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Abstract
Let A be the von Mangoldt function and

ren)= Y A(m)

mi +m% +m§:n

be the counting function for the numbers that can be written as
sum of a prime and two squares (that we will call Linnik numbers,
for brevity). Let N a sufficiently large integer. We prove that for
k> 3/2 we have

Z rg (n) 7;]\(;_’_ i) =M (N,k)+ O (NkH)
n<N

where M (N, k) is essentially a weighted sum, over non-trivial zeros
of the Riemann zeta function, of Bessel functions of complex order
and real argument. We also prove that with this technique the bound
k > 3/2 is optimal.

1 Introduction

We continue the recent work of Languasco and Zaccagnini on additive prob-
lems with prime summands. In [9] and [10] they study the Cesaro weighted
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explicit formula for the Goldbach numbers (the integers that can be written
as sum of two primes) and for the Hardy-Littlewood numbers (the integers
that can be written as sum of a prime and a square). In a similar manner,
we will study a Cesaro weighted explicit formula for the integers that can
be written as sum of a prime and two squares. We will obtain an asymptotic
formula with a main term and more terms depending explicitly on the zeros
of the Riemann zeta function. The study of these numbers is classical. For
example Hardy and Littlewood in [7] studied the number of solutions of the
equation

n=p+a +"b’

and Linnik in [I3] derived an asymptotic formula for the number of rep-
resentations of these numbers. Similar averages of arithmetical functions
are common in literature, see, e.g., Chandrasekharan - Narasimhan [2] and
Berndt [I] who built on earlier classical work. For our work we will need
the Bessel functions J, (u) of complex order v and real argument u. For
their definition and main properties we refer to Watson [15], but we recall
that they were introducted by Daniel Bernoulli and they are the canonical
solution of the differential equation

for any complex number v. In particular, equation (8) on page 177 of [15]
gives the Sonine representation

2 14
(1.1) J, (u) = (/2 / ess VLo (4s) g
27TZ (a)
where the notation f (a) TOCATS faajzl;o The method we will use in this additive
problem is based on a formula due to Laplace [L1], namely
1 1

(1.2) — v e dy =
27 J (o) I'(s)

with Re(s) > 0 and a > 0 (see, e.g., formula 5.4 (1) on page 238 of [4]).
As in [I0], we combine this approach with line integrals with the classical
methods dealing with infinite sum over primes and integers. Similarly as
[10] the problem naturally involves the modular relation for the complex
Jacobi 65 function; the presence of the Bessel functions in our statement
strictly depends on such modularity relation.
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2 Preliminary definitions and Lemmas

Let

ren)= Y A(m)

ml—l—m%—l—mg:n
and let J, (u) be the Bessel function of complex order v and real argument
u. Let z=a+ 1y, a > 0, and

(2.1) O3(z) =) e ™"

meZ

(2.2) S(z) =Y A(m)e™,
m>1

(23) () =3 e
m>1

and we can see that

(24) 93 (Z) =1+ 2&)2 (Z) .

Furthermore we have the functional equation (see, for example, the propo-
sition VI.4.3 of Freitag-Busam [5] page 340)

(2.5) 0= (%) "oy (”;) Re(2) >0

z

and so

(2.6)

6= (52" -3) 24 (D)) (@7 (2),

A trivial but important estimate is

. < < OO —at? — ﬁ —1/2.
(2.7) |wQ(z)|_w2(a)_/0 e dt 2\/a<<a

Let us introduce the following

Lemma 2.1. Let z =a+ 1y, a > 0 and y € R. Then
(28) () =1 -3 =)+ Bay)
)

where p = 5+ iy runs over the non-trivial zeros of ¢ (s) and

ly| <a

1
E(a,y) < |2|V*{ 7
(@9 <IN S vog (91 /o), 1] >
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(For a proof see Lemma 1 of [9]. The bound for F (a, y) has been corrected
in [§]). So in particular, taking z = % + iy we have

