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Abstract In this paper, we develop a stochastic Asymptotic-Preserving (sAP) scheme for the kinetic
chemotaxis system with random inputs, which will converge to the modified Keller-Segel model with
random inputs in the diffusive regime. Based on the generalized Polynomial Chaos (gPC) approach, we
design a high order stochastic Galerkin method using implicit-explicit (IMEX) Runge-Kutta (RK) time
discretization with a macroscopic penalty term. The new schemes improve the parabolic CFL condition
to a hyperbolic type when the mean free path is small, which shows significant efficiency especially in
uncertainty quantification (UQ) with multi-scale problems. The stochastic Asymptotic-Preserving prop-
erty will be shown asymptotically and verified numerically in several tests. Many other numerical tests
are conducted to explore the effect of the randomness in the kinetic system, in the aim of providing more
intuitions for the theoretic study of the chemotaxis models.

Key words. Chemotaxis kinetic model, chemotaxis Keller-Segel model, diffusion limit, uncer-
tainty quantification, asymptotic preserving, generalized polynomial chaos, stochastic Galerkin method,
implicit-explicit Runge-Kutta methods.
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1 Introduction

Chemotaxis is the movement of an organism in response to a chemical stimulus (called chemoattractant),
approaching the regions of highest chemoattractant concentration. This process is critical to the early
growth and subsequent development of the organism.

Mathematical study of this chemical system originates from the well-known (Patlak-)Keller-Segel
model [32, 33, 34, 35, 43]. This model describes the drift-diffusion interactions between the cell density
and chemoattractant concentration at a macroscopic level:

∂tρ = ∇ · (D∇ρ− χρ∇s), (1.1a)

∂ts = D0∆s+ q(s, ρ), (1.1b)

where ρ(x, t) ≥ 0 is the cell density at position x ∈ R
n and time t, s(x, t) ≥ 0 is the density of the

chemoattractant, D and D0 are positive diffusive constants of the cells and the chemoattractant respec-
tively, and χ is the positive chemotactic sensitivity constant. In (1.1) the function q(s, ρ) describes the
interactions between the cell density and the chemoattractant such as productions and degradations. In
the literature, several modifications and studies of the Keller-Segel model have been conducted during
recent years, e.g. [9, 13, 20, 21, 44, 45]. The one related to our study is the modified Keller-Segel model
in [9]:

∂tρ = ∇ · (D∇ρ− χρ∇s), (1.2a)

s = − 1

nπ
log |x| ∗ ρ, (1.2b)

where n is the space dimension. Notice that in 2D, (1.1) and (1.2) are exactly the same if q = 0.
An important property of the Keller-Segel system is the blow up behavior, which depends on the

dimension of the system and the initial mass [8, 19, 38, 48]. For the 2D Keller-Segel system (when (1.1)
and (1.2) are equivalent), there exists a critical mass Mc depending on the parameters of the system.
When the initial mass M <Mc (subcritical case), global solution exists and presents a self-similar profile
in long time; When the initial mass M >Mc (supercritical case), the solution will blow up in finite time;
When the initial mass M = Mc (critical case), the solution will blow up in infinite time. This property
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can be extended to 1D and 3D for the modified Keller-Segel system (1.2). The formula for the critical
mass is given by

Mc =
2n2πD

χ
. (1.3)

From another perspective, the chemotaxis can be described by a class of Boltzmann-type kinetic
equations at a microscopic level. The kinetic description of the phase space cell density was first introduced
by Alt [2, 3] via a stochastic interpretation of the “run” and “tumble” process of bacteria movements.
Later on Othmer, Dunbar and Alt formulated the following non-dimensionalized chemotaxis kinetic
system with parabolic scaling in [39]:

ε
∂f

∂t
+ v · ∇xf =

1

ε

∫

V

(Tεf
′ − T ∗

ε f)dv
′. (1.4)

Here f(t, x, v) is the density function of cells at time t ∈ R
+, position x ∈ R

n and moving with velocity
v ∈ V , V is a finite subset of Rn. The small parameter ε is the radio of the mean running length between
jumps to the typical observation length scale and f ′ is the abbreviation for f(t, x, v′). Tε = Tε[s](t, x, v, v

′)
with the property T ∗

ε [s](t, x, v, v
′) = Tε[s](t, x, v

′, v), is the turning kernel operator depending on the
density of chemoattractant s(t, x), which also solves the Poisson equation (1.1b).

The relationship between the kinetic chemotaxis model (1.4) and the Keller-Segel model (1.1) was
formally derived by Othmer and Hillen in [40, 41] using moment expansions. Then Chalub et al. gave
a rigorous proof that the Keller-Segel system (1.2) (before blow up time in supercritical case and for
all time in subcritical case) is the macroscopic limit (as ε → 0) of the kinetic chemotaxis system (1.4)
coupled with (1.2b) in three dimensions [11]. For certain type of turning kernel Tε (the nonlocal model
in Section 2.1), [11] also proved the global existence of the solution to the kinetic systems (1.4) for any
initial conditions, which behaves completely differently from the Keller-Segel system. For other types of
of turning kernel Tε (e.g. the local model in Section 2.2), many questions are unsolved yet. Blow up may
happen with supercritical initial mass but the critical mass is different from the Keller-Segel equations
[7]. The long time behavior of the subcritical case is unclear yet. Also, theoretic proof of the blow up in
the 1D case is not available [46].

The microscopic kinetic model, with interesting properties and mysterious behaviors, make it appeal-
ing to investigate the system numerically. Moreover, the global existence of the solution with nonlocal
turning kernel could help us to understand the behavior of chemotaxis after Keller-Segel solutions blow
up. One of the difficulties in solving the kinetic chemotaxis model, as other multi-scale kinetic equations,
is the stiffness when 0 < ε ≪ 1. Classical algorithms require taking spatial and time step of O(ε), thus
causing unaffordable computational cost. To overcome this difficulty, one has to design an Asymptotic-
Preserving (AP) scheme, which discretizes the kinetic equations with mesh and time step independent of
ε and preserves a consistent discretization of the limiting modified Keller-Segel equation as ε → 0. The
AP methods were first coined in [23] and have been applied to a variety of multi-scale kinetic equations.
We refer to [15, 16, 17, 24] for detailed reviews on AP schemes. In particular, AP schemes have been
designed to solve 1D and 2D kinetic chemotaxis model in [10, 12], which are most relevant to our study.

The main issue we want to address in this paper is the uncertainties involved in the kinetic model due to
modeling and experimental errors. For example, different turning kernels are proposed as operators that
mimic the “run” and “tumble” process of cell movements and thus may contain uncertainties. Moreover,
initial and boundary data, or other coefficients in the equations could also be measured inaccurately.
In such a system that behaves so sensitively to initial mass and turning kernel, only by quantifying the
intrinsic uncertainties in the model, could one get a better understanding and a more reliable prediction
on the chemotaxis from computational simulations, especially in the situation where many properties are
not clarified by theoretic study.

The goal of this paper is to design a high order efficient numerical scheme such that uncertainty
quantification (UQ) can be easily conducted. Only recently, studies in UQ begin to develop for kinetic
equations [22, 25, 26, 27, 30, 51, 14]. To deal with numerical difficulties for uncertainty and multi-scale at
the same time, the stochastic Asymptotic-Preserving (sAP) notion was first introduced in [30]. Since then,
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the generalized Polynomial Chaos (gPC) based Stochastic Galerkin (SG) framework has been developed
to a variety of kinetic equations [27, 30, 51, 14]. In this paper, we are going to conduct UQ under the
same gPC-SG framework, which projects the uncertain kinetic equations into a vectorized deterministic
equations and thus allowing us to extend the deterministic AP solver in [10]. The sAP property is
going to be verified formally by showing that the kinetic chemotaxis model with uncertainty after SG
projection in fully discrete setting, as ε → 0, automatically becomes a numerical discretization of the
Keller-Segel equations with uncertainty after the SG projection. As realized in [30] and rigorously proved
in [25, 37, 31], the spectral accuracy is expected using this gPC-SG method as long as the regularity of
the solution (which is usually preserved from initial regularity in kinetic equations) behaves well.

