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PROJECTIVE ASPECTS OF THE GEOMETRY OF LAGRANGIAN
GRASSMANNIANS AND SPINOR VARIETIES

AGEU BARBOSA FREIRE, ALEX MASSARENTI, AND RICK RISCHTER

ABSTRACT. We study the projective behavior, mainly with respect to osculating spaces and secant
varieties, of Lagrangian Grassmannians and Spinor varieties. We prove that these varieties have oscu-
lating dimension smaller than expected. Furthermore, we give numerical conditions ensuring the non
secant defectivity of Lagrangian Grassmannians in their Pliicker embedding and of Spinor varieties in
both their Pliicker and Spinor embeddings.
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1. INTRODUCTION

Let V be a vector space endowed with a non-degenerate quadratic form @ or, when dim(V)
is even, with a non-degenerated symplectic form w. For r < dlmT(v) the isotropic Grassmannians
Go(r,V),G,(r, V) are the subvarieties of the Grassmannian G(r, V') parametrizing r-dimensional sub-
spaces of V' that are isotropic with respect to ) and w respectively.

All isotropic Grassmannians, with the exception of the symmetric case when dim(V') = 2n is even
and r = n, are irreducible. Furthermore, in the exceptional case the isotropic Grassmannian Gg(n, V)
has two connected components each one parametrizing the linear subspaces in one of the two families

of (n — 1)-planes of P(V') contained in the smooth quadric hypersurface in P(V') defined by Q. Either
(

of these two isomorphic components is called the %_U—dimensional Spinor variety and denoted by
Sh.

The restriction of the Pliicker embedding of G(n, V') induces an embedding S,, — P(A\" V). How-
ever, this is not the minimal homogeneous embedding of S,, that we will denote by S, — P(A) and
refer to as the Spinor embedding. The Pliicker embedding of S,, can be obtained by composing the
Spinor embedding with the degree two Veronese embedding.

In the skew-symmetric case, again when d = 2n is even and r = n, the isotropic Grassmannian
Guw(n,V) is called the M—dimensional Lagrangian Grassmannian and denoted by £G(n,2n). Unlike
the case of the Spinor variety, the restricting of the Pliicker embedding of G(n, V') yields the minimal
homogeneous embedding of £G(n,2n) that we will denote by LG (n,2n) — P(V,,,).

Lagrangian Grassmanninas and Spinor varieties have been widely studied both from the geometrical

and the representational theoretical viewpoint [LMO03], [Man09], [BB11], [IR05], [Angll], [SVIO],
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[Per12]. In this paper we will focus on the projective geometry of these varieties, mainly on the
dimension of their osculating spaces and secant varieties.

Let X C PV be an irreducible variety of dimension n, and p € X a smooth point. The s-osculating
space T;X of X at p is essentially the linear subspace of PV generated by the partial derivatives of
order less or equal than s of a local parametrization of X at p. Note that while the dimension of
the tangent space at a smooth point is always equal to the dimension of the variety, the dimension of
higher order osculating spaces can be strictly smaller than expected even at a general point. In general,
we have dim(7,;X) = min { (":s) —1 =05y, N}, where J, ), is the number of independent differential
equations of order less or equal than s satisfied by X at p. Such dimension is called the general
s-osculating dimension of X. Projective varieties having general s-osculating dimension smaller than
expected were introduced and studied in [Seg07], [Ter12], [Bom19], [Tog29], [Tog46], and more recently
in [PGI13], [PG15), [GIV14], [RIJL17], [FI02], [[Ta99], [Ta06], [MRO13], [PT90]. In Corollaries BI3]
317 we compute the general s-osculating dimension of £G(n,2n) in the Pliicker embedding and
of §,, in both the Pliicker and the Spinor embedding. In particular, we have the following result.

Theorem 1.1. The Lagrangian Grassmannian L£LG(n,2n) C P(V,, ) and the Spinor variety S, C
P(A\" V1) have s-osculating dimension smaller than expected respectively for 2 < s < n —1 and for
2 <5 <2[5] — 1. Furthermore, for any s > 0 we have T7LG(n,2n) = T,;G(n,V) NP(V,,,) for any
p € LG(n,2n), and T;S, = T,;G(n, V) NP(A\" V) for any p € Sy.

Finally, the Spinor variety S,, C P(A) has s-osculating dimension smaller than expected for 2 <
s< 5] =1, and TS, = P(A).

In Section [ we study the dimension of the secant varieties of Lagrangian Grassmannians and Spinor
varieties. The h-secant variety Sec,(X) of a non-degenerate n-dimensional variety X C PV is the
Zariski closure of the union of all linear spaces spanned by collections of h points of X. Secant varieties
of homogeneous varieties are fundamental objects for instance in tensor decomposition problems.
Indeed, they have been used to construct and study moduli spaces for additive decompositions of a
general tensor into a given number of rank one tensors [Dol04], [DK93|, [Mas16], [MM13], [RS00],
[TZ11], [BGI11].

The expected dimension of Secy,(X) is expdim(Secy, (X)) := min{nh+h —1, N}. The actual dimen-
sion of Secy, (X) may be smaller than the expected one. Following [Zak93], we say that X is h-defective
if dim(Sec (X)) < expdim(Sec (X)). Determining secant defectivity is a classical problem in algebraic
geometry which goes back to the Italian school [Cas37, Chapter 10], [Sco08], [Sev01], [Terli].

We tackle secant defectivity of Lagrangian Grassmannians and Spinor varieties following the strategy
introduced in [MR19], which we now explain. Given general points x1,...,z, € X C PV consider
the linear projection 7xp : X C PV --» PN with center (T, X, ..., Ty, X), where Nj := N — 1 —
dim((T, X, ..., Ty, X)).

By [CC02, Proposition 3.5], if 7y j, is generically finite then X is not (h + 1)-defective. In [MR19] a
new strategy was developed, based on the more general osculating projections instead of just tangential

projections. Given pi,...,p; € X general points, we consider the linear projection ]._.[Tkl ,,,,, X C
P1s---s Py

PN ——5s PNeiok with center <T§11X, . ,TlﬁlX>, and call it a (k1 + --- + kj)-osculating projection,
where Ni, = N —1-— dim((TzﬁlX e 7Tzi€le >) Under suitable conditions, one can degenerate
the linear span of several tangent spaces T, X into a subspace contained in a single osculating space
T;“X . So the tangential projections 7y j degenerate to a linear projection with center contained in the

,,,,, k, is generically finite, then 7x j is also

linear span of osculating spaces <T§11X R 7Tzi€le > If HTE
generically finite, and one concludes that X is not (h 4 1)-defective. The advantage of this approach
is that we are allowed to consider osculating spaces at much less points than h, and consequently to
control the dimension of the general fiber of the projection.

This strategy was successfully applied to study the problem of secant defectivity for Grassmannians
[MR19] and Segre-Veronese varieties [AMRI19]. Here we apply it to Lagrangian Grassmannians and

Spinor varieties. While for the Pliicker embeddings, thanks to the relation among the osculating space
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of these varieties and those of G(n, V) in Theorem [[LT], our arguments boil down to the main results
on the osculating behavior of G(n, V) in [MR19], for S, in its Spinor embedding more complicated
computations are needed.

