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A B S T R A C T

Background: White matter hyperintensities (WMH) represent ischemic white matter damage in late-life de-
pression (LLD) and are associated with cognitive control dysfunction. Understanding the impact of WMH on the
structural connectivity of gray matter and the cognitive control correlates of WMH-related structural dyscon-
nectivity can provide insight into the pathophysiology of LLD.
Methods: We compared WMH burden and performance on clinical measures of cognitive control in patients with
LLD (N=44) and a control group of non-depressed older adults (N=59). We used the Network Modification
(NeMo) Tool to investigate the impact of WMH on structural dysconnectivity in specific gray matter regions, and
how such connectivity was related to cognitive control functions.
Results: Compared to the control group, LLD participants had greater WMH burden, poorer performance on Trail
Making Test (TMT) A & B, and greater self-reported dysexecutive behavior on the Frosntal Systems Behavior
Scale-Executive Function subscale (FrSBe-EF). Within the LLD group, disrupted connectivity in the left supra-
marginal gyrus, paracentral lobule, thalamus, and pallidum was associated with psychomotor slowing (TMT-A).
Altered connectivity in the left supramarginal gyrus, paracentral lobule, precentral gyrus, postcentral gyrus,
thalamus, and pallidum was associated with poor attentional set-shifting (TMT-B). A follow-up analysis that
isolated set-shifting ability (TMT-B/A ratio) confirmed the association with dysconnectivity in the bilateral
paracentral lobule, right thalamus, left precentral gyrus, postcentral gyrus, and pallidum; additionally, it re-
vealed associations with dysconnectivity in the right posterior cingulate, and left anterior cingulate, middle
frontal cortex, and putamen.
Conclusions: In LLD, WMH are associated with region-specific disruptions in cortical and subcortical gray matter
areas involved in attentional aspects of cognitive control systems and sensorimotor processing, which in turn are
associated with slower processing speed, and reduced attentional set-shifting.
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1. Introduction

Intact white matter consisting of myelinated axons allows efficient
information transfer between brain regions and supports cognitive and
emotional processes (Filley, 2005). White matter is particularly vul-
nerable to aging (Bennett and Madden, 2014; Hinman and Abraham,
2007), and disruption of white matter has been documented in a variety
of mood disorders (Fields, 2008; Filley and Fields, 2016). In particular,
late-life depression (LLD) has been conceptualized as a “disconnection
syndrome” (Taylor et al., 2013) originating from white matter pa-
thology contributed by vascular, inflammatory, and other processes
(Aizenstein et al., 2011; Alexopoulos et al., 2012).

White matter hyperintensities (WMH) are common, aging-related,
magnetic resonance markers of white matter disruption (Aizenstein
et al., 2011; Reijmer et al., 2015; Taylor et al., 2001). Both post mortem
and neuroradiological studies have reported high WMH burden in LLD
(Gunning-Dixon et al., 2010; Krishnan et al., 1997; van Agtmaal et al.,
2017), which is often of cerebrovascular origin and reflects ischemic
processes (Thomas et al., 2002). Investigation of the impact of WMH on
structural network connectivity may clarify some of the mechanisms by
which WMH are related to the frequent cognitive control abnormalities
of LLD that confer risk for poor antidepressant response and poor
functional outcomes.

One prominent clinical expression of inefficient cognitive control in
LLD is executive dysfunction. While LLD is associated with deficits in a
broad array of cognitive domains (Bhalla et al., 2006), converging data
have established a particular relation between increased WMH and
executive dysfunction in LLD both cross-sectionally (Vasudev et al.,
2012; Lesser et al., 1996) and longitudinally (Kohler et al., 2010). The
executive dysfunction of LLD is characterized by a reduced ability to
process information efficiently, think flexibly and adaptively, and in-
itiate goal-directed activities while inhibiting irrelevant stimuli (Kohler
et al., 2010). Executive dysfunction of LLD has a negative impact on
activities of daily living (Alexopoulos et al., 2002) and increases dis-
ability (Naarding et al., 2007).