In addition, we improve the accuracy and efficiency of the numerical scheme by using the implicit-
exlicit (IMEX) Runge-Kutta (RK) methods (see [6, 5, 42] and the references therein) and macroscopic
penalization method. A similar approach was utilized in our previous work [28] for linear transport
and radiative heat transfer equations with random inputs. In [28], we improved the parabolic CFL
condition ∆t = O((∆x)2) in [30] to a hyperbolic CFL condition ∆t = O(∆x), which allows to save the
computational time significantly.

The rest of the paper is organized as follows. In section 2, the kinetic models with random inputs of
two different turning kernels are described and the macroscopic limits of both models are formally derived.
From section 3 to section 5, the numerical scheme for the kinetic chemotaxis equations are designed and
the sAP properties are illustrated. In section 6, several numerical tests are presented to illustrate the
accuracy and efficiency of our scheme. The sAP property is also verified numerically. Different properties,
e.g. blow up, stationary solutions etc., influenced by the introduced randomness of the local and nonlocal
model, are explored for the chemotaxis system. The interactions between peaks involved with different
sources of uncertainty are compared to show the dynamics. Finally, some conclusions are drawn in section
7.

2 The Kinetic Descriptions for Chemotaxis

The chemotaxis kinetic system with random inputs we are going to study is (1.4) coupled with (1.2b) in
1D:

ε
∂f

∂t
+ v

∂f

∂x
=

1

ε

∫

V

(Tεf
′ − T ∗

ε f)dv
′, (2.1a)

s = − 1

π
log |x| ∗ ρ, ρ =

∫

V

fdv, (2.1b)

where x ∈ Ω = [−xmax, xmax] ⊂ R, v ∈ V = [−vmax, vmax] ⊂ R.
The only difference is now f = f(t, x, v, z) and s = s(t, x, z) have dependence on the random variable

z ∈ Iz ⊂ R
d(d ≥ 1) with compact support Iz , in order to account for random uncertainties.

Now we specify the turning kernel operator Tε in (2.1). Since the turning kernel Tε[s](t, x, z, v, v
′)

measures the probability of velocity jump of cells from v to v′, it has the following properties

Tε[s](t, x, z, v, v
′) ≥ 0,

Tε[s](t, x, z, v, v
′) = F (z, v) + εT1 +O(ε2),

(2.2)

where F (z, v) is the equilibrium of velocity distribution and T1 ≥ 0 characterizes the directional prefer-
ence.

2.1 The 1D Nonlocal Model

Now considering the nonlinear kernel introduced in [11] with uncertainty,

Tε[s](t, x, z, v, v
′) = α+(z)ψ(s(t, x, z), s(t, x+ εv, z)) + α−(z)ψ(s(t, x, z), s(t, x− εv′, z)). (2.3)
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The first term describes the cell movement to a new direction decided by the detection of current envi-
ronment and probable new location and the second term describes the influence of the past memory on
the choice of the new moving direction.

For simplicity, the past memory influence is neglected. Since α+ is an experimental parameter, we
introduce the randomness on α+(z) > 0 with the probability density function λ(z) for the random variable
z and take

ψ(s(t, x, z), s(t, x+ εv, z)) = F̄ (v) + δεs(x, z, v), (2.4)

where

δεs(x, z, v) = (s(t, x+εv, z)−s(t, x, z))+ :=

{

s(t, x+ εv, z)− s(t, x, z) if s(t, x+ εv, z)− s(t, x, z) > 0

0 otherwise
,

(2.5)
and F̄ (v) satisfies







∫

V

F̄ (v)dv = 1,

F̄ (v) = F̄ (|v|).
(2.6)

Notice that δεs is an O(ε) term which corresponds to εT1 in (2.2).
Then the kinetic system (2.1) becomes

ε
∂f

∂t
+ v

∂f

∂x
=
α+(z)

ε

[

(F̄ (v) + δεs(v))ρ−
(

1 +

∫

V

δεs(v′)dv′
)

f

]

, (2.7a)

s = − 1

π
log |x| ∗ ρ. (2.7b)

Positive initial conditions and reflection boundary conditions for f , reflecting boundary conditions for
s are imposed as following:

f(0, x, z, v) = f I(x, z, v) ≥ 0, (2.8a)

s(0, x, z) = sI(x, z) ≥ 0, (2.8b)

f(t,±xmax, z, v) = f(t,±xmax, z,−v), (2.8c)

∂xs|x=±xmax
= 0. (2.8d)

Remark 2.1. The global existence of the solution to (2.7) for fixed z with any initial mass is proved in
[11].

2.2 The 1D Local Model

For the local model, we consider the turning kernel introduced in [7] with uncertainty,

Tε = Tε[s](t, x, z, v, v
′) = α+(z)

[

F̄ (v) + ε(v · ∇s(x))+
]

, (2.9)

where F̄ is the equilibrium function satisfying (2.6) and α(z) > 0 describes the desire of the cell to change
to a favorable direction, which could come with uncertainty. Similarly as in section 2.1, we introduce the
randomness on α+(z) > 0. Then the kinetic equation (2.1) in one dimension is

ε
∂f

∂t
+ v

∂f

∂x
=
α+

ε

[

(F̄ (v) + ε(v · ∇s)+)ρ− (1 + c1ε|∇s|)f
]

, (2.10a)

s = − 1

π
log |x| ∗ ρ, (2.10b)

with c1 =
∫

V
(v ·∇s/|∇s|)+dv = 1

2

∫

V
|v|dv. The same initial and boundary conditions in (2.8) are applied.
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2.3 The Macroscopic Limits

The nonlocal kinetic model (2.7) and the local one (2.10) give the same asymptotic limit when ε → 0.
Inserting the Hilbert expansion into (2.7a) and (2.10a) and collecting the same order terms, one can
derive the classical modified Keller-Segel system for ρ as ε→ 0:

∂tρ = ∂x

(

D

α+
∂xρ− χρ∂xs

)

, (2.11a)

s = − 1

π
log |x| ∗ ρ, (2.11b)

∂xρ|x=±xmax
= 0, (2.11c)

∂xs|x=±xmax
= 0, (2.11d)

where

D =

∫

V

|v|2F̄ (v)dv, χ =
1

2

∫

V

|v|2dv. (2.12)

We refer to [11] for the details.

2.4 The Critical Mass with Random Inputs

To derive the critical mass for system (2.11), we show, following [9], that the second momentum (with
respect to x) of ρ cannot remain positive for all time.

We use

∂xs = ∂x(−
1

π
log |x| ∗ ρ) = − 1

π

∫

Ω

1

x− y
ρ(y)dy = −Hρ,

where H denotes the Hilbert transform [52]. Then

d

dt

∫

Ω

1

2
|x|2ρ(x, z, t)dx =

∫

Ω

1

2
|x|2 ∂ρ

∂t
dx

=

∫

Ω

1

2
|x|2∂x

(

D

α+(z)
∂xρ− χρ∂xs

)

dx

= −
∫

Ω

x

(

D

α+(z)
∂xρ− χρ∂xs

)

dx

= − D

α+(z)
[xmaxρ(xmax) + xmaxρ(−xmax)] +

D

α+(z)
M

− χ

π

∫

Ω

ρ(x) lim
δ→0

∫

|x−y|>δ

x

x− y
ρ(y)dydx

= − D

α+(z)
xmax[ρ(xmax) + ρ(−xmax)] +

D

α+(z)
M

− χ

2π
lim
δ→0

∫

Ω

∫

|x−y|>δ

ρ(x)ρ(y)dxdy

= − D

α+(z)
xmax[ρ(xmax) + ρ(−xmax)]−

χ

2π
M2

(

1− Mc(z)

M

)

,

(2.13)

where

Mc(z) =
2πD

χα+(z)
. (2.14)

Here we assume that the initial data is independent of z and we use the conservation of mass, i.e.
M =

∫

Ω ρdx is a constant independent of z.
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When M > Mc(z),
d
dt

∫

Ω
1
2 |x|2ρ(x, z, t)dx ≤ −c < 0, where c is a positive constant. To preserve the

positivity of this second moment (with respect to x), some singularity has to occur so that the above
computation will not hold at certain time. The singularity is rigorously analyzed in [18, 4] and ∂xs is
unbounded in this case. Thus blow up occurs.

When M < Mc(z), the second moment (with respect to x) is locally controlled and global existence
of weak solution can be obtained [9].

Remark 2.2. When n ≥ 2, the computation is similar and the general formular for Mc(z) is

Mc(z) =
2n2πD

χα+(z)
.