At the best of our knowledge very few is know about secant defectivity of these varieties [BB11],
[Angll]. In particular, it has been conjectured that Secp(LG(n,2n)) has the expected dimension
except for the cases (n,h) € {(4,3),(4,4)} [BB11, Conjecture 1.2]. The main results in Theorems [£.8],
41711 can be summarized as follows.

Theorem 1.2. The Lagrangian Grassmannian L£G(n,2n) C P(V,,) in its Plicker embedding is not
h-defective for h < L"THJ Furthermore, the Spinor variety S, C P(\" V) in its Plicker embedding
is mot h-defective for h < L%J

Finally, the Spinor variety S,, C P(A) in its Spinor embedding is not h-defective for h < L"THJ

In Section Ml we observe that Theorem improves the main results on secant defectivity of
LG(n,2n) C P(V,) in [BBII] for n > 9, and the main results on secant defectivity of S,, C P(A)
in [Angll] for n > 14.

The paper is organized as follows. In Section 2] we recall some basic facts on Lagrangian Grass-
mannians and Spinor varieties describing the local parametrizations that are needed in the following
sections. In Section [Bl we study higher osculating spaces of these varieties and the linear projections
centered at them. Finally, in Section ] we prove our main results on secant defectivity of Lagrangian
Grassmannians and Spinor varieties.

Acknowledgments. The first named author would like to thank FAPERJ for the financial support.
The second named author is a member of the Gruppo Nazionale per le Strutture Algebriche, Geo-
metriche e le loro Applicazioni of the Istituto Nazionale di Alta Matematica "F. Severi” (GNSAGA-
INDAM).

2. LAGRANGIAN GRASSMANNIANS AND SPINOR VARIETIES

Throughout the paper we work over the field of complex numbers. Let V be a complex vector
space of dimension d. We will denote by G(r, V') the Grassmannian parametrizing vector subspaces of
dimension r of V', in its Pliicker embedding, that is the morphism induced by the determinant of the
universal quotient bundle Qg(r,V) on G(r,V):

fr,d : g(’l“, V) — PV.= P(/\r V)
(V1. y0p) = UL A Ay
where N = (f) — 1. Now, let A := {I Cc{1,...,d},|I|=r}. For each I = {iy,...,i,} € A, with
i1 < -+ <y, let ey € G(r, V) be the point corresponding to e;; A--- Ae;. € A" V. We will denote by
pr the Pliicker coordinates on P¥.

Let @ be a non-degenerate quadratic form on V. A subspace W C V is isotropic with respect to Q)
if Q(v1,v2) = 0 for any vy, v9 € W. For any r < %l there exists a SO(V')-equivariant projective variety
Go(r, V) parametrizing r-dimensional subspaces of V' that are isotropic with respect to Q.

Similarly, if V' is endowed with a non-degenerate symplectic form w, for any r < % there exists
a Sp(V)-equivariant projective variety G, (r, V) parametrizing r-dimensional subspaces of V' that are
isotropic with respect to w. Note that in this case d must be even.

The varieties Gg(r, V'), G (r, V') are called isotropic Grassmannians. All these varieties, except in the
symmetric case when d = 2r, are irreducible of Picard rank one [Tev05, Section 2.1]. The exceptional
case Gg(r, V') with d = 2r has two irreducible components.

In the skew-symmetric case A"V is a reducible Sp(V) representation. Indeed, it contains the
irreducible submodule w A /\ri2 V C A" V. The complementary submodule V,, is irreducible, and the

restriction of the Pliicker embedding induces and embedding

Gu(r, V) = P(V,) C IP’(/r\ V)
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In the symmetric case, if d = 2m + 1 and r < m or d = 2m and r < m — 1, then A"V is an
irreducible SO(V')-module. Then, the image of Gg(r,V) under the Pliicker embedding spans the
whole of P(A" V).

In this paper we will study two classes of isotropic Grassmannians. The Lagrangian Grassmannian
LG (n,2n) is the subvariety of G(n, V') parametrizing dimension n Lagrangian subspaces of a complex
symplectic vector space V' of dimension 2n. We fix a basis of V such that the symplectic form in this

basis is given by
_ 0o I,
7= (7

Let us represent a point W € L£G(n,2n) as a 2n x n matrix of the form < %1 > In the affine open
2

neighborhood Uy of < 161 > consisting of the W such that W is invertible we may write W as < {Z >,

where A = WolWW,~ 1is symmetric. Indeed, note that since W is isotropic we have Wt JW = 0, that
is WiWy = WiW, which in turn yields (WoW[ 1)t = (W) WEW,W ! = WoW L. Therefore, the
Pliicker embedding of G(n, V') restrict to an embedding

bnon: LG(n,2n) — P(V,,) CPA"V)
that is locally given by

¢n,2n\lxlo : U C ﬁg(n72n) — P(an) - P(/\n V)
w = (LA NAN*A4,...,\"A)

Here P(V,,,) is the linear span of £LG(n,2n) in P(A" V), and V,,, can be identified with the irreducible
representation of Sp(2n) with highest weight w,,, the fundamental weight associated to the last simple
root «,. In particular, £LG(n,2n) is a variety of dimension

(2.1)

n(n+1)

dim(LG(n,2n)) = 5

embedded in a projective space P(V,,,) of dimension

n 2
dim(P(V,,)) = EZ <<n> + ("))
2=\ J
J
and G(n,V)NP(V,,) = LG(n,2n).

Now, let V be a complex vector space of dimension 2n, endowed with a non degenerate quadratic
form Q). As we said before, the variety parametrizing maximal isotropic, with respect to @), subspaces
of V' has two connected components S, and S_ which are isomorphic. Their linear spans in the
Pliicker embedding are in direct sum, and we have a splitting A"V = A" Vi & A" V_ into spaces of
the same dimension, and S1 = G(n, V) NP(A" V).

Let Xqg C P?"—1 be the smooth quadric hypersurface associated to ). Then there are two families
of linear subspace of projective dimension n — 1 contained in Xg, and the varieties S+ parametrize
precisely these liner subspaces. The automorphism switching the two connected components of the
orthogonal group O(V') induces an isomorphism between S and S_. We will denote by S,, either of
these two isomorphic varieties. Therefore, restricting the Pliicker embedding we get an embedding

(2.2) Bt Su = B(A"Vi)SE(A"V)

However, the minimal embedding of §,, is an embedding in the projectivized half-spin representation
[Tev05) Section 2.1], let us denote it by

(2.3) an: Sy — P(A)
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Now, we describe this minimal embedding in an affine chart. We fix a basis of V such that the
quadratic form in this basis is
(0 I,
o=(1 0

and represent a point U € S, as a 2n xn matrices of the form < gl > . In the affine open neighborhood
2

Uy of < Ig > consisting of the U such that U; is invertible we may write U as ( Ig ), where
B =UU; Uis skew-symmetric. Indeed, in this case U'QU = 0 implies that UlUs = —ULU;, which
in turn yields (UyU; 1) = —(U; HIULULUT = —UsU; L. The minimal embedding o, is given in this
chart by
Oty UcsS, — P(A)

U = (1,Pf2j(3))

where pfy; (B) denotes all the 2j x 2j principal Pfaffians of B, and j = 1,..., % if n is even, while

(2.4)

ij=1..., "T_l if n is odd. In particular S, is a projective variety of dimension

dim(S,) = @

embedded in a projective space P(A\" V) of dimension

. X 1 /2n
dim(P(/\ V) = §<n> -1
via the embedding £, in (2.2]), and in a projective space P(A) of dimension
dim(P(A)) =271 -1

via the minimal embedding «,, in ([Z3]). Note that £, can be obtained composing o, with a degree
two Veronese embedding.