Recent studies have investigated the impact of WMH in older adults
on connectivity at the network level. These studies have begun to in-
vestigate how network disruptions contribute to poor executive func-
tions. Among non-depressed older adults, WMH are associated with
altered functional connectivity in the frontoparietal attention network
(Lockhart et al., 2015) and in the default mode network (Wu et al.,
2011), the latter of which is linked to executive dysfunction (Reijmer
et al., 2015). At the structural network level, WMH burden in LLD
decreases the “resilience” of structural networks as defined by a graph-
theoretical metric (Ajilore et al., 2014). In LLD, WMH may pre-
ferentially affect specific white matter fibers tracts, such as the superior
longitudinal fasciculus and the uncinate fasciculus (Sheline et al.,
2008). WMH in these two fiber tracts are tied to poor executive func-
tions (Sheline et al., 2008) and reward learning (Dombrovski et al.,
2015).

Understanding the impact of WMH on structural connectivity at the
network level may elucidate the specific cortical and subcortical gray
matter networks contributing to the executive difficulties often ob-
served in LLD. Thus, the primary goal of this study was to identify
WMH-linked, region-specific alterations in structural connectivity and
their associations with executive performance and self-reported dys-
executive behavior in older adults with major depression. We hy-
pothesized that relative to non-depressed participants, LLD patients
would have poorer executive functions and higher WMH burden. We
further hypothesized that within the LLD group, WMH-related dys-
connectivity in gray matter regions comprising aspects of cognitive
control networks would be associated with slowed processing speed,
poorer attentional set-shifting and cognitive inhibition, and dysex-
ecutive behavior.

2. Materials and methods

2.1. Participants

This study included participants with LLD and non-depressed par-
ticipants, aged 60 to 85 years. The LLD group met DSM-IV criteria for
major depression without psychotic features, had a 24-item Hamilton
Depression Rating Scale (HDRS) (Hamilton, 1960) score≥ 18, and had
a Mini Mental Status Examination (MMSE) score≥ 26 (Folstein et al.,
1975). Participants in the comparison group had no history or presence
of any psychiatric disorder. All subjects were recruited through flyers
and advertisements and all signed informed consent approved by the
Weill Cornell Medical College and the Nathan Kline Institute Institu-
tional Review Boards. Exclusion criteria were: any current or past Axis I
psychiatric disorder other than Major Depressive Disorder (MDD) or
Generalized Anxiety Disorder (GAD); high suicide risk; dementia by
DSM-IV criteria; acute or severe medical illness; history of neurological
diseases; history of electroconvulsive therapy; ongoing treatment with
drugs associated with depression (e.g. steroids, alpha-methyl-dopa,
clonidine, reserpine, tamoxifen, or cimetidine); and any contra-
indications to MRI scanning.

2.2. Assessment

Each depressed participant was evaluated by a study psychologist
and study psychiatrist. LLD patients were not on antidepressants at the
time of study procedures. Those who were previously prescribed an
antidepressant underwent a one-week washout procedure under the
care of a study psychiatrist. Research assistants trained and certified by
the Weill Cornell Institute of Geriatric Psychiatry administered the
clinical rating scales and the neuropsychological tests.

DSM-IV diagnosis was assigned based on the Structured Clinical
Interview for DSM-Revised. Severity of depression was based on the
HDRS (Hamilton, 1960), and overall cognitive impairment was assessed
with the MMSE (Folstein et al., 1975). Upon entering the study, parti-
cipants were administered the Trail Making Test (TMT) to assess psy-
chomotor speed (TMT-A) and attentional set-shifting (TMT-B) (Reitan,
1958). The Stroop Color Word Test, interference index (Stroop, 1935)
was used to assess cognitive inhibition (Golden and Freshwater, 2002).
The interference index was calculated based on the following estab-
lished formula, ColorWord – [(Word x Color) / (Word + Color)]. The
Dementia Rating Scale-2 (DRS-2), Initiation/Perseveration scale was
also used as a measure of executive function. Dysexecutive behavior
was rated with the self-reported, executive function subscale from the
Frontal Systems Behavior Scale (FrSBe-EF) (Grace, 2011). The FrSBe is
a self-report inventory that assesses a broad range of behavior asso-
ciated with frontal network and frontal-subcortical systems dysfunc-
tion. Behavior is rated within the domains of apathy, disinhibition, and
executive dysfunction. Frequency of behavior is rated on five-point
Likert-scale items. Example items from the EF subscale include “cannot
do two things at once” and “am inflexible, unable to change routines”.

