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A HIGH ORDER STOCHASTIC ASYMPTOTIC PRESERVING
SCHEME FOR CHEMOTAXIS KINETIC MODELS WITH RANDOM

INPUTS\ast 
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Abstract. In this paper, we develop a stochastic Asymptotic-Preserving (sAP) scheme for the
kinetic chemotaxis system with random inputs, which will converge to the modified Keller--Segel
model with random inputs in the diffusive regime. Based on the generalized Polynomial Chaos
(gPC) approach, we design a high order stochastic Galerkin method using implicit-explicit (IMEX)
Runge--Kutta (RK) time discretization with a macroscopic penalty term. The new schemes improve
the parabolic CFL condition to a hyperbolic type when the mean free path is small, which shows
significant efficiency especially in uncertainty quantification (UQ) with multiscale problems. The sAP
property will be shown asymptotically and verified numerically in several tests. Other numerical tests
are conducted to explore the effect of the randomness in the kinetic system, with the goal of providing
more intuition for the theoretic study of the chemotaxis models.
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1. Introduction. Chemotaxis is the movement of an organism in response to
a chemical stimulus (called a chemoattractant) approaching the regions of highest
chemoattractant concentration. This process is critical to the early growth and sub-
sequent development of the organism.

Mathematical study of this chemical system originates from the well-known
(Patlak--)Keller--Segel model [34, 35, 36, 37, 44]. This model describes the drift-
diffusion interactions between the cell density and chemoattractant concentration at
a macroscopic level,

\partial t\rho = \nabla \cdot (D\nabla \rho  - \chi \rho \nabla s),(1.1a)

\partial ts = D0\Delta s+ q(s, \rho ),(1.1b)

where \rho (x, t) \geq 0 is the cell density at position x \in \BbbR n and time t; s(x, t) \geq 0
is the density of the chemoattractant; D and D0 are positive diffusive constants of
the cells and the chemoattractant, respectively; and \chi is the positive chemotactic
sensitivity constant. In (1.1) the function q(s, \rho ) describes the interactions between
the cell density and the chemoattractant, such as production and degradation. In
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the literature, several modifications and studies of the Keller--Segel model have been
conducted in recent years, e.g., [9, 13, 22, 23, 45, 46]. The one related to our study is
the modified Keller--Segel model in [9],

\partial t\rho = \nabla \cdot (D\nabla \rho  - \chi \rho \nabla s),(1.2a)

s =  - 1

n\pi 
log | x| \ast \rho ,(1.2b)

where n is the space dimension. Notice that in 2D, (1.1) and (1.2) are exactly the
same if q = 0.

An important property of the Keller--Segel system is the blow up behavior, which
depends on the dimension of the system and the initial mass [8, 20, 40, 49]. For the
2D Keller--Segel system (when (1.1) and (1.2) are equivalent), there exists a critical
mass Mc depending on the parameters of the system. When the initial mass M < Mc

(subcritical case), a global solution exists and presents a self-similar profile in long
time; when the initial mass M > Mc (supercritical case), the solution will blow up in
finite time; and when the initial mass M = Mc (critical case), the solution will blow
up in infinite time. This property can be extended to 1D and 3D for the modified
Keller--Segel system (1.2). The formula for the critical mass is given by

(1.3) Mc =
2n2\pi D

\chi 
.

From another perspective, the chemotaxis can be described by a class of Boltz-
mann-type kinetic equations at a microscopic level. The kinetic description of the
phase space cell density was first introduced by Alt [1, 2] via a stochastic interpretation
of the ``run"" and ``tumble"" process of bacteria movements. Later, Othmer, Dunbar,
and Alt formulated the following nondimensionalized chemotaxis kinetic system with
parabolic scaling in [41]:

(1.4) \varepsilon 
\partial f

\partial t
+ v \cdot \nabla xf =

1

\varepsilon 

\int 
V

(T\varepsilon f
\prime  - T \ast 

\varepsilon f)dv
\prime .

Here f(t, x, v) is the density function of cells at time t \in \BbbR +, position x \in \BbbR n and
moving with velocity v \in V , V is a finite subset of \BbbR n. The small parameter \varepsilon is
the ratio of the mean running length between jumps to the typical observation length
scale, and f \prime is the abbreviation for f(t, x, v\prime ). T\varepsilon = T\varepsilon [s](t, x, v, v

\prime ) with the property
T \ast 
\varepsilon [s](t, x, v, v

\prime ) = T\varepsilon [s](t, x, v
\prime , v) is the turning kernel operator depending on the

density of chemoattractant s(t, x), which also solves the Poisson equation (1.1b).
The relationship between the kinetic chemotaxis model (1.4) and the Keller--Segel

model (1.1) was formally derived by Hillen and Othmer in [21, 42] using moment
expansions. Then Chalub et al. gave a rigorous proof that the Keller--Segel system
(1.2) (before blow up time in the supercritical case and for all time in the subcritical
case) is the macroscopic limit (as \varepsilon \rightarrow 0) of the kinetic chemotaxis system (1.4)
coupled with (1.2b) in three dimensions [11]. For a certain type of turning kernel
T\varepsilon (the nonlocal model in section 2.1), [11] also proved the global existence of the
solution to the kinetic system (1.4) for any initial conditions, which behaves completely
differently from the Keller--Segel system. For other types of of turning kernel T\varepsilon (e.g.,
the local model in section 2.2), many questions are yet unsolved. Blow up may happen
with supercritical initial mass, but the critical mass is different from the Keller--Segel
equations [7]. The long time behavior of the subcritical case is yet unclear. Also,
theoretic proof of the blow up in the 1D case is not available [47].
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1886 SHI JIN, HANQING LU, AND LORENZO PARESCHI

The microscopic kinetic model, with interesting properties and mysterious behav-
iors, makes it appealing to investigate the system numerically. Moreover, the global
existence of the solution with nonlocal turning kernel could help us to understand the
behavior of chemotaxis after Keller--Segel solutions blow up. One of the difficulties
in solving the kinetic chemotaxis model, as with other multiscale kinetic equations,
is the stiffness when 0 < \varepsilon \ll 1. Classical algorithms require taking spatial and time
steps of O(\varepsilon ), thus causing unaffordable computational cost. To overcome this diffi-
culty, one has to design an Asymptotic-Preserving (AP) scheme, which discretizes the
kinetic equations, with the mesh and the time step independent of \varepsilon , and preserves
a consistent discretization of the limiting modified Keller--Segel equation as \varepsilon \rightarrow 0.
The AP methods were first introduced in [25] and have been applied to a variety of
multiscale kinetic equations. We refer the reader to [15, 16, 17, 26] for detailed reviews
on AP schemes. In particular, AP schemes have been designed to solve 1D and 2D
kinetic chemotaxis models in [10, 12], which are most relevant to our study.

The main issue we want to address in this paper concerns the uncertainties in-
volved in the kinetic model due to modeling and experimental errors. For example,
different turning kernels are proposed as operators that mimic the ``run"" and ``tum-
ble"" process of cell movements and thus may contain uncertainties. Moreover, initial
and boundary data, or other coefficients in the equations, could also be measured
inaccurately. In such a system that behaves so sensitively to initial mass and turning
kernel, only by quantifying the intrinsic uncertainties in the model could one gain a
better understanding and a more reliable prediction of the chemotaxis from computa-
tional simulations, especially in the situation where many properties are not clarified
by theoretic study.

The goal of this paper is to design a high order efficient numerical scheme such
that uncertainty quantification (UQ) can be easily conducted. Only recently, studies
in UQ have begun to develop for kinetic equations [24, 27, 28, 29, 32, 52, 14]. To
deal with numerical difficulties for uncertainty and multiple scales simultaneously, the
stochastic Asymptotic-Preserving (sAP) notion was first introduced in [32]. It requires
that the discretization of a random kinetic equation, in the limit \varepsilon \rightarrow 0, becomes a
good discretization of the limiting macroscopic random Keller--Segel equation. In the
context of stochastic Galerkin (SG) methods, to be defined later, this requires that
an SG approximation of the random kinetic equation, when \varepsilon \rightarrow 0, becomes an SG
method for the limiting random Keller--Segel equation.

Since then, the generalized Polynomial Chaos (gPC)-based SG framework has
been developed for a variety of kinetic equations [29, 32, 52, 14, 48]. In this paper,
we conduct UQ under the same gPC-SG framework, which projects the uncertain
kinetic equations into vectorized deterministic equations and thus allows us to extend
the deterministic AP solver in [10]. We formally verify the sAP property by showing
that the kinetic chemotaxis model with uncertainty after SG projection in a fully
discrete setting, such as \varepsilon \rightarrow 0, automatically becomes a numerical discretization of
the Keller--Segel equations with uncertainty after the SG projection. As realized in
[32] and rigorously proved in [27, 39, 33], spectral accuracy is expected when using
this gPC-SG method as long as the solution is sufficiently regular.

In addition, we improve the accuracy and efficiency of the numerical scheme by
using the implicit-explicit (IMEX) Runge--Kutta (RK) methods (see [6, 5, 43] and
the references therein) and the macroscopic penalization method. A similar approach
was utilized in our previous work [30] for linear transport and radiative heat transfer
equations with random inputs. In [30], we improved the parabolic CFL condition
\Delta t = O((\Delta x)2) from [32] to a hyperbolic CFL condition \Delta t = O(\Delta x), which allows
significant savings in computational time.
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The rest of the paper is organized as follows. In section 2, the kinetic models with
random inputs of two different turning kernels are described, and the macroscopic lim-
its of both models are formally derived. From section 3 to section 5, the numerical
scheme for the kinetic chemotaxis equations is designed and the sAP properties are
illustrated. In section 6, several numerical tests are presented to illustrate the ac-
curacy and efficiency of our scheme. The sAP property is also verified numerically.
Different properties, e.g., blow up, stationary solutions, etc., influenced by the intro-
duced randomness of the local and nonlocal models, are explored for the chemotaxis
system. The interactions between peaks involved with different sources of uncertainty
are compared to show the dynamics. Finally, some conclusions are drawn in section 7.

