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Fernanda Martini*†
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In recent years, a number of studies focused on the role of epigenetics, including DNA
methylation, in spermatogenesis and male infertility. We aimed to provide an overview
of the knowledge concerning the gene and genome methylation and its regulation
during spermatogenesis, specifically in the context of male infertility etiopathogenesis.
Overall, the findings support the hypothesis that sperm DNA methylation is associated
with sperm alterations and infertility. Several genes have been found to be differentially
methylated in relation to impaired spermatogenesis and/or reproductive dysfunction.
Particularly, DNA methylation defects of MEST and H19 within imprinted genes and
MTHFR within non-imprinted genes have been repeatedly linked with male infertility.
A deep knowledge of sperm DNA methylation status in association with reduced
reproductive potential could improve the development of novel diagnostic tools for
this disease. Further studies are needed to better elucidate the mechanisms affecting
methylation in sperm and their impact on male infertility.

Keywords: DNA methylation, sperm DNA, male infertility, imprinting, infertility, epigenomics, sperm, imprinted
genes

INTRODUCTION

Male infertility affects about 15% of couples worldwide (Agarwal et al., 2015). In reproductive age,
approximately 7% of males suffer from infertility (Cooper et al., 2009; Krausz, 2011; Rotondo et al.,
2013). Male infertility is a multifactorial disease comprising a wide variety of disorders (Abrao et al.,
2013; Stouffs et al., 2014; Contini et al., 2018; Tognon et al., 2020). Endocrine and immunological
disorders, anatomical and genetic abnormalities as well as infections of the genital tract can affect
the male reproductive potential (Abrao et al., 2013; Stouffs et al., 2014). Several other factors
including age, stress, and lifestyle, such as obesity, smoking, and alcohol, have been associated with
male infertility (Kovac et al., 2015; Craig et al., 2017; Ilacqua et al., 2018).

In recent years, a number of studies have focused on the role of epigenetics in spermatogenesis
and male infertility (Seisenberger et al., 2012; Laurentino et al., 2015; Stuppia et al., 2015;
Urdinguio et al., 2015; Laqqan et al., 2017b; Nasri et al., 2017; McSwiggin and O’Doherty, 2018).
Epigenetics refers to the gene regulation process without changes in DNA sequence and includes
DNA methylation, posttranslational histone modifications and microRNA (miRNA) regulation

Abbreviations: ARTs, assisted reproductive technologies; AT, asthenoteratozoospermia; CH, congenital hypopituitarism;
CGIs, CpG islands; CTCF6, CTCF-binding site 6; DMRs, differentially methylated regions; DNMTs, DNA methyltransferases;
ICEs, imprint control elements; ICRs, imprinting control regions; LINEs, long interspersed nuclear elements; OA,
oligoasthenozoospermia; OT, oligoteratozoospermia; OAT, oligoasthenoteratozoospermia; PGCs, primordial germ cells; TET,
ten-eleven translocation.
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(Giacone et al., 2019; Stomper et al., 2021). Several specific
epigenomic/epigenetic modifications are established during
spermatogenesis to form highly specialized mature sperm
cells, allowing significant reorganizations of sperm chromatin
structure (Jenkins and Carrell, 2011). Therefore, spermatogenesis
is particularly vulnerable to epigenetic alterations. Dysregulations
in the DNA methylation process during spermatogenesis can
result in the abnormal expression of target genes, which may lead
to infertility (Cho et al., 2003; Aston et al., 2012). While many
epigenetic abnormalities causing male reproductive dysfunction
are still unknown, it is likely that most cases of idiopathic
infertility could be accounted for underlying DNA methylation
mechanisms (Rose and Klose, 2014).

This review provides an overview on gene and genome
methylation and its regulation during spermatogenesis and the
current knowledge of those DNA methylation defects potentially
involved in the etiopathogenesis of male infertility.

METHODS

We performed an investigation of the scientific literature by
searching PubMed (Medline) database until March 2021. All
studies investigating the relationship between DNA methylation
and male infertility published from 1987 up to March 2021 were
reviewed for specific topic areas, and the most relevant reports
were included. The literature search was performed using the
following keywords (alone and/or in combination): epigenomics,
epigenetics, gene, methylation, DNA methylation, genome,
methylome, hypermethylation, hypomethylation, regulation,
genomic imprinting, imprinted genes, sperm, sperm cells,
spermatozoa, semen parameters, spermatogenesis, infertility,
subfertility, sterility, and male infertility. The reference lists of all
publications included in this review have also been considered for
additional relevant works.

DNA METHYLATION IN GERM CELL
DEVELOPMENT

DNA methylation is a biochemical process where a nucleotide is
enzymatically methylated with a methyl group (–CH3) at the five-
carbon position, usually cytosine (Moore et al., 2013; Rotondo
et al., 2021). Cytosine methylation predominantly occurs at the
CpG dinucleotide (Figure 1). Regions rich in CpGs are called
CpG islands (CGI) and are usually found in gene promoters,
where gene expression is regulated through methylation
(Greenberg and Bourc’his, 2019; Rotondo et al., 2020b). CpG
methylation in the promoters of genes typically leads to gene
silencing (Rotondo et al., 2016, 2018a). The suppression of
gene expression can occur by DNA methylation itself that,
in some cases, can prevent the binding of transcriptional
factors (Moore et al., 2013; Yin et al., 2017). Methylated DNA
could also be recognized and bound by the methyl-binding
proteins methyl CpG binding protein 2 and methyl-CpG-binding
domain protein-1, -2, and -4, which recruit the enzymes histone
methyltransferases and histone deacetylases to trigger histone

modifications and chromatin packing, leading to the repression
of gene expression (Parry and Clarke, 2011).

DNA methylation plays a pivotal role in regulating germ cell
development (Reik and Walter, 2001; Castillo et al., 2018; Hanna
et al., 2018; Lobo et al., 2019; Sharma et al., 2019; Wasserzug-
Pash and Klutstein, 2019). During germ cell development, the
genome is widely remodeled by waves of DNA demethylation and
methylation (Figure 2; Reik and Walter, 2001; Li, 2002; Santos
and Dean, 2004; Rousseaux et al., 2005; Biermann and Steger,
2007; Marcho et al., 2019). The wave of DNA demethylation
occurs in the primordial germ cells (PGCs), which are precursors
of male and female germ cells. Initially, the content of DNA
methylation is equally distributed between PGCs and embryo
somatic cells. Upon migration of PGCs from the epiblast to the
gonadal ridge, the DNA methylation marks are extensively erased
(Monk et al., 1987; Santos and Dean, 2004), resulting in lower
methylation levels in PGCs compared to those in embryo somatic
cells (Gkountela et al., 2015; Guo et al., 2015; Tang et al., 2015;
Von Meyenn and Reik, 2015). These epigenetic modifications
are essential for the genome reprogramming of PGCs, allowing
sex-specific germ cell development during embryo development
(Reik and Walter, 2001; Yao et al., 2015). De novo methylation
proceeds in prospermatogonia or gonocytes arrested in mitosis,
and it is firstly established at the repeated DNA sequences, such
as retrotransposons, and then at the imprinted genes, leading to
appropriate sex-specific methylation patterns in the germ cells.

