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ABSTRACT 

This paper presents two theoretical models to assess the variance of the fatigue damage in stationary 

narrow-band and non-Gaussian stochastic processes. The models extend two solutions existing in 

the literature and restricted to Gaussian processes. The new models here developed exploit a non-

linear transformation that links Gaussian and non-Gaussian domains based on skewness and 10 

kurtosis coefficients, which are used to quantify the deviation from the Gaussian distribution. 

Monte Carlo numerical simulations in time-domain are performed to confirm the correctness of the 

proposed non-Gaussian models, and to investigate the sensitivity of the variance of the damage to 

the skewness, kurtosis, and inverse slope of the stress versus life (S-N) curve. An example is finally 

presented to demonstrate the increase of the failure probability due to non-Gaussian effects in the 15 

stochastic loading.  

Keywords: variance of fatigue damage; stochastic loadings; non-Gaussian; kurtosis; skewness; 

failure probability 

  



2 
 

Nomenclature 20 

 sample coefficient of variation of damage 

 coefficient of variation of damage 

 fatigue damage of a half-cycle 

 sample mean of fatigue damage 

 fatigue damage in time period  

 expected damage squared 

 expected value of damage squared 

 probability distribution of stress amplitudes 

,  joint probability density function of two peaks 

,  direct and inverse transformation 

,  material constants of the stress-life (S-N) curve 

,  number of half-cycles counted in  

 number of cycles to failure 

 autocorrelation function of  

,  autocorrelation function of half-cycle damage 

 stress amplitude of a half-cycle 

,  Power Spectral Density of  and  

, , ,  peak and valley (Gaussian, non-Gaussian) 

,  Gaussian and non-Gaussian time-history 

,  Gaussian and non-Gaussian process 

,  skewness, kurtosis 

 m-th spectral moment 

,  mean value of  and  

 frequency of upward mean zero 

,  autocorrelation coefficient of  and  

,  autocorrelation coefficient of half-cycle damage 

 sample variance of fatigue damage 

 variance of fatigue damage 

,  variance of  and  

,  (superscript) Gaussian, non-Gaussian 

CoV coefficient of variation 
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1 INTRODUCTION 

Engineering structures and components are usually subjected to stochastic loadings during 

their service life. Examples are the loadings from road irregularity, wind or sea waves [1]. In 

practice, engineers estimate the probability of failure of such structures and components by 25 

calculating the damage values of measured time-history records, by means of the rainflow counting 

method and the Palmgren-Miner rule.  

Stochastic time-history records have a random number of counted cycles, as well as 

randomly distributed amplitudes and mean values. Fatigue cycles and the damage computed 

therefrom are thus random variables, too. This means, for example, that the damage values 30 

computed from distinct stationary time-history records are not identical, even if the records are 

measured under nominally identical conditions and thus share the same statistical properties.  

When only a limited number of time-history records of short time length are analysed, the 

information on the cycle distribution is not complete; as a result, the calculated damage values may 

represent a biased estimate of the “true” (or average) damage characterising a much larger set of 35 

time-histories. In other words, few damage values may have so large levels of statistical variability 

to make a fatigue life estimation rather uncertain (which, in turn, requires high safety factors to be 

introduced). The statistical variability (variance) of the damage is thus an essential property of the 

damage distribution, like as the mean value. 

The attention on the estimation of the variance of fatigue damage dates from the sixties, 40 

when Mark and Crandall [2] and Bendat [3] proposed the first theoretical approaches. Their 

methods were, however, limited to the linear oscillator response (narrow-band Gaussian process). 

Subsequently, Madsen et al. [4] and Low [5] developed more general methods for estimating the 

variance of damage in narrow-band stochastic processes. Although not restricted to the linear 

oscillator, such methods apply to Gaussian processes only.  45 
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The hypothesis of Gaussian process is, however, not often satisfied by the stochastic 

loadings acting on real engineering structures. A loading that deviates from the Gaussian 

distribution is called non-Gaussian. The deviation is quantified by the skewness and kurtosis 

coefficients; the skewness measures the symmetry and the kurtosis the tail contribution in the 

probability distribution of a non-Gaussian process. 50 

Non-Gaussian loadings are encountered, for example, in certain types of wind or wave 

loadings, or when the structure has a non-linear behaviour that transforms a Gaussian input into a 

non-Gaussian output [1]. One interesting situation is that of offshore structures subjected to wave 

stochastic loadings, in which structural nonlinearity combines with non-Gaussian input excitation. 

These examples emphasised that the study of non-Gaussian stochastic loadings is of 55 

particular relevance in structural durability. In spite of this, at present there are no analytical 

approaches able to assess the variance of fatigue damage in non-Gaussian loadings. Apart from 

some exceptions [6], the methods existing in the literature are indeed valid for Gaussian loadings 

only. 

This paper aims to present two theoretical models for estimating the variance of the damage 60 

in stationary non-Gaussian and narrow-band stochastic processes. The presented models extend two 

methods (Madsen et al. and Low) developed for Gaussian narrow-band processes. The models 

proposed in this paper are based on a time-invariant non-linear transformation that links a non-

Gaussian stochastic process to its underlying Gaussian one. The transformation is calibrated on the 

values of skewness and kurtosis of the non-Gaussian process. The transformation permits the 65 

proposed models to estimate the variance for any combination of skewness and kurtosis 

coefficients. 

The correctness of the proposed theoretical models is verified by Monte Carlo simulations, 

considering a linear oscillator response spectrum and an ideal unimodal power spectral density. 

Time-domain results from simulated time-histories (rainflow cycle counting and Palmgren-Miner 70 
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damage rule) are compared with theoretical estimations from the non-Gaussian models. The 

variance of the fatigue damage from non-Gaussian time-histories with different combinations of 

skewness and kurtosis is evaluated. Moreover, the paper investigates the relationship between the 

coefficient of variation in the Gaussian and non-Gaussian case as a function of both the distribution 

parameters (skewness and kurtosis) and the inverse slope of the stress versus life (S-N) curve. The 75 

unimodal power spectra density also permits different spectral bandwidths (from very narrow to 

mildly wide band) to be obtained and then used for scrutinising the actual range of validity of the 

proposed theoretical solutions when a power spectral density is not very narrow-band.  

Finally, an example of structural integrity assessment is presented, which considers a 

structure subjected to both Gaussian and non-Gaussian stochastic loadings with same variance. The 80 

example is used to demonstrate the increase of failure probability due to the non-Gaussian 

characteristic of the stochastic loading. 

The paper is organised as follows. Section 2 gives a short theoretical background on 

stochastic processes. Section 3 summarises the relevant formulas for the expected damage and 

variance, which have general validity. Section 4 reviews the Madsen et al.’s and Low’s methods for 85 

the Gaussian case with the aim to summarise the main equations used later on by the two models 

extended to the non-Gaussian case. Section 5 introduces the non-linear transformation, then it 

develops the two proposed non-Gaussian models. They are implemented in Section 6, which 

verifies their correctness by Monte Carlo numerical simulations. Section 7 develops an example of 

structural integrity assessment to compare the failure probability for a structure subjected to 90 

stochastic loading either Gaussian or non-Gaussian. Finally, Section 8 summarises the main 

findings. 
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2 PROPERTIES OF STOCHASTIC PROCESSES 

Let , ∞ ∞ be a stationary Gaussian stochastic process. It represents an infinite 

ensemble of time-histories, , 1, . . ,∞. The autocorrelation function of the process is 95 

, where symbol  is the probabilistic expectation and  the time lag. 

The autocorrelation coefficient of  is [7]: 

  (1) 

which is bounded as 1 1. In the formula,  is the mean value and  the variance of 

the process. Both parameters  and  define the normal probability distribution followed by the 

instantaneous values of the Gaussian process . Without loss of generality, it is assumed that 100 

0.  

The stochastic process  can also be described in the frequency-domain by a one-sided Power 

Spectral Density (PSD) , which is the Fourier transform of the autocorrelation function 

(Wiener-Khinchine relations) [7]: 

 4 	 2 	 																	 	 2 	 										 (2) 

The spectral moments  are [8]: 105 

 2 	 ,					 0,1,2… (3) 

The variance of  is 0 , while the expected frequency of upward crossings of the 

mean value is ⁄ 		 2⁄ . 

