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Abstract: Scientific investigation on essential oils composition and the related biological profile are 
continuously growing. Nevertheless, only a few studies have been performed on the relationships 
between chemical composition and biological data. Herein, the investigation of 61 assayed essential 
oils is reported focusing on their inhibition activity against Microsporum spp including development 
of machine learning models with the aim of highlining the possible chemical components mainly 
related to the inhibitory potency. The application of machine learning and deep learning techniques 
for predictive and descriptive purposes have been applied successfully to many fields. Quantitative 
composition–activity relationships machine learning-based models were developed for the 61 es-
sential oils tested as Microsporum spp growth modulators. The models were built with in-house 
python scripts implementing data augmentation with the purpose of having a smoother flow be-
tween essential oils’ chemical compositions and biological data. High statistical coefficient values 
(Accuracy, Matthews correlation coefficient and F1 score) were obtained and model inspection per-
mitted to detect possible specific roles related to some components of essential oils’ constituents. 
Robust machine learning models are far more useful tools to reveal data augmentation in compari-
son with raw data derived models. To the best of the authors knowledge this is the first report using 
data augmentation to highlight the role of complex mixture components, in particular a first appli-
cation of these data will be for the development of ingredients in the dermo-cosmetic field investi-
gating microbial species considering the urge for the use of natural preserving and acting antimi-
crobial agents. 

Keywords: QCAR; machine learning; deep learning; essential oils; pharmaceutics; nutraceutics; cos-
meceutics 
 

1. Introduction 
The origins of essential oils (EOs) dates back to at least a thousand years ago. They 

have been used and are still employed for medicinal, cosmetic, and nutritional purposes. 
EOs are concentrated oils derived from plants which are described as containing “the es-
sence” of the plant. EOs can be derived from nearly any plant matter. EOs are mixtures of 
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chemical components containing from a few to hundreds of compounds. In the latest 10–
20 years there has been a growing interest in EOs as demonstrated by the thousands of 
articles published recently. More interestingly the global EOs demand was estimated at 
247.08 kilotons in 2020 and it is expected to increase at a compound annual growth rate of 
7.5% from 2020 to 2027 (https://www.grandviewresearch.com/industry-analysis/essen-
tial-oils-market accessed 22 July 2021). A few of the most commonly used EOs are tea tree 
oil, rosemary oil, and lavender oil. The EOs′ market value worldwide is expected to rise 
from around 17 billion U.S. dollars in 2017 to about 27 billion dollars by 2022 
(https://www.statista.com/topics/5174/essential-oils/ 22 July 2021). Although thousands 
of scientific articles are published each year on EOs (scopus accessed 15 September 2021) 
only a few reported the application of machine learning (ML) algorithms with the purpose 
to dissect the chemical components which are mainly responsible for the associated bio-
logical profile to derive quantitative composition–activity relationships (QCAR) [1–6], 
while more commonly the use of ML to EOs was just confined in chromatography, to 
relate the chemical composition to the retention time of each compound [7–9]. 

The use of ML algorithms to develop predictive models has become popular in sev-
eral scientific fields like drug design [10]. While it is often very easy to reach high perfor-
mances with training data, it is very frequent to encounter problems in the testing phase. 
This is mostly due to experimental data, that are often noisy, poor and the derived models 
do not cover all the possible range of application, such as EOs′ chemical composition var-
iability. To avoid the so-called “overfitting problem” caused by the great number of inde-
pendent variables, in fields such as computer vision and signal processing, a common 
strategy is to generate new training records by means of perturbation of the original ones. 
Image data augmentation (DA) is generally performed in deep learning by flipping, ro-
tating, and applying graphical filters to the training images [11]. 

A DA-based approach is reported in this study to analyze complex mixture using as 
case study a series of experimentally evaluated EOs. To the best of authors knowledge, 
this is the first report of DA application to EOs and in particular in the dermo-cosmetic 
field, where an increasing need for natural effective ingredients is occurring, especially in 
view of the guide-line of the “Green Deal”. 