In practice, one is more interested in the behavior of E[ρ(x, z, t)], the expected value of ρ(x, z, t). We
have the following theorem analyzing the influence of initial mass on E[ρ(x, z, t)].

Theorem 2.1. Suppose that the total mass M is independent of z. Denote M̄c as the critical mass for
E[ρ(x, z, t)], i.e. when M > M̄c, E[ρ(x, z, t)] will blow up; when M < M̄c, E[ρ(x, z, t)] will be bounded for
all time. Then we have

M̄c = E[Mc(z)]. (2.15)

Proof. Following the computations in (2.13), we show that

d

dt

∫

Ω

1

2
|x|2E[ρ(x, z, t)]dx =

∫

Ω

∫

Iz

1

2
|x|2 ∂ρ(x, z, t)

∂t
λ(z)dzdx

=

∫

Ω

∫

Iz

1

2
|x|2∂x

(

D

α+(z)
∂xρ− χρ∂xs

)

λ(z)dzdx

=

∫

Iz

[
∫

Ω

1

2
|x|2∂x

(

D

α+(z)
∂xρ− χρ∂xs

)

dx

]

λ(z)dz

=

∫

Iz

[

− D

α+(z)
[xmaxρ(xmax) + xmaxρ(−xmax)]−

χ

2π
M2

(

1− Mc(z)

M

)]

λ(z)dz

=−
∫

Iz

D

α+(z)
xmax[ρ(xmax) + ρ(−xmax)]λ(z)dz −

χ

2π
M2

(

1− E[Mc(z)]

M

)

≤− χ

2π
M2

(

1− E[Mc(z)]

M

)

.

(2.16)
Thus, M̄c = E[Mc(z)] is the critical mass for E[ρ(x, z, t)].

Remark 2.3. The same conclusion holds for n ≥ 2.

3 The Even-Odd Decomposition

In this section, we apply the even-odd decomposition to reformulate the problem following the same
procedure as [10] for deterministic kinetic model for chemotaxis.

3.1 The 1D Nonlocal Model

For v > 0, (2.7a) can be split into two equations:

ε
∂f(v)

∂t
+ v

∂f(v)

∂x
=
α+(z)

ε

[

(F̄ (v) + δεs(v))ρ−
(

1 +

∫

V

δεs(v′)dv′
)

f(v)

]

, (3.1a)

ε
∂f(−v)
∂t

− v
∂f(−v)
∂x

=
α+(z)

ε

[

(F̄ (−v) + δεs(−v))ρ−
(

1 +

∫

V

δεs(v′)dv′
)

f(−v)
]

. (3.1b)
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Now denote the even and odd parities

r(t, x, z, v) = R[f ] =
1

2
(f(t, x, z, v) + f(t, x, z,−v)), (3.2a)

j(t, x, z, v) = J [f ] =
1

2ε
(f(t, x, z, v)− f(t, x, z,−v)). (3.2b)

Then (3.1) becomes

∂tr + v∂xj =
α+

ε2
[(F̄ (v) +R[δεs])ρ− (1 + 〈δεs〉)r], (3.3a)

∂tj +
1

ε2
v∂xr =

α+

ε2
(J [δεs]ρ− (1 + 〈δεs〉)j), (3.3b)

where

〈δεs〉 =
∫

V

δεs(x, v′)dv′, (3.4a)

ρ =

∫

V

fdv = 2

∫

V +

rdv, V + = {v ∈ V |v ≥ 0}. (3.4b)

Notice that, when ε→ 0, (3.3) yields

r =
F̄ (v) +R[δεs]

1 + 〈δεs〉 ρ = ρF̄ (v) +O(ε), (3.5a)

j =
J [δεs]ρ− v ∂xr

α+

1 + 〈δεs〉 = v

(

1

2
∂xsρ−

∂xr

α+

)

+O(ε). (3.5b)

Substituting (3.5) into (3.3a) and integrating over V +, one gets the same limiting Keller-Segel equations
with random inputs as (2.11).

3.2 The 1D Local Model

For the 1D local model, one can follow the same even-odd decomposition and obtain

∂tr + v∂xj =
α+

ε

[

(F̄ (v) +
ε

2
|v∂xs|)ρ− (1 + c1ε|∂xs|)r

]

, (3.6a)

∂tj +
1

ε2
v∂xr =

α+

ε2

[

1

2
v∂xsρ− (1 + c1ε|∂xs|)j

]

. (3.6b)

The remaining work is the same as section 3.1.

4 The gPC-SG Formulation

Now we deal with the random inputs using the gPC expansion via an orthogonal polynomial series to
approximate the solution. That is, for random variable z ∈ R

d, one seeks

r(t, x, z, v) ≈ rN (t, x, z, v) =

K
∑

k=1

r̂k(t, x, v)Φk(z), (4.1a)

j(t, x, z, v) ≈ jN (t, x, z, v) =

K
∑

k=1

ĵk(t, x, v)Φk(z), (4.1b)
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where

{

Φk(z), 1 ≤ k ≤ K,K =

(

d+N
d

)}

are from P
d
N , the d-variate orthogonal polynomials of degree

up to N ≥ 1, and orthonormal

∫

Iz

Φi(z)Φj(z)λ(z)dz = δij , 1 ≤ i, j ≤ K = dim(Pd
N ). (4.2)

Here δi,j the Kronecker delta function (See [50]).
Now inserts the approximation (4.1) into the governing equation (3.3) and enforces the residue to

be orthogonal to the polynomial space spanned by {Φ1, · · · ,ΦK}. Thus, we obtain a set of vector

deterministic equations for r̂ = (r̂1, · · · , r̂K)T , ĵ = (ĵ1, · · · , ĵK)T and ŝ = (ŝ1, · · · , ŝK)T :

∂tr̂+ v∂x ĵ =
1

ε2
[F̄ (v)Mρ̂+Bρ̂−Mr̂−Cr̂], (4.3a)

∂tĵ+
1

ε2
v∂xr̂ =

1

ε2
(Eρ̂−Mĵ−Cĵ), (4.3b)

ŝ = − 1

π
log |x| ∗ ρ̂, (4.3c)

where

ρ̂(t, x) = 〈r̂〉 = 2

∫

V +

r̂dv, (4.4)

and M = (mij)1≤i,j≤K , B(δεsN ) = (bij(x, v))1≤i,j≤K , C(〈δεsN 〉) = (cij(x))1≤i,j≤K and E(δεsN ) =
(eij(x, v))1≤i,j≤K are K ×K symmetric matrices with entries respectively

mij =

∫

Iz

α+(z)Φi(z)Φj(z)λ(z)dz, (4.5a)

bij(x, v) =

∫

Iz

α+(z)R[δεsN ]Φi(z)Φj(z)λ(z)dz, (4.5b)

cij(x) =

∫

Iz

α+(z)〈δεsN〉Φi(z)Φj(z)λ(z)dz, (4.5c)

eij(x, v) =

∫

Iz

α+(z)J [δεsN ]Φi(z)Φj(z)λ(z)dz. (4.5d)

As ε → 0+ in (4.3), since 〈δεsN 〉 = O(ε) and the matrices M and C are symmetric positive definite
thus invertible,

r̂ = (M +C)−1(F̄ (v)M +B)ρ̂ = F̄ (v)ρ̂+O(ε), (4.6a)

ĵ = (M +C)−1(Eρ̂− v∂xr̂) = M−1Eρ̂− vM−1∂xr̂ +O(ε). (4.6b)

Plugging (4.6) into (4.3a) and integrating over V +, one obtains

∂xρ̂ = ∂x
(

DM−1∂xρ̂− χGρ̂
)

, (4.7)

where G = 1
χM

−1〈E〉.
Remark 4.1. If one applies the gPC-SG formulation for the limiting Keller-Segel equation (2.11) directly,
one gets

∂tρ̃ = ∂x

(

DM̃∂xρ̃− χG̃ρ̃
)

, (4.8)

where M̃ = (m̃ij)1≤i,j≤K and G̃ = (g̃ij)1≤i,j≤K are K ×K symmetric matrix with entries

m̃ij =

∫

Iz

1

α+(z)
Φi(z)Φj(z)λ(z)dz, (4.9a)
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g̃ij =

∫

Iz

(∂xsN )Φi(z)Φj(z)λ(z)dz. (4.9b)

Although M̃ is different from M−1, proof in [47] shows that M̃∂xρ̃ and M−1∂xρ̂ are spectrally close to
each other. The same property holds between G̃ρ̃ and Gρ̂.