2. The kinetic description for chemotaxis. The chemotaxis kinetic system
with random inputs that we are going to study is (1.4) coupled with (1.2b) in 1D,

\varepsilon 
\partial f

\partial t
+ v

\partial f

\partial x
=

1

\varepsilon 

\int 
V

(T\varepsilon f
\prime  - T \ast 

\varepsilon f)dv
\prime ,(2.1a)

s =  - 1

\pi 
log | x| \ast \rho , \rho =

\int 
V

fdv,(2.1b)

where x \in \Omega = [ - xmax, xmax] \subset \BbbR and v \in V = [ - vmax, vmax] \subset \BbbR .
The only difference from the classical deterministic case is that f = f(t, x, v, z)

and s = s(t, x, z) are dependent on the random variable z \in Iz \subset \BbbR d(d \geq 1), with
compact support Iz, in order to account for random uncertainties.

Now we specify the turning kernel operator T\varepsilon in (2.1). Since the turning kernel
T\varepsilon [s](t, x, z, v, v

\prime ) measures the probability of a velocity jump of cells from v to v\prime , it
has the properties

(2.2)
T\varepsilon [s](t, x, z, v, v

\prime ) \geq 0,

T\varepsilon [s](t, x, z, v, v
\prime ) = F (z, v) + \varepsilon T1 +O(\varepsilon 2),

where F (z, v) is the equilibrium of velocity distribution and T1 \geq 0 characterizes the
directional preference.

2.1. The 1D nonlocal model. Now we consider the nonlinear kernel intro-
duced in [11] with uncertainty,

(2.3)
T\varepsilon [s](t, x, z, v, v

\prime ) =\alpha +(z)\psi (s(t, x, z), s(t, x+ \varepsilon v, z))

+ \alpha  - (z)\psi (s(t, x, z), s(t, x - \varepsilon v\prime , z)).

The first term describes the cell movement to a new direction decided by the detection
of the current environment and a probable new location, and the second term describes
the influence of the past memory on the choice of the new moving direction. The values
\alpha \pm (z) are experimental and characterize the intensity of these effects.

For simplicity, the past memory influence is neglected, namely \alpha  - (z) = 0. Since
\alpha + has an experimental nature, we introduce the randomness on \alpha +(z) > 0 with the
probability density function \lambda (z) for the random variable z and take

(2.4) \psi (s(t, x, z), s(t, x+ \varepsilon v, z)) = \=F (v) + \delta \varepsilon s(t, x, z, v),

where, omitting the dependence from t and z for notational simplicity, we define

(2.5) \delta \varepsilon s(x, v) = (s(x+ \varepsilon v) - s(x))+ :=

\Biggl\{ 
s(x+ \varepsilon v) - s(x) if s(x+ \varepsilon v) - s(x) > 0,

0 otherwise,
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1888 SHI JIN, HANQING LU, AND LORENZO PARESCHI

and \=F (v) satisfies

(2.6)

\left\{   
\int 
V

\=F (v)dv = 1,

\=F (v) = \=F (| v| ).
Notice that \delta \varepsilon s is an O(\varepsilon ) term which corresponds to \varepsilon T1 in (2.2).

Then the kinetic system (2.1) becomes

\varepsilon 
\partial f

\partial t
+ v

\partial f

\partial x
=
\alpha +(z)

\varepsilon 

\biggl[ 
( \=F (v) + \delta \varepsilon s(v))\rho  - 

\biggl( 
1 +

\int 
V

\delta \varepsilon s(v\prime )dv\prime 
\biggr) 
f

\biggr] 
,(2.7a)

s =  - 1

\pi 
log | x| \ast \rho ,(2.7b)

together with positive initial conditions and reflecting boundary conditions for f .
Reflecting boundary conditions for s are imposed as follows:

f(0, x, z, v) = f I(x, z, v) \geq 0,(2.8a)

s(0, x, z) = sI(x, z) \geq 0,(2.8b)

f(t,\pm xmax, z, v) = f(t,\pm xmax, z, - v),(2.8c)

\partial xs| x=\pm xmax
= 0.(2.8d)

Remark 2.1. The global existence of the solution to (2.7) for fixed z with any
initial mass is proved in [11].

2.2. The 1D local model. For the local model, we consider the turning kernel
introduced in [7] with uncertainty,

(2.9) T\varepsilon = T\varepsilon [s](t, x, z, v, v
\prime ) = \alpha +(z)

\bigl[ 
\=F (v) + \varepsilon (v \cdot \nabla s(x))+

\bigr] 
,

where \=F is the equilibrium function satisfying (2.6) and \alpha (z) > 0 describes the desire
of the cell to change to a favorable direction, which could come with uncertainty.
Similarly as in section 2.1, we introduce the randomness on \alpha +(z) > 0. Then the
kinetic equation (2.1) in 1D is

\varepsilon 
\partial f

\partial t
+ v

\partial f

\partial x
=
\alpha +

\varepsilon 

\bigl[ 
( \=F (v) + \varepsilon (v \cdot \nabla s)+)\rho  - (1 + c1\varepsilon | \nabla s| )f

\bigr] 
,(2.10a)

s =  - 1

\pi 
log | x| \ast \rho ,(2.10b)

with c1 =
\int 
V
(v \cdot \nabla s/| \nabla s| )+dv = 1

2

\int 
V
| v| dv. The same initial and boundary conditions

in (2.8) are applied.

2.3. The macroscopic limits. The nonlocal kinetic model (2.7) and the local
limit (2.10) give the same asymptotic limit when \varepsilon \rightarrow 0. Inserting the Hilbert expan-
sion into (2.7a) and (2.10a) and collecting the same order terms, one can derive the
classical modified Keller--Segel system for \rho as \varepsilon \rightarrow 0,

\partial t\rho = \partial x

\biggl( 
D

\alpha +
\partial x\rho  - \chi \rho \partial xs

\biggr) 
,(2.11a)

s =  - 1

\pi 
log | x| \ast \rho ,(2.11b)

\partial x\rho | x=\pm xmax = 0,(2.11c)

\partial xs| x=\pm xmax = 0,(2.11d)
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where

(2.12) D =

\int 
V

| v| 2 \=F (v)dv, \chi =
1

2

\int 
V

| v| 2dv.

We refer the reader to [11] for the details.

2.4. The critical mass with random inputs. To derive the critical mass for
system (2.11), we show, following [9], that the second momentum (with respect to x)
of \rho cannot remain positive for all time.

We use

\partial xs = \partial x

\biggl( 
 - 1

\pi 
log | x| \ast \rho 

\biggr) 
=  - 1

\pi 

\int 
\Omega 

1

x - y
\rho (t, y, z)dy =  - \scrH \rho ,

where \scrH denotes the Hilbert transform [19], and the improper integral has to be
understood in the principal value sense. Then

(2.13)

d

dt

\int 
\Omega 

1

2
| x| 2\rho (t, x)dx =

\int 
\Omega 

1

2
| x| 2 \partial \rho 

\partial t
(t, x)dx

=

\int 
\Omega 

1

2
| x| 2\partial x

\biggl( 
D

\alpha +(z)
\partial x\rho  - \chi \rho \partial xs

\biggr) 
dx

= - 
\int 
\Omega 

x

\biggl( 
D

\alpha +(z)
\partial x\rho  - \chi \rho \partial xs

\biggr) 
dx

= - D

\alpha +(z)
[xmax\rho (xmax) + xmax\rho ( - xmax)] +

D

\alpha +(z)
M

 - \chi 

\pi 

\int 
\Omega 

\rho (x) lim
\delta \rightarrow 0

\int 
| x - y| >\delta 

x

x - y
\rho (y)dydx

= - D

\alpha +(z)
xmax[\rho (xmax) + \rho ( - xmax)] +

D

\alpha +(z)
M

 - \chi 

2\pi 
lim
\delta \rightarrow 0

\int 
\Omega 

\int 
| x - y| >\delta 

\rho (x)\rho (y)dxdy

= - D

\alpha +(z)
xmax[\rho (xmax) + \rho ( - xmax)]

 - \chi 

2\pi 
M2

\biggl( 
1 - Mc(z)

M

\biggr) 
,

where

(2.14) Mc(z) =
2\pi D

\chi \alpha +(z)
,

and in (2.13), to simplify notation, we omit the dependence of \rho from t and z unless
it is necessary.

Here, to avoid unnecessary difficulties, we assume that the initial data are inde-
pendent of z and we use the conservation of mass; i.e., M =

\int 
\Omega 
\rho dx is a constant

independent of z. Therefore, uncertainties are due only to the value \alpha +(z) in the
interaction kernel.

When M > Mc(z),
d
dt

\int 
\Omega 

1
2 | x| 2\rho (t, x, z)dx \leq  - c < 0, where c is a positive con-

stant. To preserve the positivity of this second moment (with respect to x), some
singularity has to occur so that the above computation will not hold at a certain
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time. The singularity is rigorously analyzed in [18, 4], and \partial xs is unbounded in this
case. Thus blow up occurs.

When M < Mc(z), the second moment (with respect to x) is locally controlled,
and global existence of weak solution can be obtained [9].

Remark 2.2. When n \geq 2, the computation is similar, and the general formula
for Mc(z) is

Mc(z) =
2n2\pi D

\chi \alpha +(z)
.

In practice, one is more interested in the behavior of \BbbE [\rho (t, x, z)], the expected
value of \rho (t, x, z). We have the following theorem analyzing the influence of initial
mass on \BbbE [\rho (t, x, z)].

Theorem 2.1. Suppose that the total mass M is independent of z. Denote \=Mc

as the critical mass for \BbbE [\rho (t, x, z)]; i.e., when M > \=Mc, \BbbE [\rho (t, x, z)] will blow up, and
when M < \=Mc, \BbbE [\rho (t, x, z)] will be bounded for all time. Then we have

(2.15) \=Mc = \BbbE [Mc(z)].