2. Overview of the Study 
DA is of great importance for ML classification, particularly for biological data, which 

tends to be high dimensional and scarce. In this application we decided to apply DA to 
EOs to dynamically change their composition mixtures. This approach aims to tweak a 
very well-known Eos′ weak aspect, consisting in their difficulty to standardize the com-
position due to plants variation and extraction methods, often caused by the sensitivity of 
the composition variability due to the opening of containers. Nevertheless, minimal vari-
ation of chemical composition is known not to destroy the biological profile of the EOs. In 
this scenario the DA method includes such a variability with a reduced set of samples. 
This study proposes to apply DA to EOs by tweaking the composition percentages in or-
der to perform statistical analysis on larger datasets, reducing overfitting and building 
reliable statistical models, this is not achievable with the raw dataset. Using the DA tech-
nique, it is possible to reshape unbalanced datasets by augmenting records proportionally 
to the class occurrences. Given the continuous interest in the dermo-cosmetic field, the 
proposed method has been applied to 61 EOs whose chemical compositions were already 
known [3,6] and here investigated for an anti-dermatophyte bioactivity as a model ap-
proach. The obtained ML models have been then used to dissect the chemical component’s 
role in the inhibition of the dermatophytes using perturbation-based techniques, impu-
rity-based techniques, and coefficients analysis. The anti-dermatophyte activity of 61 EOs 
was investigated against Microsporum spp. (Microsporum canis (M. canis) and Microsporum 
gypseum (M. gypseum.)) through growth inhibition assay. 

Dermatophytosis is an infection of keratinized tissues, nails, hair, and cornea extract, 
and is caused by several species belonging to the genera Microsporum, Trichophyton, and 
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Epidermophyton, the only fungi able to invade and reside in keratinized tissues. They are 
transmitted by contact with hair and dandruff, both infected and containing fungal parti-
cles, coming from animals, the environment, or fomites. M. gypseum is a geophilic derma-
tophyte, as such it generally inhabits the soil, where it decomposes into keratinized debris. 
M. canis, on the other hand, being zoophilic, has adapted to animals and is only rarely 
found in the soil [12]. This pathology leads to health problems that are usually caused by 
topical drugs and/or dermo-cosmetic applications. Investigation on dermatophytes [13–
15] reports the activity of a series of 61 commercial EOs (Table S1) on the growth inhibition 
of Microsporum spp. 

3. Results 
3.1. Antidermatophyte Activity of EOs 

The percentage growth inhibition values of all the oils were tested at a concentration 
of 100 µg/mL (Table 1). Overall, the oils tested showed low growth inhibition on both 
dermatophytes. In fact, after treatment with different oils, increased fungal growth was 
observed for both M. canis and M gypseum (see + and ++ signs in Table 1) and more gener-
ally growth inhibition values well below 50%. 

Table 1. Essential oil percentage of M. canis and M. gypseum growth inhibition at 100 μg/mL; +weak 
growth, ++ moderate growth. 

EO ID M. Canis M. Gypseum EO ID M. Canis M. Gypseum 
EO01 7.20 24.39 EO31 8.28 6.03 
EO02 5.60 + EO32 27.22 42.24 
EO03 2.40 + EO33 + 10.34 
EO04 67.13 85.45 EO34 + 0.00 
EO05 4.20 4.55 EO35 + 3.70 
EO06 4.90 15.45 EO36 7.98 24.07 
EO07 6.67 + EO37 11.56 46.62 
EO08 4.00 3.00 EO38 0.58 + 
EO09 26.00 72.00 EO39 33.53 33.11 
EO10 11.45 11.21 EO40 0.00 + 
EO11 + 0.00 EO41 1.14 + 
EO12 1.53 13.08 EO42 + 0.00 
EO13 4.07 ++ EO43 3.42 3.82 
EO14 12.79 20.16 EO44 + + 
EO15 2.91 4.65 EO45 0.85 3.05 
EO16 2.60 + EO46 92.31 87.34 
EO17 5.84 2.06 EO47 0.00 11.39 
EO18 1.30 2.06 EO48 44.62 51.27 
EO19 6.96 17.14 EO49 8.63 5.00 
EO20 + 3.81 EO50 8.63 4.38 
EO21 3.16 11.43 EO51 2.88 5.63 
EO22 24.85 26.67 EO52 27.45 41.25 
EO23 2.96 + EO53 + 9.38 
EO24 11.24 12.38 EO54 14.38 40.63 
EO25 5.75 2.04 EO55 8.64 + 
EO26 12.64 25.51 EO56 2.47 + 
EO27 1.15 + EO57 8.64 13.53 
EO28 1.78 + EO58 16.28 30.68 
EO29 6.51 3.70 EO59 53.49 69.89 
EO30 1.78 5.56 EO60 20.93 44.32 
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   EO61 23.84 40.91 

