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Decays y.;(J =0,1,2) — w¢ are studied using (448.14+2.9) x 10°%(3686) events collected
with the BESIII detector in 2009 and 2012. In addition to the previously established y.) — @¢, the first
observation of y.; — w¢ is reported in this paper. The measured product branching fractions are
B(w(3686) = yyc0) X B(yeo— wpp) =(13.834£0.70+1.01) x 107° and B(w(3686) = yyc1) x B(ye1 — weh) =
(2.674£0.314:0.27)x 1075, and the absolute branching fractions are B(y.o — w¢) = (13.84 £0.70 +
1.08) x 1073 and B(y, — w¢) = (2.80 £0.32 £0.30) x 1075. We also find strong evidence for
X2 — w¢ with a statistical significance of 4.8¢, and the corresponding product and absolute branching
fractions are measured to be B(w(3686) = yy0) X B(yem — o¢) = (0.91 £0.23 £0.12) x 107® and
By = o) = (1.00 £ 0.25 £ 0.14) x 107>, Here, the first errors are statistical and the second ones
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I. INTRODUCTION

The lowest triplet P-wave states of charmonium (the c¢
bound state), y.;(1P), with quantum numbers [6JFC =
0"J*T and J = 0, 1, and 2, can be found abundantly in the
electromagnetic decays y(3686) — yy.; with an approxi-
mate branching fraction of 30% [1]. The w(3686) meson
can be directly produced at the ete™ colliders, such as the
BEPCII [2], where the y.; mesons are easily accessible by
the electromagnetic decays y(3686) — yy.;-

The hadronic y.; decays are important probes of the strong
force dynamics. First of all, the mass of the ¢ quark
(~1.5 GeV/c?) is well known between the perturbative
and nonperturbative QCD domains in theoretical calcula-
tions. Due to the complexity and entanglement of the
long- and short-distance contributions, large theoretical
uncertainties of branching ratios for the y.; — VV decays
are known [3-9]. (In this paper, the symbol of V denotes the
@ and ¢ mesons). The hadronic y.; decays provide a
prospective laboratory to limit theoretical parameters and
test various phenomenological models. Second, the y;
mesons have the same quantum numbers J©C as some
glueballs and hybrids, although none of the glueball and
hybrid states has been seen until now [10]. The hadronic
x.; — VV decays are ideal objects to exploit the glueball-
gq mixing and the quark-gluon coupling of the strong
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interactions at the relatively low energies. Third, the y;
mesons are below the open-charm threshold. Most of the
hadronic y.; decay modes are suppressed by the Okubo-
Zweig-lizuka (OZI) rule [11]. It is shown in the previous
theoretical researches that the contributions from the inter-
mediate glueballs or hadronic loops can scuttle the OZI rule
in the y.; — VV decays [12-15], and avoid the so-called
helicity selection (HS) rule (also called the “naturalness”
which is defined as o = (—I)SP [16], where S and P are
respectively the spin and parity of the particle.) in the y.; —
VV decays [8,9].

The y.;, ¢ and @ mesons differ from each other in their
quark components according to the quark model assign-
ments. This fact causes the y.; — w¢ decay modes to be
doubly OZI (DOZI) suppressed and results in the branching
fractions for the y.; — w¢ decays much less than those for
the singly OZI-suppressed y.; = ww, ¢¢ decays [1,17]. In
reality, @ and ¢ are not ideal mixtures of the flavor SU(3)
octet and singlet [18], which would provide a source that
violates the DOZI-suppressed rule for y. — w¢. The
DOZI-suppressed y.; — w¢ decays have been observed
based on the 106 x 10° y(3686) events accumulated with
the BESIII detector in 2009, with significances of 100, 4.10
and 1.5¢ for the y ., y.; and y., decays, respectively [17].

In this paper, the y.; — @w¢ decays will be reinvestigated
via the radiative transitions y(3686) — yy.; with com-
bined experimental data, i.e., (448.1 +2.9) x 10° y(3686)
events collected with the BESIII detector during 2009
and 2012 [19].

