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Simple Summary: The most frequent intracranial neoplasm is meningioma. About 30% of these are
represented by skull base meningiomas (SBMs). Patients with SBMs can be treated with a multimodal
approach based on surgery, medical treatment and radiation-based therapy; however, the gold
standard treatment for the majority of symptomatic meningiomas is still surgery. Surgical intervention
is performed with the goal of maximum safe resection. This, however, poses technical challenges
because of the proximity of these tumors with deep critical neurovascular structures, tumoral texture
and consistency. A multimodal treatment, in combination with stereotactic radiosurgery and radiation
therapy, is thus of utmost importance to achieve a satisfactory functional outcome and tumor control.
The aim of this review was based on the identification of optimal multidisciplinary management of
patients with SBMs. The investigation includes the relevant biological and clinical characteristics, the
novel therapeutic approaches, highlighting the importance of a specialized multidisciplinary team,
which is mandatory for SBM management.

Abstract: The surgical management of Skull Base Meningiomas (SBMs) has radically changed over
the last two decades. Extensive surgery for patients with SBMs represents the mainstream treatment;
however, it is often challenging due to narrow surgical corridors and proximity to critical neurovascular
structures. Novel surgical technologies, including three-dimensional (3D) preoperative imaging, neu-
romonitoring, and surgical instruments, have gradually facilitated the surgical resectability of SBMs,
reducing postoperative morbidity. Total removal is not always feasible considering a risky tumor loca-
tion and invasion of surrounding structures and brain parenchyma. In recent years, the use of primary
or adjuvant stereotactic radiosurgery (SRS) has progressively increased due to its safety and efficacy in
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the control of grade I and II meningiomas, especially for small to moderate size lesions. Patients with
WHO grade SBMs receiving subtotal surgery can be monitored over time with surveillance imaging.
Postoperative management remains highly controversial for grade II meningiomas, and depends on
the presence of residual disease, with optional upfront adjuvant radiation therapy or close surveillance
imaging in cases with total resection. Adjuvant radiation is strongly recommended in patients with
grade III tumors. Although the currently available chemotherapy or targeted therapies available have
a low efficacy, the molecular profiling of SBMs has shown genetic alterations that could be potentially
targeted with novel tailored treatments. This multidisciplinary review provides an update on the
advances in surgical technology, postoperative management and molecular profile of SBMs.

Keywords: skull base meningioma; surgery; radiotherapy; radiosurgery; systemic treatment;
3D virtual planning

1. Introduction

Meningioma account for 16–36% of all intracranial tumors in adults [1]. According to
the World Health Organization, these lesions are currently classified into fifteen histotypes
and three grades of malignancy, of which 90% are of Grade I [2]. The most significant
prognostic factors for these tumors include the histological grade according to the World
Health Organization (WHO) criteria [2] and the extent of surgical resection according to the
Simpson scale [3]. About 30% of intracranial meningiomas are represented by skull base
meningiomas (SBMs) [4–7]. The surgical goal of radical resection is frequently hindered by
the proximity of SBMs with deep critical neurovascular structures, complex vascularity,
tumoral texture and consistency. In the past, the skull base was considered an inaccessible
surgical location. Recent advances including the introduction of microsurgical techniques,
improvements in imaging, virtual surgical simulation, and technological refinement of
surgical instruments, along with the widespread use of minimally invasive approaches
have radically changed SBM surgical management.

The goal of SBM surgery is the complete resection of the tumor, surrounding dura
and infiltrated bone (if present), traditionally recognized as Simpson grade I resection [8].
Despite recent advances in microsurgical techniques and treatment strategies, this goal is
often challenging to achieve, mainly because of the involvement of neurovascular struc-
tures and/or limited instrument maneuverability along narrow surgical corridors [9,10].
Bone infiltration or venous sinuses involvement can further limit the radical resection rate.
Multimodal treatment, in combination with stereotactic radiosurgery (SRS) and/or frac-
tionated radiation therapy (fSRT), is thus increasingly considered to achieve a satisfactory
functional outcome and long-term tumor control.

Numerous studies in the literature have shown the efficiency and safety of radio-
surgery in addition to the role it has as primary or adjuvant therapy [11–13]. The definition
of molecular features, based on genetic mutations and on the methylation profile, is cur-
rently providing new insights into prognosis and treatments options [14].