DNA methylation establishment in the germline is
of particular importance, as failure to establish correct
methylation in retrotransposons and imprinted genes has
serious consequences for embryo development. Indeed,
retrotransposons, such as long interspersed nuclear elements 1
(LINE1), are interspersed repeated DNA sequences which are
able to propagate throughout the genome. Lack of methylation
in retrotransposons could allow their propagation throughout
the genome, causing insertional mutagenesis and, in turn,
several diseases, including male infertility (Solyom and Kazazian,
2012). Regarding the imprinted genes, methylation regulates
the expression through an important process termed “genomic
imprinting,” which leads to the expression of either the maternal
or paternal allele. When maternal/paternal alleles undergo
global demethylation upon fertilization, the imprinted genes
preserve the methyl marks of the parental genome, leading
to parental-origin patterns of mono-allelic gene expression.
This process occurs in specific sequences called differentially
methylated regions (DMRs), also known as imprinting control
regions (ICRs) (Habib et al., 2019). For instance, the imprinted
genes IGF2-H19 share common enhancers and ICR located
downstream and upstream of the H19 gene, respectively. Under
normal circumstances, ICR and H19 are methylated in sperm
cells and unmethylated in oocytes, leading to the reciprocal
expression of the maternal H19 allele and paternal IGF2 allele
in somatic cells (Figure 3; Peters, 2000; Lanzillotti et al., 2021).
Other paternally imprinted genes have been found to be similarly
regulated in sperm cells, such as Ras Protein Specific Guanine
Nucleotide Releasing Factor 1, Delta Like Non-Canonical Notch
Ligand 1, and Zinc Finger DBF-Type Containing 2 (Arnaud, 2010;
Gunes et al., 2016). Contrariwise, maternally imprinted genes are
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FIGURE 1 | The DNA methylation machinery. (A) DNA methyltranferase 3A (DNMT3A) and 3B (DNMT3B) catalyze de novo methylation reactions on cytosines
belonging to CpG dinucleotides to form 5-methylcytosine. DNA methyltransferase 1 (DNMT1) mediates DNA methylation maintenance. (B) Ten-eleven translocation
(TET) enzymes mediates DNA demethylation reactions.

methylated in female germ cells, while they are expressed in male
germ cells, including mesoderm-specific transcript (MEST), also
known as paternally expressed gene 1 (PEG1), paternally expressed
3 (PEG3), and small nuclear ribonucleoprotein polypeptide N

FIGURE 2 | Epigenetic reprogramming during gametogenesis. Changes of
DNA methylation occur during primordial germ cell (PGC) development.
During the proliferation and migration into the gonadal ridge, PGCs undergo
global demethylation to remove parental imprints. Subsequently,
reestablishment of the male germ cell DNA methylation patterns occurs during
gametogenesis. De novo methylation occurs prior to meiosis in mitotically
arrested cells while being completed before birth.

(SNRPN) (Mayer et al., 2000; Higashimoto et al., 2003; Broad
et al., 2009; Hammoud et al., 2010; Zheng et al., 2011; Zhao
et al., 2015; Bruno et al., 2018). However, failure in the
maintenance of imprinted gene methylation patterns in the
germline might occur, and this has been associated with low
sperm quality and pregnancy rate and impaired post-fertilization
development (Rotondo et al., 2013; Kitamura et al., 2015;
McSwiggin and O’Doherty, 2018).

DNA methylation is carefully coordinated by a family of
enzymes named DNA methyltransferases (DNMTs). Four
members of this family, DNMT1, DNMT3A, DNMT3B,
and DNMT3C, are endowed with catalytic activity

FIGURE 3 | Epigenetic regulation of the imprinted IGF2-H19 gene cluster. The
regulation of the imprinted genes is mediated by imprinting control regions
(ICR) whose methylation regulates the imprinted genes located at the same
gene cluster. On the maternal allele, at the IGF2-H19 locus, the ICR is
de-methylated; this allows CTCF binding and promotes the expression of H19
and silencing of IGF2 through down-stream enhancer activity. On the paternal
allele, at the IGF2-H19 locus, the ICR and H19 are methylated; this prevents
CTCF binding and induces the inactivation of H19 and the expression of IGF2.
Consistently, IGF2 is expressed in the sperm cell (Cannarella et al., 2019).
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(Lopomo et al., 2016). DNMT1, also known as the maintenance
DNMT, copies pre-existing methylation marks onto the new
strands following DNA replication (Baylin and Jones, 2011).
DNMT3A and DNMT3B are de novo methyltransferases, as
they are able to methylate previously unmethylated DNA
sequences (Baylin and Jones, 2011). DNMT3C, along with
P-element induced wimpy testis/interacting RNA (PIWI/piRNA)
(Yang and Wang, 2016; Nagamori et al., 2018), is responsible
for the promoter methylation of retrotransposons in the male
germline (Barau et al., 2016). piRNAs are small non-coding
RNAs that form RNA–protein complexes through interaction
with PIWI proteins, a gonad-specific class of Argonaute proteins
(Yang and Wang, 2016). These RNA–protein complexes are
essential for the LINE1 methylation processes in male germ
cells (Aravin et al., 2008; Kuramochi-Miyagawa et al., 2008).
DNA methylation is a reversable chemical modification, and
active demethylation processes are mediated by erasing DNA
methylation mechanisms, mainly controlled by Ten-Eleven
Translocation (TET) enzymes, such as TET1, -2, and -3,
(Melamed et al., 2018). TET enzymes specifically convert
5mC to 5-hydroxymethylcytosine (5hmC). The TET-mediated
oxidation of 5mC induces DNA demethylation by passive
or active processing. As 5hmC is not recognized by DNMT1
during DNA replication, passive DNA demethylation can
occur in proliferating cells (Valinluck and Sowers, 2007). In
the active process, TETs convert 5hmC to 5-formylcytosine
(5fC) and then 5fC into 5-carboxylcytosine (5cC). 5fC and 5cC
are both recognized and excised by the base-excision DNA
repair machinery and subsequently replaced with cytosine
(Williams et al., 2012; Jin et al., 2015).

DNA METHYLATION AND MALE
INFERTILITY

Overview
DNA methylation plays a critical role during spermatogenesis
(Gunes et al., 2018b; Fend-Guella et al., 2019; Franzago et al.,
2019; Huang et al., 2019; Pisarska et al., 2019). The correct
methylation of DNA ensures proper chromatin condensation
in the sperm head, enabling sperm maturation and its ability
in fertilization and post-fertilization events (Carrell, 2019).
Contrariwise, incomplete or abnormal condensation of the
sperm chromatin results in damaged DNA, leading to the
impairment of egg cell fertilization and/or reduction in
pregnancy rates (Benchaib et al., 2005; Miller et al., 2009;
McSwiggin and O’Doherty, 2018). Considering these aspects,
several studies have analyzed the gene and genome methylation
levels of sperm DNA in association with male reproductive
dysfunctions (Houshdaran et al., 2007; Rotondo et al., 2012,
2013; Das et al., 2017; Alkhaled et al., 2018). These studies
have mainly, but not only, investigated associations between
improper DNA methylation in spermatozoa genome and
negative variations in semen parameters, such as concentration
(oligozoospermia), morphology (teratozoospermia),
and progressive motility (asthenozoospermia), alone
or in combinations, i.e., oligoasthenozoospermia (OA),

oligoteratozoospermia, asthenoteratozoospermia (AT), and
oligoasthenoteratozoospermia (OAT). Semen samples are
considered normal when the concentration, motility, and
morphology are ≥15 × 106 sperm/ml, ≥32% (sperm progressive
motility), and ≥4% normal, respectively (Cooper et al., 2009).