I1. BESIII DETECTOR AND
MONTE CARLO SIMULATION

The BESIII detector operating at the BEPCII collider is
described in detail in Ref. [2]. The detector is cylindrically
symmetric and covers 93% of 4z solid angle. It consists of
the following four subdetectors: a 43-layer main drift
chamber (MDC), which is used to determine momentum
of the charged tracks with a resolution of 0.5% at 1 GeV/c
in the axial magnetic field of 1 T; a plastic scintillator time-
of-flight system (TOF), with a time resolution of 80 ps
(110 ps) in the barrel (end caps); an electromagnetic
calorimeter (EMC) consisting of 6240 CsI(TI) crystals,
with photon energy resolution at 1 GeV of 2.5% (5%) in the
barrel (end caps); and a muon counter consisting of 9
(8) layers of resistive plate chambers in the barrel (end
caps), with position resolution of 2 cm.

The GEANT4-based [20,21] Monte Carlo (MC) simulation
software BOOST [22] includes the geometry and material
description of the BESIII detectors, the detector response and
digitization models, as well as a database that keeps track of
the running conditions and the detector performance. MC
samples are used to optimize the selection criteria, evaluate
the signal efficiency, and estimate physics backgrounds. An
inclusive MC sample of y/(3686) events is used for the
background studies. The y(3686) resonance is produced by

the event generator KKMC [23], where the initial state
radiation is included, and the decays are simulated by
EVTGEN [24] with known branching fractions taken from
Ref. [1], while the unmeasured decays are generated accord-
ing to LUNDCHARM [25]. The signal is simulated with the
decay y(3686) — yy., generated assuming an electric-pole
(E1) transition. The decay y.; — w¢ is generated using
HELAMP [24], the helicity amplitude model where the angular
correlation between @ decay and ¢ decay has been consid-
ered. Ref. [17] shows that the model describes the exper-
imental angular distribution well. We assume y.; — @¢ and
X7 — ¢¢ have the same helicity amplitudes with the same
HELAMP parameters. In addition, y.; states are simulated
using a relativistic Breit-Wigner incorporated within the
helicity amplitudes in the EVTGEN package [24]. The back-
ground decays y.; = oK*K~, ¢px* 7~ 2%, and the nonreso-
nant decay y,.; — K*K~ 2"z~ 7" are generated using the
phase space model.

III. EVENT SELECTION

In this analysis, the ¢ mesons are reconstructed by
K*K~, while @ by 777~ 2°. Event candidates are required
to have four well-reconstructed tracks from charged par-
ticles with zero net charge, and at least three good photon
candidates.

A charged track reconstructed from MDC hits should have
the polar angle, 6,| cos 9] < 0.93 and pass within =10 cm of
the interaction point along the beam direction and within
1 cm in the plane perpendicular to the beam. To separate K+
from 7%, we require that at least one track is identified as a
kaon using dE/dx and TOF information. If the identified
kaon has a positive (negative) charge, the second kaon is
found by searching for a combination that minimizes
|M k+x- — M |, among all identified kaons and the negative
(positive) charged tracks, where M g - is the invariant mass
of the identified kaon and an unidentified track with kaon
mass hypothesis, and M, is the nominal ¢ mass [1]. The
remaining two charged tracks are assumed to be pions.

The photon energy deposit is required to be at least
25 MeV in the barrel region of the EMC (| cos 8] < 0.80) or
50 MeV in the EMC end caps (0.86 < |cos 8| < 0.92). To
suppress electronic noise and energy deposits unrelated to
the event, the EMC time ¢ of the photon candidates must be
in coincidence with collision events within the range
0 <t<700 ns. At least three photons are required in
an event.

In order to improve the mass resolution, a four-constraint
(4C) kinematic fit is performed by assuming energy-
momentum conservation for the y(3686) »3yKt Kzt n~
process. If the number of photons is larger than three, then
looping all 3y K+ K~z z~ combinations and the one with the
smallest 3. is chosen. The event is kept for further analysis
if y3-(3yK"K=ntx~) < 60, which is obtained by optimiz-
ing the figure of merit (FOM) S/+/S + B, where S and B
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are the numbers of MC simulated signal and background
events, respectively. In addition, y3-(3yK K ntzn™) <
Xic(@yK* K=zt n™) is applied to suppress the background
with an extra photon in the final state.

