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Dopaminergic (DA) periglomerular (PG) neurons are critically placed at the entry of the
bulbar circuitry, directly in contact with both the terminals of olfactory sensory neurons
and the apical dendrites of projection neurons; they are autorhythmic and are the target
of numerous terminals releasing a variety of neurotransmitters. Despite the centrality of
their position, suggesting a critical role in the sensory processing, their properties -and
consequently their function- remain elusive. The current mediated by inward rectifier
potassium (Kir) channels in DA-PG cells was recorded by adopting the perforated-patch
configuration in thin slices; IKir could be distinguished from the hyperpolarization-activated
current (I ) by showing full activation in 10 ms, no inactivation, suppression by Ba2

h < + in a
typical voltage-dependent manner (IC50 208 μM) and reversal potential nearly coincident
with EK. Ba2+ (2 mM) induces a large depolarization of DA-PG cells, paralleled by an
increase of the input resistance, leading to a block of the spontaneous activity, but the
Kir current is not an essential component of the pacemaker machinery. The Kir current
is negatively modulated by intracellular cAMP, as shown by a decrease of its amplitude
induced by forskolin or 8Br-cAMP. We have also tested the neuromodulatory effects of the
activation of several metabotropic receptors known to be present on these cells, showing
that the current can be modulated by a multiplicity of pathways, whose activation in some
case increases the amplitude of the current, as can be observed with agonists of D2,
muscarinic, and GABAA receptors, whereas in other cases has the opposite effect, as it
can be observed with agonists of α1 noradrenergic, 5-HT and histamine receptors. These
characteristics of the Kir currents provide the basis for an unexpected plasticity of DA-PG
cell function, making them potentially capable to reconfigure the bulbar network to allow
a better flexibility.
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INTRODUCTION
The background potassium conductance mediated by inward
rectifying potassium channels impacts on many physiological
processes, from the excitability profile of nerve and muscle cells
to hormone release. A voltage-dependent block of the channel
pore by polyamines and intracellular magnesium is thought to be
responsible for the inward rectification of these channels (Lopatin
et al., 1995); for a review see Hibino et al. (2010) which, open-
ing at potentials close to EK, tend to maintain the membrane in a
hyperpolarized state.

Dopaminergic (DA) neurons represent an estimated 10–16%
of the neurons residing in the most external (glomerular) layer
of the main olfactory bulb (MOB) (Halász et al., 1977; McLean
and Shipley, 1988). The glomerular layer (GL) region is occupied
by three main types of interneurons, periglomerular (PG) cells,
short-axon cells and external tufted (ET) cells - sometimes collec-
tively referred to as juxtaglomerular cells (Kratskin and Belluzzi,
2003; Panzanelli et al., 2007). Dopaminergic neurons in the GL
include PG cells (Kosaka et al., 1985; Gall et al., 1987) and a
fraction of ET cells (Halász, 1990).

Analyzing the excitability profile of DA-PG cells, we observed
that Ba2+ (300 μM, a blocker of the Kir channels), induced
a large depolarization in bulbar DA neurons, large enough
to lead to complete blockage of spontaneous firing of these
cells. We then examined the problem, finding that actually
there is a Kir current in these cells which escaped a pre-
vious investigation of ours (Pignatelli et al., 2005) for its
relatively small amplitude in standard saline. The current
can be better evidenced with ionic manipulations causing
a depolarizing shift of the potassium equilibrium potential,
but even under physiological conditions, for the elevated
input resistance of these cells, the Kir current is sufficiently
large to exert a relevant influence on the cell excitability
profile.

Being selective for potassium ions, the channels of the
inwardly rectifying family conduct currents which are inward
at potentials negative to the K+ equilibrium potential (EK)
and outward at potentials positive to EK, in so doing con-
tributing to the resting membrane potential (Hibino et al.,
2010).
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MATERIALS AND METHODS
ETHIC STATEMENT
A total of 123 mice have been used. The experimental process
was designed so as to minimize animal number and suffering of
the animals used. The protocols adopted were designed accord-
ing to European Council Directives (609/1986 and 63/2010) and
Italian laws (DL 116/92) on the protection of animals used for
scientific purposes. The experimental procedures were approved
by the Ethical Committee for Animal Experiments of the Ferrara
University (CEASA), by the Directorate-General for Animal
Health of the Ministry of Health, and supervised by the Campus
Veterinarian of the University of Ferrara.

ANIMALS AND SURGICAL PROCEDURES
For these experiments we used a transgenic mice strain (TH-
GFP/21–31), carrying the eGFP transgene under the control of
the TH promoter (Sawamoto et al., 2001; Matsushita et al., 2002).
The TH-GFP strain was maintained as heterozygous by breeding
with C57BL/6J inbred mice.

RECORDING CONDITIONS
The temperature of the 1-ml recording chamber was con-
trolled using Peltier devices (RS Components, Milan, Italy)
and measured with a high-precision, type K thermocouple (RS
Components).

For current and voltage recordings an Axopatch 200B ampli-
fier (Molecular Devices, Sunnyvale, CA) was used, and the signals
were digitized and acquired with a Digidata 1440A (Molecular
Devices) 16 bit A/D–D/A converter; correction for the junc-
tion potential was calculated using the related function of the
acquisition software (pClamp 10, Molecular Devices).

Patch pipettes were built from borosilicate glass capillaries
(1.5 o.d., 0.87 i.d., with filament; Hilgenberg, Malsfeld, Germany)
with a Zeitz-DMZ puller (Martinsried, Germany), and showed a
resistance of 4–5 M� when filled with standard intracellular solu-
tion (see below); the seal formation was assisted by a MCPU-3
air pressure controller (MPI, Lorenz Meβgerätebau, Katlenburg-
Lindau, Germany); the seal resistance obtained was always greater
than 3 G�.

SOLUTIONS
The solutions used had the following composition (mM):

• EC0, standard ACSF extracellular (EC) solution: 125 NaCl, 2.5
KCl, 26 NaHCO3, 1.25 NaH2PO4, 2 CaCl2, 1 MgCl2, and 15
glucose.

• EC1, high K EC solution: 95 NaCl, 32.5 KCl, 26 NaHCO3,
1.25 NaH2PO4, 2 CaCl2, 1 MgCl2, and 15 glucose.