Proof. Following the computations in (2.13) and omitting the dependence of \rho 
from t and z unless it is necessary, we show that

(2.16)

d

dt

\int 
\Omega 

1

2
| x| 2\BbbE [\rho (x, z)]dx =

\int 
\Omega 

\int 
Iz

1

2
| x| 2 \partial \rho (x, z)

\partial t
\lambda (z)dzdx

=

\int 
\Omega 

\int 
Iz

1

2
| x| 2\partial x

\biggl( 
D

\alpha +(z)
\partial x\rho  - \chi \rho \partial xs

\biggr) 
\lambda (z)dzdx

=

\int 
Iz

\biggl[ \int 
\Omega 

1

2
| x| 2\partial x

\biggl( 
D

\alpha +(z)
\partial x\rho  - \chi \rho \partial xs

\biggr) 
dx

\biggr] 
\lambda (z)dz

=

\int 
Iz

\biggl[ 
 - D

\alpha +(z)
[xmax\rho (xmax) + xmax\rho ( - xmax)]

 - \chi 

2\pi 
M2

\biggl( 
1 - Mc(z)

M

\biggr) \biggr] 
\lambda (z)dz

= - 
\int 
Iz

D

\alpha +(z)
xmax[\rho (xmax) + \rho ( - xmax)]\lambda (z)dz

 - \chi 

2\pi 
M2

\biggl( 
1 - \BbbE [Mc(z)]

M

\biggr) 
\leq  - \chi 

2\pi 
M2

\biggl( 
1 - \BbbE [Mc(z)]

M

\biggr) 
.

Thus, \=Mc = \BbbE [Mc(z)] is the critical mass for \BbbE [\rho (t, x, z)].

Remark 2.3. The same conclusion holds for n \geq 2.

3. The even-odd decomposition. In this section, we apply the even-odd
decomposition to reformulate the problem following the same procedure as in [10]
for the deterministic kinetic model for chemotaxis.
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3.1. The 1D nonlocal model. For v > 0, (2.7a) can be split into the two
equations

\varepsilon 
\partial f+

\partial t
+ v

\partial f+

\partial x
=
\alpha +(z)

\varepsilon 

\biggl[ 
( \=F (v) + \delta \varepsilon s(v))\rho  - 

\biggl( 
1 +

\int 
V

\delta \varepsilon s(v\prime )dv\prime 
\biggr) 
f+
\biggr] 
,(3.1a)

\varepsilon 
\partial f - 

\partial t
 - v

\partial f - 

\partial x
=
\alpha +(z)

\varepsilon 

\biggl[ 
( \=F ( - v) + \delta \varepsilon s( - v))\rho  - 

\biggl( 
1 +

\int 
V

\delta \varepsilon s(v\prime )dv\prime 
\biggr) 
f - 
\biggr] 
,(3.1b)

where f+ = f+(t, x, z, v) = f(t, x, z, v) and f - = f - (t, x, z, v) = f(t, x, z, - v).
Now denote the even and odd parities

r(t, x, z, v) = \scrR [f ] =
1

2
(f+(t, x, z, v) + f - (t, x, z, v)),(3.2a)

j(t, x, z, v) = \scrJ [f ] =
1

2\varepsilon 
(f+(t, x, z, v) - f - (t, x, z, v)).(3.2b)

Then (3.1) becomes

\partial tr + v\partial xj =
\alpha +

\varepsilon 2
[( \=F (v) +\scrR [\delta \varepsilon s])\rho  - (1 + \langle \delta \varepsilon s\rangle )r],(3.3a)

\partial tj +
1

\varepsilon 2
v\partial xr =

\alpha +

\varepsilon 2
(\scrJ [\delta \varepsilon s]\rho  - (1 + \langle \delta \varepsilon s\rangle )j),(3.3b)

where

\langle \delta \varepsilon s\rangle =
\int 
V

\delta \varepsilon s(x, v\prime )dv\prime ,(3.4a)

\rho =

\int 
V

fdv = 2

\int 
V +

rdv, V + = \{ v \in V | v \geq 0\} .(3.4b)

Notice that, when \varepsilon \rightarrow 0, (3.3) yields

r =
\=F (v) +\scrR [\delta \varepsilon s]

1 + \langle \delta \varepsilon s\rangle \rho = \rho \=F (v) +O(\varepsilon ),(3.5a)

j =
\scrJ [\delta \varepsilon s]\rho  - v \partial xr

\alpha +

1 + \langle \delta \varepsilon s\rangle = v

\biggl( 
1

2
\partial xs\rho  - 

\partial xr

\alpha +

\biggr) 
+O(\varepsilon ).(3.5b)

Substituting (3.5) into (3.3a) and integrating over V +, one gets the same limiting
Keller--Segel equations with random inputs as in (2.11).

3.2. The 1D local model. For the 1D local model, one can follow the same
even-odd decomposition and obtain

\partial tr + v\partial xj =
\alpha +

\varepsilon 

\Bigl[ \Bigl( 
\=F (v) +

\varepsilon 

2
| v\partial xs| 

\Bigr) 
\rho  - (1 + c1\varepsilon | \partial xs| )r

\Bigr] 
,(3.6a)

\partial tj +
1

\varepsilon 2
v\partial xr =

\alpha +

\varepsilon 2

\biggl[ 
1

2
v\partial xs\rho  - (1 + c1\varepsilon | \partial xs| )j

\biggr] 
.(3.6b)

The remaining work is the same as that in section 3.1.

4. The gPC-SG formulation. Now we deal with the random inputs using the
gPC expansion via an orthogonal polynomial series to approximate the solution. That
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1892 SHI JIN, HANQING LU, AND LORENZO PARESCHI

is, for random variable z \in \BbbR d, one seeks

r(t, x, z, v) \approx rN (t, x, z, v) =

K\sum 
k=1

\^rk(t, x, v)\Phi k(z),(4.1a)

j(t, x, z, v) \approx jN (t, x, z, v) =

K\sum 
k=1

\^jk(t, x, v)\Phi k(z),(4.1b)

where \biggl\{ 
\Phi k(z), 1 \leq k \leq K,K =

\biggl( 
d+N
d

\biggr) \biggr\} 
are from \BbbP d

N , the d-variate orthogonal polynomials of degree up to N \geq 1, and are
orthonormal:

(4.2)

\int 
Iz

\Phi i(z)\Phi j(z)\lambda (z)dz = \delta ij , 1 \leq i, j \leq K = dim(\BbbP d
N ).

Here \delta i,j is the Kronecker delta function (see [51]).
Now insert the approximation (4.1) into the governing equation (3.3) and en-

force the residue to be orthogonal to the polynomial space spanned by \{ \Phi 1, . . . ,\Phi K\} .
Thus, we obtain a set of vector deterministic equations for \^r = (\^r1, . . . , \^rK)T , \^j =
(\^j1, . . . , \^jK)T , and \^s = (\^s1, . . . , \^sK)T :

\partial t\^r+ v\partial x\^j =
1

\varepsilon 2
[ \=F (v)M\^\bfitrho +B\^\bfitrho  - M\^r - C\^r],(4.3a)

\partial t\^j+
1

\varepsilon 2
v\partial x\^r =

1

\varepsilon 2
(E\^\bfitrho  - M\^j - C\^j),(4.3b)

\^s =  - 1

\pi 
log | x| \ast \^\bfitrho ,(4.3c)

where

(4.4) \^\bfitrho (t, x) = \langle \^r\rangle = 2

\int 
V +

\^rdv,

and M = (mij)1\leq i,j\leq K , B(\delta \varepsilon sN ) = (bij(x, v))1\leq i,j\leq K , C(\langle \delta \varepsilon sN \rangle ) = (cij(x))1\leq i,j\leq K ,
and E(\delta \varepsilon sN ) = (eij(x, v))1\leq i,j\leq K are K\times K symmetric matrices with entries, respec-
tively,

mij =

\int 
Iz

\alpha +(z)\Phi i(z)\Phi j(z)\lambda (z)dz,(4.5a)

bij(x, v) =

\int 
Iz

\alpha +(z)\scrR [\delta \varepsilon sN ]\Phi i(z)\Phi j(z)\lambda (z)dz,(4.5b)

cij(x) =

\int 
Iz

\alpha +(z)\langle \delta \varepsilon sN \rangle \Phi i(z)\Phi j(z)\lambda (z)dz,(4.5c)

eij(x, v) =

\int 
Iz

\alpha +(z)\scrJ [\delta \varepsilon sN ]\Phi i(z)\Phi j(z)\lambda (z)dz.(4.5d)

As \varepsilon \rightarrow 0+ in (4.3), since \langle \delta \varepsilon sN \rangle = O(\varepsilon ) and the matricesM andC are symmetric
positive definite and thus invertible, we have

\^r = (M+C) - 1( \=F (v)M+B)\^\bfitrho = \=F (v)\^\bfitrho +O(\varepsilon ),(4.6a)

\^j = (M+C) - 1(E\^\bfitrho  - v\partial x\^r) = M - 1E\^\bfitrho  - vM - 1\partial x\^\bfitr +O(\varepsilon ).(4.6b)
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Plugging (4.6) into (4.3a) and integrating over V +, one obtains

(4.7) \partial t\^\bfitrho = \partial x
\bigl( 
DM - 1\partial x\^\bfitrho  - \chi G\^\bfitrho 

\bigr) 
,

where G = 1
\chi M

 - 1\langle E\rangle .
Remark 4.1. If one applies the gPC-SG formulation to the limiting Keller--Segel

equation (2.11) directly, one gets

(4.8) \partial t\~\bfitrho = \partial x

\Bigl( 
D \~M\partial x\~\bfitrho  - \chi \~G\~\bfitrho 

\Bigr) 
,

where \~M = ( \~mij)1\leq i,j\leq K and \~G = (\~gij)1\leq i,j\leq K are K \times K symmetric matrices with
entries

\~mij =

\int 
Iz

1

\alpha +(z)
\Phi i(z)\Phi j(z)\lambda (z)dz,(4.9a)

\~gij =

\int 
Iz

(\partial xsN )\Phi i(z)\Phi j(z)\lambda (z)dz.(4.9b)

Although \~M is different from M - 1, one can show that \~M\partial x\~\bfitrho and M - 1\partial x\^\bfitrho are spec-
trally close to each other. The same property holds between \~G\~\bfitrho and G\^\bfitrho . To under-
stand this, let us consider the simple identities

u = a(z)v,

\Updownarrow (4.10)

a(z) - 1u = v,

where u and v are functions of z and other independent variables, such as x, v, and t,
in our setting. If we apply a gPC-SG projection to the above identities, using vector
notation we get two different formulations:

\^U = A \^V \Leftarrow \Rightarrow A - 1 \^U = \^V,(4.11a)

\~A \~U = \~V.(4.11b)

Note that both (4.11a) and (4.11b) are spectrally close to (4.10), and therefore the

solutions of (4.11a) and (4.11b) are spectrally close to each other. Thus \^V  - \~V is

spectrally small and so A - 1 \^U - \~A \~U is spectrally small (although A - 1 and \~A are not
spectrally close).