A further requirement of [M™ ! — M, | > 8 MeV/c?
obtained by optimizing FOM, is applied to suppress the
w(3686) — n" 7~ J /y background, where the M™! is the
recoil mass for the 7"z~ system, and M, is the nominal
mass of J/y [1].

The 7° candidates are selected from the three yy combi-
nations as the pair with the minimum |M,, — M 0|, where
M o is the nominal 7° mass [1]. Figure 1(a) shows the plot of
the KT K~ vs 7z~ z" invariant mass for the selected events
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FIG. 1. (a) Scatter plot of Mg+x- vs M+ ,-,0 for events within
the y.; mass region. The boxes indicate the sideband regions
(labeled as A, B, and C) and signal region (labeled as D). (b) and
(c) are the one-dimensional projection of the system recoiling
against selected w and ¢ candidates, respectively. The short-
dashed arrows show the signal regions while long-dashed arrows

show the sideband regions.

in the y.; signal region ([3.3,3.6] GeV/c?), and a clear
accumulation at the @ and ¢ masses is observed. The
bottom-central ~ square  |M -0 — M, | < 0.05 GeV/c?
and Mg+ g- —My| < 0.015 GeV /c? obtained by optimiz-
ing FOM, is taken as the w¢ signal region (labeled as D),
and the five squares around the signal region are taken
as the sideband regions (labeled as A, B and C), where
M i -0 (Mg -) is the invariant mass of z* 7~z (KTK™).
The M g+ g~ distribution with M+ - 0 in the w signal region
in Fig. 1(b) shows a clear ¢ peak. Correspondingly, the

20

10

20

15

10

Events/(10 MeV/c?)

20

10

200 f
150 |
100 f

50 F

3.5
Mg o (GEV/ED)

FIG. 2. Simultaneous fit to the M -+ g- .+ -0 distributions in the
sidebands (A, B, and C) and the signal (D) regions. The dots with
error bars are data, the solid lines are the fit results, and the dotted
lines represent the signal components. The long-dashed line is
background normalized using the simultaneous fit to the w¢
sidebands, and the short-dashed line is the remaining background.
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M .+ - o distribution with M g+ - within the ¢ signal region,
as shown in Fig. 1(c), indicates clear @ and ¢ peaks. The latter
is from the decay y., — ¢¢p - KT K ntz~ 2. Figure 2
shows the invariant mass spectrum M g -+ -0 for events
in the w¢ sideband regions (subfigures labeled A, B, and C)
and the signal region (subfigure labeled D) with clear y;
peaks in all plots.

Analysis of the y(3686) inclusive MC sample indicates
that the peaking background in the y.; signal region can be
described by the sideband events. The data collected at /s =
3.65 GeV with an integrated luminosity of approximately
1/15 of the y(3686) data are used to investigate nonresonant
continuum background. After the same event selection
criteria are applied, only a few events survive, and they do
not have any obvious enhancements in the y.; mass region.

IV. SIGNAL EXTRACTION

The number of the y.; — w¢ events is determined by
fitting the Mg+ -+ 0 distributions within the w¢ signal
region [labeled as D in Fig. 1(a)]. The signal is described by
the MC simulated shape convolved with a Gaussian function,
which is used to account for the difference in the y.; mass and
resolution between data and MC simulation. The parameters
of the Gaussian function are obtained using the sample
w(3686) = yxos = rdpd — yata 2K K

The peaking backgrounds from the y.; — wKtK™,
¢nt 7Y, and the nonresonant K* K~z 72~ z° background
are estimated using the sideband regions labeled A, B,
and C in Fig. 1(a). The total peaking background con-
tribution, kag, is the sum calculated as

(1)