3. HIGHER OSCULATING SPACES AND PROJECTIONS

Let X PV be an integral projective variety of dimension n, p € X a smooth point, and
p: UCC* — cN
(tl,...,tn) — ¢(t1,...,tn)
with ¢(0) = p, be a local parametrization of X in a neighborhood of p € X.
For any s > 0 let O, X be the affine subspace of CY passing through p € X, and whose direction

is given by the subspace generated by the vectors ¢;(0), where I = (i1,...,4,) is a multi-index such
that |I| < s and

olllg
ot ... otir

7=

Definition 3.1. The s-osculating space T; X of X at p is the projective closure in PN of the affine
subspace O, X C CN.

For instance, TIS]X = {p}, and TplX is the usual tangent space of X at p. When no confusion arises
we will write T} instead of T, X.

Note that while the dimension of the tangent space at a smooth point is always equal to the
dimension of the variety, higher order osculating spaces can be strictly smaller than expected even at
a general point. In general, we have

dim(7, X') = min { (n + S) —1- 5s7p,N}
n
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where J;;, is the number of independent differential equations of order less or equal than s satisfied
by X at p.

We will be interested in relating the osculating spaces of a projective variety to those of its linear
sections. It is well-known that the tangent space of a transverse linear section of a variety at a smooth
point is cut out in the tangent space of the variety by the linear space we used to intercept the linear
section. This is not always the case for higher order osculating spaces.

Definition 3.2. Let X C PV be an irreducible variety and Y = P¥ N X be a linear section of X. We
say that Y is osculating well-behaved if for each smooth point p € Y we have

_ mk
T;Y =P"N T;X
for every s > 0.

In the following example we give a variety and a linear section of it that is not osculating well

behaved.

Example 3.3. In the projective space P*2 consider two complementary subspaces P!, P*, and let
C C PF be a degree k rational normal curve. Fixed an isomorphism ¢ : P! — C we consider the
rational normal scroll

S = U (p,1(p)) C P+

peP!

where (p,1(p)) is the line through p and 9 (p). Then S(; ;) can be locally parametrized by the map

6: AlxPl  — [Pk+2
(u,[g s c11]) = Jaou:ag:oquf b oy

Now, consider the Segre embedding

o P! x P* — p2+l
([w:v],Jap -+ rag]) = Jaou: - :apu:aov:---: agl.

and let (1 p) be its image. Note that Xy 1) is locally parametrized by

CE Al x P* — P2+l
(lu:1],[ag: - :ag]) = [agu: - :oapu:ag:- - : ol
and that deg(X (1 1)) = deg(Sq,x)) = k + 1. Now, take o; = ajut~t fori=2,...,k Then
o(u,fag tag v alukfl]) =Jopu:oqu: - a1 ag o ...alukfl]

and the coordinate functions of this last map are exactly the ones appearing in the expression of ¢.
Therefore, if [Zg : -+ : Zaj41] are the homogeneous coordinates on P?*+1 and

H"2 ={Z; — Zpsjya=0,5=1,... k- 1} =P

then we have
S(l,k) _ E(l,k) N Hk+2 C P2k+1

By [AMR19, Example 4.12] we have that if p € S(; 1) is a general point and k > 2 then dim(TgS(Lk)) =
4. On the other hand, [AMRI19] Corollary 2.6] yields TI?E(Lk) = P2+l We conclude that

2 2 k+2 _ k+2
TySam & T, EamNH™ =H

for all £ > 3.
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3.4. Osculating spaces of Lagrangian Grassmannians. Let A := {I C {1,...,2n}; |I| = n},
and given I, J € A define the distance between I and J as d(I,J) = |I| — |I N J|, which is also know
as Hamming distance. We rewrite the parametrization (2.1I) as follows:

n(n+1)
(3.5) ¢»:C 2 — LG(n,2n)
given by
1 - 0 aq - ain
M=/ -+ -t [ (det(My))sen
0 -+ 1 aipn -+ ann

where M is the n x n matrix obtained from M considering just the columns indexed by J.
Fix J € A, and let o5 € St be the permutation which changes the rows of M; so that the new
matrix is of the form

(3.6) < i gj >

where r = |Ig N J|,Ip := {1,...,n}, and M is the submatrix of (aij)i j—1 given by the rows indexed
by Io \ J and the columns indexed by (J \ Iy) — n. Note that det(M;) = e(cos)det M ;, where € is the
group homomorphism associating to a permutation its sign.

Now, note that if J € A and J’ € A is given by

(3.7) J'=(To\J)+n) U5\ J) —n)

we have that d(Io,J) = d(Ip,J') = n —r. Moreover det M ; = det M ;, and thus e(o ;) det(M;) =
(o) det(My). We will denote by 3 the subset of A x A given by

(3.8) S = {(,J) € Ax AT = ((Io\ J)+n) U ((I§\ J) = n)}
Furthermore, we define X5 := {(J,J') € X | d(Iy, J) < s}.
Proposition 3.9. For any s > 0 and I € A we have

T3 LG(n,2n) = (e(og)es +e(op)ey | (J,J) € 8s) = T5 G(n, V) NP(V,)

In particular, TS LG (n,2n) = P(V,,) for any s > n, and LG(n,2n) = G(n, V) NP(V,,) C P(\" C*") is
osculating well-behaved.

Proof. We may assume that I = {1,...,n} € A and use the parametrization First, note that
each variable appears in degree at most two in the coordinates of ¢. Therefore, deriving three times
with respect to the same variable always gives zero. Furthermore, since the degree of det(M ) with
respect to the a; ;’s is at most n, all partial derivatives of order greater than or equal to n+1 are zero.
Then it is sufficient to take s < n. Note also that det(My) is a homogeneous polynomial of degree
m = d(I,J) in the variables a; ;, its partial derivatives of order s are zero if s > m and a homogeneous
polynomial of degree m — s otherwise. Therefore, the partial derivatives of det(M ) evaluated at zero
vanish for s # m.