The Gaussian stochastic process  is fully determined by its expected value  and by 

either its autocorrelation function  or, equivalently, its power spectrum . 

Let  be a stationary non-Gaussian stochastic process, with mean value , variance  110 

and autocorrelation function . As for , the autocorrelation coefficient 
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is also defined as / . To simplify matter, it is assumed 0. Similarly to 

Eq. (2), the power spectral density  of the process is the Fourier transform of . The 

expected frequency of upward crossings of the mean value is . 

Since the process  is non-Gaussian, its instantaneous values do not follow a Gaussian 115 

probability distribution, but rather a non-normal probability distribution, whose degree of deviation 

from the normal distribution is usually quantified by the skewness, , and kurtosis,  [8]: 

 
																				  

(4) 

which are the standardised third and fourth central moments, respectively. The skewness measures 

the asymmetry degree of a non-Gaussian distribution. The kurtosis measures the contribution of the 

tails of the distribution: values away from the mean can be either higher ( 3, leptokurtic case) 120 

or lower ( 3, platykurtic case) than the values of a Gaussian distribution. A Gaussian process 

has 0 and	 3.  

In this way, the probability law of the non-Gaussian process  is fully specified by four 

statistical parameters ( , , , ), rather than by the entire non-normal probability distribution. 

Note that  and  provide a sufficiently accurate description of a mildly non-normal behavior 125 

([9,10]). More refined approximations of the non-normal probability distribution of  would 

involve higher order central moments , which would nevertheless be more sensitive to the 

sampling variability when estimated from observed data.  

The non-Gaussian stochastic process  is completely determined by its expected value 

, skewness , kurtosis , and by either its autocorrelation function  or, equivalently, its 130 

power spectrum . 

It should be stressed that no “physical” relationship exists between the two processes  

and  introduced so far. That is, they do not represent the input and output of a mechanical 

system. Rather, both processes may represent the output (e.g. load, stress or strain) acting at the 
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critical location in a system or structure. For example,  may represent the Gaussian output of a 135 

linear system driven by a Gaussian input, whereas  could be the non-Gaussian output in case 

the system behaves nonlinearly. In this circumstance, the probabilistic properties of  and  

are not related to each other. 

Instead, in Section 5.1 the two processes will be linked via a memoryless transformation. 

Only in this case (and only this)  does not represent any physical quantity (load or stress), but 140 

rather it must be viewed as a sort of hidden Gaussian process underlying . The transformation 

is introduced as a mathematical tool that allows the results on the damage (expected value, variance 

and coefficient of variation) to be extended from the Gaussian to the non-Gaussian case. The 

transformation is calibrated based on the statistical properties of . 

On the other hand, it should be mentioned that in some engineering applications ‒ not 145 

considered here ‒ the two processes represent the non-Gaussian output  of a nonlinear 

mechanical system driven by a Gaussian input . In this case, the memoryless transformation is 

used to describe the nonlinear feature of the system and it allows the statistical properties of the 

output  to be computed analytically from those of the input  (see [11,12,13] and the 

Winterstein’s model in Appendix A). This kind of input/output relationship will not be considered 150 

in the following. 

3 EXPECTED VALUE AND VARIANCE OF DAMAGE: THEORETICAL BACKGROUND 

3.1 EXPECTED VALUE OF DAMAGE 

Assume that , 0 , represents a time-history of time duration  from the stochastic 

process . The fatigue damage under the Palmgren-Miner rule is: 155 

 
2

 (5) 
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in which  is the stress amplitude of the i-th half-cycle,  indicates the number of half-cycles 

counted in ,  and  are material constants of the S–N curve , where  is the number of 

cycles to failure at constant amplitude . More specifically, the strength constant ,  is 

computed from the strength amplitude  corresponding to the number of cycles ,  (typically 2 ∙

10  cycles). The values of  and  (or ) follow from a regression analysis of experimental fatigue 160 

data on identical specimens; the regression line refers to a failure probability of 50%. A statistical 

analysis of fatigue data can account for the uncertainty of the estimates and the inherent scatter of 

experimental data, and it allows a characteristic S-N curve to be defined in which  refers to a 

prescribed failure probability, e.g. 2.5% [14]. 

The damage  is a random variable as it depends on the specific time-history  of 165 

time length . Indeed, it takes on different values from one time-history to another due to the 

randomness in stress amplitudes and number of half-cycles counted in . 

The expected damage is derived by taking the expectation of Eq. (5): 

 
2

 (6) 

Equation (6) represents the damage of the whole ensemble of time-histories of , i.e. it 

represents the damage of . The quantity  is the expected number of half-cycles counted 170 

in , whereas 2⁄  denotes the expected damage per half-cycle. The term  is the 

-th moment of the probability distribution of stress amplitudes : 

 
1
2

	  (7) 

In a narrow-band process, the stress amplitude distribution  equals the peak distribution; if the 

process is also Gaussian, the peak distribution is Rayleigh. The resulting expected damage per half-

cycle is [15]: 175 
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1
2

2 Γ 1
2

 (8) 

where Γ  is the gamma function. 

For a narrow-band process, the expected number of counted half-cycles is 2 . 

Using the relationship 2 ∙ , the expected damage for a narrow-band 

Gaussian process then becomes: 

 2 Γ 1
2

 (9) 

3.2 VARIANCE OF DAMAGE 180 

Under the assumption of stationary damage process and deterministic number of half-cycles 

2 , the general expression of the variance of damage (omitting  from symbol	 ) is [2]: 

 2  (10) 

where  is a time lag that takes on integer values from 1 to 1. Note that  denotes the 

“expected value of the damage squared”, whereas  denotes the “expected damage squared”. 

In the previous expression, the time lag  is related to the time difference 2⁄  185 

between two peaks,  and  (“peak” is applied in a broad sense to indicate both peaks and valleys, 

see [5]). Furthermore, the damage per half-cycle  is proportional to . Accordingly, the product 

 can be computed from the joint probability density function (JPDF) of two peaks, 

, ,  as: 

 	
1
4

	 , , d d  (11) 

This equation defines the autocorrelation function of half-cycle damage, , . In 190 

analogy with Eq. (1), the autocorrelation coefficient of half-cycle damage is introduced: 
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,
, 	 12 	

which is bounded as 0 , 1. 

It is possible to demonstrate that Eq. (10) can also be written as a function of ,  [5]: 

 2 ,  (13) 

A general closed-form equation for the variance  is not available unless some hypothesis 

(Gaussian process) is introduced, as in the two models that are reviewed in the next Section. 195 

4 GAUSSIAN MODELS 

This section presents a brief account of two models for estimating the variance of damage in a 

narrow-band Gaussian process. These models are the basis from which the non-Gaussian models, 

described in later sections, are developed. 

4.1 LOW’S METHOD 200 

Low derived a best-fitting equation of ,  by solving the product expectation in Eq. (11) 

through the use of the Rice JDPF of peaks and valleys for a narrow-band process [16]: 

 
, ,

1

	

1
 (14) 

in which  is the modified Bessel function of the first kind with order zero. This distribution 

comes from the definition of the envelope process, based on the concept of auxiliary process [5]. 

By using a symbolic computation software, the double integral in Eq. (11) was solved in 205 

closed form for 2, 4 and 6 [5]: 
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 ,

for		 2
4
5

1
5

for		 4

1
19

9 9 for			 6

 (15) 

(due to a misprint, in [5] the coefficients of the second equation are switched). 

Afterward, the autocorrelation coefficient ,  was approximated by a quadratic 

interpolation function of  as , , where  and  are best-fitting 

coefficients that depend upon  (their values are tabulated in [5]). The fitting was restricted to 210 

integer values in the range 1 9. With this approximation and by invoking Eq. (8) and Eq. 

(13), the variance of fatigue damage turns into: 

2
2
4

Γ 1 Γ 1
2

 (16) 

The square root of the ratio of the variance  to the expected damage value squared  

defines the coefficient of variation (CoV) of the damage: 

 
1

2
Γ 1

Γ 1 2

1  (17) 

To apply the Low’s method one only needs to know the autocorrelation function  of the 215 

Gaussian process , the fitting constants ,  that are tabulated in [5], and the S-N parameters 

,  for the material or structural detail (actually,  is only required to compute the variance in Eq. 