The purpose of this review was to provide a general overview on SBM treatments,
highlighting the role of interdisciplinary management. This paper also investigated the
recent innovations in terms of preoperative virtual planning, intraoperative navigation,
and postoperative adjuvant strategies.

2. Materials and Methods

The authors conducted a literature search in MEDLINE PubMed evaluating patients
with SBM. The search considered both prospective and retrospective studies. For the most
comprehensive detection of papers, the search query was built as follows using a combina-
tion of medical subject headings (MeSH): “skull base” [MeSH] AND “meningioma”[MeSH]
and free text terms: “surgery” OR “surgical approach*” OR “surgical planning” OR “ra-
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diotherapy” OR “radiosurgery” OR “systemic treatment” therapy” OR “hypofractionated
radiotherapy” or “chemotherapy”.

We included relevant studies published from 1970 to 2020. Only studies published in
English language and including human subjects were considered. A total of 166 potentially
relevant studies were identified, including 129 retrospective studies and 37 reviews.

3. Modern Surgical Planning
3.1. The Role of Computer-Aided Approaches

SBM surgery is demanding due to both the size and involvement of deep neurovascu-
lar structures such as perforating arteries, veins and cranial nerves, which are often encased
or displaced by the tumor. Considering the above, a detailed surgical strategy is crucial for
obtaining a maximum-allowed resection with minimal risks of permanent morbidity. The
so-called “4D rule” (de-vascularization, detachment, de-bulking, dissection) is essential in
SBM surgery.

Nowadays, virtual surgical planning gives the opportunity to perform highly accurate
surgical approach rehearsal, greatly enhancing the preoperative workflow. Virtual plan-
ning starts with appropriate image acquisition, often requiring multiple modalities [15]:
Tel et al. [16] described a multimodal image fusion algorithm based on automatic regis-
tration of CT and MRI images. For computer-reconstruction of intracranial vessels, MRI
angiography is essential to analyze the three-dimensional spatial relationship between
the tumor and the vessels [17,18]. Segmentation, defined as the process of automatic or
semi-automatic detection of boundaries for regions of interest within DICOM images,
allows anatomical and pathological structures to be identified, which are rebuilt in the
three-dimensional space across all slices of the radiological image [19]. Segmentation can
be performed using a combination of semi-automatic algorithms, including thresholding
and region growing, and manual refinements, yielding tessellated geometrical representa-
tions named “mesh”. Geometrical models can undergo CAD (computer-assisted design)
operations, including the simulation of osteotomies, removal of bone segments, tumor
excision, showing a virtual representation of planned surgical maneuvers in relation to
critical anatomical structures [16]. Three-dimensional geometry files, named STL (Standard
Tessellation Language), can be imported in navigation systems to allow navigation of the
entire virtual plan and not just raw DICOM images.

Virtual surgical planning plays a prominent role in simulating surgical accesses. Com-
bined maxillofacial and neurosurgical procedures may be selected for huge SBM developing
within the clival region or anterior skull base with ethmoido-orbital invasion [20]. In this
setting, virtual surgical planning allows the shape and trajectory to be defined for os-
teotomies and the simulation of facial skeleton dismantling, paving the way for skull base
fossae in a relatively compact space, dense in essential anatomical structures (Figure 1).

Figure 1. Simulated transfacial accesses using virtual models in clival meningiomas: (A) Le Fort I
transmaxillary access; (B) transfacial maxillary-split approach. The bone flap is represented in green
color, while the tumor mass is represented in pink color.
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Virtual planning plays a crucial role in the reconstructive phases as well, as it provides
a foreseeable geometrical configuration of the final anatomical geometries, allowing devices
to be personalized, such as reconstructing plates and prostheses.

3.2. The Role of Tractography

Diffusion MRI and tractography currently represent the only way to reconstruct white
matter in humans in vivo, providing a non-invasive and feasible method for evaluating
the subcortical pathways changes, especially in glioma surgery [21–23]. In recent years,
its use has been gradually spread for preoperative cranial nerve reconstruction in SBM
surgery [24–26]. In the latter clinical setting, probabilistic tractography currently appears
to be an emerging and promising tool to predict the position of displaced cranial nerves
around skull base lesions [24,25].