Gene Methylation Changes
Several genes carrying defective methylation have been associated
with abnormalities in semen parameters (Table 1). One of the
most highly studied genes is methylenetetrahydrofolate reductase
(MTHFR) (Haggarty, 2015; Saraswathy et al., 2018; Coppedè
et al., 2019; Mishra et al., 2019; Kulac et al., 2021), which is
a key regulatory enzyme involved in folate metabolism and in
DNA synthesis and methylation (Födinger et al., 2000). In male
mice testes, the activity of MTHFR is five times higher than in
other organs (Chen, 2001), whereas its inactivation results in
hyperhomocysteinemia, decreased methylation capacity, and the
arrest of spermatogenesis due to sperm DNA hypomethylation
(Chen, 2001). In humans, a number of studies have pointed out
that impairment of the MTHFR gene can contribute to disease,
including male infertility (Stangler Herodež et al., 2013; Tara
et al., 2015; Coppedè et al., 2016, 2019; Lévesque et al., 2016;
Asim et al., 2017). Mutations/polymorphisms in MTHFR gene
are broadly known causes of reduced MTHFR enzyme activity
in sperm cells, resulting in reduced methionine availability
and decreased DNA methylation (Gupta et al., 2011; Montjean
et al., 2011; Murphy et al., 2011; Safarinejad et al., 2011; Choi
et al., 2016; Poorang et al., 2018; Ullah et al., 2019). The
improper methylation of MTHFR gene in sperm germ cells may
likewise result in decreased MTHFR enzyme activity, leading
to aberrant methylation of sperm DNA. Hypermethylation of
MTHFR has been found in testes from males affected by
non-obstructive azoospermia and in sperm cells from males
affected by oligozoospermia and teratozoospermia as well as
in idiopathic infertile males (Khazamipour et al., 2009; Wu
et al., 2010; Botezatu et al., 2014; Karaca et al., 2017). In our
previous studies, hypermethylation at the MTHFR promoter
has been found to be associated with aberrant concentration,
motility, and morphology in males from infertile couples affected
by recurrent spontaneous abortion (Rotondo et al., 2012). In
addition, we have found a correlation between MTHFR gene
promoter hypermethylation and extensive methylation defects at
the paternal imprinted gene H19 in sperm DNAs from infertile
males with both normal and abnormal semen parameters. These
results have suggested that MTHFR hypermethylation-induced
inactivation may affect methylation at the imprinted loci of sperm
cells, leading to impaired fertilization (Rotondo et al., 2013).
Contrariwise, no correlation was found between methylation
errors at H19 and MEST genes and inactivating MTHFR C677T
single-nucleotide polymorphism (SNP) [a cytosine (C) to a
thymine (T) substitution at position 677] in sperm DNA from
infertile patients with defective semen parameters. However, a
higher incidence trend of aberrant DNA methylation among
severe oligozoospermic infertile males carrying C677T genotype
was observed (Louie et al., 2016).

Germline mutations arise from replication errors, potentially
resulting in reproductive health impairment (Gao et al., 2019;
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TABLE 1 | Aberrant methylation of non-imprinted genes associated with abnormalities of semen parameters.

Gene Function Associated sperm parameters References

ALU YB8 Repetitive sequences Normozoospermia Urdinguio et al. (2015)

BCAN Extracellular matrix formation Oligo-/oligoasthenozoospermia Sujit et al. (2018)

CPEB2 Tumor suppressor Oligo-/oligoasthenozoospermia Sujit et al. (2018)

CREM Germline regulator Not specified Nanassy and Carrell (2011)

CRISPLD1 Cysteine-rich secretory proteins Oligo-/oligoasthenozoospermia Sujit et al. (2018)

D4Z4 Repetitive sequences Normozoospermia Urdinguio et al. (2015)

DAZL Germline regulator and gametogenesis Oligoasthenoteratozoospermia Navarro-Costa et al. (2010)

DNMT1 DNA-methyltransferase Non-obstructive azoospermia Uysal et al. (2019)

DNMT3A DNA-methyltransferase Non-obstructive azoospermia

DNMT3B DNA-methyltransferase Non-obstructive azoospermia

EZH2 Histone methyltranferases Oligo-/oligoasthenozoospermia Sujit et al. (2018)

HDAC4 Histone deacetylases Oligo-/oligoasthenozoospermia

HLA-C Antigen-presenting MHC I Oligo-/oligoasthenozoospermia

HLA-DQA1 Antigen-presenting MHC II Oligo-/oligoasthenozoospermia

HLA-DRB6 Antigen-presenting MHC II Oligo-/oligoasthenozoospermia

HRAS GTPase Oligoasthenoteratozoospermia Houshdaran et al. (2007)

HSPA1L Molecular chaperone Normozoospermia Jenkins et al. (2016b)

HSPA1B Molecular chaperone Normozoospermia

JMJD1C Histone demethylases Oligo-/oligoasthenozoospermia Sujit et al. (2018)

KDM4C Histone demethylases Oligo-/oligoasthenozoospermia

LINE1 Repetitive sequences Normozoospermia Urdinguio et al. (2015)

Oligoasthenoteratozoospermia Boissonnas et al. (2010)

Not specified Khambata et al. (2021)

LPHN3 Member of GPCR Oligo-/oligoasthenozoospermia Sujit et al. (2018)

MLH1 DNA mismatch repair Oligozoospermia Gunes et al. (2018a)

Oligoasthenoteratozoospermia Hekim et al. (2021)

MT1A Metallothionein Oligoasthenoteratozoospermia Houshdaran et al. (2007)

MTHFR Methylation regulator Non-obstructive azoospermia Khazamipour et al. (2009)

Normo-/oligozoospermia Wu et al. (2010)

Oligoasthenozoospermia Botezatu et al. (2014)

Oligozoospermia Rotondo et al. (2012)

Normozoospermia Karaca et al. (2017)

Non-obstructive azoospermia Kulac et al. (2021)

Oligozoospermia

NBL2 Repetitive sequences Normozoospermia Urdinguio et al. (2015)

NTF3 Neurotrophic factor Oligoasthenoteratozoospermia Houshdaran et al. (2007)

P16 Tumor suppressor Asthenozoospermia Zhang et al. (2019)

PAX8 Transcription factor Oligoasthenoteratozoospermia Houshdaran et al. (2007)

PIWIL2 Endoribonuclease Non-obstructive azoospermia/oligozoospermia Heyn et al. (2012)

RHOXF1 Transcription factor Oligo-/astheno/-teratozoospermia Richardson et al. (2014)

RHOXF2 Transcription factor Oligo-/astheno/-teratozoospermia

rs2656927 SNP variants of UHRF1 Oligozoospermia Zhu et al. (2019)

rs8103849 SNP variants of UHRF1 Oligozoospermia

SAT2CHRM1 Spermine N1-acetyltransferase Oligoasthenoteratozoospermia Houshdaran et al. (2007)