, and Ny are numbers of the

+ - + =70 _
Ny = NoKK 4 NIET 7 4+ NI
K+K~- pnta a0

where Ng’kg ,kag
aforementioned peaking background contributions. The
contributions are determined using the following equations:

NE?QK_ = (NaA—=Nc - fcan) - fasps (2)

t -0
Nglfgﬂ” = (Ng = N¢ - fcop) - fB=D: (3)
Npe = Nc - fc-p. (4)

where N, Ny, and N¢ are the numbers of the fitted y;
events in the A, B, and C regions, respectively; fc_a,
fcoBs fcops fasp, and fp_p are the relative scaling

TABLE 1. Number of signal events (Nf);;s , detection

factors for the different regions. The factors are estimated
using the corresponding MC simulation of y.; —
KK ntn n°, wK*K~, and ¢n*n z°. For example,
fasp is the ratio of the y.;, - wK*TK™ yields between
the D and A regions.

We perform a simultaneous unbinned maximum like-
lihood fit to the M g+ g- .+ ,- 0 distributions in the signal and
sideband regions. The result of the fit is shown in Fig. 2.
The parameters of the Gaussian functions accounting for
the difference between data and MC simulation are
assumed to be the same for the signal and sidebands.
The shape of the distributions outside the y.; peaks is
described by a polynomial function. The statistical signifi-
cance of the y., (r.,) signal is determined by comparing the
—21n £ value with the one from the fit without the y.; (y.,)
signal component, and considering the change in the
number of degrees of freedom. The results are 12.30
and 4.80 for y. and y., respectively. The extracted
numbers of the y.; — w¢ events are given in Table I.

The product branching fractions, B(y(3686) — yy.;)x
B(y.; — w¢) = B, x B,, are calculated as

N)(cl
By x B, = obs )
e Ny ese) - B(@) - B(g) - B(z°) - €

(5)

where N, (3686 i the number of y(3686) events, B(w),
B(¢), and B(z°) are the branching fractions of w —
atn 7% ¢ - KTK~, and 7° — yy, respectively [1]. The
corresponding detection efficiencies, €, are obtained from
the MC simulations. The results for the product branching
fractions are listed in Table I.

By using the world average values of B(y(3686) —
YXes), the absolute branching fractions of y.; — w¢ are
determined and also listed in Table 1.

V. SYSTEMATIC UNCERTAINTIES

The contribution of systematic effects on the product
branching fractions from various sources is described in the
following:

(1) The tracking efficiency for z and K is investigated
using control samples of J/w — pz [17] and
w(3686) — n"x"KTK~, respectively. The differ-
ence in the efficiency for the track reconstruction
between data and MC simulation is 1.0% per pion

branching fraction B, x B, =

efficiency (e€), the product

B(w(3686) — yy.;) X B(y.; = w¢), and the absolute branching fraction B(y.; — w¢). Here, the first uncertainty is statistical and

the second systematic.

Mode N)gfjjs 6(%) B] X Bz B(){C./ d CU¢)

Xeo = 0P 486.3 £24.5 17.99 £+ 0.06 (13.83 £0.70 £ 1.01) x 1076 (13.84 +0.70 £ 1.08) x 1073
Xel = @O 104.7 £ 12.1 20.04 £ 0.06 (2.674+0.31+£0.27) x 107° (2.80 £0.32 £ 0.30) x 1073
X2 = @O 329+£83 18.47 £ 0.06 (0.91 +£0.23 £0.12) x 107° (1.00 £0.25 £0.14) x 1073
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(@)

3

C)

&)

(6)

)

and per kaon. Assuming they are all correlated, the
uncertainty due to tracking efficiency is 4%.

The particle identification (PID) efficiency for kaons
is investigated with control samples of J/y —
K*(892)°KY + c.c., and the systematic uncertainty
is determined to be 1% per kaon track [17]. In this
analysis, only one of the two charged tracks is
required to be identified as kaon. The bias on one of
the two tracks being a kaon track will be much
smaller than 1%. Therefore, the uncertainty due to
PID efficiency is negligible.