Applying tractography to cranial nerves demands, however, advanced anatomical,
radiological, and computational skills to achieve correct fiber tracking and to avoid spu-
rious tracts. In addition, the main challenging limitations in cranial nerves tacking are
represented by their small size, intricate anatomical environment sensitive to susceptibility
artifacts, and a limited MRI spatial and angular resolution. Nevertheless, recent studies
have demonstrated effective tracking for large cranial nerves such as optic nerve, trigeminal
nerve, or acoustic-facial bundle, highlighting the potential role of tractography both in a
surgical setting and intraoperative strategy [25,26].

In order to validate tractography’s effectiveness in SBM surgery, further prospective
investigations are required with the aim of assessing the tracking reproducibility and the
impact on patients in terms of operative time, clinical follow-up and quality of life.

4. The Role of Surgery

Surgical access to SBMs is one of the most challenging procedures due to the narrow
surgical corridors and the proximity of these tumors to critical neurovascular structures.

Approach selection is a key-point in SBM surgery in order to manage the lesion
without harming the neurovascular surrounding structures and, in the last 20 years, many
different approaches have been described. Table 1 shows the main surgical approaches
subclassified in three main categories (anterior, middle and posterior fossa meningioma)
according to meningioma locations.

The trans-sphenoidal and the other extended transnasal approaches have revolution-
ized the management of meningiomas involving areas of the median and paramedian skull
base surrounding the sella and cavernous sinuses regions. Selected SBMs, originating from
the tuberculum sellae, planum sphenoidale, and olfactory groove, have become amenable
to transnasal resection [27–29]. The undaunting amelioration of these novel techniques has
led to these indications expanding to a wide range of SBMs. At present, “the edge of the
envelope” has still not been defined [30] and the surgical possibilities of removing menin-
giomas of the skull base are widening [31]. In this regard, in selected cases, cooperation
with maxillofacial surgeons can be useful to create adjunctive surgical corridors through
facial incisions or bone osteotomies [32,33].

In selected cases, the cooperation between neurosurgeons and maxillofacial surgeons
in SBM surgery might be twofold, representing an aid to create wider surgical accesses as
well as to perform a more radical resection. This latter point should represent the choice
for patients presenting with bulky tumors invading the nasal cavity or intraorbital space.

Therefore, bulky disease with infiltration of orbits and ethmoid requires extensive
resection for which wider surgical exposure is achieved through transfacial or transoral
approaches. In detail, such approaches allow for a wide exposure of the ethmoidal cells
and orbital compartment, enabling resection of masses extending downward beyond the
cribriform plate or invading the orbit [34,35].
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Table 1. Literature review of surgical approaches according to SBMs location. Surgical approach is selected by interdisciplinary consultation according to the site of disease.

Skull Base Region Location Incidence Surgical Approaches IONM
Surgical Pitfalls Complications

Vascular Nerves Others Clinical Manifestations

Anterior Fossa
4, 27–36,49,51

Olfactory Groove
Meningiomas 8–13%

Subfrontal approach
Transbasal Approach
Pterional approach
Fronto-lateral approach
Supraorbital keyhole
Endoscopic endonasal approach
*Transfacial reconstitutive
approach also known as facial
translocation,
further subdivided into:

- nasal cheek flap
- maxillary cheek flap
- nasomaxillary cheek flap
- facial split (resulting from

the combination of the
aforementioned)

EEG, MEPs, SSEPs,
VEPs (in selected cases)

branches of the OA,
ICA, ACoA, A2

Ethmoidal arteries
CN I, II, III, IV EOM Anosmia,

CSF leak
Visual disturbances (diplopia,
anopsia, eye globe injury)
Hemorrhage
Hemorrhage, epiphora,
diplopia and dystopia, soft
tissue swelling, ectropion
(associated with
Weber–Ferguson incision).
Poor bone consolidation,
misalignment (related to bad
osteosynthesis), wound
dehiscence (cutaneous and
intraoral)