Let us fix J = {j1,...,jn} € A and take k, k" € {1,...,n}. We will compute
that the variable ay, ;s appears at most two times in the entries of M.

ddet(My)
Oay, 1

expansion of det(My) with respect the k-th row. If we denote the entries of M by m; j, then the
entries of M are given by m; j, with [ = 1,...,n. Therefore, the variable a j appears in the entries
of My if and only if aj k' = My kr4n, in this case we set k' +n = j; € J. If ay v appears at least once
in the entries of M, then the Laplace expansion of det(My) is given by

det(MJ) = 2?21(—1)k+imk7ji det(Mij\,;i)
(3.10) = (_1)k+lmk,jl det(MJ,EJl) + z?Zl;i?él(_l)kﬂmkvji det(MJ,EJi)
(—1)k+lak7k/ det(MJ,E,m) + Zznzl;i#l(_l)k-i_zmkm det(MJ,'];@)

ddet(M,)

Bayp Remember

In order to compute when ay ;s appears in the entries of M; we will use the Laplace
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where M IE7, denotes the submatrix of M; obtained deleting the row indexed by k£ and the column
indexed by j;.
Now, we derive the equation ([3.I0) with respect to ay . If the variable ay j/ appears just once in

the entries of M, then the minors M+ 3 with ¢ # [, do not depend on ay, ;-. Hence, in this case we

have
3det(MJ) k+1 aak,k/ ket
e DT AetM g ) gy = (P det(M g )
Note that det(M I kk/,\) vanishes when the determinant of M; does not depend on aj . Now,

suppose that ay j appears twice in the entries of M}, in this case ay ;s appears in all minors M , ;-

k ?
with i # [, except MJk o . Then using the notation k+n = j, € J from (B.10) we get that det(MJ) =

(=1 Hag g det(M, ;) + (=) ag e det(M ) 7 =) + 30 10 (= 1) e g, det (M 7).
Now, note that using the Laplace expansion of det(M IR ) with respect the k’-th row, the par-

ddet(M, 7 =)
Oay, ps

denotes the submatrix of M; obtained deleting the

tial derivative of det(M with ¢ # [,r, with respect to aj ;s can be written as

Jvk\?;i)7
(=1)F' 7 det(M TRR, k/f)’ where M -~
rows k and k' and the columns j; and k + n. Therefore,

TR Jik+n

ddet(M 9 5
aeak(,k/J) = (-1 Biag e’ det(MJ,E’@) + (—1)"“”(9 -y, det (M
. Odet(M, -~
k Jk,
"‘Z?:u;el r(_l) Hmk,jiTk,“

Odet(M o
= (DR AG(M ) + () Hay e BT

Oay,
Odet(M,+ =)
n k+i ) Jik,gi”
+ Zi:m;&l r(_ ) ME,j; Bay, 1

Jk k+n)

Jk k’-i—n

8det(MJE ;)

= ( )k+l det( Jk ) + Zz 1; z;ér( 1)k+imkvjz Oay, k7’
UM ) + S (1) (D det (M )
= (=D det(MJ@k//:n) + (D L (FD) g, det (M7 = 1)
= (—1)k+l det(MJ,Rk/’Jr\n) + (—1)k +r det(MJ,l?,m)
Again, the minors det(MJE k//\) and det (M LR R ——) may vanish.
Now, consider the derivatives of order m > 1, set a = {a,...,an} C I, B ={F1,...,Bm} C I, and
define
M ~ = MJ,al,--.,am,7717--.73ﬂ/m lf a C I \ J’ IBZ + n= j’w e J’ ‘a’ - ‘B’ =m
.2, 0 otherwise

Now, take K = {ky,...,kn} C I, K' ={k},... k], } C I, and for each a = {ov1,...,apn} C KUK’
with o, € {k;, k[} define o* = {of,..., o}, }, where {a;,af} = {k;, K}, and

Ay ={a| det(M,;za+) # 0}

Therefore

0" det(My) _ Z (_1)Za¢+% det(M 5 a+)

8ak17k/1 e aakm7k4n aEh,

where +; is such that of +n = j,, € J. Remember that this partial derivative evaluated at zero vanish
when d(1,J) # m. In this case the matrix Mg 5+ is obtained deleting the rows indexed by I\ J and
the columns indexed by J \ I, hence M5 s+ = In—m. Therefore, for all @ € A; we have

nyi:(n—m—|—1)+---+(n—1)+nand Zai: Zz
i=1

i=1 iel\J
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and we conclude that ) ", a; + ; does not depend on @ € A ;. Now, setting ¢; = |A;| we have
0" det(My) 0 _{:l:CJ iftK'+nU(I\K)=J

0  otherwise

8ak17k/1 ce 8akm7k4n
Note that K"+ nU (I \ K) = J if and only if K +n U (I \ K') = J’, and in this case (J,J') € ¥,,.

Hence, we conclude that
oo 0 :{E(UJ)€J+E(JJ/)€J/ fK'+nU(I\K)=J

0 otherwise

8ak17k/1 e 8akm7k4n
and thus

am
< 0 0)| K,K'C IL|K| = |K'| = m> = (elon)es +e(op)ey | (1, ) € B \ 1)
({90,[(7[(/

Therefore

(3.11) T LG(n,2n) = <

(0) ‘ 0<m< S> = <€(UJ)€J + 6(0’]/)6]/ ‘ (J, J/) S 23>
Now, set
(3.12) PNM .= {e(0))Py — €(oy)Py =0 (J,J') €S and J # J'} C PV
where M = £ 30, (2)2 — (7). Now, (BII) and (B.I2) yield that
T LG(n,2n) ={P;=0|J € Aand d(I,J) > s} NPN"M =T2 G(n, V) NPV~
Finally, we get that
s s S N—-M s
17 LG(n,2n) CT;G(n, V)NP(V,) C T, G(n, V)NP =T; LG (n,2n)
and hence T7 LG (n,2n) = T; G(n,V) NP(V,,). O
Corollary 3.13. For any p € LG(n,2n) C P(V,,, ) we have

dim(T3£G (n, 2n)) = %;1 (Z) ((Z) 4 1)

for 1 < s <n—1 while T;LG(n,2n) = P(V,,) for s > n.

Proof. The symplectic group Sp(2n) acts transitively on £G(n,2n) and hence dim(7;£G(n,2n)) =
T7 LG(n,2n) for any p € LG(n,2n). Now, the claim follows from Proposition [3.9. O

3.14. Osculating spaces of Spinor varieties in the Pliicker embedding. Let us write the
parametrization induced by the embedding 5, in (2.2) as follows:

(3.15) B:C™7 58, CB(A\Vy)
given by
1 -« 0 0 - aip
M=| + -~ = (det(My))sen
0 -+ 1 —ay, -~ 0

where M is the n X n matrix obtained from M considering just the columns indexed by J.
Fix J € A, and let 0 and M ; as in (3.6). Then dit(MJ) =e(oy)det M ;.
Now, set J’EA as in (3.1), then det M ; = —det M ;s for each J,J' € A with J # J’ that satisfies
@B0), and det My =0 if d(1,J) is odd and J' = J in ([B7). Thus we have
G(O'J) det(MJ) = —G(O'J/) det(MJ/)

for each J,J' € A with J # J' satisfying (B.7]).
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Consider ¥ as in (38). For each (J,J') € ¥ with J # J' consider the hyperplane V(e(o;)P; +
€(oy)Py), and for each (J,J) € ¥ with d(I,J) odd, consider the hyperplane V(P;). We have that

P(A\ V) = N V(e(o;)Py+ (o)) Pyr)
(J,J)) €T and J # J'

(J.J) €5 and d(I, J) is odd

and hence S, = G(n, V) NP(A" V;). Now, define
Yo:={(J,J)eX|dI,J)<sand J# J}U{(J,J)eX|d(,J) < siseven}
Proposition 3.16. For any s > 0 and I € A we have
T;,Sn = {es | (J.J) € B} U{e(oy)es —e(ap)ey | (1, ) € Es})

In particular, TS, S, = T5,G(n, V) NP(N" V), T5.Sn = P(N" V4) for s > 2|5], and S, = G(n, V) N

I

P(A" V4) is osculating well-behaved.

