary cancer.

3.3.3. Head and Neck Squamous Cell Carcinoma

NLRP3 inflammasome activation has been demonstrated to promote inflammation-
induced carcinogenesis in head and neck squamous cell carcinoma (HNSCC) [85], and
P2 × 7R and NLRP3 have been found to be overexpressed in HNSCC in association
with increased survival and invasiveness [86]. Additionally, the IL-1β concentration
was increased in the peripheral blood of HNSCC patients [87]. In contrast, cluster of
differentiation 38 (CD38) has been demonstrated to act as a tumor suppressor gene in
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HNSCC, triggering pyroptotic cell death by activating NLRP3 and caspase-1 [51]; thus, by
inhibiting CD38 expression, HNSCC cells might be able to escape NLRP3 inflammasome-
mediated pyroptosis [51].

3.3.4. Oral Cavity Squamous Cell Carcinoma

Interestingly, the levels of the NLRP3 complex components (NLRP3, ASC and IL-1β)
were significantly elevated in oral cavity squamous cell carcinoma (OSCC) and contributed
to tumor growth and metastasis [88,89]. High NLRP3 expression has been associated with
a more malignant phenotype in OSCC and promotes 5-fluorouracil (5-FU) resistance [148];
therefore, targeting the ROS/NLRP3 inflammasome pathway may decrease the resistance
of OSCC cells to 5-FU-based therapy [148]. As already demonstrated for gastric cancer,
miR-22 suppresses growth, migration and invasion in OSCC cells by affecting the functions
of the NLRP3 inflammasome [149]. Taken together, these data suggest that the NLRP3
inflammasome may be a potential target for OSCC therapy.

3.3.5. Skin Cancers

By performing a pancancer analysis of NLRP3 inflammasome-related genes across
24 human cancers, Ju M. and colleagues found that 15 cancers had significant differences in
NLRP3 expression between normal and tumor samples [150]. Intriguingly, the researchers
showed that highly malignant HCC and skin cutaneous melanoma (SKCM) were associated
with low NLRP3 inflammasome scores, which could serve as independent prognostic
factors in SKCM [150]. The mechanisms of the NLRP3 inflammasome in melanoma and
other skin cancers are not clearly understood [151], but several reports have demonstrated
the involvement of NLRP3 inflammasome components in tumorigenesis. Polymorphisms
of NLRP3 are associated with the development of melanoma [90], and IL-1R-/- and caspase
1-/- mice rarely develop skin cancer after stimulation with chemical agents [91]. The NLRP3
inflammasome shows different levels of pathway activation according to disease stage: it
is constitutively activated in late stages of melanoma, producing high levels of IL-1β in the
microenvironment [152,153], while IL-1β secretion has been found to require the activation
of the receptor IL-1R during intermediate stage cancer in vitro [153]. Moreover, Drexler
et al. showed that infiltrating myeloid cells were mainly responsible for tumor-promoting
IL-1β release in the tumor microenvironment [91]. Interestingly, the adaptor protein
ASC also plays opposite roles in skin tumorigenesis, acting as a driver of tumorigenesis
when expressed in infiltrating myeloid cells but as a tumor suppressor when expressed in
keratinocytes [91].

3.3.6. Prostate Cancer

It is known that the microenvironment plays a pivotal role in both cancer development
and progression [154]. IL-1β abundance in the tumor environment and its overexpression
have already been associated with the progression of different cancer types [69], including
prostate cancer (PCa) [93,155]. High levels of IL-1β and IL-18 have been found in the serum
of patients with advanced PCa [92,156]. The proinflammatory cytokine IL-1β is overex-
pressed in an in vitro model of PCa, suggesting the activation of the NLRP3/caspase-1
pathway in malignant growth [93]. Cancer cell-derived extracellular vesicles (EVs) can
modify the prostate microenvironment to promote cancer proliferation [157] and can
promote the activation of the NLRP3 inflammasome and caspase-1 and IL-1β release,
contributing to the maintenance of proinflammatory tumor conditions [93]. However, im-
munohistochemical experiments in human prostate samples demonstrated that there were
no significant differences in NLRP3 expression between tumor and adjacent tissues, either
benign or malignant, suggesting that NLRP3 might not be involved in PCa metastasis [158].