2.3. MRI data acquisition

MRI scans were acquired on a 3 T Siemens TiM Trio (Erlangen,
Germany) equipped with a 32-channel head coil at the Center for
Biomedical Imaging and Neuromodulation of the Nathan Kline Institute
for Psychiatric Research. Anatomical imaging included a turbo dual
echo scan, high-resolution whole brain images acquired using a 3D T1-
weighted MPRAGE and T2-weighted FLAIR images. The acquisition
parameters were respectively: MPRAGE: TR=2500ms, TE=3.5ms,
slice thickness= 1mm, TI= 1200ms, 192 axial slices, ma-
trix= 256×256 (voxel size= 1mm isovoxel), FOV=256mm,
IPAT=2, flip angle= 8 degrees; FLAIR: TR=9000ms, TE=111ms,
TI= 2500ms, FOV=192×256mm, matrix 192× 256, slice thick-
ness= 2.5mm, number of slices= 64, IPAT=2, flip angle= 120
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degrees. The FLAIR sequence had an in-plane resolution of 1x1mm.

2.4. WMH segmentation and WMH burden estimation

First, we performed a visual check on both T1 and FLAIR images to
exclude subjects with macroscopic artifacts or neurological sequelae.
Two raters (M.R., M.S.) independently performed a group-blinded vi-
sual rating of WMH severity using the operational criteria of the Age-
Related White Matter Change scale (ARWMC) (Wahlund et al., 2001;
Xiong et al., 2011). The inter-rater agreement was measured as in-
traclass correlation coefficient (ICC=0.95). Imaging data analysis
were performed using FSL (Jenkinson et al., 2012). FSL's BIANCA was
used to segment WMH lesions (Griffanti et al., 2016). A training dataset
of manually segmented WMH masks was created from 12 subjects'
FLAIR images and used by BIANCA to segment WMH lesions in all
subjects using a threshold of 0.8 for visually-defined high WMH burden,
0.9 for moderate and 0.99 for mild, based on ARWMC scores (< 5, 5–9,
≥10). WMH lesions smaller than 3 voxels were deleted (Wahlund et al.,
2001). A visual check was performed on each individual WMH mask for
minimal manual adjustments. The WMH burden was calculated as the
log transformed percentage of the ratio between WMH volume and
intracranial volume (normalized for head size). Intracranial volume
was obtained through a sum of gray matter, white matter, and ven-
tricular cerebrospinal fluid (Heinen et al., 2016). Because WMH burden
generally increases as a function of age, we examined if our WMH
burden estimation was correlated with age and visual WMH rating
using Spearman's Rank-Order Correlation method.