5. An efficient sAP scheme based on an IMEX-RK method. One can
apply the relaxation method as in [10] to the projected system (4.3), which falls into
the sAP framework proposed in [32]. However, the method suffers from the parabolic
CFL condition \Delta t = O((\Delta x)2).

Here we propose an efficient sAP scheme using the idea from [6] to get rid of the
parabolic CFL condition. By adding and subtracting the term \mu \=F (v)\partial x(D \~M\partial x\^\bfitrho  - 
\chi \~G\^\bfitrho ) in (4.3a) and the term \phi v\partial x\^r in (4.3b), we reformulate the problem into the
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equivalent form

\partial t\^r = - v\partial x\^j - \mu \=F (v)\partial x(D \~M\partial x\^\bfitrho  - \chi \~G\^\bfitrho )(5.1a)

+
1

\varepsilon 2
\bigl( 
\=F (v)M\^\bfitrho +B\^\bfitrho  - M\^r - C\^r

\bigr) 
+ \mu \=F (v)\partial x(D \~M\partial x\^\bfitrho  - \chi \~G\^\bfitrho )

=f1(\^r,\^j) + f2(\^r,\^s),(5.1b)

\partial t\^j = - \phi v\partial x\^r - 
1

\varepsilon 2

\Bigl[ 
(1 - \varepsilon 2\phi )v\partial x\^r - E\^\bfitrho +M\^j+C\^j

\Bigr] 
= g1(\^r) + g2(\^r,\^j),(5.1c)

\^s = - 1

\pi 
log | x| \ast \^\bfitrho = h(\^r),(5.1d)

where M, \~M,B,C,E, and \~G are as defined in (4.5) and (4.9), and since \^\bfitrho = \langle \^r\rangle , we
have

f1(\^r,\^j) =  - v\partial x\^j - \mu \=F (v)\partial x(D \~M\partial x\^\bfitrho  - \chi \~G\^\bfitrho ),(5.2a)

f2(\^r,\^s) =
1

\varepsilon 2
\bigl( 
\=F (v)M\^\bfitrho +B\^\bfitrho  - M\^r - C\^r

\bigr) 
+ \mu \=F (v)\partial x(D \~M\partial x\^\bfitrho  - \chi \~G\^\bfitrho ),(5.2b)

g1(\^r) =  - \phi v\partial x\^r,(5.2c)

g2(\^r,\^j) =  - 1

\varepsilon 2

\Bigl[ 
(1 - \varepsilon 2\phi )v\partial x\^r - E\^\bfitrho +M\^j+C\^j

\Bigr] 
.(5.2d)

Here we choose \mu = \mu (\varepsilon ) such that

(5.3)
lim
\varepsilon \rightarrow 0

\mu = 1,

\mu = 0 if \varepsilon = O(1),

and choose \phi = \phi (\varepsilon ) such that

(5.4) 0 \leq \phi \leq 1

\varepsilon 2
.

The restriction on \phi guarantees the positivity of \phi (\varepsilon ) and (1 - \varepsilon 2\phi (\varepsilon )) so that the
problem remains well-posed uniformly in \varepsilon . We make the same simple choice of \phi as
in [31]:

(5.5) \phi (\varepsilon ) = min

\biggl\{ 
1,

1

\varepsilon 2

\biggr\} 
.

Now we apply an IMEX-RK scheme to system (5.1), where (f1, g1)
T is evaluated

explicitly and (f2, g2)
T implicitly, and then we obtain

\^rn+1 = \^rn +\Delta t

s\sum 
k=1

\~bkf1( \^R
k, \^Jk) + \Delta t

s\sum 
k=1

bkf2( \^R
k, \^Sk),(5.6a)

\^jn+1 = \^jn +\Delta t

s\sum 
k=1

\~bkg1( \^R
k) + \Delta t

s\sum 
k=1

bkg2( \^R
k, \^Jk),(5.6b)

\^sn+1 =  - 1

\pi 
log | x| \ast \^\bfitrho n+1,(5.6c)
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where the internal stages for k = 1, . . . , s are defined as

\^Rk = \^rn +\Delta t

k - 1\sum 
l=1

\~aklf1( \^R
l, \^Jl) + \Delta t

k\sum 
l=1

aklf2( \^R
l, \^Sl),(5.7a)

\^Jk = \^jn +\Delta t

k - 1\sum 
l=1

\~aklg1( \^R
l) + \Delta t

k\sum 
l=1

aklg2( \^R
l, \^Jl),(5.7b)

\^Sk =  - 1

\pi 
log | x| \ast \^P

k
,(5.7c)

and \^P
k
= \langle \^Rk\rangle . Clearly, also the internal stages \^Rk and \^Jk depend on (t, x, v),

whereas \^Sk depends on (t, x) only.
It is obvious that the scheme is characterized by the s\times s matrices

(5.8) \~A = (\~aij), A = (aij)

and the vectors \~b, b \in \BbbR s, which can be represented by a double tableau in the usual
Butcher notation,

\~c \~A

\~bT
,

c A

bT
.

The coefficients \~c and c depend on the explicit part of the scheme,

(5.9) \~ci =

i - 1\sum 
j=1

\~aij , ci =

i\sum 
j=1

aij .

In the literature, there are two main types of IMEX-RK schemes characterized by the
structure of the matrix A. We are interested in the IMEX-RK method of type A (see
[6]), where the matrix A is invertible.

As an example, we report the SSP(3,3,2) scheme, which is a second order IMEX
scheme we use in section 6:

(5.10)

0 0 0 0
1/2 1/2 0 0
1 1/2 1/2 0

1/3 1/3 1/3

,

1/4 1/4 0 0
1/4 0 1/4 0
1 1/3 1/3 1/3

1/3 1/3 1/3

.

Note that the above IMEX scheme is globally stiffly accurate [6]; namely, the implicit
tableau is stiffly accurate asj = bj , j = 1, . . . , s, and the explicit tableau similarly

satisfies \~asj = \~bj , j = 1, . . . , s - 1. As a consequence from (5.6), we have \^rn+1 = \^Rs,
\^jn+1 = \^Js, and \^sn+1 = \^Ss. As shown in [6], this property is essential in order to
achieve the AP property in the presence of a penalization term. Therefore, in what
follows, we will assume that our IMEX-RK scheme is globally stiffly accurate.

To obtain \^Rk in each internal stage of (5.7), one needs \^P
k
and \^Sk in the im-

plicit part f2( \^R
k, \^Sk). These quantities can be obtained explicitly by the following

procedure.
Suppose one has computed \^Rl and \^Sl for l = 1, . . . , k  - 1; then according to
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(5.7a),

(5.11)

\^Rk =\^rn +\Delta t

k - 1\sum 
l=1

\Bigl( 
\~aklf1( \^R

l, \^Jl) + aklf2( \^R
l, \^Sl)

\Bigr) 
+\Delta takk

\biggl[ 
1

\varepsilon 2
( \=F (v)M\^P

k
+Bk \^P

k  - M \^Rk  - Ck \^Rk)

+ \mu \=F (v)\partial x(D \~M\partial x \^P
k  - \chi \~Gk \^P

k
)

\biggr] 
=\^R

k - 1

+\Delta takk

\biggl[ 
1

\varepsilon 2
( \=F (v)M\^P

k
+Bk \^P

k  - M \^Rk  - Ck \^Rk)

+ \mu \=F (v)\partial x(D \~M\partial x \^P
k  - \chi \~Gk \^P

k
)

\biggr] 
.

Here \^R
k - 1

represents all contributions in (5.11) from the first k  - 1 stages. Now

one takes \langle \cdot \rangle on both sides of (5.11) so that [ \=F (v)M\^P
k
+Bk \^P

k  - M \^Rk  - Ck \^Rk] is

cancelled out. Now \^P
k
is obtained from the following diffusion equation in an implicit

form:

(5.12) \^P
k  - \Delta takk\mu \partial x

\Bigl( 
D \~M\partial x \^P

k  - \chi \~Gk \^P
k
\Bigr) 
=
\Bigl\langle 
\^R
k - 1\Bigr\rangle 

.

In order to avoid iterative solvers for nonlinear equations, in [6] an explicit scheme is

obtained simply by computing the new value of \^P
k
, explicitly setting \mu = 0 in (5.12),

and then plugging the computed value back into (5.11) in order to compute \^Rk. Here,
we use a different approach, based on a linearization of the implicit scheme obtained
by replacing \~Gk by \~Gk - 1 in (5.12) to get

(5.13) \^P
k  - \Delta takk\mu \partial x(D \~M\partial x \^P

k  - \chi \~Gk - 1 \^P
k
) =

\Bigl\langle 
\^R
k - 1\Bigr\rangle 

.

This permits us to keep the implicit structure of (5.13) by avoiding iterative solvers.
Although a careful stability analysis is missing, in our numerical tests this technique
has shown better stability properties compared to the technique proposed in [6].
Clearly, both strategies do not affect the overall accuracy of the scheme and can
be seen as predictor-corrector methods.