Sphenoid wing
Meningiomas 11–20%

Pterional approach
Fronto-temporal-orbito-
zygomatic approach
Lateral, superior, medial
orbitotomy

anterior circulation
arteries

Ethmoidal artery in
medial accesses

CN II, III, VI
supraorbital nerve,

facial nerve

EOM, medial and
lateral canthal tendons

Tuberculum
Sellae/Planum
Meningiomas

5–10%
Pterional approach
Endoscopic endonasal approach
Supraorbital key-hole

Anterior circulation
arteries CN II, III, IV, V, VI aesthetic orbital

reconstruction

Cavernous Sinus
Meningiomas 1%

Pterional approach
Fronto-temporo-orbito-
Zygomatic approach

Anterior circulation
arteries CN II, III, IV, V, VI

Middle
Fossa 4,35,44

Middle fossa and
Sphenoid wing

1.1–1.4%

Pterional approach
(anterolateral approach)
Fronto-temporo-orbito-
zygomatic

EEG, MEPs, SSEPs
EMG CNs III, IV, VI can

be considered

ICA
Vein of Labbè

CN II, III, IV, V, VI Temporal lobe

Language deficit,
hemiparesis, hemianopsia,

hemorrhages, temporal lobe
edema, trigeminal anesthesia,

Middle fossa and
cavernous sinus

Middle fossa with
infratemporal

extension Subtemporal approach
(lateral approach)Middle fossa and

petrous ridge
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Table 1. Cont.

Skull Base Region Location Incidence Surgical Approaches IONM
Surgical Pitfalls Complications

Vascular Nerves Others Clinical Manifestations

Posterior Fossa
4,35,38–43,45,46,51

Cerebellopontine
Angle 10%

Anterior Petrosectomy
Approach
Posterior and Combined
Petrosal Approaches
Retrolabyrinthine Approach
Translabyrinthine Approach
Combined Petrosal Approach
Retrosigmoid approach

EEG, MEPs, SSEPs,
CB-MEP (CN VII)
EMG (CNs VI, VII)

BAERs

Intrapetrous ICA, SCA
and AICA encasement CN V, VI, VII, VIII Brainstem adhesion

Brain steam and cerebellum
edema,

CSF leak
Venous infarction

Cranial nerve injury
Vertebral artery injury,

Hydrocephalus, CSF leak
Infection

Hemorrhage, cerebrospinal
fluid leakage, soft tissue
edema of the oral cavity,

infection, wound dehiscence,
velopalatine dysfunction,
malocclusion, dysphagia,

malocclusion when
osteotomies are required,

oro-nasal fistula, laceration of
nasal mucosa, lesion of

teeth apices

Foramen Magnum 2.5%

Posterior Suboccipital Approach
with C1 laminectomy;
Far Lateral Approach
Extreme Lateral Approach

EEG, MEPs, SSEPs,
CB-MEP (CN VII, IX, X,

XI, XII)
EMG (CNs VI, VII, IX,

X, XI, XII)
BAERs

VA encasement
JV encasement CN IX, X, XI, XII Brainstem adhesion

Extradural extension

Clival Meningiomas <1%

Retrosigmoid approach
Petrosal approach
Transoral:

- transmaxillary through
LeFort I osteotomy

- transmaxillary with
palatal split

posterolateral approach
far-lateral approach
Endoscopic approach

Internal maxillary
artery

Palatine artery

CN VI, VII, VIII, XI,
X, XI, XII Brainstem adhesion

Petroclival
Meningiomas

2% of posterior
fossa

meningiomas

Retrosigmoid approach
Combined transpetrosal
Retrolabyrinthine Approach
Translabyrinthine Approach