• EC2, K-TEA EC solution: 100 NaCl, 2.5 KCl, 26 NaHCO3,
1.25 NaH2PO4, 2 CaCl2, 1 MgCl2, 20 TEA, and 10 glucose.

• EC3, high K-TEA EC solution: 70 NaCl, 32.5 KCl, 26 NaHCO3,
1.25 NaH2PO4, 2 CaCl2, 1 MgCl2, 20 TEA, and glucose.

All EC solutions were continuously bubbled with 95% O2 and
5% CO2, and the osmolarity was corrected to 305 mOsm with
glucose.

Standard pipette-filling intracellular (IC) solution:
120 KCl, 10 NaCl, 2 MgCl2, 0.5 CaCl2, 5 EGTA, 10 HEPES,
2 Na-ATP, 10 glucose; in this solution, the free IC
calcium concentration was calculated to be 16 nM
(http://www.stanford.edu/∼cpatton/downloads.htm).

For perforated patches, 200 μg/ml amphotericin B was added
to the IC solution (plus 300 μg/ml pluronic F-127). EGTA was
omitted and CaCl2 concentration was increased to 3 mM in
the electrode filling solution to control of the integrity of the
perforated patch, as in case of unexpected rupture, the mas-
sive entry of calcium from the pipette would cause a rapid cell
death. Data were collected after the series resistance dropped
below 50 M�.

In all IC solutions the osmolarity was finely tuned to 295
mOsm with glucose, and the pH to 7.2 with KOH.

Except where indicated, when recording from slices, the EC
solutions included two mixtures of blockers:

- BL1, for ligand-gated channels (1 mM kynurenic acid and
10 μM bicuculline).

- BL2, for voltage-dependent channels (TTX 0.6 μM, Cd2+
100 μM and ivabradine 10 μM).

ANALYSIS OF CURRENT RECORDINGS
IKir amplitude was measured as instantaneous current at the
beginning (Iinst) and at the end of test voltage pulses as steady-
state current (Iss).

The temperature-dependence of activation and deactivation
rate constants were calculated as:

Q10 =
(

rate (T2)

rate (T1)

) 10
T2−T1

(1)

where Q10 is the fold-change as a consequence of increasing the
temperature by 10◦C, calculated between the two temperatures
T1 and T2.

DATA ANALYSIS
To evoke the Kir current, a series of hyperpolarizing voltage steps
in −10 mV increments were imposed from the holding potential
of −40 to −130 mV at 10 s intervals. Unless otherwise indi-
cated, the current amplitudes were measured at the end of the
hyperpolarizing step (steady-state current).

When box charts are used to represent data ensembles, the cen-
tral square represents the mean, the central line the median, the
range of the boxes represent the S.E, and the whiskers define the
10–90% range of data samples.

Offline analysis was performed using version 10.3 of pClamp
(Molecular Devices) and version 8.1 of OriginPro (OriginLab
Corporation, Northampton, MA).

Unless otherwise indicated, data are presented as means ±
s.e.m.; for the statistical analysis we used the software Prism 5
(GraphPad, La Jolla, CA). The statistical significance was assessed
with Two-Way analysis of variance (ANOVA), or Student’s t-test
for paired samples as indicated; in Two-Way ANOVA multi-
ple comparisons post-tests were performed using the Bonferroni
method.
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P value of < 0.05 was considered significant; in figures, 1 to 4
asterisks represent differences significant at the 0.05, 0.01, 0.001,
0.0001 level, respectively.

RESULTS
The data are based on recordings from 285 TH+ PG neurons
from the glomerular layer. Most OB DA cells are small, PG
interneurons (about 5–8 μm in diameter), but there is also a cer-
tain number of external tufted (ET) cells (about 10–15 μm in
diameter) (Baker et al., 1993; Kosaka and Kosaka, 2009, 2011).
In this study, we restricted the analysis to PG cells; these were
selected on the basis of their location around the glomerular
border, dendritic arborization extending within the glomeru-
lar neuropil, membrane capacitance (8.0 ± 0.2 pF; n = 297)
and input resistance (979.4 ± 33.4 M�; n = 276). In addition
to the evident differences in dimension (Kosaka and Kosaka,
2008), membrane capacity and input resistance (Pignatelli et al.,
2005), DA-PG cells show a regular firing pattern, whereas DA-
ET cells show burst pattern activity (Hayar et al., 2004). Finally,
short-axon cells, which have membrane capacitance and input
resistance very similar to PG cells, can be usually recognized in
slice for their fusiform shape, position amid different glomeruli,
and dendrites extending between neighboring glomeruli (Shipley
and Ennis, 1996).

IDENTIFICATION AND BASIC PROPERTIES OF THE CURRENT
In a first series of experiments, carried out using perforated
patch recordings in slice at 34◦C, hyperpolarizing steps were

delivered from a holding potential of −40 mV, which is close to
the predicted K+ equilibrium potential in our experimental con-
ditions (EK = −37.7 mV for [K+]o = 32.5 mM), to potentials
ranging from −60 to −130 mV (10 mV increments, 10 s interval).
The inward current obtained in response is shown in Figure 1A; a
fraction of this current could be suppressed by two organic com-
pounds known as selective HCN channels blockers, i.e., ZD7288
30 μM (BoSmith et al., 1993) and S-16257, a.k.a. ivabradine,
10 μM; (Bois et al., 1996; Bucchi et al., 2002), Figure 1B; the
h-current in DA-PG cells has been the object of another study
(Pignatelli et al., 2013), and will be not further discussed in this
paper.

The current activated by hyperpolarization remaining
after suppression of the h-current, was suppressed by Ba2+
(Figure 1C), a classical blocker of Kir channels (Hagiwara et al.,
1978; French and Shoukimas, 1985); for its potassium and
voltage-dependence, reversal potential and sensitivity to Ba2+
this component was identified as potassium inward rectifier
(Kir) current (Hibino et al., 2010). The I/V relationship of the
current evoked by hyperpolarization in a group of 81 cells in the
presence of 0.6 μM TTX, 100 μM Cd2+ and 10 μM ivabradine is
shown in Figure 1D; here, and in the following experiments, for
the inherent difficulties, the leakage component of the current
evoked by hyperpolarization was not subtracted.