> 2T (p) §—§(z)+E<%,y)'<<N+%+'E (%y)'

p

ly| <1/N

2.9 < ’
(29) {N+|z|1/210g2<2zv\y\>, iyl > N,

Now we have to recall that the Prime Number Theorem (PNT) is equivalent,
via Lemma 2.1, to the statement

S(a) ~at, when a — 0"

(see Lemma 9 of [7]). For our purposes it is important to introduce the
Stirling approximation

(2.10) T (z + iy)| ~ V2me ™WI/2 |y |7~ 1/2

(see for example §4.42 of [14]) uniformly for = € [xq, 23], 1 and x5 fixed,
and the identity

(2.11) 27| = 2|77 exp (Im (w) arctan (y/a)) .
We now quote Lemmas 2 and 3 from [9]:

Lemma 2.2. Let §+ivy run over the non-trivial zeros of the Riemann zeta
function and let o > 1 be a parameter. The series

e d
Z 75_1/2/ exp (—yarctan (1/u)) Q‘ZB
p;7>0 ! Y
converges provided that o > 3/2. For a < 3/2 the series does not converge.
The result remains true if we insert in the integral a factor log® (u), for any

fixed ¢ > 0.

Lemma 2.3. Let §+ivy run over the non-trivial zeros of the Riemann zeta
function, let z=a+ iy, a € (0,1), y € R and o > 1. We have

Sy /
p

(venctan (3) =5 1) s <o

exp (yarctan (= ) — = |v]) ——5 < @

Y1UYs a 2 2| +h

where Yy ={y € R: vy <0} and Yy = {y € [—a,a] : yy > 0}. The result
remains true if we insert in the integral a factor log® (|y| /a), for any fized
c> 0.
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We now establish an important Lemma. We will use it to prove that
there is a limitation in our technique. Essentially the lower bound of £ is
linked to the number of squares in the problem. We have

Lemma 2.4. Let f+1ivy run over the non-trivial zeros of the Riemann zeta-
function, let N, d be positive integers, ||.| the euclidean norm in R¢ and
k>0 be a real number. Then the series

PP [ e s,

1e(0,00)* 7>0

where

DD 3 300 9

1€(0,00)®  h2ll>1  Ig>1

converges if k > d — 1/2 and this result is optimal.

Proof. From (2.4]) we have that

Hence

= > > / e NI g

1e(0,00)% >0
2
_ny—k 3/2 /ﬁng (NZQJ )e_vvk+ﬁdv
v>0 v
1 d d m —k—3/2 N\ k+8
2> (DY ey [ (X e
m=0 >0

Now, using the functional equation (2.5]) we have that

d
1 d /2 3 Ty
o -m m— /2 m —v_ k+B8-—m
[_QdZ(m)( Nm/Qny / 9 (N 2)6 v dv

m=0 v>0
d
1 d d m T m—k—3/2
=51 3= (1) 1 R
m=0 >0

say. Now we claim that

7.(.2,}/2
‘93 <N’U2) = 1,
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where the notation f (z) < ¢ (x) means g (z) < f (z) < g (z), since 63 ()
is a continuous function in the interval %2, oo ) (i.e. the range of 1/v?) and

lim 05 (z) = 1.
r—r00
So we have ”
I’y,m - Z 7m—k—3/2/ e—vvk—l—ﬁ—mdv
v>0 0

and now, assuming k+ 5 —m + 1 > 0, we get

,
/ e VR tATmdy < 1.