BA
BA perforating arteries CN V, VI, VII, VIII Brainstem adhesion

Legend: * alone or in combination with bifrontal craniotomy for selected wide Olfactory Groove meningiomas invading cribriform plate; OA: ophthalmic artery; ICA: internal carotid artery; ACoA: anterior
communicating artery; A2: second segment of anterior cerebral artery; ACA: anterior cerebral artery; SCA: superior cerebellar artery, AICA: anterior inferior cerebellar artery, VA: vertebral artery; BA: basilar
artery; JV: jugular vein; CN: cranial nerve; EOM: extraocular muscles; IONM: intraoperative nerve monitoring; BAERs: brain stem auditory-evoked responses; CB-MEPs: corticobulbar motor-evoked potentials;
CNs: cranial nerves; EEG: electroencephalogram; EMG: electromyography; MEPs: motor-evoked potentials; SSEPs: somatosensory-evoked potentials; VEPs: visual-evoked potentials.
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Middle and posterior cranial fossa approaches represent a very flourishing field
that have been proposed and intermittently preferred over the years. The approaches
so far described go from the standard subtemporal or retrosigmoid approaches [36–40]
to more complex and extended ones, and/or also combined with wider skull base bone
removal [41–43]. Indeed, bony structure removal does not always correlate with a better
surgical maneuverability or a reduced parenchymal retraction [44,45]. The best approach
needs to be tailored to each patient based upon several peculiar factors (pathological,
anatomical, functional and reconstructive). Several studies have demonstrated a strong
correlation between the extent of resection and the frequency of recurrence in SBMs,
highlighting the central role of surgery in their workflow [11,46–48].

There is no general consensus in considering SBMs genetically different from their
non-SBM counterparts [8]; continuous refining of operative techniques is thus required
to obtain satisfactory long term outcomes Complete surgical resection is the goal of SBM
surgery, but can seldom be limited because of the intimate relationships with the brain stem,
neurovascular structures and cranial nerves [49,50]. Therefore, the surgical aggressiveness
needs to be weighed against risks of morbidity, tumor biology, patients age, functional
status and functional expectations [13,51].

The approaches can be extended and combined in relation to the meningioma’s size
and surgeon’s choice (Table 1, Figure 2). Appropriate knowledge of surgical anatomy,
adequate corridors, release of CSF, comfortable and precise microsurgical instrumentation
are the key concepts in SBM surgery, resulting essential for the patient outcomes.

Figure 2. (A) Relative frequencies in SBM locations are stratified and shown with circles of progressively wider diameter;
(B) Topological subdivision of skull base: anterior skull base is shown in blue, middle skull base is shown in brown, and
posterior skull base is shown in green; (C) Anatomical area for which endoscopic endonasal approach can be used.

4.1. Intraoperative Neurophysiological Monitoring in Skull Base Meningiomas

Nowadays, there is an increasing interest in the role of intraoperative neurophysiolog-
ical monitoring (IONM) in SBM surgery.

The surgical resection of large meningioma, especially when encasing nerves and/or
the main cerebral vascular trunks and/or their perforating vessels skull base, requires exten-
sive maneuvers that can lead to pyramidal tract impairments or cranial nerves palsy [52,53].
Advances in anatomy, microsurgery, neuroimaging, and intraoperative monitoring have
gradually reduced the incidence of cranial nerve palsy [53,54]. The IONM strategy during
SBM surgery has to be tailored according to tumor location and the vascular and neural
structures involved. IONM details are reported in Table 1 [4].
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4.2. Preoperative Embolization

Devascularization of the lesion remains an important goal in meningioma surgery,
to be achieved before other maneuvers. Differently from meningiomas of the convexity,
those arising at the skull base have deep, poorly accessible feeding vessels. Preoperative
embolization might ease surgical dissection, inducing a lower risk of intraoperative blood
loss, and as a consequence, decreasing the surgical morbidity. Preoperative embolization
of SBM is still, however, a controversial and debated issue, also because of the poor
effectiveness and the risk of complications related to inadvertent occlusion of off-target
arteries [55–57].

The preoperative embolization indication depends mainly on the meningioma’s size
and location. The most commonly cited indications for pre-operative embolization include
size >4 cm, high vascularity, and the convexity site for meningioma being supplied primar-
ily by the external carotid artery. However, in selected cases, embolization may also result
as useful for SBM meningiomas in which the arterial supply is deep and not reached until
the late phases of tumor debulking [58].

As a general rule, amongst factors that deter preoperative embolization, ease of
vascular access intraoperatively, dangerous external carotid artery–internal carotid artery
anastomosis, the presence of feeders to cranial nerves, internal carotid artery predominant
blood supply (>50% on angiography), and high tortuosity or narrowness of the feeding
vessels are included [59]. Until further evidence from clinical trials emerges, the decision
to preoperatively embolize a meningioma should be tailored for each patient according to
tumor size, location, and estimation of degree of blood loss [58,59].