Barium sensitivity
The Ba2+ dependent block of IKir was evaluated from the decrease
of steady-state current amplitude at −120 mV in the presence

FIGURE 1 | General properties. (A–C) Representative currents obtained in
response to hyperpolarizing pulses in 32.5 mM external K+ solution: (A) EC1
saline with 1 mM kynurenic acid, 10 μM bicuculline (BL1 mix), 0.6 μM TTX,
100 μM Cd2+; (B) same solution as in A plus 10 μM ivabradine; (C) same
solution as in B plus 2 mM Ba2+. Voltage steps from a holding potential of
−40 mV with hyperpolarizing steps ranging from −60 to −130 mV in 10 mV
increments. (D): I–V relationship of peak (green dots) and steady-state (blue
dots) current; mean current amplitude of 81 cell recordings. Vertical error bars

represent standard error; EC2 saline, with BL1 and BL2 mixes of blockers. (E)

Instantaneous I/V curve during application of a 220 mV/s ramp protocol (from
−180 to +40 mV, 0.23 V/s) in a DA PG cell perfused with the solution
described in (A), after subtraction of the ohmic leak; the red dot (−41.3 mV)
marks the observed reversal potential, the green dot the Nernstian
equilibrium potential in the experimental conditions used ([K+]o = 32.5 mM).
All the experiments shown in this figure were performed in slice, perforated
patch configuration, at 34◦C.
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of increasing external Ba2+ concentrations. In Figure 2A is
represented the percentage of the current inhibition as a function
of external Ba2+ concentrations ranging from 1 μM to 10 mM.
The data could be interpolated by a logistic equation with the
form:

y = Imax/
(

1 + ([
Ba2+]

o /Kd
)H

)
(2)

where Imax is the asymptotic value of the current block, Kd the
external Ba2+ concentration causing 50% block, and H is the
slope of the dose-response curve (Hill coefficient). The fit of the
Ba2+ block of peak IKir gave a Kd of 0.21 ± 0.10 mM and a H
value of 0.69 ± 0.23 (n = 5, −120 mV).

Voltage-dependence of the steady-state block by Ba2+ and Cs+
Ba2+ and Cs+ have been found to block the Kir channel through
an interaction which is thought to occur via a deep binding site,
located approximately half-way along the channel (Standen and
Stanfield, 1978; Shieh et al., 1998; Alagem et al., 2001). As nor-
mally occurs for deep-site blockers, Ba2+ and Cs+ block is highly
voltage dependent (Hagiwara et al., 1978; Harvey and Ten Eick,
1989; Alagem et al., 2001). The effect induced by 1 mM Ba2+ in
DA-PG cells is shown in Figures 2B,C. The time required for the
blocking reaction to reach steady state was calculated by fitting
the exponential decay of the currents to the function:

I = A exp( − t/tblk) + C (3)

where A is the current amplitude, t is the independent variable,
C is the current amplitude at the steady-state, and τblk is the
blocking time constant, whose voltage dependence is shown in
Figure 2F.

We also tested the effects of 1 mM Cs+, another classical
blocker of this channel for which the approach to steady-state
block following a voltage step is much faster than for Ba2+
(Hagiwara et al., 1976, 1978; Shioya et al., 1993). The results,
shown in Figures 2D–F, are in good agreement with those
reported in literature (Hagiwara et al., 1976, 1978).

Reversal potential
The Kir channels are selective for K+ ions, and consequently
the reversal potentials of the inward rectifying current for dif-
ferent extracellular K+ concentrations should always follow the
Nernstian equilibrium potential for potassium (Figures 1E, 3A).
When the [K+]o was changed from 2.5 to 10 and 32.5 mM,
the reversal potentials progressively shifted toward more positive
potentials (−105.12 ± 3.67 mV, n = 15, for 2.5 mM; −56.67 ±
9.78 mV, n = 9, for 10 mM; −36.78 mV ± 1.89, n = 27, for
32.5 mM); the reversal potentials in the different experimental
conditions are represented in Figure 3B, where they are compared
to the theoretical Nernstian equilibrium potentials for K+ ions
(black triangles). The plot of the reversal potentials against the
logarithm of [K+]o gives a linear relationship (r2 = 0.93) with
a slope of −61.9 mV, close to the theoretical value of −61.0 mV
predicted by the Nernst equation (Figure 3C).

K+ and voltage dependence of the IKir

Besides the selectivity to K+ ions, another typical characteristic
of this current is a voltage-dependence of the Kir conductance
(gKir) on the K+ reversal potential; then, in DA-PG cells we fur-
ther examined the dependence of gKir from membrane potential
for different external K+ concentrations.

The conductance-voltage relationship showed the typical sig-
moidal profile, increasing at negative potentials and with a point

FIGURE 2 | Barium sensitivity. (A) Percentage inhibition of steady-state Kir

current vs. [Ba2+]o. [K+]o = 2.5 mM, 32◦C. The data (green dots) were fitted
with a logistic function (see text), giving a concentration at half-block (Kd) of
0.21 ± 0.10 mM, and a slope (Hill coefficient) of 0.69 ± 0.23 (n = 5,
−120 mV). (B,C): sample tracings obtained in a single cells in response to

hyperpolarizing steps from −40 to −120 mV in standard saline plus BL1 and
BL2 (B), and in the presence of 1 mM Ba2+ (C). (D,E): same experimental
conditions and protocol as above; blocking effect of 1 mM Cs+. (F) Voltage
dependence of the blocking time constant; the data points were obtained in
the presence of 1 mM Ba2+ (yellow dots) or Cs+ (orange dots).
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FIGURE 3 | Potassium sensitivity. (A) Effect of changing [K+]o on
membrane current. Average currents (n = 8) at the indicated external
potassium concentrations in response to voltage ramps from −170 to +20 mV
from a holding potential of −40 mV, 0.22 V/s; perforated patches; the bathing
solution included Bl1 and Bl2. (B) Box charts showing the reversal potentials
at different [K+]o [same color code as in (A)]; black arrow heads to the right of
each box mark the expected reversal potentials predicted by the Nernst
equation. In the box charts, here and in the following, the square in the center
of the box represents the mean value, the horizontal line crossing the box
indicates the median, the range of the box represents standard error and the

whiskers define the 10–90% range of data sample. (C) Plot of the reversal
potential for the inwardly rectifying current against the logarithm of [K+]o. The
linear regression fit (black dash line) has a slope of −61.9 mV, close to the
theoretical value of −61 mV predicted by the Nernst equation (red line). (D) K+-
and voltage-dependence of chord conductance (gKir); the chord conductance
was calculated using the equation gKir = IKir/(Vm − EK), where IKir = steady
state current. gKir plotted as a function of voltage-clamp test potentials at 2.5,
10, and 32.5 mM [K+]o. (E) Data in (D) replotted as a function of the driving
force. Data points were fitted by Boltzmann curve using a least-squares
method; n for 2.5, 10, and 32.5 mM was 7, 5, and 12, respectively.