Proof. The proof is analogous to the one of Proposition 3.9l It is enough to use the parametrization
(BI3) and to note that in this case

o3 6(O-J)BJ - 6(UJ’)BJ’ if (J’ J/) € Xm \ Ym—1 and J 7& J!

T T I ctbarag
and thus
(Go0)) = (e = (Ud) € B\ BahU{eloes = cloper = (1.0) € B\ St )
Therefore
755 = (Gae 010 m < 5) = (fes | (1) € b0 {elo)es = clay)e | (1.7) € B
and hence

T:S,={P;=0|J€Aand d(I,J) > s} NPV"M =75 G(n, V) nPV~M

n n\2 n (51 n
where M = %Zizl ()" = () + 2221 () O
Corollary 3.17. For any p € S, CP(A\" V}) we have
(51

ams) =35 (1) (1) +1) -3 ()

for 1 <s <2|5] — 1 while T,;S, = P(\" Vy) for s > 2[5].
Proof. The special orthogonal group SO(2n) acts transitively on S,. Now, the claim follows arguing
as in Corollary B.I3] using Proposition instead of Proposition O
3.18. Let G be a connected semisimple complex algebraic group, g its Lie algebra, and

Tg
r@y—yQ—|z,y,zyEg)

Ug:(

the universal enveloping algebra. Note that Ug has a natural filtration Ug® c Ug! C ... such that
Ug?® is spanned by products g; ...g;, where g; € g and | < s.

Let V) be an irreducible G-module with the highest weight A, and vy € V) a highest weight vector.
The action of Ug on V) induces a filtration Vf - V>\1 C ... of V) such that Vi = Ug®v,.

Let ) € P(V)) be the point corresponding to vy € V), and X = G/P C P(V,) the orbit of z) via
G, where P is a parabolic subgroup, namely the stabilizer of ) in G. If p is the Lie algebra of P then
we can identify TJCIAX with g/p. Furthermore, by [LM03, Proposition 2.3] we have that T, X = P(Vy)
for any s > 1.
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Corollary 3.19. Let G(n,V),L£G(n,2n),S, C P(AN"V) be the orbits of p = [e1 A -+ A e,] respec-
tively under the action of GL(V),Sp(V'),SO(V), and let P(V,,,),P(A" V) CP(A\" V) the irreducible
representations generated respectively by Sp(V),SO(V).

We denote by V§E, Vi, VE the pieces of the filtration described in (3.18) for N"V, Vi, \" V. re-

spectively. Then we have
P(Vig) = P(V§) NB(V,), P(VE) =PBVE) NP(A\V4)
for any s > 1.

Proof. Tt is a consequence of [LMO03l Proposition 2.3] and Propositions 3.9 O

Remark 3.20. As observed in Section 2l if d =2m +1and r < mor d = 2m and » < m — 1 then
A"V is an irreducible SO(V)-module. Therefore, in these cases, a result analogous to Corollary [3.19]
can not hold for the embedding Go(r,V) C G(r,V) C A" V.

3.21. Osculating spaces of Spinor varieties in the Spinor embedding. Let us denote by I' the
following set

(3.22) I'={I={i,....,iry C{1l,...,2n} |ris even and 0 < r < 2n}
when r = 0 we set, by convention, I = &. Now, let us consider the parametrization
n(n—1) n—

(3.23) a:C™r 58, cpl
defined by

1 --- 0 0 a19 a1n

0O -+ 0 —a 0

(I, A)=| "~ 7 2 — (pf(Ar))rer
an—1,n
0 -+ 1 —ani -+ —Gnin 0

induced by the embedding «, in (23]), where A; is the submatrix of A obtained considering the rows
and the columns indexed by I € I'.

For I € T' we will denote by P the corresponding homogeneous coordinate of Pgnfl_l, and by
er € P2""'~1 the coordinate point given by Py =0 for I # J.

Proposition 3.24. For any s > 0 and I € I we have
T Sy = (es||J] < 2s)={P;=0]]J| > 2s}
In particular, TF.S, = P(A) for s > [Z].
Proof. We can suppose that I = @ € T' and use the parametrization ([3.23]). First, note that each
variable appears in degree at most one the expression of a. Thus, deriving two times with respect to

the same variable always gives zero. Furthermore, since the degree of pf(Ay) with respect to the a; ;’s

is at most L%J all partial derivatives of order grater than or equal to L%J + 1 vanish.
Let I ={i1,...,ip} € T withr >0 and k, k" € {1,...,n} with k # k’. Then

Opf(Ar) [ (—1)MFHpf(Ar o) if kK €1
Bak,k/ N

In general, let m > 1 and K = {ky,... .k} C{1,...,n}, K' ={k,....k,,} C {1,...,n} such that
kj #kjforall 1 <j<m, KNK'=0and |K|=|K'| =m. Then

0 otherwise

KK
0 otherwise

™ pf(Ag) { +pf(A- =) ifK,K' C1I
aakl,k/l e aak"“k;n
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Therefore,
o™ pf(Ar) oy [ £l iKUK =1
aakl,k’l T aakmkin N 0 otherwise
and o
«
O = ie K
8ak17k,1 .”8akm,k;n( ) KUK
Finally, we get 75,5, = (G222-(0) | [K| = [K'| = m < ) = {ker | 1] < 2s). .

Corollary 3.25. For any point p € S, C P(A) we have

. s o 2 n
dim7,S,, = Z <2k:>

k=1
Jor 0 <'s < |%] —1 while T3S, = P2 L for s > 2]

Proof. Tt is enough to argue as in the proof of Corollary BI7 using Proposition B.24] instead of
Proposition B.16] ]

3.26. Projections. We will denote by Izs : X --» PNs the linear projection of an irreducible pro-

jective variety X C PV with center T5X. Our aim is to establish, for Lagrangian Grassmannians and
Spinor varieties, when such a projection is birational.

Proposition 3.27. Consider the Lagrangian Grassmannian L£G(n,2n) C P(V,,,). If 0 < s < n —2
then HTPS 15 birational.

Now, consider the Spinor variety S, C P(\" V) in the Plicker embedding. If 0 < s < 2| %] —2
then HTpS 18 birational.