3.2. Application of Machine Learning Algorithms 
3.2.1. Model Definition 

The model definition process has been performed by a thorough search using five 
different ML algorithms: logistic regression (LR), support vector machines (SVM), gradi-
ent boosting (GB), k-nearest neighbor (KNN), and random forest (RF) as implemented in 
the scikit-learn library [16]. For each experimental activity associated to the 61 EOs a 
grid search total of 4,050,000 models was performed to seek for the best ML algorithm 
(see Section 4.2 for details). The grid search was applied considering hyper-parameters 
variation, percentage of inhibition classification threshold, and the use of raw dataset or 
two data augmented versions of it (balanced and unbalanced). The models′ evaluation 
was performed by mean of the Matthew correlation coefficient (MCC) as it has been re-
ported to be suited for unbalanced datasets [17]. 

M. Canis Classification Modeling 
The best model (ML1 in Table 2) was obtained with RF at a percentage of inhibition 

threshold set to 20% (11 actives and 50 inactives), using the balanced DA function and two 
random trees (estimators = 2, Table S2) (Figures 1 and 2 and Supplementary Figures S1 
and S2). The augmented dataset was composed of 1050 virtualized EOs mixtures with an 
active/inactive ratio of 536/514 for the first tree (Figure 1) and 550/500 for the second one 
(Figure 2). The model was characterized by optimal classification power and high cross-
validated AccuracyCV, MCCCV, and F1 ScoreCV classification coefficients values of 0.95, 
0.984, and 0.97, respectively (Table 2 and Supplementary Table S2). For comparison pur-
poses a model (ML2 in Table 2) using the raw dataset was also built using the same pa-
rameters leading to the following cross-validated coefficients: AccuracyCV = 0.93; MCCCV 
= 0.77; F1 ScoreCV = 0.96. 

Table 2. Classification model results for M. canis with and without data augmentation. 

Dataset Model 1 Experiments2 Accuracy 3 MCC 4 F1 Score 5 AccuracyCV 6 MCCCV 7 F1 ScoreCV 8 
DA Dataset 9 ML1 1050 1 1 1 0.95 0.84 0.97 

Raw Dataset 10 ML2 61 1 1 1 0.93 0.77 0.96 
1 model ID. 2 number of experiments used for training and cross-validation. 3 Accuracy is a function that computes the 
fraction of correct recalculated/predicted classes. 4 Matthew correlation coefficient. 5 F1 Score is the harmonic mean of the 
precision and recall. 6 The cross-validated Accuracy. 7 The cross-validated MCC. 8 The cross-validated F1 Accuracy. 9 The 
augmented and balanced dataset. 10 The original dataset. 

M. Gypseum Classification Modeling 
As the percentage of inhibition potencies in the case of M. gypseum were higher than 

those for M. canis likely the grid-search optimization selected a cutoff value of 30% leading 
to an inactive/active ratio of 48/13. Differently from M. canis, the LR and SVM algorithms 
displayed the highest statistical coefficients (Table 3 and Supplementary Table S2). In par-
ticular LR showed slightly better accuracy and MCC coefficients than SVM, both dis-
played the same robustness in cross-validation runs. Contrarily to M. canis LR and SVM 
were not able to display any acceptable classification ability on the raw dataset of 61 es-
sential oil as they returned MCC values lower than 0.5 (data not shown). 
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Figure 1. Top 3 levels of the RF first decision tree: most important chemical components from the DA dataset on M. canis 
bioactivities and EO virtualized chemical composition. The full tree is reported as Supplementary Figure S1. Green path 
indicates positive impact on M. canis inhibition, while red path, negative influence. The blue box indicates the starting DA 
dataset composition. In this tree limo-nene, linalool, and sabinene are indicated to be important but at low concentrations 
(lower than 0.6%, 8.9%, and 0.1%, respectively). 