The uncertainty of the photon reconstruction
efficiency is studied using J/yw — pr [26]. The
difference between data and MC simulation is found
to be 1.0% per photon, and the value 3% is taken as
the systematic uncertainty.

The uncertainty of MC generator comes from
modeling y(3686) — yyx.1, and y.; = w¢ in MC
simulation.

The uncertainty of assuming y(3686) — yy 1, as
pure El transition is studied by taking the higher-
order multiple amplitudes contribution [27] into
account in the MC simulation. The resulting effi-
ciency difference of 0.9% for y.;, and 0.5% for y .,
are taken as this systematic uncertainty. The un-
certainty of modeling y.; — w¢ is studied by
changing the model from HELAMP to a pure phase
space distribution. The resulting efficiency differ-
ence of 4.1% for y ., 5.6% for y.,, and 1.3% for y .,
are taken as this systematic uncertainty.

The total systematic uncertainties of the MC
generator are obtained as 4.1% for y., 5.7% for
Xec1» and 1.4% for y., by summing all individual
contributions in quadrature, assuming two sources to
be independent.

The uncertainty related to the z° mass window is
studied by fitting the z° mass distribution of data
and signal MC for the control sample y(3686) —
atn 7%, We obtain the z° detection efficiency,
which is the ratio of the number of z° events
selected with and without the z° mass window
requirement, determined by integrating the fitted
signal shape. The difference in the efficiency be-
tween data and MC simulation is 0.8%.

The uncertainty related to the Mffgi_l mass window
requirement is studied with the control sample
w(3686) —» ntaJ/yw,J/w - utu~. We obtain
the Mjffgi,l detection efficiency, which is the ratio
of the number of events with and without the Mffffri_l
mass window. The difference in the efficiency
between data and MC simulation is 0.4%.

The systematic uncertainties associated with the 4C
kinematic fit are studied with the track helix param-
eter correction method, as described in Ref. [28].
In the standard analysis, these corrections are

012015-7
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applied. The difference of the MC signal efficiencies

with the uncorrected track parameters are 1.5%,

1.9%, and 2.3% for y.), x.1» and y. decays,

respectively. These values are taken as the uncer-

tainties associated with the 4C kinematic fit.

The uncertainty related to the fitting comes from the

fit range, @ and ¢ mass windows, sideband regions,

and fitting function (including resolution and re-
maining backgrounds shape).

(a) Theuncertainty due to the fitrange is estimated by
changing the range by +5 MeV/c? in the mass
spectrum, since the nonresonant K+ K~ z+z~ 2"
background shape is quite smooth according to
the topology analysis with the inclusive MC
sample. The largest differences for the branching
ratios are 1.0% for y ., 3.0% for y.;, and 10.0%
for y.. These numbers are assigned as the
corresponding systematic uncertainties.

(b) The uncertainties associated with the ¢
and @ mass windows are estimated using two
control samples, w(3686) = yy.s, xes = $P —
<K+K_)(ﬂ+7[_”0)’ and W(3686> =YXl Xel =
ww — 2(n"n~7°), respectively. The efficiency
for the w(¢) selection is obtained from the
comparison of the @ (¢) yields determined from
the 777~ 7° (K*K~) mass spectrum with and
without the @ (¢) selection requirement. The
difference in w(¢)-selection efficiency between
data and MC simulation, 1.9% (0.6%), is taken
as the uncertainty of the w(¢)-mass window.

(c) The uncertainty due to background estimates
using the sidebands can be divided in two groups.
One is due to the sideband ranges, the other is due
to contributions of various intermediate states in
s = KYK~ 772~ 7° in the MC simulation used
to extract the scaling factors. The former can be
estimated by changing the sideband range.
By changing the mass region of M. ,-,0 from
[0.633,0.683]/[0.883,0.933] to [0.631,0.681]/
[0.881,0.931]GeV/c?, and the mass region
of Myg+x- from [1.04, 1.07] to [1.042,
1.072] GeV/c?, the differences of y.o, signal
yields are 0.6%, 4.6%, and 5.1%, respectively. For
the nonresonant y,.;, - K*K-n"7n 7%, a phase
space process was used. The experimental
distributions indicate the contribution of the
intermediate states involving K*(892): y., —
K°K72° and y., - K**K~ztn~ +c.c.. The
corresponding MC distributions are mixed with
the phase space model according to the ratios
estimated from the fits to data to recalculate the
scale factors related to the region C. The
differences of the y .y, signal yields are 0.2%,
2.0%, and 4.2%, respectively. The resulting
differences due to the two preceding effects are
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TABLE II. Relative contributions to systematic uncertainties
in measuring the product branching fraction of B; x B, =
B(w(3686) = yy.s) X B(y.; = @¢) (in units of %).