of half-activation approximately centered at EK (Figure 3D).
Plotting the conductance for different [K+]o as a function of the
driving force (Vm − EK, Figure 3E), the midpoints were approx-
imately aligned at the zero of the abscissa axis, with minima and
maxima at the same voltage levels. This confirms that Kir conduc-
tance in DA-PG cells has a voltage-dependence which is function
of EK, in analogy to what has been found for IKir in several other
preparations (Hestrin, 1981; Leech and Stanfield, 1981; Harvey
and Ten Eick, 1988).

Effect of IKir on membrane potential and input resistance
If the IKir is active at rest, then it should be expected that the
block of the current with Ba2+ should influence both input resis-
tance and resting potential; in effect, Ba2+ (2 mM) induces a rapid
and strong depolarization of DA-PG cells (Figures 4A,C), par-
alleled by an increase of the firing frequency before its block in
depolarization (Figures 4A,B).

The Kir current is not essential to the pacemaker process, as the
injection of hyperpolarizing current (40 pA at the time marked
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FIGURE 4 | Effects of Barium on DA-PG cells. (A) Effect of Ba2+ on
membrane potential. Perforated patch recording in standard saline (EC1
solution). The blue bar indicates the time of application of 2 mM Ba2+ into the
bath; starting at the time indicated by the downward arrow, a 40 pA
hyperpolarizing current was injected; (further explanation in the text). (B)

Frequency analysis of action potentials (SPS, spike per second) for the
experiment shown in panel A; the dashed line marks the time at which Ba2+
has been applied and the yellow point after the x-axis interruption is a
measure of the activity after the injection of a hyperpolarizing current, at the
time marked by a yellow point in (A). (C) Illustration of the method used for
the calculation of the prevailing membrane potential (further explanation in

the text): 10 s frequency count histograms of the membrane potential were
realized at 10 s intervals, and the distributions were fitted by an exponentially
modified Gaussian function (equation 3 in the text); the point marked by the
red dot indicates the prevailing membrane potential (xc in equation 3). (D)

Depolarization induced by 2 mM Ba2+ in the experiment shown in (A) using
the analysis of the prevailing membrane potential (blue dots); the dashed line
marks the time at which Ba2+ has been applied and the yellow point after the
x-axis interruption is a measure of the membrane potential at the time
marked by a yellow point in (A). (E) Depolarization induced by two different
concentrations of [Ba2+]o: 13. 3 ± 2.2 mV for 300 μM (n = 14), and
38.1 ± 6.0 mV for 2 mM (n = 7).

by a downward arrow in the representative experiment shown in
Figure 4A) resumes completely the activity.

To find a parameter accounting for the “resting” membrane
potential in a cell characterized by autorhythmicity, we have
calculated the potential at which the cell was staying most of
the time, that we have defined “prevailing membrane poten-
tial,” using the method illustrated in Figure 4C: frequency count

histograms of the digitized membrane potential were obtained at
10 s intervals, and the distributions were fitted by an exponen-
tially modified Gaussian function (Kalambet et al., 2011) with the
form:

f (x) = y0 + A

t0
e

1
2

(
w
t0

)z− x−xc
t0

∫ z

−∞
1√
2π

e− y2

2 dy (4)
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where

z = x − xc

w
− w

t0

and y0 is the offset, A is the amplitude, xc is the center of the peak
(i.e., the prevailing potential, red dot in Figure 4C), w is the width
of the peak and t0 is the modification factor (skewness, t0 > 0).

Using this method, we measured the variation of the prevail-
ing membrane potential for two different external Ba2+ con-
centrations (0.3 and 2 mM). In a group of cells, we measured
a depolarization from −59.1 ± 4.1 to −45.94 ± 4.0 mV with
0.3 mM Ba2+ (Figure 4E; n = 14, p = 0.000025, t-test for paired
data), and from −52.3 ± 3.7 to −16.2 ± 4.9 mV with 2 mM Ba2+
(Figure 4E; n = 7, p = 0.0006, t-test for paired data).

Next, we tested the variations of the input resistance in
response to hyperpolarizing current pulses in presence of 0.3 and
2 mM Ba2+ (Figures 5A,B). In these conditions, for both concen-
trations we observed an increase of the membrane impedance
(Figures 5D,E). In Ba2+ 0.3 mM the membrane impedance
changes from 1079.6 ± 163.9 to 1260.0 ± 186.5 M� (Figure 5C;
n = 12, p = 0.00033, t-test for paired data), and in Ba2+ 2 mM
the mean value changes from 1061.6 ± 202.0 M� to 1621.2 ±
284.2 M� (n = 10; Figure 5C; p = 0.0018, t-test for paired data).

Effect of temperature
As for the other K currents, also the Kir kinetics is sensitive
to thermic conditions. The temperature at which electrophysi-
ological recordings are obtained influence the current kinetics
(Figure 6A), and therefore in this study all recordings were made
in controlled temperature conditions.

Q10 at the different voltages, measured using Equation 1, is
substantially stable, with a mean value of 1.22 ± 0.008 (n = 9;
Figure 6B), a value which is typical for inward rectifying K-
conductances (Leech and Stanfield, 1981; Mitsuiye et al., 1997;
Paajanen and Vornanen, 2003).

PHARMACOLOGY
Blockers
Although the involvement of Kir channels has been demonstrated
in numerous common disorders, including hypertension, cardiac
arrhythmias and pain, their pharmacology is virtually limited to
Ba2+, Cs+, and few poorly selective cardiovascular and neuroac-
tive drugs with off-target activity toward these channels (Bhave
et al., 2010; Hibino et al., 2010; Lüscher and Slesinger, 2010).