SFN Regulator of mitotic translation Oligoasthenoteratozoospermia

SOX30 Transcription factor Non-obstructive azoospermia Han et al. (2020)

SPATA4 Apoptosis regulator Oligozoospermia Sujit et al. (2020)

SPATA5 ATP-dependent chaperone Oligozoospermia

SPATA6 Myosin light chain binding Oligozoospermia

SPATA7 Microtubule cytoskeleton organization Oligo-/oligoasthenozoospermia Sujit et al. (2018)

SPATA16 Testis-specific protein Oligo-/oligoasthenozoospermia

SPATA22 Meiosis-specific protein Oligo-/oligoasthenozoospermia

TDRD1 Repressor of transposable elements Non-obstructive azoospermia/oligozoospermia Heyn et al. (2012)

TET1 Dioxygenase Oligoasthenozoospermia Ni et al. (2016)

TET2 Dioxygenase Oligoasthenozoospermia

TET3 Dioxygenase Oligoasthenozoospermia

VDR Transcription factor Oligo-/astheno/-teratozoospermia Vladoiu et al. (2017)

XRCC1 Enzyme binding Oligoasthenoteratozoospermia Metin Mahmutoglu et al. (2021)
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Altakroni et al., 2021). Accordingly, the genetic defects of DNA
mismatch repair mechanisms have been related to impaired
spermatogenesis and male infertility (Gunes et al., 2015; Hekim
et al., 2021; Metin Mahmutoglu et al., 2021). A recent study has
investigated the methylation profile of the DNA mismatch repair
gene MutL alpha (MLH1) in sperm DNA from oligozoospermic
patients and normozoospermic males enrolled as the control
group (Gunes et al., 2018a). The results indicated an association
between MLH1 hypermethylation and male infertility, suggesting
that this gene might be under epigenetic regulation during sperm
cell development (Gunes et al., 2018a). High methylation levels
of the DNA repair X-ray repair cross-complementing protein 1
gene have been found in OAT males, thereby suggesting that
the improper methylation of this gene may have a role in sperm
chromatin condensation and OAT (Metin Mahmutoglu et al.,
2021). Contrariwise, two additional well-known DNA repair
genes, i.e., breast cancer type 1 susceptibility protein (BRCA1) and
BRCA2, did not show defective methylation in infertile men with
OAT (Kabartan et al., 2019).

Several other genes found aberrantly methylated in altered
sperm samples from infertile males have been investigated
at a single-study level (Table 1). Overall, several abnormally
methylated genes have been found to be associated to
altered sperm parameters, mainly oligozoospermia, indicating a
potential involvement of DNA methylation in male infertility.
All, but MTHFR, gene investigations have been carried out at
a single-study level and need further studies to be confirmed.
On the contrary, improper MTHFR promoter methylation, such
as hypermethylation, has been repeatedly found in aberrant
sperm samples, suggesting the methylation-induced MTHFR
dysregulation as a potential causal factor of abnormal sperm
changes. Interestingly, MTHFR hypermethylation has been found
in normal sperm samples of males from idiopathic infertile
couples. This may indicate that MTHFR dysfunction could play
a role in changing sperm function and health, possibly by
lowering CpG methylation content in imprinted genes, which, in
turn, may affect embryo development and pregnancy outcome
(Rotondo et al., 2013). In view of finding gene methylation
hallmarks in male infertility, these data are interesting and will
deserve further investigations. For instance, large studies of
different infertile populations along with a functional analysis of
hypermethylation are needed in order to elucidate the role and
the mechanisms of the MTHFR gene in human spermatogenesis
and the related pathologies.

Gene Methylation Changes in LINEs
The methylation status of LINE1 in sperm DNA from infertile
males was initially evaluated by Kobayashi et al. (2007) who
reported no correlation between LINE1 methylation and male
reproductive function. No correlation has also been found
in sperm DNA from idiopathic infertile males belonging to
recurrent spontaneous miscarriage couples (Ankolkar et al.,
2013). Low methylation levels at LINE1 have been shown
in asthenospermic and OAT patients in an additional study,
although no statistical significance was found between cases and
controls (Boissonnas et al., 2010; Tian et al., 2014). A meta-
analysis in 291 infertile patients and 198 fertile individuals from

seven published works found no significant correlation with
LINE1 methylation levels (Santi et al., 2017). Conversely, DNA
methylation marks at LINE1 and the repetitive sequences ALU
YB8, NBL2, and D4Z4 have been found to be significantly lower
in spermatozoa from idiopathic infertile males than in somatic
cells (Urdinguio et al., 2015). A significant decrease in global
5mC levels and LINE1 promoter methylation in spermatozoa
of males from couples experiencing recurrent pregnancy loss
has also been described (Khambata et al., 2021). Similarly,
LINE1 hypomethylation along with promoter hypermethylation-
associated silencing of PIWIL2 and Tudor Domain Containing 1
genes, two PIWI/piRNA pathway-related genes, has been found
in sperm DNA from infertile males affected by spermatogenic
disorders (Heyn et al., 2012). Animal model studies have reported
similar results with other PIWI/piRNA pathway-related genes
and satellite DNA regions (Capra et al., 2019; Zhang et al., 2020).

LINE1 methylation levels evaluated through sperm genome
methylation analyses might be a good indicator of genome-
wide alterations. Indeed, these repetitive sequences have
frequently been considered as surrogate markers for global
methylation changes (Pinto-Medel et al., 2017). However,
the role of LINE1 methylation in male infertility is far
to be elucidated. Few studies are currently available and
often reporting contradictory data, probably due to the lack
of homogeneity in experimental design and data processing
among studies.

High-Throughput Techniques for DNA
Methylome Investigation
Over the years, with the development of molecular
technology/methods (Park et al., 2012; Tognon et al., 2015;
Rotondo et al., 2018b, 2020a; Mazzoni et al., 2020; Preti et al.,
2020; Oton-Gonzalez et al., 2021), many studies have investigated
the relationship between DNA methylation and male infertility
on a genome-wide scale by employing high-throughput
techniques (Houshdaran et al., 2007; Ferfouri et al., 2013; Schütte
et al., 2013; Camprubí et al., 2016; Du et al., 2016; Jenkins
et al., 2016a,b; Laqqan et al., 2017a; Lee et al., 2019). The first
array-wide analysis was performed by Houshdaran et al. (2007)
highlighting improper DNA methylation at repetitive element
satellite 2, H-RAS, neurotrophin 3, paired-box gene 8, and Stratifin,
3′-nucleotidase, and metallothionein 1A genes in semen samples
with abnormal sperm concentration, motility, and morphology.
DNA methylation variations at over 9K CpGs spread throughout
the testicular genome have been detected between obstructive
and non-obstructive azoospermic patients (Ferfouri et al., 2013).
The human methylation 450k array analysis in semen samples
from couples who conceived and couples who did not showed
significantly decreased and increased methylation in two and
three genomic regions, respectively, in the “failure-to-conceive”
group. Interestingly, the two sites with low methylation content
were at closely related genes known to be expressed in the
sperm, i.e., HSPA1L and HSPA1B (Jenkins et al., 2016b). A recent
methylome and transcriptome study in euploid blastocysts
derived from couples with OAT males reported significant
alterations in approximately 1.1K CpGs compared to the
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cryopreserved euploid blastocysts used as controls (Denomme
et al., 2018). A pathway analysis elucidated the genes involved
in the regulation of cellular metabolic process as universally
affected. This epigenetic dysregulation provided an explanation
for the reduced reproductive potential in OAT patients despite
euploid blastocyst transfers (Denomme et al., 2018).