Finally, consider the Spinor variety S, C P(A) in the Spinor embedding. If 0 < s < [§] — 2 then
HT; s birational.

Proof. Consider the case of the Lagrangian Grassmannian. It is enough to prove that Il »-2 is bira-
er

tional. By the description of the local chart for £G(n,2n) in (2. and Proposition B.9 we see that
IIL;n—2 keeps track of all the (n — 1) x (n — 1) minors of the symmetric matrix A, and of its determi-
er

nant as well. Note that if A is general then with these data we can reconstruct the inverse A~!, and
therefore A itself.

Now, consider S,, C P(A\" V4 ), and the parametrization (3.I5). With the same notation as in Section
B.Idlset M = (I, B), where B is an n x n skew-symmetric matrix. If n is even then 2| §] -2 = n—2, for
B general det(B) # 0, and we can argue as in the previous case, applying Proposition B.16] to prove
that -2 is birational. On the other hand, if n is odd then det(B) = 0. In this case 2|5 | -2 =n—3,

and by Proposition B.I6] ILn-s keeps track of all the (n — 1) x (n — 1) and (n — 2) x (n — 2) minors
cr

of B. Now, n — 1 is even, and arguing as in the even case we can reconstruct all the (n —1) x (n — 1)

submatrices of B, and hence B itself.

Finally, consider S,, C P(A), and the parametrization ([3.23]). Recall that if A is an invertible n x n
skew-symmetric matrix then A~! is given by

0 —pf(A12) pf(Ai3) e —pf(Ain)
pf(ALz) 0 — pf(Alg) N pf(Azm)
1 .
- | —pf(A f(A 0 ’
pE(A) p (. 1,3) p (.2,3) . .
: : . . - pf(An—l,n)
pf(A12) —pf(A2n) e pf(An—1n) 0

where A; ; denotes the submatrix of A obtained removing from A the rows and columns indexed by 4
and j [Kril6, Section 3.
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If, n is even then by (B.23]) and Proposition [3.24] we see that II L |2 keeps track of pf(A) and of

all the (n —2) x (n — 2) sub-Pfaffians of A. Similarly, if n is odd (B:?B]) and Proposition [3.24] yield that
I1 LuJ,g keeps track of all the (n —1) x (n—1) and (n —3) x (n — 3) sub-Pfaffians of A. Therefore, in

both cases to conclude that II METRE is birational it is enough to argue as we did for S,, € P(A" V)
eI
using the expression for A~! above. O

Remark 3.28. Proposition B.27 can not be improved. A standard computation shows that the
projection Iz, : 83 C PY ——» P contracts Sz onto the Veronese surface in P5.

4. ON SECANT DEFECTIVITY OF LAGRANGIAN GRASSMANNIANS AND SPINOR VARIETIES

We recall the notions of secant varieties, secant defectivity and secant defect. We refer to [Rus03]
for a nice and comprehensive survey on the subject.
Let X C PN =P(V) be an irreducible non-degenerate variety of dimension n and let

My(X)cX x--xXxgh,V)

where h < N, be the closure of the graph of the rational map o : X x --- x X --» G(h,V) taking
h general points to their linear span (x1,...,xzp). Observe that I';(X) is irreducible and reduced of
dimension hn.

Let my : Tp(X) — G(h,V) be the natural projection, and S,(X) := mo(T'1(X)) C G(h,V). Again
Sp(X) is irreducible and reduced of dimension hn. Finally, consider

T = {(z,A) |z € A} C PV x G(h, V)

with natural projections 7, and vy, onto the factors.

The abstract h-secant variety is the irreducible variety Sec,(X) := (¥5) 1 (Sp(X)) C Zy. The
h-secant variety is Secp(X) = m,(Sec, (X)) € PN, Then Secy,(X) is an (hn + h — 1)-dimensional
variety.

The number §;(X) = min{hn +h —1, N} — dim Secy,(X) is called the h-secant defect of X. We say
that X is h-defective if §,(X) > 0.

4.1. Osculating regularity of linear sections. In this section we study how the notion of osculating
regularity introduced in [MR19] behaves under linear sections. Let us recall [MR19, Definition 5.5,
Assumption 5.2] and [AMRI9] Definition 4.4].

Definition 4.2. Let X C PV be a projective variety. We say that X has m-osculating reqularity if
the following property holds: given general points p1,...,p, € X and an integer s > 0, there exists a
smooth curve C' and morphisms v; : C — X, j = 2,...,m, such that v;(ty) = p1, v;(tx) = p;, and
the flat limit Ty in the Grassmannian of the family of linear spaces

T = (T3, Ty o) » £ € C\{to)

is contained in szf“. We say that s, ...~ realize the m-osculating regularity of X for py,...,pm.

We say that X has strong 2-osculating regqularity if the following property holds: given general
points p,q € X and integers si, sy > 0, there exists a smooth curve v : C' — X such that v(¢y) = p,
v(ts) = q and the flat limit Tj in the Grassmannian of the family of linear spaces

T, = <T51 Tjé)>, t € C\{to}
is contained in T;1+32+1.

For a discussion on the notions of m-osculating regularity and strong 2-osculating regularity we
refer to [MR19] Section 5] and [AMRI19, Section 4]. We will need the following simple result.
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Lemma 4.3. Let H C P" be a linear subspace, Hy a family of linear subspaces parametrized by P\ {0},
and Hy its flat limit. Then

%ir%{Ht NH} CHyNH

s

Proof. We may assume that H = V(zo,...,x,) C P", where 0 <r <n — 1. Write

H, = {Zn:a%(t)xi == Zn:af(t)xi = O}
=0 i=0

Therefore, HyNH = {zg =+ =a, =Y.' al(t)z; = =31 . af(t)z; =0} and
n 04'1 n Ozk
i - — = = i e bt -
%g]%{HtﬂH}— xoy = —xr—'z tSI(O)xZ_ —‘Z tSk(O)xz—O
i=r+1 i=r+1
where s; is the biggest power of ¢ that divides simultaneously ozf; IETRRE ,oz%. On the other hand
i - e - . = = R _—
Im{H}NH = o= =2 = 3 o)== 3 (0)r=0
i=r+1 i=r+1
where u; is the biggest power of ¢ that divides simultaneously aé, . ,a%. Note that u; < s; for
j=1,...,k, and thus we conclude that lim ,o{H; N H} C limy,o{H;} N H. O

As a consequence of Lemma 4.3 and Definition we have the following.

Proposition 4.4. Let X C PN be an irreducible projective variety and Y = P* N X a linear section
of X that is osculating well-behaved. Assume that given general points pi,...,pm € Y one can find
smooth curves vj : C — X,j = 2,...,m, realizing the m-osculating reqularity of X for p1,...,pm such
that v;(C) C Y. Then Y has m-osculating regularity as well. Furthermore, the analogous statement
for strong 2-osculating regqularity holds as well.