0

Hence
L = va—k—s/z
v>0
and the last series converges if & > m —1/2. Since m =0, ..., d for a global
convergence we must have & > d — 1/2 and this result is optimal. U

Let us introduce another lemma

Lemma 2.5. Let p = 8+ iy run over the non-trivial zeros of the Riemann
zeta function, let z = % + 1y, N > 1 natural number, y € R and o > 3/2.
We have

ST e e ] o
P (1/N)

Proof. Put a = % Using the identity (2.11]) and (2.10]) we get that the left
hand side in the statement above is

_ dy
2.12 B 1/2/exp (7 arctan <g> I ) — .
212) D) -3hl)

and so by Lemma 2.3 (212) is <, a~® in Y; U Y,. For the other part we

can see that

o a d
52 [ (o (2))

o y/) /) |7

P
o 1 dy
— ma—p+1 p—1/2 _ —

=a Zp:v /1 exp( ~y arctan (u)) e

since

-1 <
(2.13) ERrsR e vl < a,
™yl = a,

and so by Lemma 2.2 we have the convergence if a > 3/2. O
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3 Settings

Using (2.10), (22) and (2.3)) it is not hard to see that

Z Z Z A (my) m1+m2+m3>z = ZT‘Q (n)e ™.

m1>1ma>1m3>1 n>1
Let z = a+ iy, a > 0 and let us consider

i Nz, —k— 15( ) (Z)dZ—L V7 k- 1ZTQ e "z

271 (a ) 271 =

Now we prove that we can exchange the integral with the series. From (27
and the Prime Number Theorem in the form quoted above we have

Z Irg (n) e ™| =S (a)wj (a) < a™?

n>1

hence

/() ‘eNzZ—k—l‘ g(z

assuming k > 0. So finally we have

)w; (2)

—26Na (/ a—k—ldy+2/ y—k—ldy) <<k a—2—keNa

(3.1) > rg(n )(F]\(fk i) %/@)e%—k—@(z)w;(z)d&

Now, using (2.8)), we can write ([B.I]) as
(N — ")k 1 / Noo—k—1 [ 1 —p 2
3 Wwon o : —-S d
rg (n) N ez 272 27T (p) | wy (2) dz+

(32) ro /(a) %) o o (2] 1 a1

and the error term can be estimated, using Lemma 2.1, (2.7) and (2.13) as

a~telNe (/ a " tdy +/ y "2 (1 + log? (y/a)) dy) < eNgTR

assuming k > 1/2. Hereafter we will consider @ = 1/N. We have

)k 1 / Nz —k 1 —p k+1
Z rg (n k Tl 2m . e Z 27T (p (z) dz40O (N**)

n<N
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and now, using the functional equation ([2.6), we get

(N—n)" 1 / Ne o1 [ 1 _ T\ 1/2 2
ro (n) ———~ =— ez — =) Z T (p) (—) —1]) dz
% Q C(k+1) 8w Jun z Zp: z
1 1 2
4o N 2 =N 27T () Ew% <7T—> dz
21 J oy z . z z
1 Ne —po1 [ 1 _ ( T\ 1/2
+— ez - — 27T (p (—) -1 (
211 (1/N) z Zp: ( ) z

=0+ L+ I3+ O (N"),

say.

4 Evaluation of I;

From I; we will find the main terms M; (N, k) and M, (N, k) of our asymp-
totic formulae. We have

say. From I; ; we observe that

1 1/2
I, = s eNZz_k‘3dz+—,/ Ney k2, T / Nz —k=5/27,
8mi (1/N) 81 (1/N) 47{2 (1/N)

so, if we put Nz = s, ds = Ndz and use ([L2) we get immediately

NE+2 NFE+HL q NFE+3/2
I = / e®s " ds + —/ s 2ds — L , / s k512
4 27TZ (1) 4 27TZ (1) 2 27T'l (1)
=M, (N, k).

From I, o we have
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T
Lo =——

_87T’l (1/N

1

87T’i (1/N)

Tl/2

47y (1/N)

eNe k2 Z 27T (p) dz
) p

=1 + 1y — I3,

p

N7yl Z 27T (p) dz

elVz yh=3/2 Z 27T (p) dz

say. We observe that by Lemma 2.5 we have the absolute convergence of
these integrals if, respectively, we have k > —1/2, k > 1/2 and k > 0. Hence

for k > 1/2 we have

Ilzng(p) !