Additional array-wide studies have been reported to show the
following: (i) changes in the methylation of testis/epididymis-
specific genes in the testis and epididymis of vasectomized males
(Wu et al., 2013), (ii) loss of methylation in inflammation-
and immune response-related genes in sperm samples from
males belonging to infertile couples (Schütte et al., 2013), and
(iii) gain of methylation in spermatogenesis-related genes in
sperm samples derived from individuals undergoing assisted
reproduction (Schütte et al., 2013).

In normospermic males, the DNA methylome of the sperm
cell differs between infertile and fertile, and this difference may
be predictive of embryo quality during in vitro fertilization
(Aston et al., 2015). Nevertheless, differences in sperm epigenome
within healthy subjects have been also detected, indicating intra-
sample heterogeneity in DNA methylation patterns (Jenkins
et al., 2014). Furthermore, additional studies have underlined
potential epigenetic heterogeneity among, and within, sperm
cells, spermatogonia, and gonocytes (Kuhtz et al., 2014;
Laurentino et al., 2015, 2016).

The impairment of both sperm epigenome and gene
expression in relation to male reproductive dysfunction
was recently explored using high-throughput techniques.
Hypermethylation-induced silencing at SRY-Box Transcription
Factor 30 gene has been detected in association with non-
obstructive azoospermia (Han et al., 2020). Two array-wide
studies have described inverse correlations between DNA
methylation and the mRNA expression of genes involved in
different pathways, such as the response to hormone stimulus,
activation of protein kinase activity, apoptosis, and reproduction,
in sperm from both severe oligozoospermic and azoospermic
patients (Li et al., 2017; Wu et al., 2020).

As high-throughput approaches are able to detect extensive
variations in epigenetic marks, DNA methylation changes could
potentially be used as a diagnostic tool to predict the risk of
both male infertility and male infertility-related diseases (Aston
et al., 2015; Fang et al., 2019; Patel et al., 2020). For instance, an
array-based DNA methylation profile conducted on peripheral
blood has revealed variations in DNA methylation patterns in
infertile males compared to normozoospermic fertile controls,
suggesting that epigenome-based blood markers can be used
for diagnostic purposes (Sarkar et al., 2019). This has also
been suggested by the results of another high-throughput study
focused on congenital hypopituitarism (CH), which is a pituitary
gland hormone deficiency that leads to metabolic disorders and
male reproductive dysfunction. This study identified methylation
at CpG sites on two spermatogenesis/testicular development-
related genes in whole blood DNA isolated from a cohort of CH
patients (Fang et al., 2019). In this context, the clinical application
of these highly sensitive techniques cannot be ruled out. As high-
throughput approaches can potentially support work on defining

the forms of male infertility, these methods will deserve attention
in andrological clinical practice (Ferlin and Foresta, 2014).

DNA Methylating and Demethylating
Enzymes
DNA methyltransferases and TET are two key regulative gene
families involved in DNA methylation and demethylation
pathways, respectively, during both embryogenesis and
spermatogenesis (Nettersheim et al., 2013; Barišić et al., 2017;
Li et al., 2019). Despite their critical role in sperm methylation,
the DNMT and TET genes have been poorly investigated in
the context of male infertility (Uysal et al., 2016, 2019; Tang
et al., 2017, 2018). Decreased expression of DNMT1, -3A,
and -3B enzymes in association with global DNA methylation
changes has been detected in the testes of non-obstructive
azoospermic patients, suggesting that the methylation-induced
DNMT inactivation may be involved in male reproductive
dysfunction (Uysal et al., 2019). The presence of DNMT1 SNP
variant rs4804490 was found to be associated with an increased
risk of idiopathic infertility in males with abnormal semen
parameters (Tang et al., 2017). In the same study, no associations
were afterward determined between additional four DNMT
variants, i.e., DNMT1 (rs4804490), DNMT3A (rs1550117),
DNMT3B (rs2424909), and DNMT3L (rs7354779), and aberrant
DNA methylation at several imprinted genes, including H19,
GNAS complex locus (GNAS), and GTP-binding protein Di-Ras3
(DIRAS3) (Tang et al., 2018). Conversely, two SNP variants,
rs2656927/rs8103849, of ubiquitin-like, containing PHD and
RING finger domains 1 (UHRF1) gene, which is tightly related
to the DNMT1 pathway, have been identified in the blood of
oligozoospermic infertile males (Zhu et al., 2019). Other recent
evidence indicated that UHRF1 inactivation may have a negative
impact on male fertility potential, as the conditional loss of this
gene in germ cells leads to DNA hypomethylation, upregulation
of retrotransposons, and DNA damage response activation
(Dong et al., 2019). UHRF1 also cooperates with the PIWI/piRNA
pathway during spermatogenesis, suggesting a molecular link
between DNA methylation and the PIWI/piRNA pathway in the
germline (Dong et al., 2019).

Ten-eleven translocation 1, -2, and -3 genes have been
found to be consecutively expressed at different stages of
spermatogenesis, and their expression levels have been positively
correlated to male reproductive potential and pregnancy (Ni
et al., 2016). Indeed sperms from oligozoospermic and/or
asthenozoospermia males have significantly reduced TET1, -
2 and -3 mRNAs compared to fertile donors, but not to
normozoospermic males (Ni et al., 2016). TET1 protein
deficiency in spermatogonia decreases the 5hmC levels and
downregulates genes that are involved in several pathways, such
as cell cycle, germ cell differentiation, meiosis, and reproduction,
resulting in the reduction of spermatogonia stem cells and germ
cell differentiation (Huang et al., 2020).

When taken together, these studies suggest that DNMT and
TET impairment in sperm cells may represent a potential risk
factor for male infertility. Therefore, further investigations are
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needed to assess the role of DNMT and TET enzymes in the male
infertility phenotype.

Gene Methylation Changes in Imprinted
Genes
Imbalances in the methylation patterns of imprinted genes
could potentially impair spermatogenesis and/or favor the male
infertility phenotype (Hartmann et al., 2006; Rotondo et al., 2012,
2013; Das et al., 2017; Laurentino et al., 2019; Åsenius et al.,
2020a; Pohl et al., 2021). The methylation status of a number
of imprinted genes has been investigated in relation to impaired
spermatogenesis and/or reproductive dysfunction (Table 2).
DNA methylation defects of three maternally imprinted genes,
i.e., PLAGL1, MEST, and DIRAS3, have been identified in sperm
DNAs from infertile males with a low semen concentration
(Houshdaran et al., 2007). One of these genes, MEST, has been
repeatedly found as hypermethylated in association with the
male infertility phenotype (Marques et al., 2004; Hammoud
et al., 2010; El Hajj et al., 2011; Montjean et al., 2013; Xu
et al., 2016). Specifically, the improper DNA methylation at
MEST has been (i) linked to low sperm concentration and
motility as well as poor sperm morphology in idiopathic
infertile males (Marques et al., 2008; Poplinski et al., 2010;
Kläver et al., 2013), (ii) detected in primary spermatocytes
from azoospermic patients presenting complete or incomplete
maturation arrest (Marques et al., 2017), (iii) associated with
decreased bi-testicular volume and increased follicle-stimulating
hormone levels (Kläver et al., 2013), and (iv) associated
with abnormal protamine ratio in oligozoospermic patients
(Hammoud et al., 2010). These data have been further confirmed
by a meta-analytic study (Santi et al., 2017). Recently, MEST
hypermethylation has been found in the spermatozoa of male
partners from couples experiencing recurrent pregnancy loss
(Khambata et al., 2021).