5.1. The space discretization. Second order accuracy in space is obtained us-
ing an upwind TVD scheme (with minmod slope limiter [38]) in the explicit transport
part and central differences for other second order derivatives. For all space-dependent
terms, we use notation ui \approx u(xi) where xi = (i - 1/2)\Delta x, i \in \BbbZ .
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During each internal stage of (5.7) the fully discrete scheme reads

\^Rk
i = \^rni +\Delta t

k - 1\sum 
l=1

\~akl

\biggl\{ 
 - v

2\Delta x
(\^Jl

i+1  - \^Jl
i - 1) +

v\phi 1/2

2\Delta x
( \^Rl

i+1  - 2 \^Rl
i +

\^Rl
i - 1)

 - v\phi 1/2

4
(\bfitgamma l

i  - \bfitgamma l
i - 1 + \bfitbeta l

i+1  - \bfitbeta l
i)

 - \mu 

(\Delta x)2
\=F (v)D \~M

\Bigl( 
\^\bfitrho l
i+1  - 2\^P

l

i +
\^P
l

i - 1

\Bigr) 
+

\mu 

2\Delta x
\=F (v)\chi 

\Bigl( 
\~Gl

i+1
\^P
l

i+1  - \~Gl
i - 1

\^P
l

i - 1

\Bigr) \biggr\} 
+\Delta t

k\sum 
l=1

akl

\biggl\{ 
1

\varepsilon 2

\Bigl( 
\=F (v)M\^P

l

i +Bl
i
\^P
l

i  - M \^Rl
i  - Cl

i
\^Rl
i

\Bigr) 
(5.14a)

+
\mu 

(\Delta x)2
\=F (v)D \~M

\Bigl( 
\^\bfitrho l
i+1  - 2\^P

l

i +
\^P
l

i - 1

\Bigr) 
 - \mu 

2\Delta x
\=F (v)\chi 

\Bigl( 
\~Gl

i+1
\^P
l

i+1  - \~Gl
i - 1

\^P
l

i - 1

\Bigr) \biggr\} 
,

\^Jk
i = \^jni +\Delta t

k - 1\sum 
l=1

\~akl

\biggl\{ 
 - v\phi 

2\Delta x
( \^Rl

i+1  - \^Rl
i - 1) +

v\phi 1/2

2\Delta x
(\^Jl

i+1  - 2\^Jl
i +

\^Jl
i - 1)

 - v\phi 

4
(\bfitgamma l

i  - \bfitgamma l
i - 1  - \bfitbeta l

i+1 + \bfitbeta l
i)

\biggr\} 
(5.14b)

 - \Delta t

k\sum 
l=1

akl
1

\varepsilon 2

\Biggl\{ 
(1 - \varepsilon 2\phi )v

\^Rl
i+1  - \^Rl

i - 1

2\Delta x
 - El

i
\^P
l

i +M\^Jl
i +Cl

i
\^Jl
i

\Biggr\} 
,

where

\bfitgamma l
i =

1

\Delta x
minmod

\Bigl( 
\^Rl
i+1 + \phi  - 1/2\^Jl

i+1  - \^Rl
i  - \phi  - 1/2\^Jl

i,(5.15a)

\^Rl
i + \phi  - 1/2\^Jl

i  - \^Rl
i - 1  - \phi  - 1/2\^Jl

i - 1

\Bigr) 
,(5.15b)

\bfitbeta l
i =

1

\Delta x
minmod

\Bigl( 
\^Rl
i+1  - \phi  - 1/2\^Jl

i+1  - \^Rl
i + \phi  - 1/2\^Jl

i,(5.15c)

\^Rl
i  - \phi  - 1/2\^Jl

i  - \^Rl
i - 1 + \phi  - 1/2\^Jl

i - 1

\Bigr) 
.(5.15d)

Since \^P
k
can be obtained explicitly by (5.13), we can fully discretize \^P

k

i as follows:

(5.16)

\^P
k

i  - \Delta takk
\mu 

(\Delta x)2

\Bigl[ 
D \~M( \^P

k

i - 1  - 2\^P
k

i + \^P
k

i+1)

 - \chi 
\Bigl( 
\~Gk - 1

i+ 1
2

( \^P
k

i+1  - \^P
k

i ) - \~Gk - 1
i - 1

2

( \^P
k

i  - \^P
k

i - 1)
\Bigr) \Bigr] 

=
\Bigl\langle 
\^R
k - 1

i

\Bigr\rangle 
,

where \~Gk - 1
i\pm 1

2

is an approximation of \~Gk - 1 at position xi\pm 1
2
.

Then, using (5.16), the fully discretized \^Rk
i , and subsequently \^Jk

i , is obtained
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from the following:

\biggl( 
I +

akk\Delta t

\varepsilon 2
(M+Ck

i )

\biggr) 
\^Rk
i = \^rni +\Delta t

k - 1\sum 
l=1

\~akl

\Bigl\{ 
 - v

2\Delta x
(\^Jl

i+1  - \^Jl
i - 1)

+
v\phi 1/2

2\Delta x
( \^Rl

i+1  - 2 \^Rl
i +

\^Rl
i - 1) - 

v\phi 1/2

4
(\bfitgamma l

i  - \bfitgamma l
i - 1 + \bfitbeta l

i+1  - \bfitbeta l
i)

 - \mu 

(\Delta x)2
\=F (v)D \~M

\Bigl( 
\^P
l

i+1  - 2\^P
l

i +
\^P
l

i - 1

\Bigr) 
+

\mu 

2\Delta x
\=F (v)\chi 

\Bigl( 
\~Gl

i+1
\^P
l

i+1  - \~Gl
i - 1

\^P
l

i - 1

\Bigr) \Bigr\} 
+\Delta t

k - 1\sum 
l=1

akl

\biggl\{ 
1

\varepsilon 2

\Bigl[ 
\=F (v)M\^P

l

i +Bl
i
\^P
l

i  - M \^Rl
i  - Cl

i
\^Rl
i

\Bigr] 
+

\mu 

(\Delta x)2
\=F (v)D \~M

\Bigl( 
\^P
l

i+1  - 2\^P
l

i +
\^P
l

i - 1

\Bigr) 
(5.17a)

 - \mu 

2\Delta x
\=F (v)\chi 

\Bigl( 
\~Gl

i+1
\^P
l

i+1  - \~Gl
i - 1

\^P
l

i - 1

\Bigr) \biggr\} 
+\Delta takk

\biggl\{ 
1

\varepsilon 2

\Bigl[ 
\=F (v)M\^P

k

i +Bk
i
\^P
k

i

\Bigr] 
+

\mu 

(\Delta x)2
\=F (v)D \~M

\Bigl( 
\^P
k

i+1  - 2\^P
k

i + \^P
k

i - 1

\Bigr) 
 - \mu 

2\Delta x
\=F (v)\chi 

\Bigl( 
\~Gk

i+1
\^P
k

i+1  - \~Gk
i - 1

\^P
k

i - 1

\Bigr) \biggr\} 
,

\biggl( 
I+

akk\Delta t

\varepsilon 2
(M+Ck

i )

\biggr) 
\^Jk
i = \^jni +\Delta t

k - 1\sum 
l=1

\~akl

\biggl\{ 
 - v\phi 

2\Delta x
( \^Rl

i+1  - \^Rl
i - 1)

+
v\phi 1/2

2\Delta x
(\^Jl

i+1  - 2\^Jl
i +

\^Jl
i - 1)  - 

v\phi 

4
(\bfitgamma l

i  - \bfitgamma l
i - 1 + \bfitbeta l

i+1  - \bfitbeta l
i)

\biggr\} 
 - \Delta t

k - 1\sum 
l=1

akl
1

\varepsilon 2

\Biggl\{ 
(1 - \varepsilon 2\phi )v

\^Rl
i+1  - \^Rl

i - 1

2\Delta x
 - El

i
\^P
l

i +M\^Jl
i +Cl

i
\^Jl
i

\Biggr\} 
(5.17b)

 - \Delta takk
1

\varepsilon 2

\Biggl\{ 
(1 - \varepsilon 2\phi )v

\^Rk
i+1  - \^Rk

i - 1

2\Delta x
 - Ek

i
\^P
k

i

\Biggr\} 
,

In the above system
\bigl( 
1 + akk\Delta t

\varepsilon 2 (M+Ck
i )
\bigr) 
is symmetric positive definite and thus

invertible. After calculating all \^Rk
i and \^Jk

i for k = 1, . . . , s, we can update \^rn+1
i and
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\^jn+1
i in (5.6) as

\^rn+1
i =\^rni +\Delta t

s\sum 
k=1

\~bk

\biggl\{ 
 - v

2\Delta x
(\^Jk

i+1  - \^Jk
i - 1) +

v\phi 1/2

2\Delta x
( \^Rk

i+1  - 2 \^Rk
i + \^Rk

i - 1)

 - v\phi 1/2

4
(\bfitgamma k

i  - \bfitgamma k
i - 1 + \bfitbeta k

i+1  - \bfitbeta k
i ) - 

\mu 

(\Delta x)2
\=F (v)D \~M

\Bigl( 
\^P
k

i+1  - 2\^P
k

i + \^P
k

i - 1

\Bigr) 
+

\mu 

2\Delta x
\=F (v)\chi 

\Bigl( 
\~Gk

i+1
\^P
k

i+1  - \~Gk
i - 1

\^P
k

i - 1

\Bigr) \biggr\} 
+\Delta t

s\sum 
k=1

bk

\biggl\{ 
1

\varepsilon 2

\Bigl[ 
\=F (v)M\^P

k

i +Bk
i
\^P
k

i  - M \^Rk
i  - Ck

i
\^Rk
i

\Bigr] 
(5.18a)

+
\mu 

(\Delta x)2
\=F (v)D \~M

\Bigl( 
\^P
k

i+1  - 2\^P
k

i + \^P
k

i - 1

\Bigr) 
 - \mu 

2\Delta x
\=F (v)\chi 

\Bigl( 
\~Gk

i+1
\^P
k

i+1  - \~Gk
i - 1

\^P
k

i - 1

\Bigr) \biggr\} 
,

\^jn+1
i =\^jni +\Delta t

s\sum 
k=1

\~bk

\biggl\{ 
 - v\phi 

2\Delta x
( \^Rk

i+1  - \^Rk
i - 1) +

v\phi 1/2

2\Delta x
(\^Jk

i+1  - 2\^Jk
i + \^Jk

i - 1)

 - v\phi 
4
(\bfitgamma k

i  - \bfitgamma k
i - 1  - \bfitbeta k

i+1 + \bfitbeta k
i )

\biggr\} 
(5.18b)

 - \Delta t

s\sum 
k=1

bk
1

\varepsilon 2

\Biggl\{ 
(1 - \varepsilon 2\phi )v

\^Rk
i+1  - \^Rk

i - 1

2\Delta x
 - Ek

i
\^P
k

i +M\^Jk
i +Ck

i
\^Jk
i

\Biggr\} 
,

where \bfitgamma k
i and \bfitbeta k

i are defined as in (5.15).
Following [6], we choose

(5.19) \mu = \mu (\varepsilon ,\Delta x) = exp( - \varepsilon 2/\Delta x).