2.5. Estimation of WMH-associated connectome disruptions using the
network modification tool

We applied the “Network Modification Tool” (NeMo) (Kuceyeski
et al., 2013), a recently developed, Matlab-based software, which es-
timates the structural alterations in connectivity associated with WMH.
Each final WMH mask was nonlinearly registered to MNI space, bi-
narized, converted to its negative (0 outside, −1 inside the lesions) and
then entered as input in NeMo. NeMo uses a free-access dataset of 73
healthy subjects tractograms (Tractogram Reference Set) to estimate
the brain network's dysconnectivity pattern inferred by each set of
WMH lesions within each patient. Through this process, NeMo esti-
mates the white matter fibers that would be damaged by each set of
lesions in normal tractograms, and provides this “loss in connectivity”
for an atlas of cortical and subcortical regions. This alteration in con-
nectivity is expressed as “Change in Connectivity” (ChaCo) scores, or
the percent of streamlines connecting to a given region that pass
through the WMH lesion. The “ChaCo” term was used to be consistent
with prior studies that used the NeMo Tool, despite the cross-sectional
nature and absence of longitudinal analysis in this study. We calculated
ChaCo scores for all cortical and subcortical gray matter surfaces based
on an 86-region Freesurfer parcellation. Details on the specific steps
performed by NeMo are fully described in the original paper (Kuceyeski
et al., 2013). A streamlined visual summary of the procedure is de-
scribed in Fig. 1. More negative ChaCo values indicate lower con-
nectivity relative to the reference tractogram set.

2.6. Statistical analyses

Statistical analyses were performed on IBM SPSS Statistics version
25 and in Matlab R2017b. Independent samples t-tests and chi-square
tests were used to investigate group differences in demographic and
clinical variables, as well as for WMH burden. Two-tailed Spearman rho
was calculated for correlations of WMH burden with age and ARWMC
visual score. Within the LLD group, one-tailed Spearman correlations
were performed between ChaCo scores and those cognitive variables
that demonstrated a statistically significant group difference with the
comparison group. We used one-tailed tests because our hypotheses

were directional, i.e. lower connectivity (relative to the reference
tractogram set) would be associated with poorer executive perfor-
mance. To reduce the dimensionality of the correlation matrix (ChaCo
scores for each of the 86 parcellated regions x behavioral performances
on multiple executive functioning measures), as well as to reduce the
noise of regions with minimal dysconnectivity (Kuceyeski et al., 2013;
Pardini et al., 2015), we selected only regions: 1) with ChaCo scores
greater than or equal to a minimum threshold of 1% in average con-
nectivity disruption (Pardini et al., 2015); and 2) located within net-
works hypothesized to be associated with our outcome measures. These
included cortical regions in the frontoparietal network, dorsal and
ventral attention networks, and the sensorimotor network, as well as
select subcortical regions (thalamus and basal ganglia). This process
resulted in 29 regions of interest. All p-values were subjected to Ben-
jamini Hochberg's false-discovery rate (FDR) correction (q < 0.05)
(Benjamini and Hochberg, 1995) and those that survived are reported
as uncorrected p values. Correlations between these 29 regions and
behavior were repeated in the healthy control group.

Regions that survived FDR correction were, then, entered into se-
parate partial least square regression (PLSR) models with covariates of
age, education, and depression severity (HDRS). PLSR accounts for a
large number of predictors and multicollinearity among predictor
variables by extracting independent components. These components
are subsequently regressed on the outcome of interest. PLSR is com-
monly used with the ChaCo metric (Kuceyeski et al., 2015; Kuceyeski
et al., 2018). After computing PLSR models, in order to minimize model
over-fitting, we chose the factor solution that minimized the mean
square error using leave-one-out cross-validation, i.e., K-fold cross-va-
lidation where K was equal to the number of data points (44 for TMT-A
and 43 for TMT-B). Predictor variables that loaded onto the compo-
nents of interest were determined by inspecting the SPSS output factor
loadings and variable importance in the projection (VIP). Regions of
interest that had VIP values close to or exceeding 1 were considered to
contribute to a given component.

3. Results

3.1. Descriptive findings

One hundred and three older adults were studied. Of these, 44 were
participants with LLD and 59 were non-depressed older adults. One
individual with LLD did not complete the TMT-B and three individuals
with LLD did not complete the FrsBe-EF. Age and gender did not sig-
nificantly differ between the groups (Table 1). LLD participants were
less educated than the non-depressed group and had greater psycho-
motor slowing on the TMT-A, poorer executive performance (atten-
tional set-shifting) on the TMT-B, and greater dysexecutive behavior on
the FrSBe-EF. There was no statistically significant group difference in
Stroop Interference, or on the DRS-2 Initiation/Perseveration subscale.
Thus, TMT-A, TMT-B, and the FrSBe-EF were used in subsequent cor-
relation and regression analyses.