Altered methylation in H19 has been broadly documented to
be associated with infertile males affected by oligozoospermia,
asthenozoospermia, teratozoospermia, OA, AT, and OAT
(Marques et al., 2004, 2008, 2010; Kobayashi et al., 2007;
Boissonnas et al., 2010; Minor et al., 2011; Rotondo et al., 2013;
Li et al., 2016; Dong et al., 2017; Bruno et al., 2018; Peng et al.,
2018). Idiopathic infertile males with normal semen parameters
have also been found to carry methylation defects at H19 in their
sperm (Poplinski et al., 2010; Ankolkar et al., 2013; Tang et al.,
2018). Imprinting errors at H19 gene were detected in primary
spermatocytes and elongated spermatids/spermatozoa with
incomplete maturation arrest from two azoospermic patients,
although the differences in H19 methylation levels between
patients and controls were not statistically significant (Marques
et al., 2017). In addition, abnormal methylation at H19 has been
shown at the regulatory region CTCF-binding site 6 (CTCF6),
located within the DMR of IGF2-H19, in sperm DNA from
infertile males (Rotondo et al., 2013). Therefore, sperm cells
carrying methylation defects at the IGF2-H19 CTCF6 region are
at a high risk of causing biallelic inactivation of the IGF2 gene,
which, in turn, could negatively impact embryo development
and/or pregnancy outcome (Boissonnas et al., 2010; Santi et al.,

2017; Bruno et al., 2018). Similarly, methylation defects at
IGF2-H19 have been detected in placenta tissues from offspring
conceived by assisted reproductive technologies (ART) (Pinborg
et al., 2016; Hattori et al., 2019; Lou et al., 2019). Thus, these
studies have pointed out that ART procedures may account for
the epigenetic defects in the embryo.

Altered DNA methylation patterns at overlapping transcript
1 (LIT1) and SNRPN have been found in infertile males tested
with abnormal protamine ratio in sperm cells (Hammoud
et al., 2010). Aberrant methylation at the SNRPN gene has also
been associated with altered sperm motility and morphology
as well as with OA and AT (Botezatu et al., 2014; Peng
et al., 2018). Interestingly, imprinting errors at the SNRPN
gene and IGF2-H19 have also been found in spermatozoa
from asthenozoospermia patients and in ART-conceived human
fetuses (Lou et al., 2019). Hypermethylation at SNRPN, alongside
other maternally imprinted genes involved in embryonic germ
cell development, such as MEG3, PEG1 (also known as MEST),
PEG3, LIT1, and PLAG1 like zinc finger 1 (ZAC), as well as
loss of methylation at the paternal imprinted gene GTL2 has
been detected in sperm DNA derived from patients affected
by moderate/severe oligozoospermia (Kobayashi et al., 2007).
Hypermethylation of PEG1, PEG3, PEG10, and ZAC genes has
been shown in spermatozoa from male partners from couples
experiencing recurrent pregnancy loss (Khambata et al., 2021).
Contrariwise, the lack of altered methylation has been reported
for PEG1, ZAC, and GTL2 in the sperm of male partners
from recurrent spontaneous miscarriages (Ankolkar et al., 2013).
Lastly, the maternally imprinted gene SNRPN upstream reading
frame protein, which is related to the SNRPN pathway, has been
detected as hypermethylated in association with oligozoospermia
(Bruno et al., 2018).

An additional imprinted gene possibly involved in male
reproductive dysfunction is zinc-finger CCHC-type containing 13
(ZCCHC13). ZCCHC13 is a novel imprinted gene involved in
an epigenetic mechanism known as X-chromosome inactivation
and has been detected both hypermethylated and down-regulated
in testis biopsies isolated from non-obstructive azoospermia
patients (Li et al., 2018). Low methylation at GNAS and DIRAS3
imprinted genes has also been found to be more prevalent in
idiopathic infertile males, especially in oligozoospermic males,
than in fertile males (Bruno et al., 2018; Tang et al., 2018). The
evidence that improper DNA methylation at the GNAS gene is
linked to male infertility is also supported by animal models
(Congras et al., 2014).

Imprinting errors could also be related to DNA fragmentation
in sperm cells. Indeed, the improper methylation of the paternally
imprinted gene Potassium Voltage-Gated Channel Subfamily Q
Member 1 (KCNQ1), along with that of IGF2, has been found
to be associated with a high level of DNA fragmentation in
semen samples (Ni et al., 2019). In addition, the centromeric
(domain 2) differentially methylated region (KvDMR) located in
exon 10 of KCNQ1OT1 has been found to be hypermethylated
in the spermatozoa of male partners from couples experiencing
recurrent pregnancy loss (Khambata et al., 2021).

A recent array-wide methylation analysis conducted on sperm
DNA from a cohort of males identified a number of genes
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TABLE 2 | Aberrant methylation of imprinted genes associated with abnormalities of semen parameters.

Gene Imprinted allele Function Associated sperm parameters References

CTNNA3 Paternal Alpha catenin Oligo-/oligoasthenozoospermia Sujit et al. (2018)

DIRAS3 Maternal GTPase Oligozoospermia Houshdaran et al. (2007)

DLGAP2 Maternal Membrane-associated protein Not specified Schrott et al. (2020)

Oligo-/oligoasthenozoospermia Sujit et al. (2018)

GATA3 Maternal Transcriptional activator Oligo-/oligoasthenozoospermia Sujit et al. (2018)

GNAS Maternal/Paternal G-protein alpha subunit Oligozoospermia Tang et al. (2018)

Oligoasthenozoospermia Zhang et al. (2019)

GTL2 Paternal Transcription regulator (lncRNA) Oligozoospermia Kobayashi et al. (2007)

H19 Paternal Tumor suppressor (lncRNA) Oligozoospermia Tang et al. (2018)

Oligozoospermia Marques et al. (2008)

Oligozoospermia Li et al. (2016)

Oligoasthenozoospermia Dong et al. (2017)

Oligoastheno-/astenoteratozoospermia Peng et al. (2018)

Oligoasthenoteratozoospermia Boissonnas et al. (2010)

Oligozoospermia Marques et al. (2004)

IGF2 Maternal Growth factor Not specified Poplinski et al. (2010)

Not specified Ni et al. (2019)

IGF2-H19 Maternal/paternal Oligo-/asteno-/terato-/oligoteratozoospermia Rotondo et al. (2013)

Oligozoospermia Bruno et al. (2018)

Asthenozoospermia Lou et al. (2019)

KCNQ1 Maternal Potassium channel Not specified Ni et al. (2019)

LIT1 Maternal Transcription regulator (lncRNA) Oligozoospermia Hammoud et al. (2010)