4.3. Reconstruction of the Surgical Route

Reconstruction of the anterior skull base has the main role of restoring the separation
between the intracranial and the extracranial space, in particular to prevent leakage of
CSF and related threatened complications, above all meningitis. A variety of techniques
have been described [60], accounting for the use of dural substitutes and local flaps, used
to restore separation between the brain and extracranial space [61]. In the case of wider
defects, free flaps also represent an option [62].

Amongst local flaps, it is worth mentioning the nasoseptal flap, described by Hadad
et al., because of its impact on endoscopic surgery, as it provides a minimally invasive
and effective method to repair anterior skull base defects [63]. It consists of a vascularized
mucoperichondrial/periosteal flap harvested from the nasal septum, which is pedicled
on the posterior septal branch of the sphenopalatine artery and can be mobilized and
transposed on the defect using an entirely endoscopic approach.

For transfacial accesses requiring the disassembly of facial subunits, reconstruction
follows the same principles of fracture treatment using internal rigid fixation with titanium
miniplates and miniscrews. Recently, supporting the experience of maxillofacial surgeons,
the use of CAD-CAM technology has been introduced in clinical practice to simulate the
reconstruction of skull base defects.

Moreover, the widespread distribution of virtual planning software in laboratories
embedded in modern hospitals makes such processes more affordable and contributes to
shared knowledge on technology. Nowadays, models for pre-operative planning [64] or
reconstruction of parts of the skull base or the facial skeleton can be performed “in-house”,
using commercially available technology, by 3D printing of molds for PMMA modelling
according to the desired plan [65]. Nevertheless, reconstruction of the skull base using
a prosthetic device, although customized, is generally difficult, and few examples are
documented. If the lesion extends through the lateral skull base into the glenoid fossa of
the temporomandibular joint (TMJ) causing joint dysfunction, concomitant skull base and
TMJ replacement has been described using a customized TMJ prostheses extended to the
lateral skull base [66]. As for the anterior fossa, reconstruction across the cribriform plate is
usually performed using a soft tissue flap, whereas the orbital roof can be reconstructed
using customized alloplastic implants, which offer the maximum accuracy in replicating
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the original anatomy. Alternatively, a titanium mesh can be prebent over a 3D printed
template to provide a customized implant at a considerably lower cost [67,68].

5. Histopathological Features

Several studies have demonstrated that meningiomas at different anatomical sites have
diverse histological and genetic features [69,70] (Table 2), which could provide relevant
prognostic information and open the perspective to novel target therapies.

Table 2. Genetic alterations in skull based meningiomas.

Altered Gene Preferential Tumor Localization Main Histotype

NF2 Posterior and lateral skull base Fibrous, Transitional, Atypical

AKT1, PI3K Anterior and middle skull base Meningothelial

SMO Olfactory groove Meningothelial *

TRAF7/KLF4 Middle skull base Meningothelial, Secretory for
co-occurring TRAF7/KLF4

POL2RA Tuberculum sellae Meningothelial

* SMO mutated meningiomas have significantly higher recurrence risk than AKT1 meningiomas at the same site.

SBMs mainly show the meningothelial histotype, and compared to non-skull based
ones, they have a lower incidence of grade II/III histology (8.6–20% vs. 40%) and of
NF2 alterations (20% vs. 46%), and a higher incidence of secretory histotype (63% vs.
37%) [60,62,63], a rare grade I variant, characterized by peritumoral edema [71]. Then,
SBMs can be further categorized, as those localized at the lateral and posterior skull base
mainly feature NF2 impairment [72,73], while those at the anterior and middle skull base
are NF2 wild type and may have mutations in other genes, including AKT1, PIK3CA, SMO,
TRAF7, KLF4 and POLR2A [69,72–74]. In detail, around 15% of skull base meningiomas
have alterations in the PI3K/AKT/mTOR signaling pathway, consisting of AKT1E17K and
PIK3CA mutations, in association with meningothelial histotype or brain invasion [69,74,75].
About 28% of meningioma at the middle anterior skull base, and, specifically, at the ol-
factory groove, have an impaired hedgehog pathway due to SMO mutations (L412F and
W535L), which are mutually exclusive to AKT1 mutations [69,72,73,75–77]. These latter
tumors mainly have meningothelial histotype and a low mitotic index, but a significantly
higher recurrence rate than AKT1-mutated meningiomas at the same site [77]. A pro-
portion of meningiomas at the middle skull base (ranging between 2.1% and 24%, and
between 8.6% and 11.8%, respectively) were reported to display TRAF7 and KLF4K409Q