Tertiapin. Tertiapin, a toxin from the honey bee (Apis mellif-
era), is a remarkable exception, as it is a rather selective blocker
of Kir1.1 and Kir3.1 – 3.4 channels (Jin and Lu, 1998; Dobrev

FIGURE 5 | Effect of different concentrations of Ba2+ on input resistance.

(A,B) Sample tracings showing the response to the injection of 40 pA in
current-clamp conditions for the indicated external Ba2+ concentrations. (C)

Increase of input resistance at the indicated external Ba2+ concentrations:
+17.8 ± 3.2%, n = 12, and 58.7 ± 14.2%, n = 10 in 0.3 and 2 mM external
[Ba2+]o with respect to controls. ∗∗ and ∗∗∗ indicate significance levels of 0.01

and 0.001, respectively. (D) Family of tracings obtained in response to
hyperpolarizing current pulses as indicated in (A); green and blue traces are
taken at the beginning and at the end of a 5′ test; Ba2+ was applied after 2′.
(E) Time course of the variation of input resistance for the experiment shown
in (D); the dashed line marks the time of application of Ba2+ 2 mM; green
and blue dots mark the resistance of the traces with the same color in (D).
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FIGURE 6 | Effect of temperature. (A) Comparison of Kir current amplitude (Iss) at 27 and 37◦C; EC2 solution with BL1 and BL2; n = 8. (B) Q10 at the
different voltages; the mean value is 1.22 ± 0.003; n = 8.

et al., 2002; Ramu et al., 2008). The former, renal outer medullary
potassium channels, are of no interest in our case, but the lat-
ter (G protein-coupled Kir, a.k.a. GIRK, channels) are present in
the periglomerular layer of the MOB (Karschin et al., 1996), and
therefore it was of some importance to test the efficacy of the drug
in our cells.

The oxidation-resistant form of the drug, tertiapin-Q, was
ineffective when tested alone at concentrations ranging from
100 nM to 3 μM (not shown). However, GIRK channels become
activated only following the binding of ligands to their cognate
G protein-coupled receptors, which causes the dissociation of
the βγ subunits of a pertussis toxin-sensitive G protein which
subsequently bind to and activate the GIRK channel (Walsh,
2011). Therefore, we tested the effect of tertiapin after activa-
tion of Kir current with oxotremorine, a metabotropic cholin-
ergic receptor activator (see also below). In these conditions,
tertiapin completely abolished the current increment promoted
by the muscarinic receptor activation (Figure 7A), suggesting
that functional GIRK channels are actually present in DA-PG
cells.

Quinacrine. Quinacrine is a molecule developed in the 1920s
as anti-malarial agent, based upon the aminoacridine ring
structure; more recently, it has been shown to inhibit differ-
ent ionic currents, like the IA (Kehl, 1991), the L-type Ca2+
current (Nagano et al., 1996) and the inward rectifier K+
current (Evans and Surprenant, 1993; López-Izquierdo et al.,
2011). We then tested quinacrine (100 μM), which suppresses
a significant fraction of the hyperpolarization-activated cur-
rent in DA-PG cells (Figure 7B): for voltage commands to -
100 mV, the amplitude of the inward current was reduced from
−17.16 ± 3.00 pA/pF (CTL) to −12.19 ± 2.98 pA/pF (p < 0.001;
n = 9; Two-Way ANOVA). With the 2.x channels blocked by
quinacrine (Figure 7C, orange dots), oxotremorine was still
capable of increasing the hyperpolarization-activated current
(Figure 7C, yellow dots), increase that could be blocked by ter-
tiapin (Figure 7C, green dots), in agreement with the selectivity
of the drug for GIRK channels.

Quinacrine 100 μM was applied in current-clamp recordings
to verify its capacity to reproduce the barium effect on membrane

potential. Quinacrine, which -unlike barium- blocks the Kir

current with a voltage-independent mechanism, causes a large
depolarization leading to a complete suppression of firing activity
(Figure 7D). However, following the injection of hyperpolarizing
current bringing the membrane potential back to resting values,
the spontaneous activity was resumed (Figure 7D, right), a result
confirming that the Kir current exerts a tonic control of the rest-
ing potential, but is not an essential component of the pacemaker
mechanism.

Quinacrine has been reported to have a psychotic side effect
(Lindenmayer and Vargas, 1981), via inhibition of PLA2 and
increase of DA release (Reid et al., 2002), but we can reason-
ably exclude this mechanism in our case as DA increases the Kir

amplitude (see below).

Kir modulation by cAMP
The inward rectifier potassium current can be modulated by
cAMP, which has been found to either inhibit (Ito et al., 1997;
Jakob and Krieglstein, 1997; Xu et al., 2002; Podda et al., 2010) or
enhance the current (Park et al., 2005; Bolton and Butt, 2006) in
different preparations.

Under voltage-clamp conditions, the addition to the extracel-
lular solution of 10 μM forskolin, a classical activator of adenylyl
cyclase (Seamon and Daly, 1981) and 0.1 mM IBMX, a phos-
phodiesterase inhibitor, induces a decrease of the Kir current
(Figures 8A–C): the stimulation of the cAMP synthesis reduces
the IKir amplitude of 12.3 ± 0.22 % in the range from −80
to −130 mV (n = 12; p < 0.01).

The experiment was repeated in the same testing conditions,
but using 10 μM 8Br-cAMP. The effect was more marked, with
a 36.9 ± 0.15 % reduction of current amplitude (Figures 8D–F;
n = 6; p < 0.001). In both cases, the difference among control
and test was significant in the range of potentials more negative
than −80 mV (Two-Way ANOVA).