 
Figure 2. Top 3 levels of the RF second decision tree: most important chemical components from the 
DA dataset on M. canis bioactivities and EO-virtualized chemical composition. The full tree is re-
ported as Supplementary Figure S2. Green path indicates posiTable 2. 5% and 0.2%, respectively) 
and α-citral at high percentages (more than 28.5%). 

Table 3. Classification model results for M. canis with data augmentation. 

ML Algorithm Model 1 Experiments 2 Accuracy 3 MCC 4 F1 Score 5 AccuracyCV 6 MCCCV 7 F1 ScoreCV 8 
LR ML3 1050 0.99 0.99 0.99 0.80 0.93 0.96 

SVM ML4 1050 0.95 0.98 0.99 0.80 0.93 0.96 
1 model ID. 2 number of experiments used for training and cross-validation. 3 Accuracy is a function that computes the 
fraction of correct recalculated/predicted classes. 4 Matthew correlation coefficient. 5 F1 Score is the harmonic mean of the 
precision and recall. 6 The cross-validated Accuracy. 7 The cross-validated MCC. 8 The cross-validated F1 Accuracy. 

3.2.2. Feature Importance Analysis 
M. canis Classification Model 

In the case of M. canis bioactivities, the best model (ML1) was obtained with the RF 
method composed of two decision trees, and inspection of the feature importance (chemical 
component importance) was performed following two methods indicated below: 
Impurity-based feature importance: this sorts out the most relevant compounds which have 
higher information gain (entropy) measured through the Gini coefficient. This tool is very 
fast and easy to obtain, but on the other hand, it consists in a very biased approach when 
dealing with different kind of features. In fact, the impurity-based scores tend to inflate 
the relevance of continuous features or high cardinality categorical variables. 
Perturbation-based feature importance: this measures the relevance by observing how ran-
dom re-shuffling values influences the model performances. This approach turns out to 
be more reliable with different-shaped features but it is also more computationally expen-
sive in comparison with the impurity-based method. 

The analysis of the feature is partially quantitative being the values reported as ab-
solute numbers giving no indication on which variable (chemical component) contributes 
positively or negatively to the activity (Figure 3). 
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Figure 3. Feature importance (orange bars) for the 20 most important chemical components from the RF classification 
model applied to M. canis bioactivities. Perturbation-based importance (blue bars) is also reported using mean and stand-
ard deviation. 

Nevertheless, a sort of fully quantitative data could be obtained by analyzing the 
scikit-learn generated RF-learned trees from which it is possible to get indication on pos-
itive and negative influencing compounds on the anti-dermatophyte potency (Figures 2 
and 3 and Supplementary Figures S1 and S2). 

Thus, analyzing impurity-based and perturbation-based methods with the RF trees, 
the most relevant components for the M. canis growth modulation, in decreasing/descend-
ing order, are, limonene, thymol, linalool, and α-muurolene that could exert all together 
a synergistic behavior, although for limonene and linalool a maximum of 0.6% and 8.9% 
are tolerated, respectively. On the other hand, p-cymen-8-ol and cis-geraniol presence 
might have some anti-synergistic impact on the M. canis growth and likely in some exam-
ple could also contribute to the stimulation of dermatophyte growth (see discussion sec-
tion). Other compounds could be highlighted as important but, the RF-associated trees 
are reported to be as relevant as more than twice than the others. 

M. Gypseum Model 
In the case of M. gypseum, two linear ML models (LR and SVM) resulted to be best 

classified as EOs and hence directly investigated through the chemical components im-
portance. This was achieved by inspecting the linear coefficients from which it was possi-
ble to define the positive or negative impact of each component on dermatophyte growth 
inhibition/stimulation directly from the associated signs (positive or negative, respec-
tively). Along with coefficient inspection, perturbation-based scores were calculated to 
compare the results from the two ML algorithms. Carvacrol, thymol, eugenol, pulegone, 
cis-geraniol, β-citral, α-citral, eucalyptol, and limonene were indicated as the most im-
portant compounds for the M. gypseum growth modulation (Figure 4). In particular, in-
specting linear coefficient values carvacrol, thymol, eugenol, pulegone, cis-geraniol, β-cit-
ral, α-citral might have positive impact on the inhibition (Figure 5). On the contrary, com-
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pounds with medium importance and high coefficients (eucalyptol, limonene and α-pi-
nene) were predicted to counteract inhibitory activity and likely could stimulate the der-
matophyte growth. 