3.3.7. Gliomas

The role of the NLRP3 inflammasome and its components has also been extensively
described in gliomas, a group of malignant neoplasms of the central nervous system, which
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led to the identification of a protumoral role for NLRP3 [159]. The upregulation of NLRP3
affects human glioma progression by activating the AKT signaling pathway [94] and IL-
1β/NF-κB p65 signaling [160], thus promoting migration and invasion. In addition, glioma
cells display aberrant expression of IL-1β, and NLRP3 seems to contribute to radiotherapy
resistance [95]. Interestingly, beta-hydroxybutyrate has been recently reported to counteract
cell migration by suppressing the activation of caspase-1 and the maturation of IL-1β [161].

3.3.8. Hematological Malignancies

To date, studies have addressed the role of NLRP3 in solid tumors, but this inflamma-
some has an important and still controversial role in hematological malignancies. It has
been demonstrated that patients with primary lymphoma and acute myeloid leukemia
(AML) display markedly increased expression of NLRP3 inflammasome molecules accom-
panied by overexpression of IL-18 mRNA [96,98]; nevertheless, chronic myeloid leukemia
(CML) patients display lower levels of IL-1β or NLRP3 than controls [52]. Oncogenic KRAS
leads to ROS production, NLRP3 activation and consecutive release of IL-1β in a myeloid
leukemia mouse model, and KRAS-mutant human leukemia cells exhibit increased NLRP3
inflammasome activation [97]. Moreover, the activation of the NLRP3 inflammasome
reduces the antitumor effects of dexamethasone in lymphoma, altering the c-myc/TP53
and bcl-2/bax equilibrium [98].

In contrast, the NLRP3 inflammasome seems to have antitumor activity in multiple
myeloma (MM) [53] and chronic lymphocytic leukemia (CLL) [54], in which it is expressed
at lower levels in cancer patients than in healthy controls. The downregulation of NLRP3
in CLL lymphocytes blocks cell proliferation and induces apoptosis, suggesting that the
NLRP3 inflammasome works as a negative regulator of tumor growth [54].

Taken together, these data suggest that a unified mechanism for NLRP3 inflammasome
activation and its involvement in cancer has not yet emerged, so future studies are needed
to better clarify its role in each kind of tumor (Figure 2).
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4. NLRP3 Inflammasome as a Promising Target for Cancer Therapy

The clinical relevance of the NLRP3 inflammasome in multiple forms of cancer high-
lights its therapeutic promise as a molecular target. Here, we list the several compounds
that impinge on inflammasome activation or inhibit downstream products of inflamma-
some activation and that can affect cancer development (Table 2).
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Table 2. List of compounds that impinge on NLRP3 inflammasome activation and have a potential in cancer treatment.

Compound Name Target References Effective Cancer Type References

MCC950

directly interacts with the Walker B motif
within the NLRP3 NACHT domain,

thereby blocking ATP hydrolysis and its
active conformation

[162–164]

HNSCC [87]

PCa [165]

CML [97]

PDA [61]

DSS-induced experimental
colitis in mice [166]

Compound 6
directly binds the NLRP3 NACHT
domain, thereby blocking ATPase
activity and ASC oligomerization

[167] DSS-induced experimental
colitis in mice [167]

Fc11a-2 targets NLRP3 inflammasome and
inhibits cytokines release [168] DSS-induced experimental

colitis in mice [168]

VI-16 inhibits the binding of TXNIP to NLRP3
by reducing NLRP3 activation [169] DSS-induced experimental

colitis in mice [169]

Polydatin suppresses NF-κB signaling and NLRP3
inflammasome activation [136] NSCLC [137]

Fraxinellone suppresses NF-κB signaling and NLRP3
inflammasome activation [170] DSS-induced experimental

colitis in mice [170]