271 (1/N)

1 1
=) T'(p) 5=
4; 271 (1/N)

ml/2 1
IgIT;F(p)— e

271 (1/N)

k1o 1 L' (p)
Nz klpd i N
<= © Zf(k+1+p)

5 Evaluation of [,

Ny =

™ I (p)
Zzp:r(k:+2+ N

4
p

k+1+p
p)

k+p

i I (p)

Nz —k=3/2=pg. _ T
2 2 E
2 - I'(k+

We have
T N ks 2 [T
Iy =— ez  Pwy | — ) dz
21 (1/N) z
2
m Nz _—k—2 —p 2 (T
—— ez 27T (p)w (—)dz
211 (1/N) ; 2 z
=ly1 — Ia2,
say.

Evaluation of I

We have that

™ _k_
121_ eNsz32

. 271 (1/N) 2

4

™

z

)

dy =

27

Nz, k=3 (
(1/N)

3/2+ p)

§ e—l%wz/z

1>1

k+1/2+4p
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so let us prove that we can exchange the integral with the series. Let us

consider
w3 e
Lh>1
say. From
N
1 1
G Re(/9)= i
we have
I/N ~§N
11 >170 |Z|

hence, recalling (2.7) and ([2.13),

U, < NF202

—k—3 6—l%ﬂ2Re(1/z)

> {]
1/ (Ny?)

00 —12/(Ny2)
ye
N2 / ve Ty

(2

ly| <1/N
ly| > 1/N

k+3 =U1+ U,
L>17 N |Z|

(N) < Nk—i—l

and from (2I3) (with a = 1/N) we get

0o —l%/(Ny)
U2 <<N1/2Z/ e

k+2
L1/ UN Yy

dy<< Nk/2+1z lk+1/ k/2 1/2 e du

1>1

assuming k > 0. Now we have to study the convergence of

D O BRETE

112112>1

say. Again from (2.I3) we have

—k—3 —12 2Re(l/z)

2m2Re(1/z) |dZ|

/N —(B+3)N —(12413) /(Ny?)
e [ s Y [
1>115>1 2] 1>11>17 /N ]
=Vi+ Vs,

say. For V; we can repeat the same reasoning of U; thus getting

‘/1 < Nk+2

and for V5, assuming k > 1, we have

neXyf -

1>11:>1

k+3

ws (N) < NFH

l2+l2 y2)

dy <, Nk/2+1/2.
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Then finally we have

Nz, —k=3 —(l2+l2) w /20, — Nk / s k=3~ (124+13)n 7 N/s g
DB B N IHIE

ll>1lg>1 11>1lg>1

from which, recalling the definition of the Bessel functions (ILI]) we have,
taking u = 27 (12 + 12)"/* N'/2 and assuming k > 1, that

NE/2+1 Jito (27r (12 4 12)'/? N1/2>

91 = ——7
) k+1 2 onk/2+1
g L>11a>1 (I +15)

Evaluation of I »

We have to calculate

L i Nz _—k—2 — —Bn2/z —1272/2
b= g [ 0 () (e

(1/N) p I1>1 la>1

and again we have to prove that is possible to exchange the integral with

(2

the series. So let us consider

As = Z/ }eNZ‘ ‘z_k_Q}
> N
say. Now using (2.9) and (27) we have
e—lf/(NyQ)

1/2 32 1/2
as s [Ty [ HQWW/Z/yMQWﬁymﬂy

Lh>1 L>17 N 2] Lh>1

Z 5=PT (p) 6—I%W2Re(l/z)

p

=Wy + Wy + Wi,

say. For W7 and W, we can easily see that
Wl < Nk+3/2w2 (N) < Nk—‘rl

and, taking u = I3/ (Ny?), we obtain

00 e—l%/(NyQ)