Thus, for large values of \varepsilon (e.g., \varepsilon = O(1)), \mu \approx 0, and we could avoid the loss of
accuracy caused by adding and subtracting the penalty term, whereas for very small
values of \varepsilon (e.g., \varepsilon \rightarrow 0), \mu \rightarrow 1, which guarantees that we have an implicit scheme
for the limiting diffusion equation.

Remark 5.1. The full discrete scheme is obtained using the Gauss--Legendre quad-
rature nodes for the velocity discretization. Finally, to get the boundary conditions
for \^r, \^j, and \^s, we refer the reader to [31] for details.
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5.2. The sAP property. Denote

f1( \^R
l
i,
\^Jl
i) = - v

2\Delta x
(\^Jl

i+1  - \^Jl
i - 1) +

v\phi 1/2

2\Delta x
( \^Rl

i+1  - 2 \^Rl
i +

\^Rl
i - 1)

 - v\phi 1/2

4
(\bfitgamma l

i  - \bfitgamma l
i - 1 + \bfitbeta l

i+1  - \bfitbeta l
i)

 - \mu 

(\Delta x)2
\=F (v)D \~M

\Bigl( 
\^P
l

i+1  - 2\^P
l

i +
\^P
l

i - 1

\Bigr) 
(5.20a)

+
\mu 

2\Delta x
\=F (v)\chi 

\Bigl( 
\~Gl

i+1
\^P
l

i+1  - \~Gl
i - 1

\^P
l

i - 1

\Bigr) 
,

f2( \^R
l
i) =

1

\varepsilon 2

\Bigl[ 
\=F (v)M\^P

l

i +Bl
i
\^P
l

i  - M \^Rl
i  - Cl

i
\^Rl
i

\Bigr] 
+

\mu 

(\Delta x)2
\=F (v)D \~M

\Bigl( 
\^P
l

i+1  - 2\^P
l

i +
\^P
l

i - 1

\Bigr) 
(5.20b)

 - \mu 

2\Delta x
\=F (v)\chi 

\Bigl( 
\~Gl

i+1
\^P
l

i+1  - \~Gl
i - 1

\^P
l

i - 1

\Bigr) 
,

g1( \^R
l
i) = - v\phi 

2\Delta x
( \^Rl

i+1  - \^Rl
i - 1) +

v\phi 1/2

2\Delta x
(\^Jl

i+1  - 2\^Jl
i +

\^Jl
i - 1)

 - v\phi 

4
(\bfitgamma l

i  - \bfitgamma l
i - 1  - \bfitbeta l

i+1 + \bfitbeta l
i),(5.20c)

g2( \^R
l
i,
\^Jl
i) =

1

\varepsilon 2

\Biggl[ 
(1 - \varepsilon 2\phi )v

\^Rl
i+1  - \^Rl

i - 1

2\Delta x
 - El

i
\^P
l

i +M\^Jl
i +Cl

i
\^Jl
i

\Biggr] 
.(5.20d)

From (5.17) we have

\left(     
\^R1
i

\^R2
i
...
\^Rs
i

\right)     =

\left(     
\^rni
\^rni
...
\^rni

\right)     +\Delta t

\left(     
0

\~a21f1( \^R
1
i ,
\^J1
i )

...\sum s - 1
l=1 \~aslf1( \^R

l
i,
\^Jl
i)

\right)     +\Delta tA

\left(     
f2( \^R

1
i )

f2( \^R
2
i )

...

f2( \^R
s
i )

\right)     ,(5.21a)

\left(     
\^J1
i

\^J2
i
...
\^Js
i

\right)     =

\left(     
\^jni
\^jni
...
\^jni

\right)     +\Delta t

\left(     
0

\~a21g1( \^R
1
i )

...\sum s - 1
l=1 \~aslg1( \^R

l
i)

\right)     +\Delta tA

\left(     
g2( \^R

1
i ,
\^J1
i )

g2( \^R
2
i ,
\^J2
i )

...

g2( \^R
s
i ,
\^Js
i )

\right)     ,(5.21b)

where

(5.22) AK(i - 1)+1:Ki,K(j - 1)+1:Kj = Ai,jIK\times K , IK\times K is a K \times K identity matrix,

and A is defined as in (5.8).
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Denote W as the inverse matrix of A; then we obtain from (5.21)

\Delta t

\left(     
f2( \^R

1
i )

f2( \^R
2
i )

...

f2( \^R
s
i )

\right)     = W

\left[     
\left(     

\^R1
i

\^R2
i
...
\^Rs
i

\right)      - 

\left(     
\^rni
\^rni
...
\^rni

\right)      - \Delta t

\left(     
0

\~a21f1( \^R
1
i ,
\^J1
i )

...\sum s - 1
l=1 \~aslf1( \^R

l
i,
\^Jl
i)

\right)     
\right]     ,(5.23a)

\Delta t

\left(     
g2( \^R

1
i ,
\^J1
i )

g2( \^R
2
i ,
\^J2
i )

...

g2( \^R
s
i ,
\^Js
i )

\right)     = W

\left[     
\left(     
\^J1
i

\^J2
i
...
\^Js
i

\right)      - 

\left(     
\^jni
\^jni
...
\^jni

\right)      - \Delta t

\left(     
0

\~a21g1( \^R
1
i )

...\sum s - 1
l=1 \~aslg1( \^R

l
i)

\right)     
\right]     .(5.23b)

Since W has the same structure as A, W should be a lower triangular matrix with
entries

(5.24) WK(i - 1)+1:Ki,K(j - 1)+1:Kj = \omega i,jIK\times K ,

where W = (\omega i,j) is the inverse of the lower triangular matrix A in (5.8).
Then one can rewrite (5.23) as

\Delta tf2( \^R
k
i ) =

k\sum 
l=1

\omega kl

\Biggl[ 
\^Rl
i  - \^rni  - \Delta t

k - 1\sum 
l=1

\~aklf1( \^R
l
i,
\^Jl
i)

\Biggr] 
,(5.25a)

\Delta tg2( \^R
k
i ,
\^Jk
i ) =

k\sum 
l=1

\omega kl

\Biggl[ 
\^Jl
i  - \^jni  - \Delta t

k - 1\sum 
l=1

\~aklg1( \^R
l
i)

\Biggr] 
.(5.25b)

More explicitly,

\Delta t

\biggl\{ 
1

\varepsilon 2

\Bigl[ 
\=F (v)M\^P

k

i +Bk
i
\^P
k

i  - M \^Rk
i  - Ck

i
\^Rk
i

\Bigr] 
+

\mu 

(\Delta x)2
\=F (v)D \~M

\Bigl( 
\^P
k

i+1  - 2\^P
k

i + \^P
k

i - 1

\Bigr) 
 - \mu 

2\Delta x
\=F (v)\chi 

\Bigl( 
\~Gk

i+1
\^P
k

i+1  - \~Gk
i - 1

\^P
k

i - 1

\Bigr) \biggr\} 
=

k\sum 
l=1

\omega kl

\biggl\{ 
\^Rl
i  - \^rni  - \Delta t

k - 1\sum 
l=1

\~akl

\biggl[ 
 - v

2\Delta x
(\^Jl

i+1  - \^Jl
i - 1) +

v\phi 1/2

2\Delta x
( \^Rl

i+1  - 2 \^Rl
i +

\^Rl
i - 1)

 - v\phi 1/2

4
(\bfitgamma l

i  - \bfitgamma l
i - 1 + \bfitbeta l

i+1  - \bfitbeta l
i) - 

\mu 

(\Delta x)2
\=F (v)D \~M

\Bigl( 
\^P
l

i+1  - 2\^P
l

i +
\^P
l

i - 1

\Bigr) 

+
\mu 

2\Delta x
\=F (v)\chi 

\Bigl( 
\~Gl

i+1
\^P
l

i+1  - \~Gl
i - 1

\^P
l

i - 1

\Bigr) \biggr] \biggr\} 
,

(5.26a)

\Delta t

\Biggl\{ 
1

\varepsilon 2

\Biggl[ 
(1 - \varepsilon 2\phi )v

\^Rk
i+1  - \^Rk

i - 1

2\Delta x
 - Ek

i
\^P
k

i +M\^Jk
i +Ck

i
\^Jk
i

\Biggr] \Biggr\} 

=

k\sum 
l=1

\omega kl

\Biggl\{ 
\^Jl
i  - \^jni  - \Delta t

k - 1\sum 
l=1

\~akl

\biggl[ 
 - v\phi 

2\Delta x
( \^Rl

i+1  - \^Rl
i - 1) +

v\phi 1/2

2\Delta x
(\^Jl

i+1  - 2\^Jl
i +

\^Jl
i - 1)

 - v\phi 
4
(\bfitgamma l

i  - \bfitgamma l
i - 1  - \bfitbeta l

i+1 + \bfitbeta l
i)

\biggr] \Biggr\} 
.

(5.26b)
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Thus, multiplying both equations in (5.26) by \varepsilon 2 and letting \varepsilon \rightarrow 0, we have

\=F (v)M\^P
k

i +Bk
i
\^P
k

i  - (M+Ck
i )

\^Rk
i = 0,(5.27a)

v
\^Rk
i+1  - \^Rk

i - 1

2\Delta x
 - Ek

i
\^P
k

i + (M+Ck
i )
\^Jk
i = 0.(5.27b)

Now since M+Ck
i is nonsingular, one obtains

\^Rk
i = (M+Ck

i )
 - 1( \=F (v)M+Bk

i )
\^P
k

i = \=F (v) \^P
k

i +O(\varepsilon ),(5.28a)

\^Jk
i = (M+Ck

i )
 - 1

\Biggl( 
Ek

i
\^P
k

i  - v
\^Rk
i+1  - \^Rk

i - 1

2\Delta x

\Biggr) 
(5.28b)

= M - 1Ek
i
\^P
k

i  - vM - 1
\^Rk
i+1  - \^Rk

i - 1

2\Delta x
+O(\varepsilon ).