 
Figure 4. Perturbation-based feature importance for the LR (blue bars) and SVM (orange bars) ML-based models on M. 
gypseum reported using mean and standard deviation. Only the first 20 most important compounds are listed. 
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Figure 5. Linear coefficients for the LR and SVM ML-based models on M. gypseum. Only the first 20 most important com-
pounds as in Figure 4 are displayed. 

4. Discussion 
4.1. Effect of EOs on Dermatophytes growth 

The samples (Table 1) showing significant inhibition values on both dermatophytes 
were EO04, EO46, and EO59 (from Coridothymus capitatus, Thymus serpyllum, and Thymus 
vulgaris, respectively), which at the concentration of 100 µg/mL showed growth inhibition 
values higher than 50%, in the case of EO46 well above 80% (92.31% on M. canis and 
87.34% on M. gypseum). 

Inspection of the three EOs revealed them to be constituted of 61%, 66%, and 44% of 
carvacrol (EO59) and thymol (EO04 and EO46), respectively. Two components were cor-
rectly reasonably highlighted from models ML1, ML3, and ML4. Moreover, the three EOs 
were all characterized by important percentages of p-cymene, γ-terpinene, and caryo-
phyllene which were not indicated as strictly necessary for the M. spp inhibitory activity. 

Interesting activity of EO09 and EO48 evidenced a selective inhibition greater than 
50% against M. gypseum. Inspection for particular components to be correlated for M. 
gypseum activity did not reveal any particular component, except for caryophyllene which 
was the only one present in all five active EOs. 

4.2. Machine Learning Classification Models 
4.2.1. ML Model on M. canis 

As above described a RF-based ML model was developed on the 61 EOs associated 
to M canis bioactivity. According to the classification model, four compounds, namely 
limonene, thymol, linalool, and α-muurolene can be considered as those that mostly in-
fluence EO inhibition potency. In particular, limonene was calculated having the highest 
feature importance with a positive relevance with respect to the activity. Nevertheless, it 
could be evidenced that limonene is a compound which with a logP of 3.4 could show 
affinity to lipophilic environment such as dermatophyte membrane/wall, possibly act-
ing/performing as a gate molecule, as previously reported for the modulation of bacteria 
biofilm production [1–3]. Assuming this as correct, it could be speculated that thymol 
(logP = 3.0) and linalool (logP = 3.0), slightly less hydrophobic than limonene and bearing 
a hydrophilic hydroxyl group, are the most important components, and maybe also others 
compounds, with the aid of limonene could contribute to the overall inhibitory activity by 
binding to specific cellular target(s). On the other hand, p-cymen-8-ol, cis-geraniol, β-pi-
nene indicated as negatively influencing the EOs′ inhibitory activities could be ascribed 
to some adverse effects like the stimulation of M. canis growth. Inspection of EOs’ compo-
sitions endowed of some augmented M. canis growth effect (check the + and ++ signs on 
EO11, EO20, EO33, EO34, EO35, EO42, EO44 and EO53 samples in Table 1), actually all 
but EO33 and EO53 were found to contain, to some extents, β-pinene while only two cis-
geraniol (EO11 and EO42) and just one contained p-cymen-8-ol (EO20). 

From a survey on a list of published EOs assayed against M. canis, listed in the recent 
portal PyEO (eo.3d-qsar.com, 22 July 2021) the associated chemical composition was com-
pared with those of the herein investigated 61 EOs. Nevertheless, the published EOs′ com-
positions were used to compile a test set to have a sort of predictive ability evaluation for 
model ML1. Interestingly, among the 23 published EOs (Supplementary Table S3) the per-
centage of chemical components on each test set EOs contained in the training set ranged 
from 0.91% to 18.35% thus showing a low chemical variation overlapping. Considering 
the low amount of mixture similarity with the training set, EOs model ML1 was applied 
to predict them as active or inactive. Although only three EOs out of 23 displayed an ac-
tivity value lower than 100 µg/mL, the ML1 model was able to correctly predict as active, 
2 of them among the active predicted TS1 EOs. As a consequence, a virtual success rate of 
more than 15% was obtained considering that 13 EOs of the test set were predicted as 
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active. Considering the low composition similarities and in analogy with the pharmaceu-
tical virtual screening campaign the success rate is of notable result [18–20], furthermore 
as a general application model ML1 was characterized by a predictive accuracy of 0.43 
indicating that 43% of EO were correctly predicted as actives or inactives. 