S
Ykt

W < N23 /

<<Nk/2+3/2zlk/ e~ k21 gy, < NF/2+3/2

1>1
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assuming k > 1. We have now to check Ws. Taking again u = 12/ (Ny?) we
have, assuming k > 3/2, that
2N
4ANI]
k/2—1/4 —u, k/2—5/4
W<<N//Zkl/2/ log<u) uk =My
hi>1

KNHEAN k—1/2 < N¥2,

L>14

Let us consider

A= [ e

11>2112>2

say. By (2.9) we get

N —(12+3) (12+12)/(Ny?)
AN Y [ e S /I/N R =)

11 15>2 1>115>2 ||

—1272Re(1/2) ,—1272Re(1/2
¢ HnRe(1/2) o~ BrRe(1/2) ||

> 2T (p)

p

—(12+13)/(Ny?)

e
+ZZ/ log? (2Ny) —|z|k+3/2 dy

11>2112>1

=R, + Ry + Rs,
say. So we have immediately
Ry < N*%% (N) <« N*1
and, if we take u = (I3 +13) / (Ny?), we obtain

12+12 M ) (k+1)/2
Ry ) /1/N e W< N

1>2110:>1

for £ > 1. So it remains to evaluate R3. Again we take u = (I +13) / (Ny?)
and we have

1/2
log? (AN (12 +12)) [(E+5) "N
k/2+1/4 —u, k/2-3/4
y < v s 57 o BRCEEAD [T oty
11>21102>1

.y (2+2)"°N .y
k/2+1/4 2 —u, k/2-3/4
—N E E ) k/2+1/4/0 log® (u) e “u du

1>1 l2>1

and the convergence follows if £ > 3/2. Note that the estimation of Rj is
optimal. For proving it, take ¢ = (I3 +13) /N, assume k < 3/2 and y > 1.
We have

e—c/v’

S_ZZ/ log” (2Ny) k+3/2dy—ZZ/ log” (2Ny) k+3/2d

11>211:>1 1>211:>1
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Now, since y > 1 we have log? (2Ny) > log® (2N) and since k < 3/2, we
have

c/y? —C/y
SzseM YN [T Gz sen 33 [T
11>21102>1 11>21102>1
o Nlog (2N (1—e M)
—log (@N) Y 5 (1=e) > DI PP
l1>1l2>1 11>2110:>1

The last double series diverges since
> 2.7 Hz—Z 2. Ey 12—2211
L>11>1 It I >11<lo<ly

Now we have to estimate

As = Z Z Z |F | / z} }Z_k_2} }Z—p} 6—lf7r2Ro(1/z)e—l§w2Re(1/z) |dZ| ’

l1>1 l2>1 14

say. Using (2.10) and (2.11]) we have

A5 < Z Z Z —7y/2 5 1/2 / |Z|—k—2 |Z|—ﬁ exp (’Y arctan (Ny)) 6_@”21{6(1/2)6_
1/N

11>112>1 p,y>0

Let Q) = supg {F (g + g + %)} and assume y < 0. Using the trivial bound
yarctan (Ny) —v5 < —7%, we have

As <<Nk+126 lNZe_lN Z NPBe —7T’Y/2 B—1/2

11>1 12>1 p,7>0

62) NS i 5 NS

Lh>1 12>1 _'_ 12 p, >0 (l% _'_ l%)

—7y/2~8-1/2
7 < N*.

If y > 0 we have

1/N
A<y Y Y e / NE248,-(F+B)N g

11>112>1 p:y>0
o~ (B+13)/(Ny?)

+ZZ Z o 1/2/ exp (7 (arctan (Ny) — g)) ?JH—Hde

11>112>1 piy>0

and by a well-known trigonometric identity follows that

k+1 —-1/2 1 e_(l%”g)/(NyQ)
A <<N + Z Z Z ’}/ / exXp |\ —v arctan N—y yk-i-—Q-i-de

11>112>1 piy>0

2, 72
k+1 ~1/2 0 E+GY pop
KN+ E E g ~vP / exp( Ny Ny Y dy

11>112>1 p:y>0

1272Re(1/2) |dZ| )
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and if we put Niy = v we get

k=2-8  ~

As < NFH 4 ZZ Z 7 1/2/ e_”e_(sz(l%Hg)/VQ) <%>_ de

11>112>1 piy>0

(5-3)

« N 33T S 4 3/2/ v (N2 (B+13) 142), b8 gy

11>112>1 piy>0

Now we can observe that we are in the situation of Lemma 2.4 with d = 2
and so we can conclude immediately that we have the convergence for k& >
3/2 and this result is optimal.