Inserting this back into (5.18a), thanks to the globally stiffly accurate property of the
IMEX scheme, as \varepsilon \rightarrow 0 we get

(5.29) \^rn+1
i = \^rni +\Delta t

s\sum 
k=1

\~bk \^f1( \^R
k
i ) + \Delta t

s\sum 
k=1

bk \^f2( \^R
k
i ),

where

\^f1( \^R
k
i ) = v2 \=F (v)

M - 1

4(\Delta x)2

\Bigl( 
\^Rk
i+2  - 2 \^Rk

i + \^Rk
i - 2

\Bigr) 
 - \=F (v)D

\~M

(\Delta x)2

\Bigl( 
\^P
k

i+1  - 2\^P
k

i  - \^P
k

i - 1

\Bigr) 
 - v2

4\Delta x
(M - 1Ek

i+1
\^P
k

i+1  - M - 1Ek
i - 1

\^P
k

i - 1)(5.30a)

+
1

2\Delta x
\=F (v)\chi ( \~Gk

i+1
\^P
k

i+1  - \~Gk
i - 1

\^P
k

i - 1),

\^f2( \^R
k
i ) =

1

(\Delta x)2
\=F (v)D \~M

\Bigl( 
\^P
k

i+1  - 2\^P
k

i + \^P
k

i - 1

\Bigr) 
 - 1

2\Delta x
\=F (v)\chi 

\Bigl( 
\~Gk

i+1
\^P
k

i+1  - \~Gk
i - 1

\^P
k

i - 1

\Bigr) 
.(5.30b)

Now the difference between M - 1( \^P
k

i+1 - 2\^P
k

i +
\^P
k

i - 1) and
\~M( \^P

k

i+1 - 2\^P
k

i +
\^P
k

i - 1) and

the difference between 1
\chi M

 - 1Ek
i
\^P
k

i and \~Gk
i
\^P
k

i are both spectrally small (see Remark

4.1), and thus after integrating over V +, \^f1 goes to 0 and one gets

\^\bfitrho n+1
i = \^\bfitrho n

i +\Delta t

s\sum 
k=1

bk

\biggl[ 
\=D \~M

\^P
k

i+1  - 2\^P
k

i + \^P
k

i - 1

(\Delta x)2

(5.31)

 - \=\chi 
\~Gk

i+1
\^P
k

i+1  - \~Gk
i - 1

\^P
k

i - 1

2\Delta x

\biggr] 
+O((\Delta x)2),
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where

\^P
k

i = \^\bfitrho n
i +\Delta t

k - 1\sum 
l=1

akl

\left[  \=D \~M
\^P
l

i+1  - 2\^P
l

i +
\^P
l

i - 1

(\Delta x)2
 - \=\chi 

\~Gl
i+1

\^P
l

i+1  - \~Gl
i - 1

\^P
l

i - 1

2\Delta x

\right]  
(5.32)

+ \Delta takk

\left[  \=D \~M
\^P
k

i+1  - 2\^P
k

i + \^P
k

i - 1

(\Delta x)2
 - \=\chi 

\~Gk - 1
i+1

\^P
k

i+1  - \~Gk - 1
i - 1

\^P
k

i - 1

2\Delta x

\right]  ,
which is an implicit RK scheme for the projected limiting diffusion equation (4.8).
Thus, the sAP property [32] of the proposed IMEX-RK scheme is formally justified.

6. Numerical tests.

6.1. The 1D nonlocal deterministic model. Our numerical tests are carried
out with

x \in \Omega = [ - 1, 1], v \in V = [ - 1, 1], \alpha = 1,

\=F (v) =
1

| V | 1V :=

\left\{   
1

| V | if v \in V,

0 otherwise.

The critical mass for the limiting Keller--Segel system given by formula (1.3) is

Mc = 2\pi .

The initial conditions are given by

\rho I(x) = Ce - 80x2

, fI(x, v) = \rho I(x)F (v),

where C = C(M) is a constant determined by the total mass M .
For the deterministic case, we compare our results by the second order IMEX-RK

method (5.10) (denoted by SSP2 in the figures) with the results by Carrillo and Yan
[10] (denoted by CY in the figures). For both tests, we set \Delta x = 0.005. In their
numerical tests, the CFL condition is

\Delta t = max

\biggl\{ 
\varepsilon \Delta x

2
,
\Delta x2

2

\biggr\} 
.

Obviously, when \varepsilon is small, it suffers from the parabolic CFL condition for the diffusive
nature of the Keller--Segel system.

For our IMEX-RK method, the choice of \Delta t is given by

\Delta t = \lambda \Delta x, \lambda = 0.02,

which is much bigger than \Delta x2/2.

6.1.1. A supercritical mass. It has been shown in [11] that the solution of the
kinetic system can converge to the Keller--Segel system weakly in a finite time interval
[0, t\ast ], with t\ast < tb. Here tb is the blow up time of the corresponding Keller--Segel
system.

For the supercritical case, we set

(6.1) M = 4\pi > Mc = 2\pi , t = 0.003 < tb \approx 0.0039.

Figure 1 shows that the solution to the kinetic equation \rho converges to the solution
of the Keller--Segel solution \rho 0 as \varepsilon \rightarrow 0 at time t = 0.003 < tb. Our IMEX-RK results
match very well with the results in [10].
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Fig. 1. The 1D nonlocal deterministic model in the supercritical case. Solid lines are numerical
results obtained in [10] and circles are numerical results obtained by the IMEX-RK method. The
dashed line is the numerical solution of the Keller--Segel equations for reference.
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Fig. 2. The 1D nonlocal deterministic model in the subcritical case. Solid lines are numerical
results obtained in [10] and circles are numerical results obtained by the IMEX-RK method. The
dashed line is the numerical solution of the Keller--Segel equations for reference.

6.1.2. A subcritical mass. For the subcritical case, we set

(6.2) M = \pi < Mc, t = 0.1.

Figure 2 shows convergence results similar to those of the supercritical case for
a relatively long time t = 0.1. Also, good agreement between our new IMEX-RK
solutions and the numerical results from [10] can be observed, even in the zoomed in
area. Clearly, in both test cases we observe, as in [10], the first order convergence in
\varepsilon of the solution of the IMEX-RK method to the solution of the Keller--Segel model.

6.2. The 1D nonlocal model with random inputs in the supercritical
case. Now we let

\alpha = 1 + 0.5z, z \sim U [ - 1, 1], M = 4\pi > \=Mc \approx 2.197\pi .
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Using the same mesh size as before, we also employ the stochastic collocation method
(using 20 quadrature points) as reference solutions. In stochastic collocation, the
deterministic solver can be applied directly to a set of selected sample points, and
then the solution is approximated by interpolation of all sample solutions (see [50] for
a review of stochastic collocation methods). Clearly, the collocation method is AP
pointwise for each sample; however, if you use the solutions at the sample points to
approximate the values at other points of z by interpolation, or evaluate the expected
value, variance, etc., using quadrature rules, then the error of interpolation or quad-
rature rule depends on the regularity of the solution, which may depend on \varepsilon . To
avoid these aspects, the collocation solution we put as a reference solution is already
the converged solution; namely, adding more sample points would not further change
the solutions. The gPC expansion has been considered only up to fourth order in our
numerical tests. The following are the comparisons of the two methods in mean and
standard deviation for the supercritical case with the same initial mass and stopping
time in (6.1). Given the gPC coefficients \^\rho k of \rho , the mean and standard deviation
are calculated as

\BbbE [\rho ] \approx \^\rho 1, \BbbS [\rho ] \approx 

\sqrt{}    K\sum 
k=2

\^\rho 2k.

6.2.1. The sAP property. Figure 3 shows that the IMEX-RK solution agrees
well with results of [10] for all \varepsilon regardless of whether it is combined with the gPC
approach or the collocation approach to deal with the uncertainty. Small differences
between the two methods, especially near the singularity for small \varepsilon , are observed due
to different orders of accuracy, but the SG solution always matches the collocation
solution accurately for the same deterministic solver. Figure 4 shows that both the
mean and the standard deviation of the kinetic chemotaxis solutions tend to the
quantities of the limiting Keller--Segel solution as \varepsilon \rightarrow 0 for fixed \Delta t and \Delta x, which
verifies the sAP property.

6.2.2. Global existence and finite time blow up. As proved in [11], the
solution to the kinetic system (2.7) with the nonlocal turning kernel is bounded on
[0, T ] for any time T . However, the Keller--Segel solution will blow up in finite time
with a supercritical mass. We examine the mean value and standard deviation of
\| \rho \| \infty for a relatively long time (t\gg tb) in Figure 5. The uncertain systems show the
same properties as the deterministic ones; e.g., the kinetic systems have global bound
in the first and second moments for different \varepsilon , while the Keller--Segel solution will
blow up in expected finite time.

6.2.3. The stationary solution of the kinetic system. The numerical tests
in [10] suggest that the solution of the deterministic kinetic system with a supercritical
initial mass stabilizes toward a stationary state after a long time. We also check
whether the same property holds for the kinetic system with random inputs. We plot
the mean and standard deviation of \~\rho (x) = \varepsilon \rho (\varepsilon x) in Figure 6, which shows that both
the mean and the standard deviation converge to some stationary state at a long time
t = 2, while the mean agrees with the deterministic stationary solution.

6.3. The interaction between peaks: The 1D nonlocal model with ran-
dom initial data. As shown in [3], the interactions between several peaks for the
modified Keller--Segel system can be interpreted as optimal transportation. In the
following numerical tests, we make some observations of the interaction changes in
the kinetic system caused by different types of randomness in the initial data.
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Fig. 3. The 1D nonlocal random model in the supercritical case. The solid line is obtained by
combining the deterministic solver [10] with the gPC method, and the circle is obtained by combining
the deterministic solver [10] with the collocation method. The dashed line is obtained by the IMEX-
RK using gPC, and the cross is obtained by the IMEX-RK using collocation. Different values of \varepsilon 
are tested, and the two quantities of interest are mean value (left) and standard deviation (right).