Oligozoospermia Kobayashi et al. (2007)

MAGI2 Paternal Membrane-associated protein Oligo-/oligoasthenozoospermia Sujit et al. (2018)

MEG3 Paternal Transcription regulator (lncRNA) Oligozoospermia Bruno et al. (2018)

MEST Maternal Hydrolase Oligozoospermia Houshdaran et al. (2007)

Oligozoospermia Kläver et al. (2013)

Oligozoospermia Marques et al. (2008)

Oligozoospermia Marques et al. (2004)

Oligozoospermia Kobayashi et al. (2007)

Oligozoospermia Hammoud et al. (2010)

Oligoasthenozoospermia Zhang et al. (2019)

Not specified Poplinski et al. (2010)

Not specified Khambata et al. (2021)

PEG3 Maternal Zinc finger Oligozoospermia Kobayashi et al. (2007)

Not specified Khambata et al. (2021)

PEG10 Maternal Zinc finger Not specified Khambata et al. (2021)

SNRPN Maternal Small nuclear ribonucleoprotein Oligozoospermia Hammoud et al. (2010)

Oligoasthenozoospermia Botezatu et al. (2014)

Oligoastheno-/astenoteratozoospermia Peng et al. (2018)

Astheno-/teratozoospermia Dong et al. (2017)

SNURF Maternal SNRPN upstream reading frame Oligozoospermia Bruno et al. (2018)

TP73 Paternal Tumor protein Oligo-/oligoasthenozoospermia Sujit et al. (2018)

ZAC Maternal Zinc finger Oligozoospermia Kobayashi et al. (2007)

Not specified Khambata et al. (2021)

ZCCHC13 Maternal Zinc finger Non-obstructive azoospermia Li et al. (2018)

associated with infertility, including the maternally imprinted
genes DLG associated protein 2 (DLGAP2) and GATA binding
protein 3 as well as the paternally imprinted genes catenin alpha
3, membrane-associated guanylate kinase, and tumor protein 73
(Sujit et al., 2018). An additional gene, brevican, which is a non-
imprinted gene involved in brain extracellular matrix formation,
has been identified in this study. All these genes might be
considered as novel potential candidates accounting for male
infertility phenotype, and their roles in spermatogenesis need to
be further investigated (Sujit et al., 2018).

In conclusion, many imprinted genes have been investigated
for methylation in aberrant semen samples, such as
oligozoospermia, asthenozoospermia, and teratozoospermia.
H19 and MEST were the most investigated genes in aberrant
sperm samples, showing repetitively aberrant loss or gain of
methylation, respectively, which, in turn, may be causal factors
in the development of male infertility. Of note is the fact that
aberrant methylations have also been found in infertile males
with normal sperm parameters. This aspect may have important
implications in the diagnosis of male infertility, which, to date,
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lacks explanation in 30% of infertile males. It is also hoped that
further studies will shed light into the etiology of these aberrant
imprinting patterns in paternally or maternally imprinted genes
in idiopathic infertility cases. Indeed the loss of methylation of
paternally imprinted genes may be due to a deficiency of DNMTs,
whereas hypermethylation of maternally imprinted genes might
result from erroneous de novo methylation or a failure to erase
maternal imprint in the male germ cell genomes (Barlow and
Bartolomei, 2014; Uysal et al., 2019).

Lifestyle Factors
Habits and lifestyle factors, such as smoking, alcohol
consumption, and diet, have been investigated in an effort to gain
insight into the causes of aberrant sperm DNA methylation in
relation to male infertility (El Khoury et al., 2019). A recent pilot
study conducted on sperm DNA from a cohort of infertile males
who underwent a supervised yoga practice regimen reported
DNA methylation changes at nearly 400 genes, suggesting a link
between positive lifestyle practices and male reproductive health
(Bisht et al., 2020).

Tobacco smoke has a strong negative impact on sperm DNA
methylation in a number of genes, also demonstrated in animal
models (Xu et al., 2013; Dai et al., 2016; Dong et al., 2017;
Laqqan et al., 2017a; Hamad et al., 2018; Wyck et al., 2018;
Fragou et al., 2019). The imprinted gene SNRPN has been
found to be aberrantly methylated in asthenozoospermia and
teratozoospermic smokers (Dong et al., 2017). Other studies on
humans and/or animal models have reported modifications to
sperm DNA methylation following cannabis use (Murphy et al.,
2018; Reece and Hulse, 2019). Improper DLGAP2 methylation
has recently been reported in sperm from cannabis users, thereby
suggesting the potentially negative effect of cannabis use prior
to conception on imprinting marks (Schrott et al., 2020). In this
context, the impact of parental drug addiction on sperm DNA
methylation in drug-sired offspring needs to be more deeply
explored (Jarred et al., 2018; Nieto and Kosten, 2019). Moreover,
both alcohol and nicotine consumption seem to impair DNA
methylation in several genes and genomic regions, leading to
male infertility. Indeed data on DNA methylation changes at
cyclin-dependent kinase inhibitor 2A and LINE1 and an increased
risk of male reproductive dysfunction have been reported (Zhang
et al., 2019). More recently, evidence has also indicated that DNA
methylation defects at MEST and GNAS genes, along with altered
sperm motility, morphology, and concentration, could be linked
to alcohol and nicotine exposure (Zhang et al., 2019).

Paternal diet is able to alter sperm epigenome and has been
associated with negative pregnancy outcomes in mice (Lambrot
et al., 2013). In addition, sperm from mice under a folate-deficient
diet showed differential DNA methylation marks at genes
implicated in development, diabetes, autism, and schizophrenia
(Lambrot et al., 2013). In humans, several studies have reported
on the relationship between paternal and/or maternal diet and
sperm DNA methylation in male infertility (Shukla et al., 2014;
Hoek et al., 2020; Toschi et al., 2020). A recent study conducted
on infertile males who underwent oral supplementation with
micronutrients in support of folate, B vitamins, zinc, and
cysteines reported an increase in DNA methylation levels,