We studied the convergence, so we finally have, using again the identity

(L)), that

Jet14p (27T 1B+ N1/2)
l2 + l%) (k+1+p)/2 :

I _ 71_—ka/2+1/2 Z Np/2 Z Z
P

14 l1>1l2>1

6 Evaluation of I3

We have
_ 1 N oy [T w12 . 1 . TR
=g 72 <W‘(Z> D F ) =<+ 2T (p) <;> o (T))a
(1/N) P -
1 2 1 2
21 (1/N) z 2 (1/N) - -

1 / Nz_—k—5/2 7’ n 1 / Nz —k—3/2z oL (p) ™ d
— 5 e "z W — — e "z z W — z
27T1/2’i (1/N) 2 z 27T1/2’i (1/N) P p 2 z

=131 —I39— I35+ I34.

Evaluation of I3

We have

1 w2 1 2
Jaq = — Nz —k—3 dz = — Nz —k 3 —m?2r /zd
Bl 21 (1/N) = z = 21 Z

(1/N) m>1

hence we have to establish the convergence of

Ag=3 / [ [ 2] e R ]

m>1
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say. Using (2.7), (2.13)) and (5.1) we have

(61) A <<Nk+3/2+2/ Ny )dy<< Nk+3/2

m>1

for k > —1. So we obtain, recalling (I1]), that

Nk/2+1 Z Jk+2 (2m7TN1/2)

k+1 mk+2

J31 =

m>1

Evaluation of I3

We have ]
[373 = —/ eNzZ—k—5/2 —-m 7T2/Zd
271/24 (1/N) Z

m>1

so we have to establish the convergence of
S [ e
m>17 (/N

Arguing as for I3, we have the convergence for £ > —1/2. Summing up,
we obtain

Nk/2+3/4 Z Jk+3/2 (2m7TN1/2)

k+1 mk+3/2
m>1

I33 =

Evaluation of I

We have to establish the convergence of

Ari= ) / N[22 | 3D (o) [ e
m>1 p
say. Using (2.7), (Z13), (5.1) and (2.9) we get
A7 <<Nk+1/2 + NZ/ y—k—2e—m2/(Ny2)dy
+log? (2N) Z/ yk=3/2e=m (N?) g
m>171/N

—l—Z/ log® ( _k_g/ze_m2/(Ny2>dy.

m>1
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Now if we put m?/ (Ny?) = u we have

o kE+1
NZ/ y—k—2e—m2/(Ny2)dy < NE/2+3/2] (%) Zm—k—l

m>171/N m>1

which converges if £ > 0. With the same substitution we get

>0 ko1
log” (2N) ) / y 827 (V) gy < log? (2N) NM/2H1AT (5 + —) > mh
/N

1 4
m>1 m>1

which converges for k£ > 1/2. For the estimation of the last integral in the
bound of A; we observe that if we take ¢ > 0 we have

[ o a0ty S [ s )
m>1Y /N

and so, arguing analogously as we did for (G.1]), we get

k1 €
Nk/2+1/4—e/21—\ vy = —k—1/2+e€
< 5 T17 32 mz;lm

and for the arbitrariness of € we have the convergence for £ > 1/2. We have

now to study

A= @[ [

m>1 p

—m?2n?/z

|dz|,

say. By symmetry we may assume that v > 0. If y < 0 we have y arctan (y/a)—
57 < —57 and so using (Z.I0) and (2.11)) we get