Kir modulation by neurotransmitters
Dopaminergic cells in the MOB are the target of numerous affer-
ents releasing a variety of neurotransmitters potentially capable of
a modulation of the Kir-current, including some which are known
to affect the cAMP pathway.
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FIGURE 7 | Organic blockers of the Kir channels. (A) with a GIRK current
activated by a cholinergic muscarinic agonist (oxotremorine 10 μM), the GIRK
channels blocker tertiapin-Q (1 μM) completely suppresses the current
(n = 11; see text for explanation); tertiapin-Q alone does not change the
amplitude of hyperpolarization-activated (not shown; n = 13). In this as in the
following panels, the steady-state (ss) current is calculated in relation
to membrane capacity. (B) Quinacrine (100 μM) inhibition of
hyperpolarization-activated current (n = 15). (C) With the KIR2.x channels
blocked by quinacrine, a muscarinic cholinergic agonist (oxotremorine 10 μM)

can activate a GIRK current (yellow dots), and this fraction can be completely
suppressed by tertiapin (green dots; n = 7). ∗, ∗∗ and ∗∗∗ indicate significance
levels of 0.05, 0.01 and 0.001, respectively. (D) Effect of quinacrine on
membrane potential. Perforated patch recording in standard saline (EC1
solution). The blue bar indicates the time of application of 100 μM into the
bath; to the right, a sequence recorded after injection of 35 pA
hyperpolarizing current; (further explanation in the text). All recordings were
realized at 34◦C, in EC2, BL1, and BL2; statistical analysis performed with
Two-Way ANOVA and post-hoc Bonferroni test.

We tested the effects on the Kir-current amplitude of 5–10 min
applications of 5-HT (50 μM), dopamine (100 μM, + 1 mM
ascorbic acid), quinpirole (D2 agonist, 30 μM), SKF 38393 (D1
agonist, 15 μM) noradrenaline (NA; 100 μM, + 1 mM ascorbic
acid), phenylephrine (α1 agonist, 10 μM), clonidine (α2 agonist,
10 μM), histamine (10 μM), oxotremorine (muscarinic agonist,
10 μM) and baclofen (GABAB agonist, 10 μM); the results, illus-
trated in Figure 9.

NA. The MOB receives a rich noradrenergic projection from the
locus cœruleus (LC): approximately 40% of LC neurons (an esti-
mated 400–600 out of 1600 cells) project to the rat OB (Shipley
et al., 1985).

NA, acting via α1 receptors, has been reported to inhibit
rectifying and non-rectifying leak potassium currents (Inokuchi
et al., 1992; Vaughan et al., 1996; Hayar et al., 2001; Nai et al.,
2010). We tested the NA (100 μM) on DA-PG cells in slice at
34◦C observing a 24.6% reduction in the amplitude of the current

activated by hyperpolarization: the current evoked at −100 mV
decreased from −17.51 ± 1.62 pA/pF in control conditions to
−13.20 ± 1.23 pA/pF in the presence of NA (n = 11; p < 0.001;
Two-Way ANOVA; Figure 9A). Next, we tried to further charac-
terize this effect identifying the subtype of α-receptor involved.
Clonidine (α2 agonist, 10 μM) was ineffective (from −15.1 ± 1.4
pA/pF in control conditions to −14.1 ± 1.7 pA/pF with cloni-
dine; n = 4; p = 0.4—Two-Way ANOVA; Figure 9A), whereas
phenylephrine (α1 agonist, 10 μM) induced a 24.1% inhibition
(from −12.9 ± 1.3 pA/pF in control conditions to −9.8 ± 0.92
pA/pF with phenylephrine; n = 8; p < 0.05—Two-Way ANOVA;
Figure 9A), an inhibition almost identical to that of NA.

If the Kir current deeply influences the resting potential, then
we should expect that any modification of the amplitude of the
current is paralleled by a variation of the membrane potential. In
particular, in this case, a reduction of a hyperpolarizing current
should be reflected in a depolarization of the cell in current-clamp
experiments; this is exactly what can be observed (Figure 9B):
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FIGURE 8 | Modulation of IKir by cAMP. (A–C) Effect of forskolin.
Current tracings in control (A) and in the presence of 10 μM forskolin
plus 100 μM IBMX (B); (C) comparison of the I/V curves recorded in
control (blue dots) and forskolin (green dots); n = 12; the difference,
tested with Two-Way ANOVA and post-hoc Bonferroni test, is significant
for the potentials more negative than −80 mV. (D–F) Effect of

8Br-cAMP. Current tracings in control (D) and in the presence of 10 μM
8Br-cAMP (E); (F) Comparison of the I/V curves recorded in control
(blue dots) and 8Br-cAMP (green dots); n = 6; the difference, tested
with Two-Way ANOVA and post-hoc Bonferroni test, is significant for
the potentials more negative than −80 mV. All recordings were realized
in EC2 with the addition of BL1 and BL2, at 34◦C.

FIGURE 9 | Effect of various neurotransmitters and agonists

acting on IKir. (A) Effect on current amplitude in voltage-clamp
conditions. (B) Effect on membrane potential in current-clamp

conditions. All recordings were realized at 34◦C, in EC2, BL1, and
BL2. ∗, ∗∗ and ∗∗∗ indicate significance levels of 0.05, 0.01 and
0.001, respectively.

phenylephrine 10 μM induces a depolarization of 8.1 ± 3.0 mV
(n = 7; p < 0.05—t-test for paired data).

ACh. Cholinergic fibers from the horizontal limb of the diago-
nal band of Broca project to all bulbar layers, with the heaviest
density occurring in the GL and EPL (Ichikawa and Hirata, 1986;
Záborszky et al., 1986; Matsutani and Yamamoto, 2008); the
OB itself appears to be devoid of intrinsic cholinergic neurons
(Godfrey et al., 1980; Le Jeune and Jourdan, 1991; Butcher et al.,
1992; Ichikawa et al., 1997), although this view has been more

recently challenged (Krosnowski et al., 2012). The M2 agonist
oxotremorine (10 μM) increases from −10.8 ± 1.1 pA/pF (CTL)
to −12.4 ± 1.1 pA/pF the amplitude of the current (n = 13; p <

0.01; t-test for paired data), an effect which is paralleled by a 4.5
± 0.8 mV hyperpolarization in current-clamp conditions (n = 9;
p < 0.001; t-test for paired data).

5-HT. Serotonin (50 μM) induces a decrease of the Kir current
amplitude: at −100 mV the hyperpolarization-activated inward
current is reduced from −22.8 ± 6.3 pA/pF (CTL) to −19.4 ±
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5.3 pA/pF (n = 18, p < 0.01; Two-Way ANOVA), to which corre-
spond a depolarization of 12.8 ± 3.2 mV (n = 8; p < 0.001; t-test
for paired data) in current-clamp conditions.

Histamine. In voltage-clamp conditions, histamine (10 μM)
induces a significant reduction of the Kir current amplitude,
which at −100 mV decreases from −19.0 ± 2.0 pA/pF (CTL) to
−14.1 ± 1.8 pA/pF (test; p < 0.05, Two-Way ANOVA n = 8),
an effect which is paralleled by a 10.9 ± 2.4 mV depolarization
(p = 0.0013, n = 10; t-test for coupled data).