(16)). Other quantities in Eq. (16)-(17) can be obtained readily. For example,  comes directly 

from , whereas the number of half-cycles can be estimated by the average 2  that 

depends on the mean upcrossing frequency ⁄ 		 2⁄ ,  computed from the spectral 220 

moments of the power spectrum  of . On the other hand,  can be obtained from 

, see Eq. (2). If  or  are not known exactly by a mathematical expression, they can 

be estimated from a time-history sample , although this introduces a sampling error [17].  
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4.2 MADSEN ET AL.’S METHOD 225 

This method considers the autocorrelation coefficient ,  computed from the envelope of a 

narrow-band process [18]. For a S-N slope 2, the autocorrelation coefficient of the damage is 

approximated in [4] as: 

 , ≅
2

 (18) 

where  is the autocorrelation coefficient and  its first derivative with respect to , both 

functions computed at the time lag 2⁄ . 230 

Compared to Eq. (15) for 2, the expression of ,  now includes a first derivative 

term. This difference lies in which definition of the envelope is adopted [19]: Cramer-Leadbetter 

envelope from the analytic signal in [5], Crandall-Mark envelope from the derivative process in [4]. 

By inserting Eq. (18) and Eq. (8) into Eq. (13), the variance for 2 is computed as: 

 2
2

	
2
4

Γ 1 Γ 1
2

 (19) 

Eq. (19) consists of a summation of terms related to the autocorrelation coefficient . The 235 

expression of the CoV is: 

 
1

2
2

Γ 1

Γ 1 2

1  (20) 

Equations (19) and (20) are valid for any narrow-band Gaussian process. Note the close similarity 

between these two last expressions and the formulas (16) and (17); the only difference lies in the 

definition of the autocorrelation coefficient of damage. 
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It must however be remarked that in Ref. [20] the range of validity of Eq. (18), and therefore 240 

of Eqs. (19)-(20), was incorrectly extended to values of  other than two. This is a mistake. For 

even values of , the correct expressions of ,  for are those of Low [5], and reported in Eq. 

(15). Such expressions holds true also for the Madsen et al.’s method, provided that  on the 

right hand side of Eq. (15) is replaced with .  

Surprisingly, the above-mentioned mistaken formulas were observed to agree quite well 245 

with numerical simulations, see Ref. [20] and Section 6 later. This unexpected result suggests that 

the use the above formulas for any 2 constitutes a theoretically incorrect but nevertheless 

acceptable approximation in that it does not introduce relevant errors in the estimation. This 

conclusion can be explained by the role of ,  in the summation in Eqs. (19)-(20), along with 

the trends of Figure 1. The figure compares Eq. (18) with the autocorrelation of the damage 250 

computed from simulations, for values 2, 4, 6. The lower frame displays the ratio of the 

theoretical to simulated values of , . The results come from a Monte Carlo study with a 

unimodal PSD, for a total of 8 ∙ 10  simulated time-history realisations. 

As expected, for 2 the formula in Eq. (18) works well, whereas for other  an error is 

introduced. It is seen that, as the time lag  increases, the error increases but the values of ,  255 

become increasingly small. These two opposite trends compensate each other. This net effect is 

explained by considering that in Eqs. (19) and (20) the quantity ,  is summed up at 

increasing time lags , from 1 to 1. At small indexes , the quantity ,  is almost 

exact and contributes much to the entire sum, whereas at larger indexes  where the error increases 

its contribution becomes increasingly negligible. As a result, Eq. (18) provides a satisfactory 260 

estimation accuracy for any . 

 

Please insert here Figure 1 
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As a final note, to apply the Madsen et al.’s method one only needs to know the 265 

autocorrelation function  of the Gaussian process  and the S-N parameters. Other 

quantities can be obtained readily, as previously explained for the Low’s method.  

5 NON-GAUSSIAN MODELS 

A convenient way to represent a non-Gaussian stochastic process is by means of a translation 

model. In this model, a non-Gaussian process  is mapped from an underlying Gaussian process 270 

 by the use of a time-independent non-linear transformation  [11,12,13]. The functional 

form of the transformation is established by the mapping  between the 

cumulative distribution functions,  and , of the Gaussian and the non-Gaussian process, 

respectively. The transformation so defined assures that the values of the non-Gaussian process 

match the probability distribution , chosen arbitrarily. The transformation also allows the 275 

main statistical properties (mean, variance and autocorrelation function) of the non-Gaussian 

process to be calculated from those of the underlying Gaussian process [11].  

In this article, the transformation  is used for including the non-Gaussian effects into 

the previous two Gaussian models for the variance of the damage. 

5.1 DEFINITION OF THE TRANSFORMATION 280 

The transformation  establishes a one-to-one relationship between the values of Gaussian and 

non-Gaussian processes. The non-Gaussian process is thus obtained as . 

Conversely, the Gaussian process  is transformed back by the inverse function 

. The degree of non-linearity of the transformation is calibrated on the values of 

skewness  and kurtosis  characterising the non-Gaussian process (usually, 0 and 3). 285 

If 0 and 3, the process  becomes Gaussian and the transformation linear. Note that 
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the transformation must be monotonically increasing in order to obtain a non-Gaussian process 

correctly. The transformation is independent of . 

Please insert here Figure 2 

Various forms of either the direct or the inverse transformation are available in the literature: Ochi’s 290 

model is a monotonic exponential function [21], Winterstein’s model is based on cubic Hermite 

polynomials [9,22,23], whereas the transformation of Sarkani et al. makes use of a power law 

model [24,25]. Among them, only the Winterstein’s model provides the analytical expressions of 

both the direct and the inverse transformations,  and , see Appendix A. This aspect turns 

out to be particularly advantageous in the development of the non-Gaussian solutions for the 295 

variance, presented in this Section. An example of linear and non-linear transformations is depicted 

in Figure 2(a), which shows the relationship between  and the transformed . 

The non-linear case is obtained by the Winterstein’s model and refers to values 0.5 and 

6. 

For what follows, it is convenient to recall the expression of the autocorrelation coefficient 300 

of the non-Gaussian process [10,22]: 

 2 6  (21) 

in terms of the autocorrelation coefficient of the Gaussian process, . Coefficients  and  are 

defined in Appendix A. 

The previous formula shows that the translation model only makes the two autocorrelation 

functions differ by second-order terms in the coefficients , , and . By quoting Refs. [10,22], 305 

“the functional transformation can substantially alter the static distribution of a normal process 

without greatly changing its correlation structure.” From a practical point of view, the difference 

between  and  is almost negligible. This fact is confirmed by the example in Figure 3, 

which compares the autocorrelation coefficient of a band-limited Gaussian process to that of a 
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transformed non-Gaussian process. The Gaussian process has autocorrelation coefficient 310 

cos	 sin ⁄ , where 2  is the central angular frequency (in rad/s) and  the half-

bandwidth of the corresponding power spectral density depicted in Figure 5(b).  

Figure 3 considers two bandwidths ( 1, 10), and a non-Gaussian process with skewness 

0.5 and kurtosis 6. Note that the results are suitably normalised so to be independent of 

the particular values of  and . The figure confirms that | | | | (see [11]) and shows 315 

that the difference between  and  reaches an absolute maximum of about 3%, while for 

8 (which yet represents a rather high value) the difference increases up to 6% (not shown in 

the figure). The deviation is more sensitive to kurtosis than skewness, and it obviously decreases to 

zero when the kurtosis approaches 3 (Gaussian case). In summary, although a difference between 

 and  exists, it was observed to be small for kurtosis values of practical interest; this 320 

suggests that the approximation ≅  – adopted in the following sections – is rather 

acceptable.  

It has finally to be mentioned that the transformation, especially if it has a high degree of 

non-linearity (e.g. high kurtosis value), may introduce some harmonic distortion on the power 

spectrum  of the transformed process  [26]. However, if the degree of non-linearity of 325 

 is not too high, the distortion is acceptable and both processes have similar spectral contents 

[26]. Similarly to the distortion effect mentioned for the autocorrelation function, also the 

“redistribution of power [in a PSD] is a second-order effect” [10,22], when compared with the 

changes in the probability distributions. 