5 An efficient sAP Scheme Based on an IMEX-RK Method

One can apply the relaxation method as in [10] to the projected system (4.3), which falls into the sAP
framework proposed in [30] . However, the method suffers from the parabolic CFL condition ∆t =
O((∆x)2).

Here we propose an efficient sAP scheme using the idea from [6] to get rid of the parabolic CFL
condition. By adding and subtracting the term µF̄ (v)∂x(DM̃∂xρ̂− χG̃ρ̂) in (4.3a) and the term φv∂xr̂
in (4.3b), we reformulate the problem into an equivalent form:

∂tr̂ =− v∂x ĵ− µF̄ (v)∂x(DM̃∂xρ̂− χG̃ρ̂) +
1

ε2
(

F̄ (v)Mρ̂+Bρ̂−Mr̂−Cr̂
)

+ µF̄ (v)∂x(DM̃∂xρ̂− χG̃ρ̂)

=f1(r̂, ĵ) + f2(r̂, ŝ), (5.1a)

∂tĵ =− φv∂xr̂−
1

ε2

[

(1− ε2φ)v∂xr̂−Eρ̂+Mĵ+Cĵ
]

= g1(r̂) + g2(r̂, ĵ), (5.1b)

ŝ =− 1

π
log |x| ∗ ρ̂ = h(r̂), (5.1c)

where M, M̃,B,C,E and G̃ are the same as defined in (4.5) and (4.9) and

f1(r̂, ĵ) = −v∂x ĵ− µF̄ (v)∂x(DM̃∂xρ̂− χG̃ρ̂), (5.2a)

f2(r̂, ŝ) =
1

ε2
(

F̄ (v)Mρ̂+Bρ̂−Mr̂−Cr̂
)

+ µF̄ (v)∂x(DM̃∂xρ̂− χG̃ρ̂), (5.2b)

g1(r̂) = −φv∂xr̂, (5.2c)

g2(r̂, ĵ) = − 1

ε2

[

(1− ε2φ)v∂xr̂−Eρ̂+Mĵ+Cĵ
]

. (5.2d)

Here we choose µ = µ(ε) such that
lim
ε→0

µ = 1,

µ = 0 if ε = O(1);
(5.3)

and φ = φ(ε) such that

0 ≤ φ ≤ 1

ε2
. (5.4)

The restriction on φ guarantees the positivity of φ(ε) and (1 − ε2φ(ε)) so that the problem remains
well-posed uniformly in ε. We make the same simple choice of φ as in [29]:

φ(ε) = min

{

1,
1

ε2

}

. (5.5)

Now we apply an IMEX-RK scheme to system (5.1) where (f1, g1)
T is evaluated explicitly and (f2, g2)

T

implicitly, then we obtain

r̂n+1 = r̂n +∆t

s
∑

k=1

b̃kf1(R̂
k, Ĵk) + ∆t

s
∑

k=1

bkf2(R̂
k, Ŝk), (5.6a)

ĵn+1 = ĵn +∆t

s
∑

k=1

b̃kg1(R̂
k) + ∆t

s
∑

k=1

bkg2(R̂
k, Ĵk), (5.6b)
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ŝn+1 = − 1

π
log |x| ∗ ρ̂n+1, (5.6c)

where the internal stages are

R̂k = r̂n +∆t

k−1
∑

l=1

ãklf1(R̂
l, Ĵl) + ∆t

k
∑

l=1

aklf2(R̂
l, Ŝl), (5.7a)

Ĵk = ĵn +∆t

k−1
∑

l=1

ãklg1(R̂
l) + ∆t

k
∑

l=1

aklg2(R̂
l, Ĵl), (5.7b)

Ŝk = − 1

π
log |x| ∗ P̂k

. (5.7c)

It is obvious that the scheme is characterized by the s× s matrices

Ã = (ãij), A = (aij) (5.8)

and the vectors b̃, b ∈ R
s, which can be represented by a double table tableau in the usual Butcher

notation

c̃ Ã

b̃T ,

c A

bT .

The coefficients c̃ and c depend on the explicit part of the scheme:

c̃i =
i−1
∑

j=1

ãij , ci =
i

∑

j=1

aij . (5.9)

In the literature, there are two main different types of IMEX R-K schemes characterized by the
structure of the matrix A. We are interested in the IMEX-RK method of type A (see [6]) where the
matrix A is invertible, so that the implicit parts become more amenable.

As an example, we report the SSP(3,3,2) scheme, which is a second order IMEX scheme we are going
to use in Section 6

0 0 0 0
1/2 1/2 0 0
1 1/2 1/2 0

1/3 1/3 1/3

,

1/4 1/4 0 0
1/4 0 1/4 0
1 1/3 1/3 1/3

1/3 1/3 1/3

. (5.10)

To obtain R̂k in each internal stage of (5.7), one needs P̂
k
and Ŝk in the implicit part f2(R̂

k, Ŝk).
These quantities can be obtained explicitly by the following procedure.

Suppose one has computed R̂l and Ŝl for l = 1, · · · , k − 1, then according to (5.7a)

R̂k =r̂n +∆t

k−1
∑

l=1

(

ãklf1(R̂
l, Ĵl) + aklf2(R̂

l, Ŝl)
)

+∆takk

[

1

ε2
(F̄ (v)MP̂

k
+BkP̂

k −MR̂k −CkR̂k) + µF̄ (v)∂x(DM̃∂xP̂
k − χG̃kP̂

k
)

]

=R̂
k−1

+∆takk

[

1

ε2
(F̄ (v)MP̂

k
+BkP̂

k −MR̂k −CkR̂k) + µF̄ (v)∂x(DM̃∂xP̂
k − χG̃kP̂

k
)

]

.

(5.11)

Here R̂
k−1

represents all contributions in (5.11) from the first k−1 stages. Now one takes 〈·〉 on both

sides of (5.11) so that [F̄ (v)MP̂
k
+BkP̂

k −MR̂k −CkR̂k] is cancelled out on the right hand side and
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one can approximate G̃k by G̃k−1. Now P̂
k
can be obtained from the following diffusion equation in an

implicit form:

P̂
k −∆takkµ∂x(DM̃∂xP̂

k − χG̃k−1P̂
k
) = 〈R̂

k−1

〉. (5.12)

Then it is plugged back to (5.11) in order to compute R̂k.

5.1 The Space Discretization

Second order accuracy is obtained using an upwind TVD scheme (with minmod slope limiter [36]) in
the explicit transport part and center difference for other second derivatives. During each internal stage
(5.7),

R̂k
i =r̂ni +∆t

k−1
∑

l=1

ãkl

{

− v

2∆x
(Ĵl

i+1 − Ĵl
i−1) +

vφ1/2

2∆x
(R̂l

i+1 − 2R̂l
i + R̂l

i−1) −
vφ1/2

4
(γl

i − γl
i−1 + βl

i+1 − βl
i)

− µ

(∆x)2
F̄ (v)DM̃

(

P̂
l

i+1 − 2P̂
l

i + P̂
l

i−1

)

+
µ

2∆x
F̄ (v)χ

(

G̃l
i+1P̂

l

i+1 − G̃l
i−1P̂

l

i−1

)}

+∆t

k
∑

l=1

akl

{

1

ε2

(

F̄ (v)MP̂
l

i +Bl
iP̂

l

i −MR̂l
i −Cl

iR̂
l
i

)

+
µ

(∆x)2
F̄ (v)DM̃

(

P̂
l

i+1 − 2P̂
l

i + P̂
l

i−1

)

− µ

2∆x
F̄ (v)χ

(

G̃l
i+1P̂

l

i+1 − G̃l
i−1P̂

l

i−1

)}

, (5.13a)

Ĵk
i =ĵni +∆t

k−1
∑

l=1

ãkl

{

− vφ

2∆x
(R̂l

i+1 − R̂l
i−1) +

vφ1/2

2∆x
(Ĵl

i+1 − 2Ĵl
i + Ĵl

i−1)−
vφ

4
(γl

i − γl
i−1 − βl

i+1 + βl
i)