Alpinetin inhibits NF-κB pathway and NLRP3
inflammasome activation [171] DSS-induced experimental

colitis in mice [171]

C1-27 limits NLRP3 activation by reducing
ASC speck formation [172] CRC [173]

Celastrol
inhibits NF-κB pathway, blocks ASC
oligomerization and NLRP3 complex

formation

[174,175]
DSS-induced experimental

colitis in mice [175]

melanoma cancer cells [152]

Oridonin
blocks NEK7-NLRP3 interaction by
binding the cysteine 279 on NLRP3

NACHT domain
[176]

ovarian cancer [177]

osteosarcoma [178]

BC [179]

esophageal cancer [180]

Thalidomide inhibits caspase-1 activation [181]
MM [182]

PCa [183]

CY-09
binds to the ATP-binding motif of

NLRP3 NACHT domain and inhibits
NLRP3 ATPase activity.

[184] triple negative BC [185]

SI-2
disrupts the interaction between NLRP3

and ASC then blocks the formation of
ASC speck

[186] anaplastic thyroid
carcinoma [187]

Andrographolide inhibits caspase-1 activation [102] DSS-induced experimental
colitis in mice [102]

Canakinumab IL-1β inhibitor [188]

NSCLC [189,190]

triple negative BC, CRC,
metastatic melanoma and

PC
-

Anakinra IL-1 receptor antagonist [191]

glioblastoma [192]

AML [97]

BC [193]

CRC [194]

PDA -

MM -

Abbreviations: AML: acute myeloid leukemia; BC: breast cancer; CAFs: cancer associated fibroblasts; CML: chronic myeloid leukemia;
CRC: colorectal cancer; DSS: dextran sodium sulphate; LC: lung cancer; MM: multiple myeloma; PCa: prostate cancer; PDA: pancreatic
ductal adenocarcinoma.
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The first inhibitor of NLRP3 to be discovered was the sulfonylurea CP-456773/CRID3,
recently named MCC950, a compound found to be a potent and specific small-molecule
inhibitor of the NLRP3 pathway [162]. From a molecular point of view, MCC950 directly
interacts with and affects the Walker B motif within the NLRP3 NACHT domain, thereby
blocking ATP hydrolysis [163] and inducing NLRP3 to transition into an inactive confor-
mation [164]. To date, MCC950 has been tested in more than 80 animal models of more
than 50 diseases, and these studies triggered a major increase in the amount of NLRP3
research. In cancer treatment, MCC950 was found to suppress and delay tumor growth
and reshape the antitumor response in an HNSCC mouse model by decreasing the number
of immunosuppressive cells and improving T cell functions [87]; moreover, MCC950 was
able to reduce cell proliferation in a panel of PC cells by inhibiting inflammation [165].
Notably, MCC950 reverses KRAS-driven cytopenia and myeloproliferation [97]. MCC950
was shown to be effective in inhibiting IL-1β secretion and activation of caspase-1 in
murine ulcerative colitis [166]. Other compounds have been shown to be effective for
the treatment of DSS-induced experimental colitis in mice. A novel tetrahydroquinoline
inhibitor of NLRP3, compound 6, specifically inhibits NLRP3 activation in vivo and at-
tenuates colitis severity in the DSS mouse model [167] by directly binding to the NACHT
domain of NLRP3, inhibiting its ATPase activity and blocking ASC oligomerization [167].
1-Ethyl-5-methyl-2-phenyl-1H-benzo[d]imidazole, a synthetic small molecular compound
also named Fc11a-2, was shown to induce beneficial effects in the treatment of DSS-induced
experimental colitis in mice by targeting the NLRP3 inflammasome and inhibiting cytokine
release [168]. VI-16, a synthetic flavonoid compound, exerts potent anti-inflammatory
effects on macrophages by inhibiting the binding of TXNIP to NLRP3 and thus reducing
ROS production and inhibiting the NLRP3 inflammasome [169]. NF-κB signaling and
consequent NLRP3 inflammasome activation have been shown to be suppressed by frax-
inellone, a lactone compound [170], and by alpinetin, a novel plant flavonoid [171]; both
alleviate DSS-induced colitis.