resulting in improved sperm nuclear maturation and antioxidant
defenses, with a possible positive effect on reproductive function
(Bassiri et al., 2020). Furthermore, evidences on sperm DNA from
infertile males indicate a high methylation of vitamin D receptor
promoter in vitamin D-deficient conditions, thus suggesting the
role of diet in epigenetic modifications and male reproductive
dysfunction (Vladoiu et al., 2017). Similarly, one investigation
indicated that parental diet can modulate the methylation
levels of several genes, including liver-specific genes involved
in cholesterol/lipid metabolism, whereas no effect of paternal
diet on sperm DNA methylation was found in other studies
(Carone et al., 2010; Rando and Simmons, 2015; Shea et al., 2015;
Whitelaw, 2015). Similarly, parental pre-conceptional obesity
could potentially impact on the establishment of imprinting
marks during embryogenesis (Soubry et al., 2015; Ou et al.,
2019; Åsenius et al., 2020b; Keyhan et al., 2021). Changes in
methylation in two imprinted genes, PLAGL1 and MEG3, have
been detected in umbilical cord blood leukocytes in a group of
newborns from obese mothers, making a link between maternal
overnutrition and the impairment of imprinting marks in the
offspring (Soubry et al., 2015). In males, imprinted genes involved
in growth and development, including PEG3 and neuronatin
alongside MEST, have been found to be hypomethylated in
DNA derived from the blood of children of obese fathers.
The relationship between parental obesity and the methylation
status of the offspring clearly indicates that spermatogenesis
may be susceptible to environmental factors from an epigenetic
point of view (Soubry et al., 2015). A recent animal model
study supported and extended this conclusion by reporting data
about environmental toxicant exposure and transgenerational
inheritance of epigenetic marks (Sadler-Riggleman et al., 2019).
Additional animal models have shown similar results, reporting
that epigenetic alterations at PEG3 and H19 can occur in sperm
cells in offspring from diabetic and/or obese mice (Ge et al., 2014).
These studies, when taken together, highlight that both defective
DNA methylation and imprinting marks may be transferred
through generations, potentially affecting the health of adult
offspring (Grossniklaus et al., 2013; Ge et al., 2014; Soubry et al.,
2015; Blanco Rodríguez and Camprubí Sánchez, 2019). However,
this assumption has been questioned in a recent meta-analysis
of coordinated epigenome-wide association studies of paternal
prenatal body mass index (BMI) in relation to DNA methylation
(Sharp et al., 2021). The study conclusions do not support the
hypothesis that paternal BMI around the time of pregnancy
is linked with offspring-blood DNA methylation, even at the
imprinted regions (Sharp et al., 2021). Considering the data
available, more research is needed to address the role of paternal
diet on sperm DNA methylation in infertile males.

FUTURE PERSPECTIVES

This review provides an overview of gene and genome
methylation, its regulation during the spermatogenesis
process, and the current knowledge on those DNA
methylation defects which are known to be involved in
male reproductive dysfunctions.
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Most of the aforementioned studies have added sufficient
strength to the hypothesis that sperm methylation is associated
with sperm alterations and infertility. In spite of these reports, the
causative role of improper DNA methylation marks in inducing
male infertility remains poorly characterized, particularly due
to the lack of studies on the mechanisms involving DNA
methylation in sperm cells.

It is convincible that aberrations in methylation at specific
target genes may reflect whole methylome defects due to altered
DNMT and TET activities during sperm cell development
and spermatogenesis. On the other hand, several risk factors,
such as lifestyle, drugs, hormones, and diet, may account
for the gain or loss of methylation in key genes in sperm
cells. New functional studies on this topic are needed to
better elucidate the mechanisms affecting methylation in sperm.
Nevertheless, extensive knowledge of sperm DNA methylation
status in association with reduced reproductive capability is
useful in developing novel diagnostic tools for male infertility
(Balasubramanian et al., 2019; Sarkar et al., 2019). The current
primary diagnostic protocol for identifying infertile males relies
on the assessment of sperm number, motility, and morphology.
This diagnostic approach has several limitations in differentiating
fertile and infertile males, as abnormalities causing male
reproductive dysfunction are still unknown in a fraction of males.
In addition, this approach also provides limited information
on male reproductive potential and cannot be employed as a
prognostic tool in predicting pregnancy success and possible
outcome (Kläver and Gromoll, 2014). When taken together,
these drawbacks in the current protocols make DNA methylation
evaluation a putative useful tool in clinical practice (Sarkar et al.,
2019). A large number of studies have already demonstrated
that aberrant DNA methylation in spermatozoa is linked to
defective sperm parameters and male infertility phenotype as well
as a negative pregnancy outcome. In this context, sperm DNA
methylation could become a novel diagnostic and prognostic
parameter for assessing male infertility and pregnancy outcome,
respectively (Kläver and Gromoll, 2014). This approach has
also been reported in monitoring other diseases (Luján et al.,
2019). Thanks to high-throughput technology, which is rapidly
increasing in epigenetic studies, methylome analyses may soon
allow the methylation differences between infertile and fertile
males to be characterized, thereby greatly improving the current
knowledge on the relationship between sperm DNA methylation
and male infertility (Ferlin and Foresta, 2014). Hopefully, the
translation of this technology into clinical andrological practice
will improve the diagnostic and prognostic assessment of infertile
males (Kläver and Gromoll, 2014).

CONCLUSION

The role of DNA methylation in spermatogenesis, sperm
function, and male infertility is an important research area that
deserves attention. Although recent evidence seems to indicate
a possible overestimation of aberrant DNA methylation in male
infertility (Camprubí et al., 2012; Leitão et al., 2020; Åsenius et al.,
2020b), the aforementioned studies have provided significant

associations between improper DNA methylation in sperm and
infertile males.

A number of genes have been found to be differentially
methylated in relation to impaired spermatogenesis and/or
reproductive dysfunction. DNA methylation defects in genes,
including MEST and H19 within imprinted genes and MTHFR
within non-imprinted genes, have been previously identified
in a wide number of studies, and their defective marks could
be potentially employed as useful tools in clinical practice for
assessing male infertility (Marques et al., 2004, 2008, 2010;
Kobayashi et al., 2007; Boissonnas et al., 2010; Hammoud et al.,
2010; El Hajj et al., 2011; Minor et al., 2011; Rotondo et al., 2012,
2013; Montjean et al., 2013; Haggarty, 2015; Dai et al., 2016; Xu
et al., 2016; Dong et al., 2017; Li et al., 2017; Bruno et al., 2018;
Saraswathy et al., 2018; Coppedè et al., 2019; Mishra et al., 2019;
Sarkar et al., 2019).

The lack of studies for several of the additional genes
reported herein and/or the conflicting results for others make
the use of defective DNA methylation marks as a diagnostic
tool still unlikely. Further studies are necessary to identify
novel genes that could potentially be employed as tools in
clinical practice.

As suggested in several works, the dysregulation of epigenetic
mechanisms, including the aberrant methylation of DNA, may
play an important role in the development of infertility with
unknown etiology in a high fraction of males. However, further
research is needed to epigenetically explore the etiology of this
disease. Indeed the use of DNA methylation as a marker or cause
of sperm abnormalities in the field of fertility is only beginning
to be explored thoroughly and is currently not completely
clarified. Moreover, the use of methylation changes in DNA as
a marker to identify the male infertility factor is difficult, as
these changes may have little or even no significant biological
impact or multiple different changes may be necessary to establish
infertile phenotypes. In this effort, methylation signatures in
normal sperm from fertile individuals should provide useful
knowledge for elucidating these topics. Moreover, as aging is
correlated with changes in DNA methylation, investigating sperm
DNA methylation in age-stratified normal fertile individuals
should also be taken into account as well as to improve
our knowledge in this field (Johnson et al., 2012). Another
point deserving attention in the context of methodological
approaches is the potential contamination by somatic cells during
epigenetic analyses, such as blood, white, and epithelial cells,
as a result of incorrect sperm cell isolation/processing (Jenkins
et al., 2017). Standardized and detailed protocols for processing
sperm samples should be used in studying DNA methylation in
male infertility, as even only a few contaminated somatic cells
might alter the epigenetic signatures of sperm cells. Research
into sperm DNA methylation in male infertility might be an
important future area of study. We thus encourage further studies
focused on the role of DNA methylation in spermatogenesis
and male reproductive potential as well as embryo development
and pregnancy outcome. Such newly acquired data could
improve the diagnostic and prognostic setup of male infertility
phenotypes and pregnancy outcomes, respectively, with high
health benefits for humans.
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