}

−∆t

k
∑

l=1

akl
1

ε2

{

(1− ε2φ)v
R̂l

i+1 − R̂l
i−1

2∆x
−El

iP̂
l

i +MĴl
i +Cl

iĴ
l
i

}

, (5.13b)

where

γl
i =

1

∆x
minmod

(

R̂l
i+1 + φ−1/2Ĵl

i+1 − R̂l
i − φ−1/2Ĵl

i, (5.14a)

R̂l
i + φ−1/2Ĵl

i − R̂l
i−1 − φ−1/2Ĵl

i−1

)

, (5.14b)

βl
i =

1

∆x
minmod

(

R̂l
i+1 − φ−1/2Ĵl

i+1 − R̂l
i + φ−1/2Ĵl

i, (5.14c)

R̂l
i − φ−1/2Ĵl

i − R̂l
i−1 + φ−1/2Ĵl

i−1

)

. (5.14d)

Since P̂
k
can be obtained explicitly by (5.12), we can fully discretize P̂

k

i as following:

P̂
k

i −∆takk
µ

(∆x)2

[

DM̃(P̂
k

i−1 − 2P̂
k

i + P̂
k

i+1)− χ
(

G̃k−1
i+ 1

2

(P̂
k

i+1 − P̂
k

i )− G̃k−1
i− 1

2

(P̂
k

i − P̂
k

i−1)
)]

= 〈R̂
k−1

i 〉.
(5.15)

Then using (5.15), the fully discretized R̂k
i is obtained and subsequently Ĵk

i from the following:

(

I+
akk∆t

ε2
(M+Ck

i )

)

R̂k
i

=r̂ni +∆t

k−1
∑

l=1

ãkl

{

− v

2∆x
(Ĵl

i+1 − Ĵl
i−1) +

vφ1/2

2∆x
(R̂l

i+1 − 2R̂l
i + R̂l

i−1)−
vφ1/2

4
(γl

i − γl
i−1 + β

l
i+1 − β

l
i)

− µ

(∆x)2
F̄ (v)DM̃

(

P̂
l

i+1 − 2P̂
l

i + P̂
l

i−1

)

+
µ

2∆x
F̄ (v)χ

(

G̃l
i+1P̂

l

i+1 − G̃l
i−1P̂

l

i−1

)}

12



+∆t
k−1
∑

l=1

akl

{

1

ε2

[

F̄ (v)MP̂
l

i +Bl
iP̂

l

i −MR̂l
i −Cl

iR̂
l
i

]

+
µ

(∆x)2
F̄ (v)DM̃

(

P̂
l

i+1 − 2P̂
l

i + P̂
l

i−1

)

− µ

2∆x
F̄ (v)χ

(

G̃l
i+1P̂

l

i+1 − G̃l
i−1P̂

l

i−1

)}

+∆takk

{

1

ε2

[

F̄ (v)MP̂
k

i +Bk
i P̂

k

i

]

+
µ

(∆x)2
F̄ (v)DM̃

(

P̂
k

i+1 − 2P̂
k

i + P̂
k

i−1

)

− µ

2∆x
F̄ (v)χ

(

G̃k
i+1P̂

k

i+1 − G̃k
i−1P̂

k

i−1

)}

, (5.16a)

(

1 +
akk∆t

ε2
(M +Ck

i )

)

Ĵk
i

=ĵni +∆t

k−1
∑

l=1

ãkl

{

− vφ

2∆x
(R̂l

i+1 − R̂l
i−1) +

vφ1/2

2∆x
(Ĵl

i+1 − 2Ĵl
i + Ĵl

i−1) −
vφ

4
(γl

i − γl
i−1 + βl

i+1 − βl
i)

}

−∆t

k−1
∑

l=1

akl
1

ε2

{

(1 − ε2φ)v
R̂l

i+1 − R̂l
i−1

2∆x
−El

iP̂
l

i +MĴl
i +Cl

iĴ
l
i

}

−∆takk
1

ε2

{

(1 − ε2φ)v
R̂k

i+1 − R̂k
i−1

2∆x
−Ek

i P̂
k

i

}

, (5.16b)

In the above
(

1 + akk∆t
ε2 (M+Ck

i )
)

is symmetric positive definite, thus invertible. After calculating all

R̂k
i and Ĵk

i for k = 1, · · · , s, we can update r̂n+1
i and ĵn+1

i in (5.6),

r̂n+1
i =r̂ni +∆t

s
∑

k=1

b̃k

{

− v

2∆x
(Ĵk

i+1 − Ĵk
i−1) +

vφ1/2

2∆x
(R̂k

i+1 − 2R̂k
i + R̂k

i−1)

− vφ1/2

4
(γk

i − γk
i−1 + βk

i+1 − βk
i )−

µ

(∆x)2
F̄ (v)DM̃

(

P̂
k

i+1 − 2P̂
k

i + P̂
k

i−1

)

+
µ

2∆x
F̄ (v)χ

(

G̃k
i+1P̂

k

i+1 − G̃k
i−1P̂

k

i−1

)}

+∆t

s
∑

k=1

bk

{

1

ε2

[

F̄ (v)MP̂
k

i +Bk
i P̂

k

i −MR̂k
i −Ck

i R̂
k
i

]

+
µ

(∆x)2
F̄ (v)DM̃

(

P̂
k

i+1 − 2P̂
k

i + P̂
k

i−1

)

− µ

2∆x
F̄ (v)χ

(

G̃k
i+1P̂

k

i+1 − G̃k
i−1P̂

k

i−1

)

}

, (5.17a)

ĵn+1
i =ĵni +∆t

s
∑

k=1

b̃k

{

− vφ

2∆x
(R̂k

i+1 − R̂k
i−1) +

vφ1/2

2∆x
(Ĵk

i+1 − 2Ĵk
i + Ĵk

i−1)

−vφ
4
(γk

i − γk
i−1 − βk

i+1 + βk
i )

}

−∆t

s
∑

k=1

bk
1

ε2

{

(1− ε2φ)v
R̂k

i+1 − R̂k
i−1

2∆x

−Ek
i P̂

k

i +MĴk
i +Ck

i Ĵ
k
i

}

, (5.17b)

where γk
i and βk

i are defined the same as in (5.14).
Following [6] we choose

µ = exp(−ε2/∆x). (5.18)

Thus, for large value of ε, (e.g., ε = 1), we could avoid the loss of accuracy caused by adding and
subtracting the penalty term; for very small value of ε, (e.g., ε→ 0), µ→ 1.

Remark 5.1. The full discrete scheme is obtained using the Gauss-Legendre quadrature nodes for the
velocity discretization. Finally, to get the boundary conditions for r̂, ĵ and ŝ, we refer to [29] for details.
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5.2 The sAP property

Denote

f1(R̂
l
i, Ĵ

l
i) =− v

2∆x
(Ĵl

i+1 − Ĵl
i−1) +

vφ1/2

2∆x
(R̂l

i+1 − 2R̂l
i + R̂l

i−1)

− vφ1/2

4
(γl

i − γl
i−1 + βl

i+1 − βl
i)−

µ

(∆x)2
F̄ (v)DM̃

(

P̂
l

i+1 − 2P̂
l

i + P̂
l

i−1

)

+
µ

2∆x
F̄ (v)χ

(

G̃l
i+1P̂

l

i+1 − G̃l
i−1P̂

l

i−1

)

, (5.19a)

f2(R̂
l
i) =

1

ε2

[

F̄ (v)MP̂
l

i +Bl
iP̂

l

i −MR̂l
i −Cl

iR̂
l
i

]

+
µ

(∆x)2
F̄ (v)DM̃

(

P̂
l

i+1 − 2P̂
l

i + P̂
l

i−1

)

− µ

2∆x
F̄ (v)χ

(

G̃l
i+1P̂

l

i+1 − G̃l
i−1P̂

l

i−1

)

, (5.19b)

g1(R̂
l
i) =− vφ

2∆x
(R̂l

i+1 − R̂l
i−1) +

vφ1/2

2∆x
(Ĵl

i+1 − 2Ĵl
i + Ĵl

i−1)−
vφ

4
(γl

i − γl
i−1 − β

l
i+1 + β

l
i), (5.19c)

g2(R̂
l
i, Ĵ

l
i) =

1

ε2

[

(1− ε2φ)v
R̂l

i+1 − R̂l
i−1

2∆x
−El

iP̂
l

i +MĴl
i +Cl

iĴ
l
i

]

. (5.19d)

From (5.16) we have











R̂1
i

R̂2
i
...