Recently, the omega class glutathione transferase (GSTO1-1) inhibitor C1-27 has been
demonstrated to regulate the release of IL-1β and IL-18 by deglutathionylating NEK7 in
the NLRP3 inflammasome [172] and thus to protect against CRC formation [173].

These studies provide evidence that NLRP3 inflammasome inhibitors can function as
potential novel therapeutic agents for human inflammatory bowel disease and, considering
the correlation between the NLRP3 inflammasome and cancer, suggest new avenues for
CAC treatment.

Celastrol, a natural triterpene, has been demonstrated to be an important inhibitor
of the NF-κB signaling pathway [174] and of the NLRP3 inflammasome, and suppressing
caspase-1 activation and IL-1β secretion prevents DSS-induced colitis [175] and reduces
the ability of macrophages to stimulate the migration and invasion of melanoma cells [152].

Oridonin specifically inhibits NLRP3 by forming a covalent bond with cysteine 279
of the NLRP3 NACHT domain to block the interaction with NEK7, thereby inhibiting
NLRP3 inflammasome assembly [176]. Although there is no direct evidence that oridonin
induces anticancer activity by inhibiting the NLRP3 inflammasome, its ability to suppress
cell proliferation, migration and invasion has been described in ovarian [177], breast [179],
osteosarcoma [178] and esophageal [180] cancers. The same idea may be applied to thalido-
mide, an efficient anti-inflammatory drug that is able to inhibit caspase-1 activation [181]
and has antitumor activity in MM and PCa treatment [182,183].

Among small-molecule compounds with NLRP3 inhibitory activity, CY-09 increases
gemcitabine sensitivity in triple-negative BC, limiting the activation of the EMT/IL-
1β/Wnt/β-catenin signaling pathway [185]. CY-09 specifically binds the ATP-binding
motif of NLRP3 and inhibits its ATPase activity [184].

The acetylase inhibitor SI-2, usually used as an antitumor reagent for anaplastic
thyroid carcinoma 31977311, specifically inhibits NLRP3 inflammasome activation by
disrupting the interaction between NLRP3 and ASC and by blocking ASC speck forma-
tion [186].



Cancers 2021, 13, 2297 16 of 26

Despite the numerous molecules and drugs that have been shown to regulate inflam-
masome activity, the current treatments for NLRP3-related diseases in the clinic involve
targeting IL-1β or IL-18. Canakinumab, a human anti-IL1β monoclonal antibody devel-
oped by Novartis, has evident antitumor effects against NSCLC [189,190] and is currently
being tested in clinical trials for triple-negative BC, CRC, metastatic melanoma and PC
treatment. Anakinra is a recombinant IL-1 receptor antagonist (IL-1RA), a well-known
antioxidant and anti-inflammatory agent, that is able to block the signaling of both IL-1α
and IL-1β through IL-1R [191]. Recently, anakinra has been demonstrated to mitigate
glioblastoma aggressiveness by inhibiting the expression of proinflammatory cytokines
and STAT3 [192], and as already mentioned, MCC950 is able to reverse KRAS-driven
cytopenia and myeloproliferation [97]. Interestingly, anakinra significantly reduces the
development and progression of BC bone metastasis [193]. Anakinra has been used in
combination with other drugs in clinical trials: (i) with 5-FU and bevacizumab, in which it
improved the survival rate and overall survival of patients affected by CRC [194]; (ii) with
gemcitabine, nab-paclitaxel and cisplatin, in which it improved clinical outcomes in PDA
(NCT02550327); and iii) with dexamethasone for treating patients with MM, in which it
improved survival benefits. (NCT00635154).

Taken together, these findings highlight that directly targeting the NLRP3 inflamma-
some or its downstream pathways has begun to attract attention as a potential strategy for
the development of novel anticancer therapies.