Proof. By hypothesis given general points p1,...,p, € Y and an integer s > 0 there exist smooth
curves v; : C' — X with v;(tg) = p1 and vj(c0) = p; for j = 2,...,m such that v;(C) C Y. Consider
the family of linear spaces

ﬂ - <TI;91Y7 ,:32(25)}/, “e. T’fm(t)Y>

parametrized by C'\ {to}. Since Y is osculating well-behaved we can write T} as follows

)

T, = (1,Y, TjQ(t)Y, e ,T;’m(t)Y> = (T, X ﬂIP)S,T;Z(t)X NnPs, ... ,ij(t)X N Ps)
c (T, X, TWZ(I)X7 e 7T’$m(t)X> N Pps
Therefore
m{T,} C im{(T), X, T, X, T X)} NP = Tty
where the last inclusion comes from Lemma [£3l This argument, with the obvious changes, proves
that strong 2-osculating regularity passes from X to Y as well. O

4.5. On secant defectivity of LG (n,2n). In this section we will take advantage of the machinery

developed in the previous sections to get a condition ensuring the non secant defectivity of LG (n,2n) C
P(V,,).

Proposition 4.6. Let p,q € LG(n,2n) C P(V,,) be general points and s1,s2 > 0 integers. There
exists a rational normal curve v : P! — L£G(n,2n) of degree n such that v(0) = p and v(c0) = q.
Furthermore, consider the family of linear spaces

T, = (T,;" LG (n,2n), T;S(Qt) LG (n,2n))

parametrized by P1\{0}, and let Ty be its flat limit in the Grassmannian. Then Ty C T;1+52+1£Q(n, 2n),
that is LG(n,2n) C P(V,,) has strong 2-osculating regularity.
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Proof. Note that taking M; = (I,tA) with ¢ € C, in the parametrization of LG (n,2n) in ([B.5]) we see
that £G(n,2n) is rationally connected by rational normal curves of degree n.

By Proposition LG(n,2n) = G(n,V) NP(V,) is osculating well-behaved. Furthermore, since
by [MR19, Proposition 4.1] and its proof G(n,V) C P(A" V) has strong 2-osculating regularity, with
respect to the curve defined by M; = (I,tA) with ¢ € C, the statement follows from Proposition
4 O

We will need the following particular instance of [MR19, Theorem 6.2].

Theorem 4.7. Let X C PN be an irreducible projective variety having strong 2-osculating reqularity,
p € X a general point, k > 1 an integer, and set h := L%J If HTf 1s generically finite then X is
not (h + 1)-defective.

Proof. Set m =2 and [ =1 in [MR19, Theorem 6.2]. O
Now, we are ready to prove the main result of this section.

Theorem 4.8. If h < |™]| then £G(n,2n) C B(V,,) is not h-defective.

Proof. By Proposition LG (n,2n) C P(V,,) has strong 2-osculating regularity. Hence the statement

follows from Proposition and Theorem [£.71 O
In the following table we work out the first cases of Theorem .8
n Theorem [4.8
3,4 not defective for h < 2
5,6 not defective for h < 3
7,8 not defective for h < 4
>9 not defective for h < L"THJ

In particular, Theorem 1.8 improves [BB11, Theorem 1.1] as soon as n > 9. Note that by Theorem
A8 the Lagrangian Grassmannian £G(4,8) C P*? is not 2-defective and by [BBII, Theorem 1.1] it is
h-defective for h = 3, 4.

4.9. On secant defectivity of S,, in the Pliicker embedding. In this section we will study the
secant defectivity of S,, C P(A" V4).

Proposition 4.10. Let p,q € S, C P(\"V,) be general points, s1,s2 > 0 integers. There exists
a rational normal curve v : P! — S, of degree n such that ¥(0) = p and y(c0) = q. Furthermore,
consider the family of linear spaces

Ty = (T3S0, T, Sn)

parametrized by P\ {0}, and let Ty be its flat limit in the Grassmannian. Then Ty C T;1+82+1Sn,
that is S, C P(\" V) has strong 2-osculating regularity.

Proof. Note that taking My = (I,tA) with ¢t € C, in the parametrization of S,, in ([B.I5]) we see that
S, is rationally connected by rational normal curves of degree n.

By Proposition S, = G(n,V)NP(A" V4) is osculating well-behaved. Furthermore, since by
[MRI9, Proposition 4.1] and its proof G(n,V) C P(A" V) has strong 2-osculating regularity, with
respect to the curve defined by M; = (I,tA) with ¢ € C, the statement follows from Proposition
44 O

The following result gives a condition ensuring the non secant defectivity of S,, € P(A\" V).
Theorem 4.11. If h < | %], then S, C P(\" V,) is not h-defective.

Proof. Since by Proposition 10 the variety S, € P(A" V,.) satisfies the hypothesis of Theorem [A.7]
the statement follows from Proposition [3.27] O
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Remark 4.12. For instance, Theorem A ITlyields that S3 C PY is not 1-defective. On the other hand,
by Remark [3.28] it is 2-defective.
Now, consider S; C P34, First, note that by (Z4) in the Spinor embedding S, is the quadric given
by
Sy ={ZyZ7 — Z\Zs + ZoZs — Z3Zy =0} C P7

Therefore, for pi,pa,ps € Sy C P7 general points there is a smooth conic Cpy po.ps contained in
Sy C P7) namely the intersection of Sy C P with the plane (pi,p2,p3). As noticed in Section
the Pliicker embedding Sy — P3* is obtained by composing the Spinor embedding with the double
Veronese embedding v4 : P7 — VI C P35, Therefore, S; C P3* is a smooth hyperplane section of
the Veronese variety Vi C P3°. Hence Sy C P?* is a smooth 6-fold of degree 128, and through three
general points ¢1 = v3(p1),q2 = va(p2),q3 = v4(p3) € Sy there is a smooth rational normal curve
Cyrgoas = Va(Chpy pops) of degree 4. Summing-up given a general point p € Secs(Sy) C P34 the exists
a degree 4 rational normal curve I' contained in S84 and such that p € (I') = P4. Since there is a pencil
of planes in (I') that are 3-secant to I and thus to Sy we conclude that Sy C P3* is 3-defective, and
thus 4-defective as well. Note that by Theorem EI1] Sy C P3* is not 2-defective.

Finally, note that since given three general 3-planes in P7 there exists a smooth quadric hypersurface
containing them, and hence there is a Spinor variety Sy C P34 through three general points of the
Grassmannian G(4,V) C P%, the argument above also shows the well-known 3-secant defectivity and
4-secant defectivity of the Grassmannian G(4,V) C P%.

4.13. On secant defectivity of S, in the Spinor embedding. Finally, we study the secant
defectivity of S,, C P(A). In this case, the osculating properties of S,, can not be deduced from those
of G(n, V), hence we will need a different approach.

Consider the lexicographic order on the set I'" in (3:22]), and let @, Jy € T' be, respectively, the
minimal and maximal elements of I'. Moreover, consider the points ez =[1:0:---:0],ej, =[0:---:
0:1] € S,.