R̂s
i











=











r̂ni
r̂ni
...
r̂ni











+∆t











0

ã21f1(R̂
1
i , Ĵ

1
i )

...
∑s−1

l=1 ãslf1(R̂
l
i, Ĵ

l
i)











+∆tA











f2(R̂
1
i )

f2(R̂
2
i )

...

f2(R̂
s
i )











, (5.20a)











Ĵ1
i

Ĵ2
i
...

Ĵs
i











=











ĵni
ĵni
...

ĵni











+∆t











0

ã21g1(R̂
1
i )

...
∑s−1

l=1 ãslg1(R̂
l
i)











+∆tA











g2(R̂
1
i , Ĵ

1
i )

g2(R̂
2
i , Ĵ

2
i )

...

g2(R̂
s
i , Ĵ

s
i )











, (5.20b)

where
AK(i−1)+1:Ki,K(j−1)+1:Kj = Ai,jIK×K , IK×K is K ×K identity matrix, (5.21)

and A is defined in (5.8). Denote W as the inverse matrix of A, then we obtain from (5.20)

∆t











f2(R̂
1
i )

f2(R̂
2
i )

...

f2(R̂
s
i )











= W





















R̂1
i

R̂2
i
...

R̂s
i











−











r̂ni
r̂ni
...
r̂ni











−∆t











0

ã21f1(R̂
1
i , Ĵ

1
i )

...
∑s−1

l=1 ãslf1(R̂
l
i, Ĵ

l
i)





















, (5.22a)

∆t











g2(R̂
1
i , Ĵ

1
i )

g2(R̂
2
i , Ĵ

2
i )

...

g2(R̂
s
i , Ĵ

s
i )











= W





















Ĵ1
i

Ĵ2
i
...

Ĵs
i











−











ĵni
ĵni
...

ĵni











−∆t











0

ã21g1(R̂
1
i )

...
∑s−1

l=1 ãslg1(R̂
l
i)





















. (5.22b)

Since W has the same structure as A, W should be a lower triangular matrix with entries

WK(i−1)+1:Ki,K(j−1)+1:Kj = ωi,jIK×K , (5.23)

where W = (ωi,j) is the inverse of the lower triangular matrix A in (5.8).
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Then one can rewrite (5.22) as

∆tf2(R̂
k
i ) =

k
∑

l=1

ωkl

[

R̂l
i − r̂ni −∆t

k−1
∑

l=1

ãklf1(R̂
l
i, Ĵ

l
i)

]

, (5.24a)

∆tg2(R̂
k
i , Ĵ

k
i ) =

k
∑

l=1

ωkl

[

Ĵl
i − ĵni −∆t

k−1
∑

l=1

ãklg1(R̂
l
i)

]

. (5.24b)

More explicitly,

∆t

{

1

ε2

[

F̄ (v)MP̂
k

i +Bk
i P̂

k

i −MR̂k
i −Ck

i R̂
k
i

]

+
µ

(∆x)2
F̄ (v)DM̃

(

P̂
k

i+1 − 2P̂
k

i + P̂
k

i−1

)

− µ

2∆x
F̄ (v)χ

(

G̃k
i+1P̂

k

i+1 − G̃k
i−1P̂

k

i−1

)

}

=

k
∑

l=1

ωkl

{

R̂l
i − r̂ni −∆t

k−1
∑

l=1

ãkl

[

− v

2∆x
(Ĵl

i+1 − Ĵl
i−1) +

vφ1/2

2∆x
(R̂l

i+1 − 2R̂l
i + R̂l

i−1)

− vφ1/2

4
(γl

i − γl
i−1 + β

l
i+1 − β

l
i)−

µ

(∆x)2
F̄ (v)DM̃

(

P̂
l

i+1 − 2P̂
l

i + P̂
l

i−1

)

+
µ

2∆x
F̄ (v)χ

(

G̃l
i+1P̂

l

i+1 − G̃l
i−1P̂

l

i−1

)}

, (5.25a)

∆t

{

1

ε2

[

(1− ε2φ)v
R̂k

i+1 − R̂k
i−1

2∆x
−Ek

i P̂
k

i +MĴk
i +Ck

i Ĵ
k
i

]}

=

k
∑

l=1

ωkl

{

Ĵl
i − ĵni −∆t

k−1
∑

l=1

ãkl

[

− vφ

2∆x
(R̂l

i+1 − R̂l
i−1) +

vφ1/2

2∆x
(Ĵl

i+1 − 2Ĵl
i + Ĵl

i−1)

−vφ
4
(γl

i − γl
i−1 − βl

i+1 + βl
i)

]}

. (5.25b)

Thus, setting ε→ 0, since M +Ck
i is non-singular, one obtains

R̂k
i =(M +Ck

i )
−1(F̄ (v)M +Bk

i )P̂
k

i = F̄ (v)P̂
k

i +O(ε), (5.26a)

Ĵk
i =(M +Ck

i )
−1(Ek

i P̂
k

i − v
R̂k

i+1 − R̂k
i−1

2∆x
) = M−1Ek

i P̂
k

i − vM−1 R̂
k
i+1 − R̂k

i−1

2∆x
+O(ε). (5.26b)

Inserting this back to (5.17a) and letting ε→ 0,

r̂n+1
i = r̂ni +∆t

s
∑

k=1

b̃kf̂1(R̂
k
i ) + ∆t

s
∑

k=1

bkf̂2(R̂
k
i ), (5.27)

where

f̂1(R̂
k
i ) =v

2F̄ (v)
M−1

4(∆x)2

(

R̂k
i+2 − 2R̂k

i + R̂k
i−2

)

− F̄ (v)D
M̃

(∆x)2

(

P̂
k

i+1 − 2P̂
k

i − P̂
k

i−1

)

− v2

4∆x
(M−1Ek

i+1P̂
k

i+1 −M−1Ek
i−1P̂

k

i−1) +
1

2∆x
F̄ (v)χ(G̃k

i+1P̂
k

i+1 − G̃k
i−1P̂

k

i−1), (5.28a)

f̂2(R̂
k
i ) =

1

(∆x)2
F̄ (v)DM̃

(

P̂
k

i+1 − 2P̂
k

i + P̂
k

i−1

)

− 1

2∆x
F̄ (v)χ

(

G̃k
i+1P̂

k

i+1 − G̃k
i−1P̂

k

i−1

)

. (5.28b)

Since the difference between M−1
(

P̂
k

i+1 − 2P̂
k

i + P̂
k

i−1

)

and M̃
(

P̂
k

i+1 − 2P̂
k

i + P̂
k

i−1

)

and the dif-

ference between 1
χM

−1Ek
i P̂

k

i and G̃k
i P̂

k

i are both spectral small, after integrating over V +, f̂1 goes to 0
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and one gets

ρ̂
n+1
i = ρ̂

n
i +∆t

s
∑

k=1

bk



F̄ (v)DM̃
P̂

k

i+1 − 2P̂
k

i + P̂
k

i−1

(∆x)2
− F̄ (v)χ

G̃k
i+1P̂

k

i+1 − G̃k
i−1P̂

k

i−1

2∆x



+O((∆x)2),

(5.29)
where

P̂
k

i =ρ̂
n
i +∆t

k−1
∑

l=1

akl



F̄ (v)DM̃
P̂

l

i+1 − 2P̂
l

i + P̂
l

i−1

(∆x)2
− F̄ (v)χ

G̃l
i+1P̂

l

i+1 − G̃l
i−1P̂

l

i−1

2∆x





+∆takk



F̄ (v)DM̃
P̂

k

i+1 − 2P̂
k

i + P̂
k

i−1

(∆x)2
− F̄ (v)χ

G̃k−1
i+1 P̂

k

i+1 − G̃k−1
i−1 P̂

k

i−1

2∆x



 ,

(5.30)

which is an implicit RK scheme for the projected limiting diffusion equation (4.8). Thus, the sAP property
[30] of the efficient IMEX R-K scheme is formally justified.

6 Numerical Tests

6.1 The 1D Nonlocal Deterministic Model

The following numerical tests are carried out with

x ∈ Ω = [−1, 1], v ∈ V = [−1, 1], α = 1,

F̄ (v) =
1

|V |1V :=







1

|V | if v ∈ V

0 otherwise

.

The critical mass for the limiting Keller-Segel system given by formula (1.3) is

Mc = 2π.