5. Concluding Remarks

Several biotech and pharmaceutical companies are now enthusiastically developing
NLRP3 inhibitors that they think could address a wide variety of common diseases. Initially,
most inhibitors of NLRP3 were developed to block the cytokines produced by its activation;
at present, development strategies focus on compounds that directly bind to and perturb
NLRP3 or target proteins that regulate posttranslational modification or degradation of
inflammasome proteins. However, studies that have directly assessed the intrinsic role of
NLRP3 in the regulation of cancer have depicted a complex scenario that mainly involves
its aberrant expression or function. The seemingly contradictory function of inflammasome-
dependent cytokines in tumor promotion and antitumor immunity is likely a result of
the context-dependent and tissue-specific nature of such cytokines. Thus, to translate
anti-NLRP3-based anticancer agents from the bench to the bedside, it will be important not
only to identify molecules that selectively target NLRP3 or its downstream pathways in
malignant cells but also to consider the metabolic heterogeneity of these malignant cells
and the mechanisms through which such heterogeneity is connected to cancer.

In conclusion, alterations in NLRP3 inflammasome activation influence malignant
transformation, tumor progression, and response to therapy by affecting an intricate
network of cancer cell functions. Additional studies to disentangle the molecular and
functional complexity of this network are urgently awaited.

Schematic representation of the several cancer types in which NLRP3 inflammasome
is involved. Created with BioRender.com.
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Abbreviations

5-FU 5-fluorouracil;
ADC adenocarcinoma;
AML acute myeloid leukemia;
AOM azoxymethane;
ASC apoptosis-associated speck-like protein;
Andro andrographolide;
ATP adenosine triphosphate;
BC breast cancer;
Ca2+ calcium ion;
CAC colitis-associated cancer;
CAFs cancer associated fibroblasts
CAPSs cryopyrin-associated periodic syndromes;
CARD caspase activation and recruitment domain;
CLICs chloride intracellular channels;
CLL chronic lymphocytic leukemia;
CML chronic myeloid leukemia;
CRC colorectal cancer;
DAMPs damage-associated molecular patterns;
DEN diethylnitrosamine;
DSS dextran sodium sulphate;
EMT epithelial-mesenchymal transition;
EOC epithelial ovarian cancer;
ER endoplasmic reticulum;
ERβ Estrogen Receptor β;
EVs extracellular vesicles;
FADD FAS-associated death domain protein;
GBP5 guanylate-binding protein 5;
GC gastric cancer;
GSDMD gasdermin D;
GSTO1-1 omega class glutathione transferase;
HCC hepatocellular carcinoma;
HNSCC head and neck squamous cell carcinoma;
H. pylori Helicobacter pylori;
HR-HPV high risk human papillomavirus
IL-β interleukin-1beta;
IL-18 interleukin-18;
IL-1RA IL-1 receptor antagonist;
K+ potassium;
LC lung cancer;
LRR leucine-rich repeat;
LPS lipopolysaccharide
MAMs mitochondria-associated membranes;
MDSC myeloid-derived-suppressor cells;
MM multiple myeloma;
NACHT nucleotide-binding and oligomerization;
NEK7 never in mitosis A (NIMA)-related kinase 7;
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NF-κB nuclear factor-kB
NK natural killer;
NLRP3 NLR family protein containing a pyrin domain 3;
NSCLC non-small-cell lung cancer;
OSCC oral cavity squamous cell carcinoma;
PAMPs pathogen-associated molecular patterns;
PC pancreatic cancer;
PCa prostate cancer;
PDA pancreatic ductal adenocarcinoma;
PKR RNA-dependent protein kinase;
PPARα proliferator-activated receptor α;
PYD pyrin domain;
ROS reactive oxygen species;
SCLC small-cell lung cancer;
SNPs single nucleotide polymorphisms;
SKCM skin cutaneous melanoma;
TAMs tumor associated macrophages;
TFEB transcription factor EB;
TLRs toll-like receptors;
TSLP thymic stromal lymphoprotein;
ULK1 unc-51 like autophagy activating kinase 1.
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