mutations [69,75,76], which co-occur in secretory meningiomas, and which may coex-
ist with AKT1 mutations [69,73,75,76]. Finally, there is a distinctive group of skull base
meningiomas, originating at the tuberculum sellae and with meningothelial histotype, that
are characterized by mutations of POLR2A, which encodes for the catalytic subunit of
Polymerase RNA II (DNA directed) polypeptide A [78].

6. Radiation Therapy
6.1. Fractionated Radiotherapy

Postoperative radiation therapy (RT) using doses of 50–55 Gy in 30–33 fractions
has been frequently used for benign SBMs, either after incomplete resection or tumor
progression. Local control rates from 75 to 90% at 10 years have been reported following
conventional RT and 3D conformal RT (Table 3) [79–84], equivalent to that observed after
complete resection, and better than that achieved with subtotal resection alone [85]. Similar
tumor control has been observed for patients receiving postoperative RT or at the time of
tumor recurrence/regrowth [81–83].

The reported treatment-related toxicity is relatively low and includes the development
of neurological and endocrinological adverse events (Table 3). Radiation-induced optic
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neuropathy, presenting as decreased visual acuity or visual field defects, occurs in less
than 5% of irradiated patients with an SBM. Deficits of cranial nerves passing through
the cavernous sinus, which include the oculomotor nerve, trochlear nerve, abducens
nerve, and the V1 to V2 branches of the trigeminal nerve have been reported in 1–4% of
patients when radiation doses do not exceed 54 Gy in conventional fractionation 1.8–2.0 Gy
daily [79–84]. Similarly, the risk of radionecrosis remains exceptional for doses less than
60 Gy. Hypopituitarism is reported in up to 20% of patients, with higher risk for large
SBMs invading the pituitary sella. Neurocognitive dysfunction has been occasionally
reported in irradiated patients with large meningiomas, especially impairment of short-
term memory [80,86–88].

Postoperative fractionated RT using doses of 59.4 Gy in 13 fractions of 1.8 Gy per
fraction is typically recommended after surgical resection of Grade II and Grade III menin-
giomas [89,90]. Cooperative group studies RTOG 0539 and EORTC 22042 support the
role of early postoperative RT in patients with WHO grade II meningiomas after subtotal
resection and grade III meningiomas with any resection extent. However, the benefit of RT
in terms of survival and local tumor control following complete surgical resection remains
a matter of debate. The recently closed ROAM/EORTC randomized trial will clarify the
role of adjuvant radiotherapy in reducing the risk of tumor recurrence following complete
surgical resection of atypical meningioma [91].

Over the last few decades, RT has seen technological advances through all the steps
involved in radiation treatment with improvement in the accuracy of target delineation,
treatment planning process and delivery [92]. Modern radiation techniques, including frac-
tionated stereotactic radiotherapy (fSRT), intensity-modulated radiotherapy (IMRT) and
volumetric modulated arc therapy (VMAT), allow for more precise treatments as compared
with conformal RT, while reducing radiation exposure to surrounding sensitive brain struc-
tures. Table 3 shows a summary selected series using either fSRT or IMRT [79–84,93–103].
With a median follow-up of 42–107 months, the reported actuarial median local control
ranges from 93 to 100% at 5 years and 91.5 to 100% at 10 years.

Table 3. Summary of selected published studies on conventionally fractionated radiotherapy for benign SBMs.