The initial conditions are given by

ρI(x) = Ce−80x2

, fI(x, v) = ρI(x)F (v),

where C = C(M) is a constant determined by the total mass M .
For the deterministic case, we compare our results by the second order IMEX-RK method (5.10)

(denoted by SSP2 in the figures) with the results by [10] (denoted by CY in the figures). For both tests,
we set ∆x = 0.005. In their numerical tests, the CFL condition is

∆t = max

{

ε∆x

2
,
∆x2

2

}

.

Obviously, when ε is small, it suffers from the parabolic CFL condition for the diffusive nature of the
Keller-Segel system.

For our IMEX-RK method, the choice of ∆t is given by

∆t = λ∆x, λ = 0.02,

which is much bigger than ∆x2/2.
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6.1.1 A Super-Critical Mass

It has been shown in [11] that the solution of the kinetic system can converge to the Keller-Segel system
weakly in a finite time interval [0, t∗], with t∗ < tb. Here tb is the blow up time of the corresponding
Keller-Segel system.

For the Super-Critical case, we set

M = 4π > Mc = 2π, t = 0.003 < tb ≈ 0.0039. (6.1)
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SSP2 ǫ=0.0125
SSP2 ǫ=0.00625
CY ǫ=0.025
CY ǫ=0.0125
CY ǫ=0.00625
Keller Segel

Figure 1: The 1D nonlocal deterministic model in the super-critical case. Solid lines are numerical results
obtained in [10] and circles are numerical results obtained by the IMEX-RK method. Dashed line is the
numerical solution of the Keller-Segel equations as reference.

Figure 1 shows that the solution to the kinetic equation ρ converges to the solution of the Keller-Segel
solution ρ0 as ε → 0 at time t = 0.003 < tb. Our IMEX-RK results match very well with the results in
[10].

6.1.2 A Sub-Critical Mass

For the Sub-Critical case, we set
M = π < Mc, t = 0.1. (6.2)
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Figure 2: The 1D nonlocal deterministic model in the sub-critical case. Solid lines are numerical results
obtained in [10] and circles are numerical results obtained by the IMEX-RK method. Dashed line is the
numerical solution of the Keller-Segel equations as reference.

Figure 2 shows similar convergence results as the supercritical case for a relatively long time t = 0.1.
Also, good agreements between our new IMEX-RK solutions and the numerical results from [10] can be
observed, even in zoomed in area.

6.2 The 1D Nonlocal Model with Random Inputs in the Supercritical Case

Now we let
α = 1 + 0.5z, z ∼ U [−1, 1],M = 4π > M̄c ≈ 2.197π.

Using the same mesh size as before, we also employ the stochastic collocation method (using 20 quadrature
points) as reference solutions. In stochastic collocation, the deterministic solver can be applied directly
to a set of selected sample points and then the solution is approximated by interpolation of all sample
solutions (see [49] for a review of stochastic collocation methods). The gPC expansion has been considered
only up to 4th order in our numerical tests. The following are the comparisons of the two methods in
mean and standard deviation for the super-critical case with the same initial mass and stopping time in
(6.1). Given the gPC coefficients ρ̂k of ρ, the mean and standard deviation are calculated as

E[ρ] ≈ ρ̂1, S[ρ] ≈

√

√

√

√

K
∑

k=2

ρ̂2k.
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6.2.1 The sAP property

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
x

0

10

20

30

40

50

60

70

80

ρ

Sup-Mean, t=0.003, ǫ=0.025

gPC+CY
collocation+CY
gPC+SSP2
collocation+SSP2

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
x

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

ρ

Sup-Sd, t=0.003, ǫ=0.025

gPC+CY
collocation+CY
gPC+SSP2
collocation+SSP2

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
x

0

10

20

30

40

50

60

70

80

90

100

ρ

Sup-Mean, t=0.003, ǫ=0.0125

gPC+CY
collocation+CY
gPC+SSP2
collocation+SSP2

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
x

0

1

2

3

4

5

6

7

8

9

10

ρ

Sup-Sd, t=0.003,ǫ=0.0125

gPC+CY
collocation+CY
gPC+SSP2
collocation+SSP2

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
x

0

20

40

60

80

100

120

140

ρ

Sup-Mean, t=0.003, ǫ=0.00625

gPC+CY
collocation+CY
gPC+SSP2
collocation+SSP2

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
x

0

5

10

15

20

25

ρ

Sup-Sd, t=0.003, ǫ=0.00625

gPC+CY
collocation+CY
gPC+SSP2
collocation+SSP2

Figure 3: The 1D nonlocal random model in the super-critical case. Solid line is obtained by combining
the deterministic solver [10] with the gPC method and circle is obtained by combining the deterministic
solver [10] with the collocation method. Dashed line is obtained by the IMEX-RK using gPC and cross
is obtained by the IMEX-RK using collocation. Different values of ε are tested and the two quantities of
interests are mean value (left) and standard deviation (right).
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Figure 4: The 1D nonlocal random model in the super-critical case. Solid line is obtained by combining
the deterministic solver IMEX-RK with the gPC-SG method and circle is obtained by combining the
deterministic solver IMEX-RK with the collocation method. Dashed line is the gPC-SG solution of the
limiting Keller-Segel equations with uncertainty. Different values of ε are tested and the two quantities
of interests are mean value (left) and standard deviation (right).

Figure 3 shows that the IMEX-RK solution agrees well with results of [10] for all ε no matter combined
with gPC approach or collocation approach to deal with the uncertainty. Small differences between the
two methods, especially near the singularity for small ε, are observed due to different orders of accuracy,
but the SG solution always matches the collocation solution accurately for the same deterministic solver.
Figure 4 shows that the mean and standard deviation of the kinetic chemotaxis solutions both tend to
the quantities of the limiting Keller-Segel solution as ε→ 0 for fixed ∆t and ∆x, which verifies the sAP
property.

6.2.2 Global Existence and Finite Time Blow Up
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Figure 5: The 1D nonlocal random model in the super-critical case. Solid line is obtained by combining
the deterministic solver IMEX-RK with the gPC-SG method and dashed line is the gPC-SG solution of
the limiting Keller-Segel equations. ρ in infinity norm with different values of ε are tested and the two
quantities of interests are mean value (left) and standard deviation (right).
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As proved in [11], the solution to the kinetic system (2.7) with the nonlocal turning kernel is bounded on
[0, T ], for any time T . However, the Keller-Segel solution will blow up in finite time with a supercritical
mass. We examine the mean value and standard deviation of ‖ρ‖∞ for relatively long time (t ≫ tb) in
Figure 5. The uncertain systems show the same properties as the deterministic ones, e.g. the kinetic
systems have global bound in the first and second moments for different ε while the Keller-Segel solution
will blow up in expected finite time.

6.2.3 The Stationary Solution of the Kinetic system
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Figure 6: The 1D nonlocal random model in the super-critical case. The mean (left) and standard
deviation (right) of the function ερ(εx) for different ε are presented. t = 2 ≫ tb.

The numerical tests in [10] suggest that the solution of the deterministic kinetic system with a supercritical
initial mass stabilizes toward a stationary state after long time. We also check to see if the same property
holds for the kinetic system with random inputs. We plot the mean and standard deviation of ρ̃(x) =
ερ(εx) in Figure 6, which shows that the mean and standard deviation both converge to some stationary
state at a long time t = 2, while the mean agrees with the deterministic stationary solution.

6.3 The interaction between peaks: the 1D Nonlocal Model with Random

Initial Data

As shown in [1], the interactions between several peaks for the modified Keller-Segel system can be
interpreted as optimal transportation. In the following numerical tests, we are going to make some
observations of the interaction changes in the kinetic system cased by different types of randomness in
initial data.
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6.3.1 Case 1: Two symmetric peaks, without enough mass in each peak
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Figure 7: Deterministic solution of ρ(x, t) with initial data f0 =

4
√
5π

(

1.5e−80(x−0.3)2 + 1.5e−80(x+0.3)2
)

, ε = 0.1. (Figure 8 in [10]).
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Figure 8: Left is the mean and right is the standard deviation of ρ(x, t, z) respectively, with random

initial condition f0 = 4
√
5π

(

(1.5 + 0.5z)e−80(x−0.3)2 + (1.5 + 0.5z)e−80(x+0.3)2
)

, z ∼ U [−1, 1], ε = 0.1.
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Figure 9: Left is the mean and right is the standard deviation of ρ(x, t, z) respectively, with random

initial condition f0 = 4
√
5π

(

(1.5 + 0.5z)e−80(x−0.3)2 + (1.5− 0.5z)e−80(x+0.3)2
)

, z ∼ U [−1, 1], ε = 0.1.