5.2 NON-GAUSSIAN SOLUTION BASED ON LOW’S METHOD 330 

The Low’s model for the variance of the damage in a Gaussian process is now extended to the non-

Gaussian case. The Gaussian model is based on four properties of a narrow-band Gaussian process: 
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i) the expected number of half-cycles in time interval  is equal to the frequency of upward 

crossings, 2 ; 

ii) the time lag between two peaks  and  is 2ν⁄ ; 335 

iii) the JPDF of two peaks , ,  is the Rice distribution in Eq. (14), which is used to derive 

the autocorrelation coefficient of the damage , ; 

iv) the probability distribution of peaks  is known to be a Rayleigh distribution. 

The first and second conditions are, in fact, very general and hold true also for a narrow-band 

process that is non-Gaussian, as they only rely on the characteristics of a narrow-band process. The 340 

third and fourth conditions, instead, require the Gaussian hypothesis for the process.  

A useful property of the non-linear transformations  and  is that to establish a one-

to-one relationship between a value in a Gaussian process at any time instant and its transformed 

value in the non-Gaussian process, at the same time instant. This relationship ensures that peaks, 

valleys and mean value crossings are placed exactly at the same time instants in both processes. 345 

Figure 2(b) highlights this relationship for the peaks in the Gaussian and non-Gaussian process. 

For example, if the Gaussian process crosses its mean value  at time , that is 

, the non-Gaussian process will cross its mean value  also at , that is . Moreover, 

if  has a peak  or valley ) at time instant , the non-Gaussian process will have a 

corresponding peak or valley at the same time instant,  and . 350 

The same condition holds true also for the inverse relationship  and 

. In addition, the previous discussion emphasised that, from a practical point of view, the 

autocorrelation coefficient of the non-Gaussian process can be approximated as ≅ . 

An additional and more important consequence is that the relative positions of peaks and 

valleys in both processes are preserved for a monotonic transformation. For example, two peaks 355 

will be  in the non-Gaussian process if they are transformed by  from two 



19 
 

peaks  at any time instants ,  in the Gaussian process. Of course, the same 

concept applies to valleys as well. This is the same as saying that if the Gaussian process has peaks 

 at time lag , the non-Gaussian process will have peaks  at the same time lag. 

The previous insights may be synthesised by saying that a non-linear transformation from a 360 

Gaussian to a non-Gaussian process preserves the number of mean value crossings, and either 

increases or decreases (depending on , ) the values of peaks and valleys, keeping their relative 

positions unaltered. This property, in particular, guarantees that, in the non-Gaussian process, half-

cycles are formed by peak/valley pairs that are transformed from the corresponding peak/valley 

pairs in the Gaussian process, and that the non-Gaussian half-cycles have amplitudes smaller or 365 

larger (depending on , ) than the corresponding amplitudes of the Gaussian half-cycles. 

In light of the previous observations, the four properties summarised in the previous bulleted 

list can easily be adapted to the non-Gaussian case. More precisely, in a non-Gaussian narrow-band 

process: 

i) the expected number of half-cycles in time interval  is equal to the frequency of upward 370 

crossings: 2 , where ; 

ii) the time lag between two peaks  and  is 2ν⁄ ; 

iii) the autocorrelation coefficient ,  is derived from the JPDF , p,  of two peaks, 

which is obtained as a variable transformation of the Rice distribution in Eq. (14); 

iv) the distribution of peaks for non-Gaussian  is obtained by a variable transformation of 375 

the Rayleigh distribution valid in the Gaussian case; 

The first two properties are obvious; the other two needs some explanation. The third condition is 

now elaborated further. Let us consider a pair of any two local extremes  and  (peak and valley) 

in the non-Gaussian process. They are random variables with joint probability density function, say 

, p, . Such local extremes are transformed back to two corresponding local extremes 380 
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=	  and  (peak and valley) in the Gaussian process through the inverse 

transformation . For the Gaussian local extremes is valid the joint Rice distribution in Eq. (14). 

It is therefore straightforward to derive the joint distribution of the non-Gaussian local extremes by 

the rule of transformed random variables [8]: 

 , , , , ∙ 	J , 	  (22) 

where symbol |	 	| denotes the absolute value and  is the Jacobian of the transformation , 385 

which turns out from the following 2 2 determinant: 

 	J ,  (23) 

The inverse transformation must be applied to peak and valley variables separately. As a result, the 

Jacobian in Eq. (23) is, in fact, a diagonal matrix. Intuition suggests, for example, that an 

infinitesimal change in the non-Gaussian peak  produces no variation in the corresponding 

valley , and therefore ⁄ 0. A similar reasoning applied to the other out-of-diagonal 390 

term explains why ⁄ 0. 

By considering the Rice formula in Eq. (14), the general expression in Eq. (22) can be 

written more specifically as: 

 

, ,  

1

	

1
∙  

(24) 

Although not written explicitly, the Bessel function ,  in Eq. (24) is a function of  and , 

and it is obtained by a simple change of variables in the corresponding function ,  in Eq. 395 

(14), which instead depends on the variables  and . 
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The expression in Eq. (24) represents the joint distribution of two peaks in the non-Gaussian 

process . As the transformation of variables involves the non-linear function  and its 

derivatives, the final expression is so complex that is not possible to arrive at a closed-form 

solution. A numerical approach must be used. 400 

Eq. (24) depends on both  and  through function . It is also function of ,  and 

. Obviously, in the limiting case 0 and 3 (Gaussian process), Eq. (24) converges to the 

Rice distribution in Eq. (14). 

Figure 4(a) compares the Gaussian and non-Gaussian joint probability distributions of peaks 

(the latter obtained with 0, 1, 0, 0.5 and 6). The distributions are 405 

plotted on the region of positive values pertaining to peaks. The shift of probabilities is clear. In 

particular, if compared to the Gaussian case, the non-Gaussian distribution shows higher levels of 

probability towards larger peak values. 

Please insert here Figure 4 

The non-Gaussian peak-peak joint distribution obtained so far allows the damage correlation 410 

 to be computed with no much effort by solving numerically the double integral in Eq. 

(11). Attention must be paid in the numerical integration when the kurtosis  is very large. In this 

circumstance, indeed, the non-Gaussian variables ,  extend over a rather wide interval that 

needs to be finely discretised to assure the necessary numerical precision. 

The last point iv) in the previous list for the non-Gaussian process is finally considered. In 415 

the same way as Eq. (22), the probability density function of peaks in the non-Gaussian process is 

determined by a variable transformation [8]: 

 	  (25) 
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Making use of Eq. (25) and introducing the transformed random variable  into the 

formula of the Rayleigh distribution , the probability distribution of peaks in the non-

Gaussian case can be written as: 420 

 	 	  (26) 

Equation (26) depends on the four statistics ,	 , ,  characterising the non-Gaussian process 

. It converges to a Rayleigh distribution when 0 and 3 (Gaussian process). 

A comparison of the Gaussian and the non-Gaussian (transformed) distribution is sketched 

in Figure 4(b). It refers to 0, 1, 0.5 and 6. The wider tail in the non-Gaussian 

distribution provides higher levels of probability towards larger peak values. 425 

Similarly to Eq. (7), the expected value of the damage  and its square 	are 

nothing more than the moments of order  and 2 , respectively, of the probability distribution 

 just introduced. On substituting the non-Gaussian distribution in Eq. (26) into Eq. (7), the 

general expression that gives both expected damage values is: 

 1
2

∙ 	 	 	 d  (27) 

where the exponent  is 1 or 2. Note that this expression is only a function of , , , . 430 

The variance of the fatigue damage for the non-Gaussian process is finally obtained through 

Eq. (10), in which the quantities ,  and  calculated so far for the non-

Gaussian process have to be used: 

 2 	 (28) 
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This expression extends the Low’s method to the non-Gaussian case. Note that  denotes 

the “expected value of the damage squared”, whereas  denotes the “expected damage 435 

squared”.  