4.2.2. ML Models on M. Gypseum 
Differently from M canis inhibitory activity-based ML1 model two linear models, 

ML3 and ML4 (Table 3) were the best describing the QCAR between the 61 EOs chemical 
compositions and the associated M gypseum growth-modulating potencies. Analysis of 
perturbation-based feature importance (Figure 4) was found to indicate that thymol, car-
vacrol, eugenol, pulegone, cis-geraniol, β-citral, α-citral, limonene, and eucalyptol as 
those mainly involved in modulating M gypseum growth. Inspection of the models’ linear 
coefficients (Figure 5) showed the high positive values attributed in descending order to 
thymol, carvacrol, eugenol, pulegone, cis-geraniol, p-cymene, trans-3-phenyl-2-propenal, 
β-citral, and α-citral, while negative coefficients were ascribed mainly to eucalyptol, lim-
onene, and α-pinene. Taken together perturbation-based feature importance and linear 
coefficient clearly highlighted thymol and carvacrol to principally drive EOs’ M gypseum 
inhibition, while eucalyptol and limonene could be mainly responsible for EOs that in-
duce dermatophyte growth (check + and ++ signs for EO02, EO03, EO07, EO13, EO16, 
EO23, EO27, EO28, EO38, EO40, EO41, EO44, EO55, EO56 samples in Table 1). A deeper 
inspection on EOs′ compositions actually revealed high percentages of eucalyptol in 
EO13, EO28, EO38, EO40, EO44, and EO55 while high content of limonene was listed in 
EO16 and EO41, being present in all M. gypseum growth-stimulating EOs in percentages 
ranging from about 0.27% to 95%. Again, here is highlighted the important role of limo-
nene, but this time the data let to speculate that in sample with low-medium percentage 
its likely gate behavior is mainly associated to some negative compounds, whereas in high 
concentration limonene could exert a direct growth stimulation, being in EO27 and EO41 
present at about 95%. 

Tentative to build ML models with raw data were not successful in indicating DA as 
a tool to extract composition–activity relationships allowing an easier way to analyze the 
composition–activity relationships. 

5. Conclusions 
ML models were built on a dataset of 61 EOs biological activity on M. canis and M. 

gypseum showing excellent performances in terms of MCC (fitting, and CV). Results indi-
cate DA as a powerful tool to avoid overfitting, improve model’s performance, and as for 
M. gypseum, to build models otherwise not available using the original raw dataset. In fact, 
in the case of M. gypseum the raw dataset did not allow to obtain ML models with accepta-
ble classification ability. Moreover, feature importance has benefited from DA, leading to 
the identification of the most important compounds related to the anti-dermatophyte ac-
tivity. Basing on the ML models on M. canis limonene, thymol, linalool, and α-muurolene 
are related to the increase of EOs inhibitory activity. While carvacrol, thymol, eugenol, 
pulegone, cis-geraniol, β-citral, α-citral, eucalyptol, and limonene are related to the inhib-
itory activity on M. gypseum. Finally, in an external prediction on already reported EOs 
biological activities on M. canis ML models were further validated reaching an accuracy 
of 43%, demonstrating once again the power of DA in this low data regime field. We be-
lieve these data very important to the field of drugs, foods, and cosmetics; indeed a first 
application of these results could be in the development of ingredients in the dermo-cos-
metic field in view of the microbial species investigated and the impelling need of natural 
preserving and acting antimicrobial agents.  
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6. Materials and Methods 
6.1. Essential Oil and Chemical Composition Analysis 

The 61 essential oil have been already chemically characterized by Papa et al. [3] and 
Di Martile et al. [6] therefore the reader is referred to their published articles. 

6.2. Antimicrobial Assays 
The two dermatophytes strains investigated in this study were purchased from the 

Centraal Bureau voor Schimmelcultures (CBS), M. canis (Iran) CBS 131110 strain and M. 
gypseum (Iran) CBS 130948 strain. All dermatophytes were maintained at 4 °C as agar 
slants on Sabouraud dextrose agar (SDA; Difco Laboratories, Inc., Detroit, MI, USA). 