6.3.1. Case 1: Two symmetric peaks, without enough mass in each
peak. In this case, we still have Mc = 2\pi and \=Mc \approx 2.197\pi . In Figure 7, we
reproduced the deterministic attraction between two symmetric peaks with total mass
3\pi . Then we input symmetric randomness in each peak; i.e., the total mass follows
from uniform distribution from 2\pi to 4\pi , keeping each peak without enough mass.
Figure 8 shows that symmetric randomness keeps the attraction behavior exactly
as in the deterministic case. Symmetric properties are preserved both in mean and
standard deviation. However, in Figure 9 we input asymmetric randomness in each
peak but keep the total mass fixed as 3\pi . The two peaks will still be attracted in
the center but present behavior different from that in the deterministic case. The
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Fig. 4. The 1D nonlocal random model in the supercritical case. The solid line is obtained by
combining the deterministic solver IMEX-RK with the gPC-SG method, and the circle is obtained
by combining the deterministic solver IMEX-RK with the collocation method. The dashed line is the
gPC-SG solution of the limiting Keller--Segel equations with uncertainty. Different values of \varepsilon are
tested, and the two quantities of interest are mean value (left) and standard deviation (right).
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Fig. 5. The 1D nonlocal random model in the supercritical case. The solid line is obtained by
combining the deterministic solver IMEX-RK with the gPC-SG method, and the dashed line is the
gPC-SG solution of the limiting Keller--Segel equations. \rho in the infinity norm with different values
of \varepsilon is tested, and the two quantities of interest are mean value (left) and standard deviation (right).
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Fig. 6. The 1D nonlocal random model in the supercritical case. The mean (left) and standard
deviation (right) of the function \varepsilon \rho (\varepsilon x) for different \varepsilon are presented. t = 2 \gg tb.

asymmetric randomness in this case will widen the mean range of the center peak
after concentration, in the sense that asymmetric initial data push the concentrated
peak toward the direction with more initial mass.
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Fig. 7. Deterministic solution of \rho (x, t) with initial data f0 = 4
\surd 
5\pi 

\Bigl( 
1.5e - 80(x - 0.3)2+

1.5e - 80(x+0.3)2
\Bigr) 
, \varepsilon = 0.1. (Figure 8 in [10].)
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Fig. 8. Left is the mean and right is the standard deviation of \rho (x, t, z), respectively, with

random initial condition f0 = 4
\surd 
5\pi 

\Bigl( 
(1.5 + 0.5z)e - 80(x - 0.3)2 + (1.5 + 0.5z)e - 80(x+0.3)2

\Bigr) 
, z \sim 

\scrU [ - 1, 1], \varepsilon = 0.1.
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Fig. 9. Left is the mean and right is the standard deviation of \rho (x, t, z), respectively, with

random initial condition f0 = 4
\surd 
5\pi 

\Bigl( 
(1.5 + 0.5z)e - 80(x - 0.3)2 + (1.5 - 0.5z)e - 80(x+0.3)2

\Bigr) 
, z \sim 

\scrU [ - 1, 1], \varepsilon = 0.1.
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Fig. 10. Deterministic solution of \rho (x, t) with initial data f0 = 4
\surd 
5\pi 

\Bigl( 
3e - 80(x - 0.3)2+

5e - 80(x+0.3)2
\Bigr) 
, \varepsilon = 0.05.
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Fig. 11. Left is the mean and right is the standard deviation of \rho (x, t, z), respectively, with

random initial condition f0 = 4
\surd 
5\pi 

\Bigl( 
(3 + z)e - 80(x - 0.3)2 + (5 - z)e - 80(x+0.3)2

\Bigr) 
, z \sim \scrU [ - 1, 1], \varepsilon =

0.05.

6.3.2. Case 2: Two asymmetric peaks with enough mass in each peak.
With Mc = 2\pi and \=Mc \approx 2.197\pi , we put asymmetric initial masses both larger than
2\pi . Figure 10 shows results similar to those in Figure 10 of [10]. The mass in each
peak is large enough to concentrate, but they will merge into a larger peak which is
located closer to a larger initial peak due to asymmetry. Figure 11 shows the effect
of the asymmetric randomness with total initial mass fixed. It can be observed in the
mean and the standard deviation that the randomness affects the concentration time,
location, and asymmetry, showing that the solution is sensitive to initial data.

6.3.3. Case 3: Two asymmetric peaks (close), one below critical mass,
one above critical mass. From Figure 12 to Figure 15, we conduct a series of
experiments with two asymmetric peaks, keeping one peak with enough mass and the
other without enough mass. The deterministic case (Figure 12) shows that the peak
with less mass will move toward the other in a short time, and then they continue
to aggregate mass. In Figure 13, a small amount of randomness exchanged between
two peaks will not change this tendency in the mean. The standard deviation in
Figure 13 is asymmetric due to the asymmetric randomness in initial data. In Figure
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Fig. 12. Deterministic solution of \rho (x, t) with initial data f0 = 4
\surd 
5\pi 

\Bigl( 
e - 80(x - 0.1)2+

5e - 80(x+0.1)2
\Bigr) 
, \varepsilon = 0.05.
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Fig. 13. Left is the mean and right is the standard deviation of \rho (x, t, z), respectively, with ran-

dom initial condition f0 = 4
\surd 
5\pi 

\Bigl( 
(1 + 0.5z)e - 80(x - 0.1)2 + (5 - 0.5z)e - 80(x+0.1)2

\Bigr) 
, z \sim \scrU [ - 1, 1],

\varepsilon = 0.05.
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Fig. 14. Left is the mean and right is the standard deviation of \rho (x, t, z), respectively, with
random \alpha = 1 + 0.5z, z \sim \scrU [ - 1, 1], deterministic initial data, and \varepsilon = 0.05.

14, although mean values show no difference, the standard deviation is symmetric
because the source of randomness comes from the diffusion coefficient \alpha . Figure 15
shows that the position of the two peaks has significant effects on the aggregation
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Fig. 15. Left is the mean and right is the standard deviation of \rho (x, t, z), respectively, with

initial random position f0 = 4
\surd 
5\pi 

\Bigl( 
e - 80(x - (0.1+0.1z))2 + 5e - 80(x+(0.1+0.1z))2

\Bigr) 
, \varepsilon = 0.05.
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Fig. 16. Deterministic solution of \rho (x, t) with initial data f0 = 1.5\times 4
\surd 
5\pi e - 80x2

(subcritical),
\varepsilon = 0.01.

behavior in this case. From the mean and the standard deviation, one can observe
that there exists a critical distance between the two peaks, beyond which the two
peaks will not be able to merge. They will be separated to behave independently
according to their initial mass.

6.4. The 1D local model with random initial data. Although theoretic
study of the local model with supercritical mass is still not sufficient to understand
the blow up behavior of the local kinetic chemotaxis system, numerical tests in [10]
suggested blowing up density by using adapted grids. Instead of the blowing up
property, we are more interested in studying the sensitivity effect brought about by
the randomness around the critical mass. In Figure 16, the deterministic solution
with subcritical initial data will stay bounded, as expected from theory. However,
the solution continues to aggregate in Figure 17 if we introduce randomness into the
initial mass ranging from subcritical mass to supercritical mass, with mean less than
critical mass. It is more obvious in Figure 18 that the deterministic solution will
remain bounded, while the mean of the random solution appears increasing in time.
This indicates that the introduced randomness will influence the properties of the
solution. If the range of the initial data contains supercritical regimes, the solution
of the random system will behave quite differently from the deterministic one with
average initial mass.
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Fig. 17. Left is the mean and right is the standard deviation of \rho (x, t, z), respectively, with

random initial data f0 = (1.5 + z)\times 4
\surd 
5\pi e - 80x2

, \varepsilon = 0.01.
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Fig. 18. Comparison of \| \rho \| \infty in the deterministic solution and the mean solution.

Remark 6.1. A stochastic collocation method is used in the test in subsection 6.4
to deal with | \partial xs| as follows: Once \^s = (\^s1, . . . , \^sK)T is obtained at each time iteration,
\partial x\^s = (\partial x\^s1, . . . , \partial x\^sK)T can be obtained using finite difference. Then | \partial xs(x, z)| 
can be approximated by | \sum K

k=1 \partial x\^sk(x)\Phi k(z)| . According to the probability density
function of z, one can have a set of collocation points \{ zj\} Mj=1 with corresponding

weights \{ wj\} Mj=1. (M = 20 points are used in our test.) Projecting | \partial xs(x, z)| onto
the space \{ \Phi 1(z), . . . ,\Phi K(z)\} in order to get the gPC coefficients (\xi 1, . . . , \xi K)T of

| \partial xs| such that | \partial xs| \approx 
\sum K

k=1 \xi k(x)\Phi k(z), one can get

\xi k(x) =

\int 
Iz

| \partial xs(x, z)| \Phi k(z)\lambda (z)dz

\approx 
M\sum 
j=1

| \partial xs(x, zj)| \Phi k(zj)wj

\approx 
M\sum 
j=1

\bigm| \bigm| \bigm| \bigm| K\sum 
i=1

\partial x\^si(x)\Phi i(zj)

\bigm| \bigm| \bigm| \bigm| \Phi k(zj)wj , k = 1, . . . ,K.

Then (\xi 1, . . . , \xi K)T is used in the algorithm.
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7. Conclusion. In this article, a high order efficient stochastic Asymptotic-
Preserving (AP) scheme is designed for the kinetic chemotaxis system with random
inputs. Compared with the previous work [10] for the deterministic kinetic chemotaxis
equations, our new method, based on the generalized Polynomial Chaos (gPC) sto-
chastic Galerkin (SC) approach to dealing with uncertainty, uses the implicit-explicit
Runge--Kutta (IMEX-RK) method to gain high accuracy and utilize a macroscopic
penalty to improve the CFL stability condition from parabolic type to hyperbolic
type in the diffusive regime. The greater efficiency has been verified in comparison to
existing schemes.

There is much remaining work for future study. Since the kinetic description of
the chemotaxis system is more microscopic and consistent with the classical Keller--
Segel equation, with more favorable properties (e.g., global existence for nonlocal
turning kernel), it is important not only to complete the theory but also to conduct
efficient numerical simulations, comparing them with experimental results. On one
hand, many properties, which have been explored numerically in this paper and pre-
vious work [10, 12], remain to be verified by rigorous theory. On the other hand, the
high order efficient method in this paper should be extended to 2D and 3D kinetic
chemotaxis systems to support the theory in future work. Moreover, some general
problems for uncertainty quantification (UQ), such as high dimensionality and rigor-
ous sensitivity analysis, are to be further studied.
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