The corresponding expression of the CoV for the non-Gaussian process becomes: 

 
1

1
2∑

 (29) 

The application of this non-Gaussian version of the Low’s method requires to know the 

autocorrelation function  of the non-Gaussian process , the S-N parameters , , and in 

addition the transformation  to be used in Eq. (24) and (27). Other related quantities (e.g. 440 

autocorrelation coefficient , power spectrum , number of half-cycles , mean upcrossing 

frequency ) are obtained as already explained for the Gaussian case. Note that the 

transformation  is calibrated based on the skewness and kurtosis,  and , that are statistical 

parameter needed for characterising the non-Gaussian probability law of . If their exact values 

are not known, their sample estimates ,  can be determined from an observed time-history. 445 

5.3 NON-GAUSSIAN SOLUTION BASED ON MADSEN ET AL.´S METHOD 

For the Gaussian case, the Madsen et al.’s solution relies on the (approximated) damage 

autocorrelation coefficient ,  in Eq. (18). As already remarked in Section 4.2, the formula is 

exact only for 2, whereas for other values it is approximated, though its level of accuracy 

seems more than acceptable. On the other hand, this formula has the advantage of being rather 450 

simple as it only requires the autocorrelation coefficient of the process, , and its first time 

derivative, . 

Therefore, an attempt is made here to extend the approximated formula in Eq. (18) to the 

non-Gaussian case, provided that  and  are used in place of their Gaussian counterparts. 

From what stated in Section 5.1, and more specifically from the critical analysis of Eq. (21), it is 455 
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≅ . Furthermore, the property that the transformation  has of keeping unaltered the 

position in time of each value of the Gaussian and non-Gaussian process also ensures that both 

processes cross their mean values at the same instant of time. Therefore, the Gaussian and non-

Gaussian processes have in common the frequency of upward crossings, .  

For the non-Gaussian process, the autocorrelation coefficient of the damage is then 460 

approximated as: 

	 , ≅
2

	 30

where symbols  and  have been used only to emphasise that the formula holds for the non-

Gaussian case. This formula is given without formal proof, but its level of approximation will be 

verified by numerical results. Compared to the non-Gaussian Low’s method, the coefficient 

,  can be obtained with no difficulty, since the transformed JPDF , ,  in Eq. (24) is 465 

not involved. 

The coefficient ,  in Eq. 30  enters directly into the variance expression in Eq. (13). 

The other two damage values,  and , are determined exactly as for the Low’s method 

for the non-Gaussian case; the fourth property iv) from the list in Section 5.2 remains indeed 

unchanged. Therefore, the distribution of peaks for non-Gaussian  follows from a variable 470 

transformation of the Rayleigh distribution, see Eq. (26). The terms  and  are 

calculated with Eq. (27). 

If all previous results are put together, the approximated expression of the variance of the 

fatigue damage according to Madsen et al. turns out to be: 

 2 n l ρ l
ρ l

2πν
	 (31) 

The corresponding approximated expression of the CoV is: 475 
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1

2
2

1  (32) 

In both equations, the term in curly brackets is identical for both the Gaussian and the non-Gaussian 

process, as clarified above. The non-Gaussian effect enters, through the transformation , into 

the last two terms  and . 

This non-Gaussian version of the Madsen et al.’s method requires the same quantities 

previously indicated for the Low’s non-Gaussian method, i.e. , the S-N parameters and , 480 

while other parameters are derived accordingly. In applications, the sample values ,  estimated 

from an observed time-history may be used, if the exact values ,  are not known. 

6 NUMERICAL SIMULATIONS 

Numerical simulations are used to verify the correctness and accuracy of the two non-Gaussian 

models described previously. The two models are compared with time-domain results obtained via 485 

Monte Carlo method. This numerical study is also used to investigate how the variance and the 

coefficient of variation vary as a function of the skewness, kurtosis and the S-N inverse slope. 

Simulations consider two types of power spectral density for the Gaussian stochastic process 

: the response of a base-excited linear oscillator and an ideal unimodal (rectangular) power 

spectrum, see Figure 5.  490 

The linear oscillator is subjected to a band-limited stochastic base acceleration, , with a 

power spectral density of constant value  and a frequency content from 0 to 20 Hz. Analytical 

expressions are derived for the mass absolute displacement, , and the relative displacement, 

; their mathematical derivation can be found, for example, in Ref. [27]. The 

final expression of the relative displacement response spectrum is: 495 
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2 1 2

 
(33) 

where  is the natural frequency and  the damping ratio of the linear oscillator. The system 

considered in numerical simulations has =10 Hz and a damping ratio taking on three different 

values 0.005, 0.01, 0.05. With these values the response spectrum  turns out to be a 

narrow-band stochastic Gaussian process with bandwidth parameters ranging from 0.998, 

0.994 (for 0.005) to 0.979, 0.942 (for 0.05). The power spectrum is 500 

normalised to unit variance, 1. 

It is important to highlight that, in simulations, the linear oscillator system must be viewed 

merely as a generator of narrow-band Gaussian time-histories, which are next transformed into non-

Gaussian time-histories by . In other words, the oscillator does not represent a nonlinear 

system that returns a non-Gaussian output when driven by a Gaussian input. 505 

The other power spectral density  of  considered in simulations has a unimodal 

(rectangular) shape centred around frequency  (the same as the linear oscillator), and with half-

spectral width  that is made to vary from 1 Hz to 10 Hz. By increasing , the PSD changes from 

narrow-band to mildly wide-band, with its bandwidth parameters decreasing from 0.998 and 

0.993 (most narrow-band case) to 0.866 and 0.745 (lowest values for the most 510 

wide-band case). 

A total of 2 10  stochastic Gaussian time-histories , 1,2,3,…  of time 

length  are simulated from . Three different lengths  are chosen so that time-histories have 

approximately 103, 104 and 105 fatigue cycles. 

Winterstein’s model is then used to transform each  into a non-Gaussian time-history 515 

 with prescribed values of skewness  and kurtosis . A total of 2 10  time-histories 

 is then obtained. Simulations scrutinise the ranges 0 0.5 and 2 8, which cover 



27 
 

most of the cases of practical interest. It has, however, to be noticed that Winterstein’s model 

imposes some restrictions on the values of  and  that can be paired [23]. 

For each time-history,  and , the fatigue damage values  and  are 520 

calculated in time-domain by the rainflow counting and Palmgren-Miner rule. This results into a 

total of 2 10  damage values for both  and , that is, equal to the number of 

simulated time-histories of  and . This is the number of realizations used to estimate the 

variance and coefficient of variation of the damage in time-domain calculations. Damage 

calculation considers a S-N curve with strength coefficient 1 and several values of the inverse 525 

slope 3, 6, 9, which cover typical values from notched to smooth components.  

The sample mean ∑ , sample variance 1 ∑  and 

sample coefficient of variation ⁄  are computed from the set of 2 10  damage 

values available for both the Gaussian and the non-Gaussian case. The expected damage, instead, 

was computed through analytical solutions: the Gaussian expected damage  from Eq. (9), 530 

the non-Gaussian expected damage 2 ∙  by taking 1 in Eq. (27). 

For the linear oscillator, Figure 6(a) displays the trend of the sample mean  and the 

standard deviation of damage  (both normalised to the expected damage) for both the Gaussian 

and the non-Gaussian case, as a function of the number of counted cycles. The figure refers to an 

inverse slope 3 and a non-Gaussian process with 0.5 and 6.  535 

The box on the left side of Figure 6(a) compares the probability density functions observed, 

in the non-Gaussian case, for three different numbers of cycles. As the number of cycles (i.e. time-

history length) increases, the probability distributions tend to become symmetric and Gaussian, 

which is in agreement with results observed elsewhere [5]. The comparison of probability 

distributions demonstrates the increase of the standard deviation as the number of cycles 540 

diminishes, which corresponds to a decrease in time-history length. The distributions for the 

Gaussian case (not shown) are similar in shape, but have a smaller standard deviation – the 
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comparison of standard deviations is shown in the right side of Figure 6(a). The figure confirms 

that, in both the Gaussian and non-Gaussian case, the greater is the number of counted cycles, the 

lower is the dispersion of the damage around its mean value. For any number of cycles, the non-545 

Gaussian damage always has a variance higher than the Gaussian damage. A similar result, not 

shown here, is observed for other values 3. This increase in the variance of damage highlights 

the importance of considering the non-Gaussian effect.  