Source Xco Xel X2
Tracking efficiency 4.0 4.0 4.0
PID efficiency Negligible = Negligible = Negligible
Photon efficiency 3.0 3.0 3.0
MC generator 4.1 5.7 1.4
7% mass window 0.8 0.8 0.8
Mff;'ri_l mass window 0.4 0.4 0.4
Kinematic fit 1.5 1.9 23
Fit range 1.0 3.0 10.0
® mass window 1.9 1.9 1.9
¢ mass window 0.6 0.6 0.6
Sidebands 0.6 5.0 6.6
Resolution Negligible = Negligible = Negligible
Remaining 0.4 0.5 0.2
background shape
Intermediate state 1.3 1.3 1.3
Total 7.2 10.2 13.7

found to be 0.6%, 5.0%, and 6.6% for y 1.2,
respectively.

(d) The systematic effects from the detector reso-
lution difference between data and MC simu-
lation are studied with the control sample
w(3686) = yy.; = ¢ —» KT K nta % We
change the difference by one standard deviation.
No changes are found for the v ; » signal yields
and these systematic uncertainties are neglected.

(e) The uncertainty from the non-y.; background is
estimated by changing the polynomial from first
to second order in fitting M g+ - +,-,0 Mass
spectrum. The differences in the final results
are 0.4%, 0.5%, and 0.2%, respectively.

(9) The systematic uncertainties due to the branching
fractions of @ — 7772~ 7° and ¢ - KK~ are 0.8%
and 1.0%, respectively [1]. Therefore, the uncer-
tainties of the final results are 1.3%.

(10) The number of y(3686) events is estimated from the
number of inclusive hadronic events, as described in

Ref. [19]. The uncertainty of the total number of

w(3686) events is 0.6%.

Table II summarizes the systematic uncertainties and
their sources for the product branching fractions. The total
systematic uncertainties are obtained by summing all
individual contributions in quadrature, assuming all sources
to be independent. For the uncertainties of absolute
branching fractions y.; — @, the uncertainty arising from
w(3686) — yy,; transition rate is added.

VI. RESULTS AND DISCUSSION

Using the data sample of (448.1 +2.9) x 10° y(3686)
events collected with the BESIII detector, we present the

improved measurement of the doubly OZI-suppressed
decays y.; — w¢. The decay y. — w¢ is observed for
the first time with a 12.3¢ statistical significance and the
branching fraction of y., — w¢ is measured with improved
precision. We also observe strong evidence for y ., — w¢ at
a statistical significance of 4.8¢. The product branching
fractions, B(w(3686) — yx.0.12) X B(xc0.12 = @¢), and
the absolute branching fractions, B(y.i, — w¢), are
determined as listed in Table I. In addition, using the
branching fractions of y.; = ww, ¢p¢ from Ref. [17], the
ratios B(y. = wd)/B(y. — ww) and By, — o)/
B(y.i = ¢¢) of (4.67 £0.78) x 1072 and (5.60 & 1.01) x
1072 are obtained, respectively. Here, the common sys-
tematic uncertainties in the two measurements cancel in
the ratio. These ratios are one order of magnitude larger
than the theoretical predictions [9]. These measurements
will be helpful in clarifying the influence of the long-
distance contributions in this energy region, understanding
the theoretical dilemma surrounding the OZI and HS rules,
and checking mesonic loop contributions and the @ — ¢
mixing effect.
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