DA. The presence of autoreceptors is an hallmark of dopamin-
ergic neurons, and therefore it was of interest to verify if their
activation could modify the IKir. Dopamine (100 μM) induces
an increase of the Kir current: in slice, at 34◦C there is a nearly
17% increase of the current amplitude, from −16.9 ± 2.9 pA/pF
(CTL) to −19.9 ± 2.3 pA/pF (current measured in response to a
step to −100 mV; n = 5; p < 0.01; Two-Way ANOVA).

The effect is exactly mimicked by the D2 agonist quinpi-
role: 30 μM promotes an average increase 17%, from −15.5 ±
0.8 pA/pF (CTL) to −18.3 ± 1.2 pA/pF (current measured in
response to a step to −100 mV; n = 9; p < 0.05; Two-Way
ANOVA); on the contrary, the D1 agonist SKF 38393 (Sibley et al.,
1982) remains ineffective (15 μM, n = 4; Figure 9A).

GABA. Kir3 channel family (GIRK) has been shown to be func-
tionally regulated by GABAB receptors in numerous systems
(Sodickson and Bean, 1996; Lüscher et al., 1997; Tabata et al.,
2005; David et al., 2006), including dopaminergic neurons (Lacey
et al., 1988). We therefore tested the GABAB agonist baclofen
(Bowery et al., 1980) 10 μM on the Kir current, without observ-
ing any effect (from −30.5 ± 4.6 pA/pF to −29.5 ± 5.0 pA/pF,
n = 11; p > 0.5; Two-Way ANOVA; not shown).

DISCUSSION
Two hyperpolarization-activated currents with inward rectifying
properties are present in TH-GFP+ neurons.

The first is an h-current (Ih, or If in cardiac tissue), a mixed
cation current with a reversal potential substantially positive to EK

(Hibino et al., 2010). Ih has a relatively slow activation kinetics, is
insensitive to Ba2+, can be selectively blocked by drugs like ivabra-
dine or ZD728, and does not show a voltage sensitivity dependent
on [K+]o (Biel et al., 2009). This current has been the object of
a previous study (Pignatelli et al., 2013), and will not be further
discussed here.

A second type of hyperpolarization-activated current is char-
acterized by fast kinetics, is permeable primarily to K+, is blocked
by extracellular Ba2+ and Cs+, has a voltage-dependence itself
dependent on extracellular K+ concentration, and is identified
as a classical inward rectifier potassium current (Kir). Sensitivity
to Ba2+, insensitivity to selective h-current blockers, fast kinet-
ics of activation and reversal potential, all suggest that the second
hyperpolarization-activated current observed in TH-GFP+ neu-
rons and described in this study belongs to this class.

Under physiological conditions, Kir channels generate a large
K+ conductance at potentials negative to EK, but permit a small
current flow also at potentials positive to EK (Hibino et al.,

2010); as a result, the Kir conductance has a tonic hyperpolarizing
influence on the resting membrane potential (Vrest), controlling
excitability and affecting the repolarizing phase of the action
potentials in excitable cells (Constanti and Galvan, 1983; Hume
and Uehara, 1985; Day et al., 2005). In this study, we show that
the Kir current plays a key role in controlling Vrest in DA-PG cells,
neurons that -due to their strategic positioning at the entry of the
bulbar circuitry and for direct connection with both the sensory
input and projection neurons- are pivotal elements in the opera-
tion of glomerular circuits, and we show that the IKir in these cells
is finely tuned by a variety of neurotransmitters.

WHICH POPULATION OF Kir CHANNELS?
Of the seven main types of Kir channels, at least two (KIR2.x
and 3.x) are present in the MOB. Of the 2.x family, KIR2.1 is
highly expressed in periglomerular cells (Prüss et al., 2005), as
well as KIR2.2 (a.k.a. IRK2/KCNJ12; (Karschin et al., 1996); also
KIR2.3 is weakly expressed in the glomerular layer (Inanobe et al.,
2002; Allen Brain Atlas, 2013). Quinacrine, which differentially
inhibits the Kir channels (KIR2.3 > KIR2.1 � KIR6.2; (López-
Izquierdo et al., 2011), suppresses a large (46%) fraction of
hyperpolarization-activated inward current. However, the pres-
ence of KIR6.x (a.k.a. KATP) channels can probably be excluded:
these channels are thought to be octomers composed of four
pore-forming Kir subunits, and four auxiliary proteins, the sul-
fonylurea receptors (SURx) believed to be responsible for the
channel (Hibino et al., 2010). SURx proteins are not detected
in the MOB (Allen Brain Atlas, 2013), and therefore the more
likely target of the action of quinacrine are 2.x Kir channels, whose
presence in the MOB would be confirmed by our data.

The presence of KIR3.x channels (G protein-coupled Kir, a.k.a.
GIRK, channels) has been reported in the periglomerular layer
of the MOB (Karschin et al., 1996); the sensitivity of a fraction
of the hyperpolarization-activated inward current to tertiapin, a
rather selective blocker of KIR3.1–3.4 channels (Jin and Lu, 1998;
Kitamura et al., 2000; Ramu et al., 2008), would confirm this
finding.

In conclusion, in control conditions, DA-PG cells display an
inward rectifying current at hyperpolarizing potentials around
EK. A first component is sustained by Ba2+-sensitive KIR2.x chan-
nels, which are constitutively active and which are well known to
contribute to the resting K+ conductance in many cells (Hibino
et al., 2010). On the other hand, this background activity could
receive the contribution also of KIR3.x channels opening in
response to G-protein activation by different neuromodulators,
as discussed below.

PHARMACOLOGY
Many neuromodulators such as NA, ACh, and 5-HT, play impor-
tant functions in many sensory systems. As it occurs to other brain
functions, sensory perception must be finely tuned according
to task demands, qualities of sensory stimuli -such as strength
or signal-to-noise ratio- and global physiological state. In this
context, it is rather interesting that IKir, a current playing such
an important role in the resting membrane potential of cells
strategically placed at the entry of the bulbar circuitry, can be
modulated in both directions by a variety of neurotransmitters,
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all released in the region where DA-PG cells reside. The responses
induced by neurotransmitters shown and discussed in this work
are due to the direct activation of receptors on bulbar DA-PG
cells, since all recordings were made in conditions of block of
synaptic transmission.