Please insert here Figure 6 

The trend in Figure 6(a) is further clarified in Figure 6(b), which shows the change of the 550 

CoV versus the number of counted cycles for both methods of Low and Madsen et al. Figure 6(b) 

refers to an inverse slope 3 and two different non-Gaussian cases: 0.5, 2 

(platykurtic) and 0.5, 6 (leptokurtic). A perfect matching is observed between time-

domain results and theoretical estimations, either Gaussian or non-Gaussian. The agreement in the 

Gaussian case is somehow predictable [28]. Of more interest here is the correct estimation provided 555 

by the non-Gaussian models, whose accuracy is thus verified. Furthermore, the figure also shows 

that the non-Gaussian models by Low and Madsen et al. are almost equivalent. 

The very small, if not almost negligible, discrepancy between theoretical and simulation 

results in Figure 6(b) has to be attributed to numerical approximations. This approximation tends to 

occur for kurtosis values 6 or even greater. One approximation comes from the Winterstein’s 560 

model, in which there are some best-fitting coefficients. Another approximation source comes from 

the numerical solution of the double-integral used to compute  through the JPDF 

, ,  in the Low’s model; for very high  values, the tails of the joint probability 

distribution tend to be represented not exactly. A final approximation is that adopted in this paper 

for the Madsen at al.’s approach.  565 
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In any case, the largest difference between theory and simulation is 3%, which is perfectly 

acceptable. In summary, the previous results confirm that the two non-Gaussian models are 

practically equivalent, and they are not only exact but also cover combinations of skewness and 

kurtosis over a wide range of values of practical interest, that is within the limits of Winterstein’s 

model 0 2 3 3⁄  and 1 15. 570 

The simulation results for the ideal unimodal PSD are quite similar to the trends already 

shown in Figure 6 for the linear oscillator ‒ for this reason, they are not shown in a figure that 

would be almost identical to Figure 6. Rather, it is of more interest to collect them in a figure 

displaying the relationship between the CoV of damage and the bandwidth parameter , see Figure 

7.  Figure 7(b) considers also the results of the linear oscillator (note the different x-axis scale). 575 

Both graphs refer to 103 counted cycles, two values of inverse slopes ( 3, 6) and a non-Gaussian 

process with 0.5, 6. The solid lines are computed by the theoretical non-Gaussian 

models (Low, Madsen et al.), whereas the markers are the results from time-domain simulations. In 

the narrow-band case (  close to unity) the agreement between theory and simulation is very 

satisfactory. But surprisingly, the agreement remains quite acceptable also in the range of  values 580 

characterising a mildly wide-band PSD. The maximum errors is about 19% for the lowest limit 

value of bandwidth 0.866 for the unimodal power spectrum. This result is encouraging 

because it shows that the range of applicability of the non-Gaussian models is not restricted to a 

strictly narrow-band process, as required by the hypotheses behind the theory. Of course, the 

accuracy for even wider bandwidths needs to be investigated further. 585 

An overall picture is finally given on the effect of skewness , kurtosis  and inverse slope 

 on the relative variation of the non-Gaussian CoV with respect to the Gaussian case. In particular, 

Figure 8 shows the trend of the ratio /  of the coefficient of variation computed 

by Madsen et al.’s method in either its Gaussian or non-Gaussian version. The Gaussian CoV, 
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, follows from Eq. (20), the non-Gaussian one, , from Eq. (32). As said above, the 590 

estimations  and  of the Low’s model are almost identical and are thus not shown. 

Please insert here Figure 8 

Figure 8(a) considers a set of non-Gaussian processes with same skewness 0, but 

different values of kurtosis  and inverse slope . Compared to the Gaussian case, the CoV of a 

non-Gaussian process is shown always to decrease ( 1) or increase ( 1) depending on 595 

whether the process is platykurtic ( 3) or leptokurtic ( 3). For a given , the variation 

depends on . 

In the region 3, the decrease of CoV becomes larger for high  values. For 2, the 

CoV diminishes up to 60% for 9. In the region 3 the CoV has an opposite trend, but  has 

a more pronounced effect, especially when 3. For example, for 6 the increase arrives at 600 

120% for 6.3, whereas for 9 the same increase is attained already for  slightly below 4. 

Figure 8(b) shows, instead, the effect of skewness  on the CoV of damage of 

“asymmetric” stochastic processes. The kurtosis is set to 3.5; it is indeed not possible to 

choose a lower value if, in the Winterstein’s model, the skewness has to reach the limits -0.5 to 

+0.5. Similar trends are obtained for other  values. 605 

For any given	 , the curves in Figure 8(b) are symmetric, which is yet not surprising. In fact, 

in the Winterstein’s model, the transformation	  corresponding to equal and opposite values 

 and  turns out to be “mirrored” with respect to the straight line of the Gaussian case. In 

symbols: . Skewness values other than zero only make the mean stress of 

each non-Gaussian cycle, /2, be different from zero, whereas stress amplitudes remain 610 

unchanged and follow the same probability distribution in both cases  and . 

The results in Figure 8(b) reveals that for a given , the largest increment of CoV occurs 

for 0; lower increments are observed for either positive or negative skewness values. As 
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before, the higher the inverse slope , the higher the increment, although now the effect is less 

marked than what observed for the kurtosis. In any case, these results confirm once more the 615 

importance of considering non-Gaussian effects in the evaluation of the variance of damage. 

7 COMPUTATION OF THE FAILURE PROBABILITY: A CASE STUDY 

The previous Sections emphasised that the fatigue damage  of a stochastic time-history 

 of length  is a random variable following a certain probability density function. This 

probability distribution changes depending on whether the time-history is Gaussian or non-620 

Gaussian. An example for the non-Gaussian case is shown in Figure 6(a). With the aim to apply the 

Gaussian and non-Gaussian models (Madsen et al.’s method) for the variance of damage, this 

section presents a case study of a real-world application. In this case study, the failure probabilities 

of Gaussian and non-Gaussian time-histories are compared after computing the expected damage 

and variance of the damage probability distributions directly from the “exact” stress power 625 

spectrum, which is known through an equation and thus has no statistical variability. 

According to the Palmgren-Miner rule, the fatigue failure occurs when the damage  

reaches a critical value . A failure probability  is thus associated with the event . 

This failure probability will depend on the Gaussian or non-Gaussian nature of the stochastic time-

history, as well as on the statistical scatter of . In fact, though the Palmgren-Miner rule 630 

postulates that  is a deterministic value equal to one, extensive experimental studies confirmed 

that  is scattered and follows a lognormal distribution, see Figure 9 (this figure, originally 

published in Ref. [29], is reported also in many other articles, e.g. [30]). Similar trends for other 

alloys are published elsewhere [31].  

The probability distributions involved in the computation of the failure probability are 635 

exemplified in Figure 10. Figure 10(a) shows the definition of the characteristic S-N line 

corresponding to a prescribed failure probability under constant amplitude loading. The S-N line 
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parameters ,  then include the scatter observed in constant amplitude tests. Figure 10(b) shows, 

instead, the damage distributions. 

The approach here described takes two sources of statistical variability into account 640 

simultaneously: the uncertainty/scatter of the damage  due to the finite duration of the 

stochastic time-history, and the dispersion of the critical damage  of the Palmgren-Miner rule as 

it is observed from experiments. The probability of failure turns out to be [4]:  

 ∙  (34) 

where  is the probability density function of the fatigue damage  and  the 

cumulative distribution function of the critical damage . The probability distribution  can 645 

be estimated from observed damage values, as the example in Figure 4, or assumed to be normally 

distributed as suggested in [20]. The cumulative distribution  can be fitted on observed 

values of the critical damage, see for example Figure 9, which refers to the normal probability plot 

of . The probability on the vertical axis represents the complementary cumulative 

distribution function 1 . The plot confirms the scattered nature of , showing 650 

that 90% of the data fall below the conventional value 1 while only 10% are above. The 

median and standard deviation of  listed in Table 1 are derived from Figure 9 by the 

procedure of Appendix B. 

The importance of including non-Gaussian time-history characteristics in the computation of 

the failure probability  is now demonstrated by an example. It will show how a non-Gaussian 655 

random time-history determines an increased failure probability  compared to the case of a 

Gaussian time-history with same variance.  