3.2. Group differences in WMH

Relative to comparison participants, LLD patients had greater WMH
burden as assessed through both visual ratings (ARWMC scale score)
(t=2.65, p= .01) and BIANCA automatic segmentation (expressed as
natural log of WMH ratio percentage) (t=2.65, p < .01). In the
combined group of all participants, WMH burden was correlated with
both visual ratings (rs=0.83; p < .001) and age (rs=0.33, p= .001).
Similar correlations of WMH burden occurred within the LLD group
(with visual rating: rs=0.83, p < .001; with age: rs=0.40, p= .007)
and within the comparison group (with visual rating: rs=0.84,
p < .001; with age: rs=0.32, p= .013).

M. Respino, et al. NeuroImage: Clinical 23 (2019) 101852

3



3.3. Correlations between region-specific ChaCo scores and executive
functions

Based on our a priori selection criteria, the following regions of
interest were included in the correlation analyses: Bilateral caudal
anterior cingulate, caudal middle frontal gyrus, paracentral lobule, pars
opercularis, postcentral gyrus, precentral gyrus, rostral middle frontal
gyrus, superior parietal cortex, supramarginal gyrus, insula, thalamus,
caudate, putamen, and pallidum. The right posterior cingulate was also
included. Within the LLD group, after FDR correction (q < 0.05), the
following correlations between ChaCo and executive functioning were
statistically significant. TMT-A correlated with ChaCo in the left su-
pramarginal gyrus (rs=−0.49, p < .001), left paracentral lobule
(rs=−0.43, p= .002), left precentral gyrus (rs=−0.42, p= .002),
left postcentral gyrus (rs=−0.45, p= .001), left thalamus
(rs=−0.44, p= .002), and left pallidum (rs=−0.38, p= .006). As
depicted in Fig. 2, TMT-B was also associated with ChaCo in the left
supramarginal gyrus (rs=−0.39, p= .005), left paracentral lobule
(rs=−0.42, p= .002), left precentral gyrus (rs=−0.39, p= .005),
left postcentral gyrus (rs=−0.40, p= .004), left thalamus
(rs=−0.40, p= .004), and left pallidum (rs=−0.39, p= .005). The
direction of all correlation coefficients indicated that greater alteration
in connectivity to the above regions was associated with slower

psychomotor speed and greater difficulty in set-shifting.
No correlations survived FDR correction for the FrSBe-EF in patients

with LLD; thus, we report exploratory analyses for the FrSBe-EF in
Supplement 1. No correlations were significant at the FDR-corrected
threshold for TMT-A, TMT-B, or FrSBe-EF in the healthy control group.

3.4. Regression models

The PLSR model with TMT-A as the outcome revealed a one com-
ponent solution, though the overall variance accounted for in TMT-A
performance was relatively small (7%; Table 2). This component in-
cluded ChaCo in the left supramarginal gyrus, left paracentral lobule,
left thalamus, and left pallidum. With TMT-B as the outcome, results of
the PLSR model indicated an optimal solution with two components.
The first component accounted for the majority of variance (35%) and
included ChaCo in the left supramarginal gyrus, left paracentral lobule,
left precentral gyrus, left postcentral gyrus, left thalamus, left pallidum,
and age. The second component accounted for an independent 17% of
the variance and included years of education and depression severity
(HDRS).

Because dysconnectivity in largely overlapping regions predicted
performance on both TMT-A and TMT-B, as a follow-up analysis we
verified the effect of dysconnectivity on set-shifting (separate from

Fig. 1. The Network Modification Tool.