0
Ag < Z 276—1/2 exp (_g7> ( Nk+2+ﬁe—m2Ndy +/
~1/N

————d
k+2+8
m>1 y>0 —o© |y

—-1/N e—mQ/(Ny2)
Y

B—1/2
k+3/2 k/2+41/2 5/27
g NEFH2 4 NEEREQL S kHZ -

m>1

provided that k > 0 and Qp = supg {F (5 + 5 + g)} . Let y > 0. We have

exp (_§7> < NFF3/2

As < SO Y exp / N8 =N g

m>1~v>0
(457
T\ €
+ Z 27 1/2/ exp (fy arctan (Ny) — 57) Wdy
m>1~v>0

:Ll + L27
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say. From (2.7) and (2.I3]) we have

—-m — m
Ly < NFH! Z . ZNZNB,VB 12 oxp <_ZV> <, N¥+3/2

m>1 >0

and again by a well-known trigonometric identity and taking v = m/ (N'/2y)

we have
L D3 [ oo (-5 - )
2 %l expl| —v 5 ) s
oo N Ny Ny2 yk+2+5
1 NB/2 mvN YU
_Ar(k+1)/2 B—1/2 _ _2) kB
=N mez mpB 7 /0 exp( N1/2m U)” dv.

m>1 >0

Using e""v* = O, (1) if k > 0, we have, taking s = yv/ (N/?m), that

1 o
< NF/2H Z — Z N67_3/2/ exp (—s) s%ds <, N¥/2+2
0

m>1 >0

for £ > 1. Now we can exchange the series with the integral and so we have

Jk+1+p <2m7r V N)
k(412 —pnrp/2
Isp=m"N Z T PNPPL (p) Z mk+1+p ’

P m>1

Evaluation of I 4

We have to establish the convergence of
I3, = ;/ esz_k_g/zzz_pF (p)w ~ dz
847 572, W . 27 .

Arguing analogously as we did for estimating I3, we obtain the condition
k > 1. We can exchange the series with the integral and obtain

Jk+1/2+p <2m7r\/N)
__—kaTk/2+1/4 -
Ia=m"N Z T "N’T (p) Z mk+1/24p

P m>1
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Defining
(6.2)
(N k) Nk+2 Nk—i—l B 7T1/2Nk+3/2
T (k+3) AT (h+2) 20 (k+5/2)
™ I (p) k 1 I (p)
My(NJk)=— 25" 2 W) raee  2NT 2 W) e
2 (N F) 4;F(k5+2+p) 4;F(k+1+p)
mt/? L (p)
63 Nk+1/2+p
63+ ;F(l@+3/2+p) ’
NE/2+1 Joto (2% (12 + l%)l/2 N1/2)
Ms (N, k) = k1 lo/2+1
T 11>11>1 (13 +13)

/2 a71/2
Jet14p (27T (B +B)"* N )
R NR/241/2 0/2
(64) N Z P N ZZ l2 —|—l%) (k+14p)/2 ’

P 1 >119>1

NFk/2H 3 Jirz (2mmNY2Z)  NR/2+3/4 3 Jira/2 (2mmNY/2)

k+1 k+2 gkl k+3/2
& m>1 m m>1 m

Jietr14 <2m7r\/ﬁ)
kN2 Z TP NPT (p) Z - ket 1tp
m

P m>1
Jk+l/2+p (QMW\/N>

—k nTk/24+1/4 - 2
(6.5) o ENEE ZW PNPT (p) Z mk+1/2+p ’

P m>1

M4(N,k’) —

we have proved the following

Main Theorem 6.1. Let N be a sufficient large integer. We have

Z rq (n i"]\(fk i) My (N, k)+Ms (N, k)+Ms (N, k)+M, (N, k)+O (NF)

for k > 3/2, where p runs over the non-trivial zeros of the Riemann zeta
function € (s) and J, (u) is the Bessel function of complex order v and real
argument u. Furthermore the bound k > 3/2 is optimal using this technique.
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