The example considers the output stochastic stress in an offshore platform subjected to a 

non-stationary wave loading, formed by eleven sea states (Figure 11). The significant wave height 
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 and dominant wave period  of each sea state (see Table 2) define the stress power spectral 660 

density [32,33]: 

 

exp 1050
2

2 1
2

 (35) 

Symbols 5580 and 3.25 are scaling factors, whereas  0.02 (damping ratio) and 

0.286 Hz (first resonance frequency) characterize the offshore dynamic response. The previous 

PSD expression combines the Pierson-Moskowitz wave spectrum with the frequency response 

function of the offshore platform simplified as a simple oscillator. 665 

The output stress, with power spectrum , is assumed to be either Gaussian, , or 

non-Gaussian, . This is used to quantify and compare the non-Gaussian effects on the 

calculated failure probability . While the Gaussian time-history has zero skewness and kurtosis 

three, the non-Gaussian time-history is assumed to have two combinations of skewness and 

kurtosis, namely skewness zero and kurtosis from 3 to 6, or skewness from -0.4 to 0.4 with kurtosis 670 

3.5 – this allows for a sensitivity analysis.  

The random stress  and  have an identical standard deviation, with values for each 

sea state are specified in Table 2. Also an identical total time duration  is taken for both  and 

. The values 5, 7, 9 years are considered for comparison purposes. The total length 

∑  sums the length of individual sea states. Once a value of  is chosen, the individual lengths  675 

are determined according to the time fractions listed in Table 2. Note that the individual length  

merely represents the portion of the total time  spent by the offshore platform in i-th sea state, 

independently of the sea state sequence. In fact, the offshore platform needs not to stay in the i-th 

state for the whole time , nor to pass through all the different sea states consecutively. The 

sequence of sea states can be random, as it actually happens in reality. Summing up the time sub-680 

fractions spent in each sea state corresponds to ignoring the cycles formed by peaks and valleys 
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falling in different sea states, which holds true if the length of each sea state is not close to zero. 

This also makes the damage values from different sea state independent [20]. 

The total damage  for the length  is the sum of the damage  contributed by each 

individual sea state of length , that is ∑ . Each individual damage  is 685 

assumed to follow a normal distribution; this hypothesis is acceptable in so far as  is long enough 

for the central limit theory to apply [5]. As the total damage  is the sum of independent and 

normally distributed damage values , its statistics are simply ∑  and 

	 ∑ . 

The parameters (expected value, variance) of the normal distribution of  are 690 

determined as follows. For the Gaussian case, the expected damage  follows from Eq. (9), 

while the variance 	 from Eq. (19) (Madsen et al.’s method). For the non-Gaussian case, the 

expected damage  follows from Eq. (27) with 1, while the variance 	 from 

Eq. (31) (Madsen et al.’s method).  

The analysis finally assumes that  and  represent the stress acting on a welded 695 

structural detail. The characteristic S-N curve of this detail has inverse slope 4 and fatigue 

strength coefficient 7.688 10  MPa [32,33]. Accordingly, the probability distribution of 

 takes the parameters for welded steel members.  

The obtained results are summarised in Figure 12, which displays the ratio  of the 

failure probabilities corresponding, respectively, to a Gaussian and non-Gaussian time-history, all 700 

other analysis parameters being kept unchanged. The ratio is plotted for different values of 

skewness and kurtosis, and time-history length. The increase in the failure probability due to non-

Gaussian effects stands out clearly. For a given time-history length, the increase of the ratio 

 is much more sensitive to the kurtosis than to the skewness.  
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For a given time-history length , the variation of the ratio  is much more 705 

affected by a change in kurtosis than in skewness.  

For a given time-history length , the ratio  varies more markedly with a 

change in kurtosis than in skewness.  

 

For example, for a time-history length of 5 years, the ratio changes of about some 710 

hundreds when the kurtosis varies from three to 5, whereas it only changes of several units when 

skewness varies from zero to 0.2. Note also that the ratio follows opposite trends, since it 

increases with kurtosis but decreases with skewness. For a given non-Gaussian behaviour (that is, 

for given values of skewness and kurtosis), the ratio of failure probabilities  grows as the 

time-history length  decreases. This trend is governed by the shape of the upper tail of the damage 715 

distribution that, in turn, “intersects” the distribution of the critical damage  as in Eq. (34). When 

the time  decreases, both Gaussian and non-Gaussian damage distributions shift to the left, since 

their expected value and variance are proportional to  ‒ see the theoretical results in Section 3. By 

contrast, the probability distribution of critical damage  remains fixed.  As a result of this shift in 

damage distributions, the amount of area “beyond”  (and which actually determines the failure 720 

probability as per Eq. (34)) changes in different ways, so that the ratio  becomes greater for 

a shorter time duration. 

Apart from the different trends commented above, Figure 12 highlights that the failure 

probability is underestimated if non-Gaussian effects are ignored by the reliability analysis. This, in 

turns, confirms the importance of including non-Gaussian effect when assessing the structural 725 

durability. 
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8 CONCLUSIONS 

The paper presented two theoretical models for assessing the variance of the fatigue damage 

in stationary non-Gaussian stochastic processes. The non-Gaussian models extend two methods 

existing in the literature (Madsen et al., Low’s) that are valid for Gaussian narrow-band processes. 730 

The two models here developed apply to any non-Gaussian process for which its narrow-band 

power spectral density, skewness and kurtosis coefficients are known. They exploit the properties of 

a time-independent non-linear transformation that establishes a relationship between Gaussian and 

non-Gaussian domains. 

Monte Carlo numerical simulations in time-domain approach were used to verify the 735 

correctness and accuracy of the proposed two models and to identify typical trends. A linear 

oscillator response and a unimodal PSD were considered to simulate a large sample of both 

Gaussian and non-Gaussian time-histories, of which the fatigue damage was computed in time-

domain. The statistics (mean value, standard deviation, coefficient of variation) characterising the 

sample of computed damage values were compared to theoretical estimations. A perfect matching 740 

was observed. The results also demonstrated that, in the non-Gaussian case, the fatigue damage has 

a higher variance compared to the Gaussian case. This result is of particular importance as it 

confirms that the inappropriate use of Gaussian models with non-Gaussian processes leads to unsafe 

predictions, as they neglect non-Gaussian effects. The use of the non-Gaussian models here 

proposed is then recommended.  745 

The paper then investigated the trends of the coefficient of variation (CoV) of damage as a 

function of three parameters: skewness , kurtosis , and inverse slope  of S-N curve.  

Non-Gaussian effects make the CoV increase or decrease with respect to its value in the 

Gaussian case; which type of trend and its extent is mostly influenced by the kurtosis value and, to a 

less degree, by the skewness value. Compared to the Gaussian case ( 0, 3), the coefficient 750 

of variation decreased for 3 and increased for 3, the amount of the variation being 
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further modulated by the inverse slope . In particular, the worst combination that gives the highest 

increase of CoV occurs when both kurtosis and inverse slope take on large values. For example, the 

coefficient of variation increases far beyond 350% if kurtosis 4 and the inverse slope 6 (a 

value typical of un-notched structural details). These results, too, highlight even more the need of 755 

including the non-Gaussian effects when estimating the variance of the damage in a non-Gaussian 

stochastic process. 

An example of an offshore platform under different sea states is finally discussed. The 

example is used to demonstrate the increase of the failure probability due to the non-Gaussian 

characteristics of the stochastic time-history. The increase markedly depends on the kurtosis value 760 

and can be as large as nine for a kurtosis around six, when the time-history length is five years. The 

example then further emphasises the importance of taking non-Gaussian effects into account in a 

structural durability analysis with stochastic loadings. 

 

 765 
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APPENDIX A 

This Section reviews the Winterstein’s model based on Hermite polynomials. In particular, 

the Section reports the expressions of both the direct and the inverse transformation, 	and 

,	though only the latter function along with its first derivative are used by the models 770 

developed in Section 5. 

The expressions of the transformation model are provided separately for two types of non-

Gaussian process: leptokurtic ( 3) and platykurtic ( 3). 