Table 1
Demographic and clinical characteristics of patients with late-life depression (LLD) and healthy control participants.a

LLD Healthy Control Statistic Significance (p)

Age (years) 72.5 (6.5) 72.8 (6.0) t=0.26 0.79
Education (years) 15.0 (2.7) 16.9 (2.2) t=3.81 < 0.001a

Gender (M/F, number) 16 / 28 26 / 33 χ2= 0.62 0.43
HDRS (total) 23.5 (4.5) 1.3 (1.3) t=31.42 < 0.001a

TMT-A (s) 57.9 (45.4) 40.5 (13.9) t=2.45 0.02a

TMT-B (s) 127.5 (66.8) 90.7 (36.5) t=3.27 0.002a

DRS-2 I/P (raw) 36.3 (1.3) 36.0 (3.1) t=0.72 0.47
Stroop Interference −3.3 (7.6) −3.8 (7.7) t=0.29 0.78
FrSBe-EF 43.4 (11.5) 25.8 (5.6) t=9.06 < 0.001a

ARWMC Ratings 4.7 (4.3) 2.7 (3.0) t=2.65 0.01a

Log of WMHr percentage −1.9 (1.1) −2.4 (1.0) t=2.65 0.009a

a Denotes statistically significant difference. Values shown are mean (standard deviation) unless otherwise noted. ARWMC=age-related white matter changes
scale; DRS-2 I/P=Dementia Rating Scale-2 Initiation/Perseveration scale; FrSBe-EF= Frontal Systems Behavior Scale-Executive Functions subscale;
HDRS=Hamilton Depression Rating Scale; TMT=Trial Making Test; WMHr=White Matter Hyperintensities ratio.
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psychomotor speed) by conducting correlations and PLSR with the ratio
of TMT-B/A as the outcome variable (Drane et al., 2002; Salthouse,
2011). We found significant correlations for the following ROIs that

were largely consistent with our original TMT-B results: left supra-
marginal gyrus (rs=−0.27, p= .05), left paracentral lobule
(rs=−0.36, p= .013), left precentral gyrus (rs=−0.38, p= .009),
left postcentral gyrus (rs=−0.36, p= .013), and left pallidum

Fig. 2. Scatterplots depicting the relationship between Trail Making Test-B
(TMT-B) performance in seconds and change in connectivity (ChaCo) in the (a)
left supramarginal gyrus, (b) left thalamus, and (c) left pallidum.

Table 2
Results of partial least squares regression (PLSR) models with Trail Making Test A & B as the outcome variables. Age, education, and depression severity (Hamilton
Depression Rating Scale [HDRS]) were entered into the models as covariates.

Model Number of PLSR
Components

Adjusted R2 PLSR Component Variables (Beta weights [association with outcome] in parentheses)

Trail Making Test A 1 0.07 Component 1: Left paracentral lobule (β=0.06), left supramarginal gyrus (β=0.60), left thalamus
(β=0.18), left pallidum (β=0.24).

Trail Making Test B 2 0.35 Component 1: Left paracentral lobule (β=0.12), left supramarginal gyrus (β=0.34), left precentral
gyrus (β=0.03), left postcentral gyrus (β=0.15), left thalamus (β=0.23), left pallidum (β=0.26),
age (β=0.21)

0.17

Component 2: Years of education (β=0.44), depression severity (HDRS; β=0.27)
Trail Making Test B/A

Ratio
1 0.13 Component 1: right paracentral lobule (β=0.12), left paracentral lobule (β=0.36), left precentral

cortex (β=0.31), left postcentral cortex (β=0.43), right posterior cingulate (β=0.22), left caudal
anterior cingulate (β=0.23), left caudal middle frontal cortex (β=0.32), right thalamus (β=0.48), left
putamen (β=0.07), and left pallidum (β=0.17)