NA
In this work, we show that in mouse DA-PG cells, NA and the α1
agonist phenylephrine significantly reduce the IKir and depolarize
the cell.

Although the role of NA in olfactory function is one of the
best studied in the OB (Trombley, 1994; Ciombor et al., 1999;
Devore and Linster, 2012; Zimnik et al., 2013) to name a few,
its effects at cellular, network and behavioral levels are some-
what discordant (Ennis and Hayar, 2008); it is worth noting that
these inconsistencies have been ascribed at least in part to the
absence of information pertaining to glomerular modulation by
NA (Linster et al., 2011), a gap to fill which this work provides a
first contribution.

The locus cœruleus neurons have been proposed to influence
external signal processing so that salient stimuli are enhanced and
the activity more related to tonic, vegetative functions is sup-
pressed (Aston-Jones et al., 2000). In the OB, the NA release in
response to LC activation should bring the DA-PG neurons to a
more excited state for the inhibition of the Kir conductance. This,
for the known presynaptic inhibitory effect of DA (Koster et al.,
1999; Ennis et al., 2001), would reduce the release of glutamate
from the olfactory nerve terminals, improving the signal-to-noise
ratio of the information coming from the olfactory epithelium,
an effect that would be in line with the postulated general role of
the LC on sensory stimuli perception (Aston-Jones et al., 2000).

An additional role of NA on dopaminergic cells might be of
some interest: a significant fraction of the interneurons added in
adulthood to the glomerular layer of the MOB are dopaminer-
gic (Pignatelli et al., 2009), and noradrenaline signaling enhances
newborn cell survival (Bauer et al., 2003; Bovetti et al., 2011).

ACh
In the MOB, ACh, acting on both nicotinic and muscarinic recep-
tors, has a complex effect (for a review see Devore and Linster,
2012). Overall, the resulting effect of cholinergic modulation is
excitatory (Elaagouby and Gervais, 1992) and the multiple action
of ACh seems to be orchestrated toward an enhancement of speci-
ficity and temporal precision of mitral cell responses to odors
(Elaagouby and Gervais, 1992; Mandairon et al., 2006; Tsuno
et al., 2008; D’Souza and Vijayaraghavan, 2012).

In this work we show that in DA-PG cells the activation
of M2 muscarinic receptors increases the amplitude of a Kir

current, an effect which is paralleled by a 4.5 mV hyperpolar-
ization in current-clamp conditions. A similar effect has been
reported in a variety of preparations, ranging from mammal atrial
myocytes (Sakmann et al., 1983), to thalamic reticular neurons
(Mccormick and Prince, 1986), spinal motoneurons (Chevallier
et al., 2008), interneurons of striatum (Calabresi et al., 1998), neo-
cortex (Xiang et al., 1998), and hippocampus (McQuiston and
Madison, 1999).

M2-type muscarinic receptors are described in the glomeru-
lar layer associated to PG-DA neurons (Crespo et al., 2000; Allen

Brain Atlas, 2013). In a previous paper (Pignatelli and Belluzzi,
2008), we showed that the activation of M2 metabotropic cholin-
ergic receptor in PG-DA neurons induced a hyperpolarization
mediated by a K-conductance, which in the present work is now
identified as a Kir.

5-HT
Projections from the dorsal and median raphe nuclei -one of the
most prominent neuromodulatory systems in the brain- provide
a dense serotonergic innervation of the MOB, and in particular of
the glomerular region (Araneda et al., 1980; McLean and Shipley,
1987). Earlier studies have shown that 5-HT2 receptor mRNA
and protein are heavily expressed in the glomerular layer (Morilak
et al., 1993) and activation of 5-HT(2C) receptors mediates exci-
tation in about one third of glomerular neurons, not better
identified (Hardy et al., 2005); this study further develops this
observations showing that serotonin produces excitatory mod-
ulation of DA-PG cells by reducing the IKir amplitude, thereby
depolarizing the cell for 12.8 ± 3.2 mV.

A similar action on IKir is described also in rat motoneurons
(Kjaerulff and Kiehn, 2001).

Histamine
The MOB receives histaminergic inputs primarily from the cau-
dal tuberal and postmammillary magnocellular hypothalamus
(Auvinen and Panula, 1988; Panula et al., 1989) via the olfactory
peduncle (Brunjes, 2013), and previous studies have shown that
in an unidentified fraction of periglomerular cells, H1-receptor
activation causes a block of a potassium current (Jahn et al.,
1995).Here we show that the IKir in DA-PG cells is reduced and
that this action results in a depolarization of the cells.

DA
Dopamine (100 μM) induces an increase of the Kir current via
D2R; the D2R agonist quinpirole (30 μM) perfectly replicates the
effect of dopamine. Further experiments using receptor protec-
tion with D1R selective antagonists might exclude more defini-
tively a contribution from D1R, although a direct activation of
D1R with SKF 38393 (15 μM) was completely ineffective. We did
not investigate the pathways involved.

CONCLUDING OBSERVATIONS
In the present study we have shown that (i) DA-PG cells contain
a large inward rectifier current whose block produces significant
depolarizations, nominating this conductance as one of the main
players controlling the resting membrane potential (and conse-
quently excitability) in these cells, and that (ii) this current is
subject to a complex modulation.

Bulbar DA-PG cells, the largest and one of the most conserved
populations of DA neurons in the CNS, are pivotal neurons in the
operation of glomerular circuits, the site where odor information
is initially processed. It is therefore of some interest that their
excitability is profoundly dependent upon the Kir current, and
that this -in turn- is target of numerous neurotransmitters that
can finely modulate its amplitude, a process that ultimately
impacts all subsequent odor processing in the olfactory system.

In this context, it is increasingly evident that in the bulb
as a whole there is an enormous and still largely hidden layer

Frontiers in Cellular Neuroscience www.frontiersin.org August 2014 | Volume 8 | Article 223 | 12

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive


Borin et al. IKir in dopaminergic periglomerular cells

of “molecular computation” (Bhalla, 2014), which multiplies
tremendously the degrees of freedom of the bulbar network in
signal processing.
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