In this case, we still have Mc = 2π and M̄c ≈ 2.197π. We reproduced the deterministic attraction
between two symmetric peaks with total mass 3π in Figure 7. Then we input symmetric randomness in
each peak, i.e. the total mass follows from uniform distribution from 2π to 4π, keeping each peak without
enough mass. Figure 8 shows that symmetric randomness keeps the attraction behavior exactly as the
deterministic case. Symmetric properties are preserved both in mean and standard deviation. However,
in Figure 9, we input asymmetric randomness in each peak but keeping total mass fixed as 3π. The two
peaks will still be attracted in the center but present different behavior as the deterministic one. The
asymmetric randomness in this type will widen the mean range of the center peak after concentration, in
the sense that asymmetric initial data push the concentrated peak toward the direction with more initial
mass.

6.3.2 Case 2: Two asymmetric peaks with enough mass in each peak
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Figure 10: Deterministic solution of ρ(x, t) with initial data f0 = 4
√
5π

(

3e−80(x−0.3)2 + 5e−80(x+0.3)2
)

,

ε = 0.05.
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Figure 11: Left is the mean and right is the standard deviation of ρ(x, t, z) respectively, with random

initial condition f0 = 4
√
5π

(

(3 + z)e−80(x−0.3)2 + (5− z)e−80(x+0.3)2
)

, z ∼ U [−1, 1], ε = 0.05.

With Mc = 2π and M̄c ≈ 2.197π, we put asymmetric initial mass both larger than 2π. Figure 10 shows
similar results as Figure 10 in [10]. The mass in each peak is large enough to concentrate but they will
merge into a larger peak which locates closer to larger initial peak due to asymmetry. Figure 11 shows
the effect of the asymmetric randomness with total initial mass fixed. It can be observed in mean and
standard deviation that the randomness affects the concentration time, location and asymmetry, showing
the solution behaves sensitively to initial data.

6.3.3 Case 3: Two Asymmetric peaks (close), one below critical mass, one above critical
mass
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Figure 12: Deterministic solution of ρ(x, t) with initial data f0 = 4
√
5π

(

e−80(x−0.1)2 + 5e−80(x+0.1)2
)

,

ε = 0.05.

24



ρ

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

t

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x
ρ

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

t

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

Figure 13: Left is the mean and right is the standard deviation of ρ(x, t, z) respectively, with random

initial condition f0 = 4
√
5π

(

(1 + 0.5z)e−80(x−0.1)2 + (5− 0.5z)e−80(x+0.1)2
)

, z ∼ U [−1, 1], ε = 0.05.
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Figure 14: Left is the mean and right is the standard deviation of ρ(x, t, z) respectively, with random
α = 1 + 0.5z, z ∼ U [−1, 1] and deterministic initial data, ε = 0.05.

25



ρ

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

t

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x
ρ

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

t

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

Figure 15: Left is the mean and right is the standard deviation of ρ(x, t, z) respectively, with random in

position f0 = 4
√
5π

(

e−80(x−(0.1+0.1z))2 + 5e−80(x+(0.1+0.1z))2
)

, ε = 0.05.

From Figure 12 to Figure 15, we conduct a series of experiments with two asymmetric peaks, keeping
one peak with enough mass and the other one without enough mass. The deterministic case (Figure 12)
shows that the peak with less mass will move towards the other one in a short time and then they continue
to aggregate mass. In Figure 13, small amount of randomness exchanging between two peaks will not
change this tendence in mean. The standard deviation in Figure 13 is asymmetric due to the asymmetric
randomness in initial data. In Figure 14, although mean values show no difference, the standard deviation
is symmetric because the source of randomness comes from the diffusion coefficient α. Figure 15 shows
that the position of the two peaks has significant effects on the aggregation behavior in this case. From
mean and standard deviation, one can observe that there exists a critical distance between the two peaks,
beyond which the two peaks will not be able to merge. They will be separated to behave independently
according to their initial mass.

6.4 The 1D local Model with Random Initial Data
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Figure 16: Deterministic solution of ρ(x, t) with initial data f0 = 1.5×4
√
5πe−80x2

(subcritical), ε = 0.01.
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Figure 17: Left is the mean and right is the standard deviation of ρ(x, t, z) respectively, with random in

initial f0 = (1.5 + z)× 4
√
5πe−80x2

, ε = 0.01.
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Figure 18: Comparison of ‖ρ‖∞ in deterministic solution and mean solution.

Although theoretic study of the local model with supercritical mass is still not enough to understand the
blow up behavior of the local kinetic chemotaxis system, numerical tests in [10] suggested blowing up
density by using adapted grids. Instead of studying the blowing up property, we are more interested in
the sensitive effect brought up by the randomness around critical mass. In Figure 16, the deterministic
solution with subcritical initial data will stay bounded as expected from theory. However, the solution
keeps aggregating in Figure 17 if we introduce randomness into initial mass ranging from subcritical mass
to supercritical mass with mean less than critical mass. More obviously in Figure 18, the deterministic
solution will remain bounded while the mean of the random solution appears increasing in time. This
indicates that the introduced randomness will influence the properties of the solution. If the range of the
initial data contains supercritical regimes, the solution of the random system will behave quite differently
from the deterministic one with average initial mass.

Remark 6.1. Stochastic collocation method is used in test 6.4 to deal with |∂xs| as following: Once
ŝ = (ŝ1, · · · ŝK)T is obtained at each time iteration, ∂xŝ = (∂xŝ1, · · · ∂xŝK)T can be obtained using finite

difference. Then |∂xs(x, z)| can be approximated by |∑K
k=1 ∂xŝk(x)Φk(z)|. According to the probability
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density function of z, one can have a set of collocation points {zj}Mj=1 with corresponding weights {wj}Mj=1.
(M = 20 points are used in our test.) Project |∂xs(x, z)| onto the space {Φ1(z), · · · ,ΦK(z)} in order to

get the gPC coefficients (ξ1, · · · , ξK)T of |∂xs| such that |∂xs| ≈
∑K

k=1 ξk(x)Φk(z), one can get

ξk(x) =

∫

Iz

|∂xs(x, z)|Φk(z)λ(z)dz

≈
M
∑

j=1

|∂xs(x, zj)|Φk(zj)wj

≈
M
∑

j=1

|
K
∑

i=1

∂xŝi(x)Φi(zj)|Φk(zj)wj , k = 1, · · · ,K.

Then (ξ1, · · · , ξK)T is used in the algorithm.

7 Conclusion

In this article, a high order efficient stochastic Asymptotic-Preserving scheme is designed for the kinetic
chemotaxis system with random inputs. Compared with the previous work [10] for the deterministic ki-
netic chemotaxis equations, our new method, based on generalized Polynomial Chaos Galerkin approach
to deal with uncertainty, uses the implicit-explicit Runge-Kutta (IMEX-RK) method to gain high accu-
racy and utilize a macroscopic penalty to improve the CFL stability condition from parabolic type to
hyperbolic type in the diffusive regime. Both efficiency and accuracy are verified in the numerical tests.

There are many remaining work for future study. Since the kinetic description of the chemotaxis
system is more microscopic and consistent with the classical Keller-Segel equation with more favorable
properties (e.g. global existence for nonlocal turning kernel), it is important to complete the theory as
well as conduct efficient numerical simulations comparing with experimental results. On one hand, many
properties, which have been explored numerically in this paper and previous work [10, 12], remain to
be verified by rigorous theory. On the other hand, the high order efficient method in this paper should
be extended to 2D and 3D kinetic chemotaxis system to support the theory in future work. Moreover,
some general problems for uncertainty quantification, such as high dimensionality and rigorous sensitive
analysis, are to be further studied.
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[11] Fabio ACC Chalub, Peter A Markowich, Benôıt Perthame, and Christian Schmeiser. Kinetic Models
for Chemotaxis and Their Drift-Diffusion Limits. In Nonlinear Differential Equation Models, pages
123–141.

[12] Alina Chertock, Alexander Kurganov, Mária Lukácová-Medvidová, and Seyma NurOzcan. An
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