Fig. 3. Scatterplots depicting the relationship between Trail Making Test-B/A
ratio (TMT-B/A) and change in connectivity (ChaCo) in the (a) right posterior
cingulate, (b) left anterior cingulate, and (c) left middle frontal cortex.
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(rs=−0.27, p= .045). Additional ROIs in cognitive control and de-
fault mode regions emerged as significantly associated with the B/A
ratio (Fig. 3): left dorsal anterior cingulate cortex (rs=−0.27,
p= .05), left middle frontal cortex (rs=−0.27, p= .05), left superior
parietal cortex (rs=−0.33, p= .021), right posterior cingulate
(rs=−0.33, p= .02), right thalamus (rs=−0.32, p= .03), right
pallidum (rs=−0.29, p= .04), left putamen (rs=−0.27, p= .046),
and right paracentral lobule (rs=−0.31, p= .03). We then conducted
a follow-up PLSR model with TMT-B/A as the outcome, and these ROIs,
age, education and depression as predictors. Cross-validated results
indicated a one component solution accounting for 13% of the variance
and comprised of ChaCo in the right paracentral lobule, left paracentral
lobule, left precentral cortex, left postcentral cortex, right posterior
cingulate cortex, left anterior cingulate cortex, left middle frontal
cortex, right thalamus, left putamen, and left pallidum (Table 2).

4. Discussion

The principal finding of this study is that WMH-related structural
dysconnectivity in gray matter regions of cognitive-control, sensor-
imotor, and attentional networks is associated with poorer attentional
set-shifting, slower processing speed, and dysexecutive behavior in in-
dividuals with LLD. To our knowledge this is the first study in LLD to
identify relationships among WMH, associated structural gray matter
dysconnectivity, and executive functions at both the performance and
self-report levels of analysis.

Consistent with our hypotheses, the regions with altered con-
nectivity that were associated with poorer executive functions were
nodes of networks supporting attentional aspects of cognitive control.
Regions of the sensorimotor network also emerged as predictors of
executive functions. Notably, the variance accounted for in TMT-B was
substantially greater than that accounted for in TMT-A, indicating that
gray matter structural connectivity in these regions was more strongly
associated with attentional set-shifting than with processing speed.
Further analysis that attempted to better isolate the effects of set-
shifting using the TMT-B/A ratio identified additional cognitive control
and default mode network regions in which dysconnectivity was asso-
ciated with poorer set-shifting performance.

Our results extend prior work on the cerebral structural correlates of
the poor executive functions found in LLD to demonstrate that WMH
are related to lower gray matter connectivity of the attention, sensor-
imotor, and select subcortical regions. Set-shifting, assessed by the
TMT-B/A ratio score, was associated with regions known to be relevant
in attentional aspects of cognitive control. The posterior cingulate
cortex is a key node in the default mode network and is thought to be
involved in arousal, attentional focus, and the shifting of attention from
internal states to external cues (Leech and Sharp, 2014). The anterior
cingulate cortex is a critical region of the cognitive control network
relevant to salience processing, effortful regulation of attention, and
error awareness and detection (Orr and Hester, 2012; Braver et al.,
2001; Gasquoine, 2013). It has previously been implicated in animal
studies of set-shifting (Bissonette et al., 2013). In human studies, white
matter abnormalities have been demonstrated in the anterior cingulate
in LLD (Gunning-Dixon et al., 2008). The middle frontal gyrus is asso-
ciated with set shifting (Aron et al., 2004) and with resolving cognitive
interference (Rahm et al., 2013).

Additionally, we found that dysconnectivity in the left supramar-
ginal gyrus, a region within the inferior parietal lobe, emerged as a
predictor of psychomotor processing speed and attentional set-shifting.
The supramarginal gyrus has been previously implicated in attention
difficulties in patients with LLD (Wang et al., 2008), as well as in post-
stroke depression (Zhang et al., 2018). Further, the role of the supra-
marginal gyrus is consistent with prior work implicating the role of the
superior longitudinal fasciculus in executive functioning in LLD, as this
fiber tract connects frontal and parietal regions (Sheline et al., 2008).