For a leptokurtic process ( 3), the direct transformation links the non-Gaussian process 

 to a standardised Gaussian process  ⁄ , where process  has mean 775 

value  and standard deviation  (the time  variable is omitted for clarity). The direct 

transformation is defined as [23]: 

 1 3  (36) 

where  is the mean value and  the standard deviation of the non-Gaussian process; the 

coefficients ,  and  are detailed below. Inversion of the previous expression yields the inverse 

transformation as [23]: 780 

  (37) 

where: 

 1.5  (38) 

in which 3⁄ , 1 3⁄ , 1 . In both the direct and inverse 

transformation,  is a scale factor assuring that both the Gaussian and non-Gaussian process have a 

common value of variance, . 
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The coefficients ,  and  take on slightly different expressions depending on the various 785 

versions of the method. The earliest version [9] was a first-order model limited to small non-

Gaussian degrees; it returned the coefficient expressions: 

 
6
; 											

3
24

; 					 1 (39) 

A more accurate approximation including also second-order terms into the Hermite model (second-

order model) gave the following coefficients [22]: 

 
6 1 6

; 											
1 1.5 3 1

18
; 					

1

1 2 6
 (40) 

An alternative version also exists, with the following coefficient expressions [23]: 790 

 
6
1 0.015| | 0.3

1 0.2 3
; 									 1

1.43
3

. .

 (41) 

where 

 
1 1.25 3 ⁄ 1

10
 (42) 

These coefficients hold for 0 2 3 3⁄  and 3 15, which include most non-

Gaussian cases.  

For a platykurtic process ( 3), the inverse transformation is: 

 1 3  (43) 

where ⁄  is a standardised process and ,  are coefficients already defined 795 

above. 

It has finally to be reminded that not all combinations of ,  values are actually allowed 

by the Winterstein’s model. For more details, see [22]. 
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APPENDIX B 

The mean  and standard deviation 	 of the lognormal distribution of  can be 

determined from two percentiles of the normal probability plot in Figure 9, after such a plot is fitted 

to a sample of experimental data. Let , ,  ( 1,2) be two pairs of values (damage, probability) 

read from Figure 9. A choice could be 10% and 90%. The log-transformed variable is 805 

, , while the cumulative probability is 1 . 

As ⁄  is a standard normal variable, the probability statement 

 is equivalent to: 

 Φ  (44) 

which yields two linear equations: 

 Φ      ( 1, 2  (45) 

with the solution: 810 

 
Φ Φ

														
Φ Φ
Φ Φ

 (46) 

Table 1 lists the statistical parameters obtained by the above procedure applied to the four 

normal probability plots of Figure 9. Small approximations, due to the reading of values directly 

from the figure, may be present. 

 

 815 
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TABLES 

 

Table 1. Median and standard deviation of the critical damage sum , as estimated from 
Figure 9. 

Structural detail Alloy type Median, 10 	  Standard deviation, 	  

Not welded Steel 0.28 0.40 

 Aluminium 0.38 0.39 

Welded Steel 0.44 0.24 

 Aluminium 0.27 0.46 

 900 

 

 

Table 2. Sea state data. 

Sea state 
Fraction of 
time /  

Significant wave 
height,  

Dominant wave 
period,  

Standard deviation 
of the stress 

A 0.19 0.76 4.4 1.7 
B 0.49 2.28 7.7 4.32 
C 0.21 3.81 9.1 7.87 
D 0.06 5.33 10.3 11.67 
E 0.03 6.86 11.6 15.54 
F 0.01 8.38 12.7 19.89 
G 0.007 9.9 13.6 24.78 
H 0.002 11.43 14.7 29.81 
I 0.0004 12.96 15.8 35.19 
J 0.0001 14.48 16.5 41.32 
K 0.00004 16.01 17.3 47.72 

 

 905 
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FIGURE CAPTIONS 

Figure 1. Approximated damage autocorrelation coefficient ,  in Eq. (18), compared with 

simulations. Unimodal PSD. 910 

Figure 2. (a) Relationship between the values  and  for a linear and non-linear 

transformation ; (b) Gaussian and its corresponding transformed non-Gaussian stochastic 

process (dashed line refers to Gaussian and solid line to non-Gaussian). 

Figure 3. Comparison between the Gaussian and non-Gaussian autocorrelation coefficient, for two 

combinations of skewness , kurtosis , and spectral bandwidth  (ideal PSD). 915 

Figure 4. (a) Joint probability density function of peaks and (b) its marginal probability density 

function of peaks. 

Figure 5. Power spectral densities used in numerical simulations: (a) linear oscillator system (for 

two limit values of damping), (b) ideal unimodal spectrum (the dashed and the continuous line show 

the PSD with the narrowest and the widest half-spectral bandwidth). 920 

Figure 6. Simulation results for the linear oscillator as a function of the number of counted cycles 

(damping 0.005, inverse slope 3): (a) sample mean and sample standard deviation of the 

damage (both normalised to the expected damage); the left panel shows the observed probability 

distributions (non-Gaussian case). (b) coefficient of variation of damage. 

Figure 7. Trends of the CoV as a function of the bandwidth parameter , for (a) linear oscillator 925 

and (b) ideal unimodal PSD. Solid lines are the theoretical estimations, markers come from time-

domain simulations. 

Figure 8. Ratio of coefficient of variation of damage /  versus (a) kurtosis 

coefficient and (b) skewness coefficient, for several values of the inverse slope  of the S-N curve. 

Figure 9. Statistical distribution of the real damage sum (critical damage) for steel and aluminium. 930 

(Reprinted from Sonsino CM Int J Fatigue 2007;29:1080-1089, with permission from Elsevier) 
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Figure 10. (a) Characteristic S-N line including the variability of fatigue strength; (b) probability 

distributions involved in the computation of the failure probability. 

Figure 11. Offshore platform under wave loading, with a Gaussian or non-Gaussian time-history 

acting on a critical welded joint 935 

Figure 12. Increment of the failure probability due to a non-Gaussian time-history with: (a) 

skewness 0 and kurtosis  from 3 to 6; (b) kurtosis 3.5 and skewness from -0.4 to 0.4. 
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Figure 1. Approximated damage autocorrelation coefficient ,  in Eq. (18), compared with 

simulations. Unimodal PSD. 
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Figure 2. (a) Relationship between the values  and  for a linear and non-linear 

transformation ; (b) Gaussian and its corresponding transformed non-Gaussian stochastic 

process (dashed line refers to Gaussian and solid line to non-Gaussian). 

 

(a)

X(t)

Z(t)=G(X(t))
X

(t
) 

an
d

 Z
(t

)

(b)



3 
 

 

 

Figure 3. Comparison between the Gaussian and non-Gaussian autocorrelation coefficient, for two 

combinations of skewness , kurtosis , and spectral bandwidth  (ideal PSD). 
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Figure 4. (a) Joint probability density function of peaks and (b) its marginal probability density 

function of peaks. 
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Figure 5. Power spectral densities used in numerical simulations: (a) linear oscillator system (for 

two limit values of damping), (b) ideal unimodal spectrum (the dashed and the continuous line show 

the PSD with the narrowest and the widest half-spectral bandwidth). 
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Figure 6. Simulation results for the linear oscillator as a function of the number of counted cycles 

(damping 0.005, inverse slope 3): (a) sample mean and sample standard deviation of the 

damage (both normalised to the expected damage); the left panel shows the observed probability 

distributions (non-Gaussian case). (b) coefficient of variation of damage. 
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Figure 7. Trends of the CoV as a function of the bandwidth parameter , for (a) linear oscillator 

and (b) ideal unimodal PSD. Solid lines are the theoretical estimations, markers come from time-

domain simulations. 
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Figure 8. Ratio of coefficient of variation of damage /  versus (a) kurtosis 

coefficient and (b) skewness coefficient, for several values of the inverse slope  of the S-N curve. 
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Figure 9. Statistical distribution of the real damage sum (critical damage) for steel and aluminium. 

(Reprinted from Sonsino CM Int J Fatigue 2007;29:1080-1089, with permission from Elsevier) 
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Figure 10. (a) Characteristic S-N line including the variability of fatigue strength; (b) probability 

distributions involved in the computation of the failure probability. 
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Figure 11. Offshore platform under wave loading, with a Gaussian or non-Gaussian time-history 

acting on a critical welded joint. 
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Figure 12. Increment of the failure probability due to a non-Gaussian time-history with: (a) 

skewness 0 and kurtosis  from 3 to 6; (b) kurtosis 3.5 and skewness from -0.4 to 0.4. 
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