Antidermatophyte activity was determined as follows. Each test substance was dis-
solved in dimethylsulfoxide (DMSO) and aseptically mixed with sterile medium (SDA) at 
45 °C to concentrations of 100 µg/mL. 

The DMSO concentration in the final solution was adjusted to 0.1%. Controls were 
also prepared with equivalent concentrations (0.1% v/v) of DMSO. For experiments, cul-
tures were obtained by transplanting mycelium disks (10 mm diameters) from a single 
mother culture in the stationary phase. They were incubated at 26 ± 1 °C on SDA on thin 
sheets of cellophane until the logarithmic growth phase. 

Subsequently, the cultures were transferred to Petri plates with media containing 100 
µg/mL of the single oil and incubated under growth conditions. The fungal growth was 
evaluated daily by measuring colony diameters (in millimeters) for seven days from the 
treatment onset. 

The percent inhibition of growth was determined as the average of three different 
experiments. 

6.3. Machine Learning Binary Classification 
6.3.1. Data Augmentation 

EOs dataset was augmented by means of composition random perturbation while 
keeping the same bioactivity for each of augmented related EO. In particular for each EO 
all the components were randomly modified by adding or subtracting up to 15% to each 
essential oil components. 

In the case of unbalanced augmentation, for each EO, 10 new “virtual” records were 
generated, while for the balanced process, being w the weight of the EO class, it was aug-
mented w*10 times. 

6.3.2. Grid Search Model Optimization 
All calculations were performed using the Python (version 3.9.5) programming lan-

guage [21] by executing in-house code in the Jupyter Notebook platform [22]. All data 
were organized in a python Pandas dataframe [16] while all the machine learning algo-
rithms and feature important analysis were done through python scripts using the scikit-
learn library [16]. 

The classification models′ robustness validation was performed via five-fold cross-
validation with 50 iterations. 

To seek for the best model, a grid search was performed on the algorithms′ hyper-
parameters for a total of 367 combinations (Table 4), three inhibition potency classification 
thresholds (15%, 20%, and 30%), and the use of raw dataset or two data augmented ver-
sions of it (balanced and unbalanced). Furthermore, while preprocessing, the application 
of PCA for features extraction was also tested using a total number of components with 
explained variance of 60% and 80%. This last experiment did not report significant results. 
Moreover, dimensionality reduction is incompatible with determining compound im-
portance, which was one of the main purposes of this study. 
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By multiplying the combinations, the different search fields, a total of 4,050,000 mod-
els were generated. 

Table 4. Hyper-parameter ranges for the grid search. Summing all the combinations, a total of 367 
different models is obtained. 

ML Algorithm Hyperparameters Ranges Number of 
Combinations 

LR C 1 (0.001, 0.01, 1) 3 
KNN n_neighbors (1, 2, 3, 4, 5) 5 

RF 
n_estimators (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) 

10 × 10 × 2 = 200 max_depth 3 (2, 5, 6, 7, 8, 9, 10, None) 
class_weight 4 (‘balanced′, None) 

GB 
n_estimators (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) 

10 × 3 × 5 = 150 learning_rate (0.1, 0.01, 0.05) 
max_features 2 (‘auto′, ‘sqrt′, ‘log2′, 10, 15) 

SVM 
C 1 (0.001, 0.01, 1) 

3 × 3 = 9 
kernel (‘linear′, ‘rbf′,’poly′) 

1 Regularization coefficient. 2 Maximum number of features used by the algorithm. ‘sqrt′ and ‘log2′ 
mean calculating the square root and logarithm in basis 2 of the total number of features, respec-
tively. 3 Maximum depth of the generated trees. 4 Whether the model has to train on balanced class 
weights or unbalanced ones. 

Supplementary Materials: The following are available online. Figure S1: Full RF second decision 
tree; Figure S2: Full RF second decision tree; Table S1: Essential oils IDs and associated plants. As 
the essential oil were of commercial source part plants from which the distillation was done were 
not always indicated; Table S2: Optimized hyperparameters for the ML algorithms applied to the 
M. canis dataset; Table S3: Composition of the test set for model ML1. 
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