Our results are also consistent with prior findings on the importance

of the cortico-basal ganglia-thalamocortical loop to executive functions
(Cummings, 1993; Pugh and Lipsitz, 2002), including in LLD (Sexton
et al., 2013). In our study, altered thalamic, putamen, and pallidum
connectivity emerged as significant predictors of attentional set-
shifting. The thalamus is a well-known region implicated in executive
control (Marzinzik et al., 2008). Altered thalamic functioning has been
associated with executive dysfunction in lesion studies after stroke (Van
Der Werf et al., 2003) and psychiatric disorders such as schizophrenia
(Minzenberg et al., 2009). Similarly, pallidum projections to the
striatum have been implicated in executive control performance (Wei
and Wang, 2016), including set-shifting (Scott et al., 2002). Ischemic
infarcts in the pallidum are associated with depression and executive
dysfunction post-stroke (Vataja et al., 2005).

Dysconnectivity to gray matter regions of the sensorimotor network
were also associated with set shifting in LLD. The sensorimotor net-
work, which comprises regions involved in sensory, motor, and cogni-
tive performance, is vulnerable to aging (Cassady et al., 2019). In-
dividuals with greater WMH burden have been shown to express
disrupted sensorimotor network functional connectivity (Wu et al.,
2015). Our results suggest that dysconnectivity within sensorimotor
regions is implicated perhaps because of the perceptual and motor
demands that these tasks require in addition to attentional and execu-
tive control processes.

We observed preliminary evidence for an association between
WMH-related structural dysconnectivity in the left superior parietal
lobe and dysexecutive behavior (Supplement 1). This relationship did
not survive FDR correction, and, thus, warrants replication. The left
superior parietal region is critical to top-down, goal-driven attentional
control (Corbetta et al., 1995; Alnæs et al., 2015), and has been pre-
viously implicated in dysexecutive behavior on the FrSBe (Alexopoulos
et al., 2012). In our study, the region associated with dysexecutive
behavior (FrSBe-EF) was distinct from those associated with executive
functions on a performance-based measure (Trail Making Test), which
is consistent with the notion that subjective and objective measures of
executive impairment only partially overlap (Fava et al., 2018) and may
be sustained by different underlying brain circuit pathology.

Taken together, our findings suggest broader implications for the
treatment of LLD. WMH, poor executive performance, and self-reported
dysexecutive behavior are all associated with poorer and slower re-
sponse to antidepressants (Pimontel et al., 2016; Manning et al., 2015).
Greater understanding of the gray matter networks affected by WMH-
related structural dysconnectivity can inform clinical interventions
designed to ameliorate cognitive control weaknesses. Such interven-
tions can specifically target these network abnormalities using either
cognitive (Anguera et al., 2017; Morimoto et al., 2016) and/or device-
based neuromodulatory approaches (Dubin et al., 2017; Drysdale et al.,
2017).

The limitations of our study include a relatively small sample size;
further investigation with a larger sample is needed to confirm its
findings. The battery of executive functions was rather limited and had
minimal redundancy in tests tapping similar executive functions.
However, the tests chosen have been extensively validated and are
frequently used in neuropsychological evaluations in clinical settings.
Further, the structural network disruption quantified by the NeMo Tool
is based on a reference tractogram dataset from healthy adults.
Nonetheless, prior work has used the same tractogram dataset to ac-
curately quantify structural network dysfunction and related behavioral
changes in geriatric populations including stroke, Alzheimer's disease,
and frontotemporal dementia (Kuceyeski et al., 2013; Kuceyeski et al.,
2015; Kuceyeski et al., 2012). Finally, because our sample of in-
dividuals with LLD were actively depressed, it is difficult to ascertain
whether slowed processing, poor set-shifting, and dysexecutive beha-
vior were secondary to depression symptoms or underlying cognitive
impairment that would remain even after remission. A question for
future research is whether our findings can be replicated in remitted
adults with LLD.
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4.1. Conclusions

In summary, this study demonstrated a link between WMH-related
region-specific structural dysconnectivity in sensorimotor networks and
cortical and subcortical regions involved in attentional aspects of cog-
nitive control, and behavioral measures of attentional set-shifting and
psychomotor speed. Our findings provide evidence for how cere-
brovascular pathology may ultimately manifest as clinical symptoms of
disrupted cognitive control networks and may inform novel treatment
targets.
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