A general point in a neighborhood of ez can be represented as a matrix (I, A), where A is a
skew-symmetric matrix, and we can consider the following rational normal curve
¥y P — S,

(4.14) [s:t] — alsly,tA)

where « is the parametrization in ([8.23]). Note that the image of  is a rational normal curve of degree
| 5] such that y((1:0)) = ez and y((0: 1)) = ey,.
Now, consider the following subset of I"
B {0} U {2\ — 1,2)\;} where \; € {1,..., 5} } if n is even
(03 U {{2);, 27 + 1} where A; € {1,..., 252 }c I ifnisodd
and for I,J € I define

Iy ={Jel: |J] <2k}
(4.15) I'f:={Iel:JcCITandI\JE€A}
Iy ={Jel:Telf}={JeT:JCITandI\JeEA}

Then we may write

T’i(l:t)Sn = T;tsn = <€I, ’I’ < 28 < eJ; ‘I‘ S 2S>
Jery

Proposition 4.16. Let p,q € S, C P(A) be general points, and s1,s9 > 0 integers. There ezists a
rational normal curve v : P! — S, of degree | %] such that v(0) = p and y(c0) = q. Furthermore,
consider the family of linear spaces

Ty = (13180, T, Sn)
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parametrized by P\ {0}, and let Ty be its flat limit in the Grassmannian. Then Ty C T;1+52+1Sn,
that is S,, C P(A) has strong 2-osculating regularity.

Proof. The existence of the rational normal curve v has been shown in (£I4]). Let us work on the
affine chart s = 1. All along the proof we will write 7} for T;S,. Proposition [3.24] yields

T3 = (er, [I] < 2s1), T = Tp2 = < Z it”‘E‘”eJ, 1< 252>
Jery
Therefore

[J]=11]
Tt:<el||I|§251; Z:I:t 2 ey, |I|§252>,t7é0

Jery

We want to show that
To C T2 = (e, |I] < 281 + 289+ 2)={P; = 0, |I| > 251 + 285 + 2}

In order to do this it is enough to produce, for each I € T with |[I| > 2s1 + 252 + 2, a hyperplane of
type

Pr+t| > f(t)uPr] =0
JETTAT

where f(t);; € C[t] are polynomials. Recall the sets in (4I5]). For each & > 0 and I € I' define
o .= |{I €A, |I|=2kand I C J}|

1
Then we have |I'; | = ZZL Lok, Alternatively, note that for each k > 0 we can obtain o¥ as a function
1
of a} given by o/f = (O;f ) Therefore, we have

1
1

« 1
;| = ) =2
;) kz(k)

In the following, we will denote a} simply by aj. Now, set

Q=T Urj)cr
Jer,

Consider I € T" such that |I| > 2s; + 2s9 + 2. If I ¢ Q then T; C {P; = 0} for any ¢ # 0. Now,
assume that I € Q. Note that for any e with non-zero homogeneous coordinate P; we have I € I’}
that is K € I'; . Thus, it is enough to find a hyperplane H; of type

Fr=3 t"2"c;Pr=0
Jel'p
with ¢; # 0 and T3 C Hj for any t # 0. In fact, we can then divide the equation by ¢y, and we get a
hyperplane H; of type

t =191,
P — t 2 P; =
T+ o Z cjP; =0
JEDT JAI

Now, we want to understand what conditions we get by requiring 7, C {Fr = 0} for ¢t # 0. Given
K €T, we have

711K 11171 711K
Filei) = B (Soery (177 ) = Tierporp 7 e (057
11|

= 1 (zJeF;mF;CJ)
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Thus
Fi(ef) =0Vt#£0& > ;=0
Jerynrk

This is a linear condition on the coefficients c;, with J € I';. Therefore

. F](BK) =0 VK € F; NIy,
Toc{fp =0t fort#0 « {Ff(eg():ovméo VK €eT; NT,,
(4.17) k=0 VK € T7 Ny,

iS4 l
ZJEF;OF;F(CJ:OVt#O VKEPI mPS2

The number of conditions on the ¢;’s, J € I'} is then [I'; NI | 4+ |I'; NI, | and our problem is now
reduced to find a solution of the linear system given by (417 in the 2% variables c¢; such that ¢ # 0.

Therefore, it is enough to find oy + 1 complex numbers c¢; = c¢g # 0, ¢1, . .., ¢q, satisfying the following
equations
c; =0 Vj:og...m—sl
4.18 J _ AR
(4.18) { Yol NTE legr VK €T NT,

where F},l ={JeT}k, |J|=|K|+2l} and ¢ = M

Note that, since K € I'; NI'y, we must have %—32 < M < ay for any I\ K € A with | K| < 2ss.
Therefore, (£I8]) can be written as
CjZO Vj:a[,...,dl
j J _ L
=0 <j—l> q=0 Vj=aj,...,ds
where d; = % —s1 and dy = |—£| — §9, that is
oy =0 ( (T)eas + (V)eas1+-+ ()er + ()0 =0
(4.19) : :
e =0 da da da A2\ — )
d (3)as + (F) etz +-- + (g2 1) 1 + () eo
Now, it is enough to show that the linear system (419]) admits a solution with ¢y # 0. Since
Co; = -+ = ¢q, = 0 the system (£.I9) can be rewritten as follows

(Our—(()écgl—l))cdl*1 + (041—((){6;1—2))Cd1*2 teee (a?il)cl + (g§)00 =0

(4 (1)) 1+ (g, o)) Can—2 4+ (g7 )er + () co = 0

Thus, it is enough to check that the (ay —dy + 1) x (d; — 1) matrix

(Oé[-?dll—l)) (Oé]—?dll—Q)) te (oz(lxil)
M = : : KR :
(dg*(ddifl)) (dgf(dd2172)) e (dgdil)

has maximal rank. Now, note that a; < % and % > s1+ 89+ 1 yield ay — % +s0+1<d; <dy—1.

Therefore, it is enough to show that the (a; — ds + 1) X (af — d2 + 1) submatrix

(Cvlfad12+1) (a]oildg) e (Oil)
M = : : :
d d d
(Oq—d22+1) (041—2d2) e ( 12)
has non-zero determinant. Finally, since dy = |—£| — 89 > 51+ 1> 1[GV, Corollary 2] yields that

det(M') # 0. O
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We are ready to prove our main result on non secant defectivity of S, C P(A).
Theorem 4.20. If h < |%2| then S, C P(A) is not h-defective.

Proof. By Proposition 410 S,, C P(A) has strong 2-osculating regularity. Therefore, to conclude it is

enough to apply Proposition and Theorem [£.7] O
In the following table we work out the first cases of Theorem
n Theorem [£.20]
6,7,8,9 not defective for h < 2
10,11,12,13 not defective for h < 3
> 14 not defective for h < L”T”J

In particular, Theorem .20l improves the main result of [Angl1] for n > 14. Note that Theorem [£.20}
yields that S; C P9 is not 2-defective while by [Angl1] it is 3-defective. Furthermore, by Theorem
4.20] the Spinor variety Sg C P27 also is not 2-defective and by [Angl1] it is h-defective for h = 3, 4.
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