Authors Patients
(N)

Radiation
Modality

Median Dose/
Dose per

Fraction (Gy)

Median
Volume (mL)

Median
Follow-Up
(Months)

Local Control Late Toxicity
(%)

Goldsmith et al.,
1994 [79] 117 CRT 54 NA 40 89 at 5 and 77 at 10 years 3.6

Maire et al., 1995
[80] 91 CRT 52 NA 40 94 6.5

Nutting et al.,
1999 [81] 82 CRT 55–60 NA 41 92 at 5 and 83 at 10 years 14

Vendrely et al.,
1999 [82] 156 3D-RT 50 NA 40 79 at 5 years 11.5

Mendenhall
et al., 2003 [83] 101 3D-RT 54 NA 64 95 at 5, 92 at 10 and 15 years 8

Henzel et al.,
2006 [93] 84 fSRT 56 11,1 30 100 NA

Tanzler et al.,
2010 [94] 144 fSRT 52.7 NA 87 97 at 5 and 95 at 10 years 7

Minniti et al.,
2011 [95] 52 fSRT 50 35.4 42 93 at 5 years 5.5

Slater et al., 2012
[101] 68 Protons 56 27.6 74 99 at 5 years 9

Weber et al., 2012
[102] 24 Protons 56/1.8–2.0 21.5 62 100 at 5 years 15.5

Solda et al., 2013
[96] 222 fSRT 50/55 12 43 100 at 5 and 10 years 4.5



Cancers 2021, 13, 2664 11 of 24

Table 3. Cont.

Authors Patients
(N)

Radiation
Modality

Median Dose/
Dose per

Fraction (Gy)

Median
Volume (mL)

Median
Follow-Up
(Months)

Local Control Late Toxicity
(%)

Combs et al.,
2013 [97] 507 fSRT/IMRT 57.6/1.8–2.0 53.4 107 95.5 at 5 and 88 at 10 years 1.8

Fokas et al., 2014
[98] 253 * fSRT 55.8/1.8–2.0 16 50 92.9 at 5 and 87.5 at 10 years 12 (G2)

Han et al., 2014
[100] 143 fSRT 50.4/1.8 11.1 32 95% 0.7

Kaul et al., 2014
[104] 136 fSRT 57/1.8–2.0 24 44.9 93.8 at 5 and 91.5 at 10 years G1 only

Sanford et al.,
2017 [103] 44 Protons 55.8–63 39.7/13.2 195 98 at 10 and 90 at 15 years 59% (≥G2)

Lillie O’steen
et al., 2019 [84] 149 3D-RT 50–52/1.7–1.8 NA 144 95 at 10 and 92 at 20 years NA

CRT, conventional radiation therapy; fSRT, fractionated stereotactic radiation therapy; IMRT, intensity modulated radiation therapy; G,
grade; 3D-RT, three-dimensional conformal radiation therapy; * series including skull base and intracranial meningiomas; NA, not assessed.

A clinical neurological improvement is reported in 14–44% of patients after fSRT [94–100],
with acceptable late significant toxicity. With doses of 50–55 Gy in 1.8.2.0 Gy per fraction,
pituitary hormone deficits occur in less than 15% of patients. The development of optic
neuropathy or other cranial deficits is reported in less than 3–4% of patients. For patients
treated with conventionally fractionated RT, the analysis of prognostic factors showed that
tumor size was a predictor of tumor control [79,80,95,97,100,104]. In 54 patients with SBMs
who received conventional RT, Connell et al. [104] observed 5-year tumor control rates of
93% for lesions more than 5 cm and 40% for lesions less than 5 cm; similar results have
been reported by others [79,80,95,97]. In some, but not all, studies, clinical outcome was
similar for patients treated with early postoperative RT or at the time of tumor progression.
With regard to the radiation dose, no outcome differences have been reported following
doses of 50–54 Gy or >54 Gy.

In addition, few studies have compared the outcome of SRS and fSRT in SBMs [97,105–107].
In a large retrospective study of 927 patients from three German centers treated with either
SRS (median dose, 13 Gy) or fSRT (median dose, 54 Gy/30 fractions) for meningiomas,
Combs et al. [97] reported local control rates of 92% at 5 years and 86% at 10 years, with no
difference between techniques. Among patients treated with fSRT, there was no difference
between 54 Gy and 57.6 Gy. Side effects were below 5% after either SRS or fSRT, without
any severe treatment-related complications. In another series of 51 treated with fSRT and 77
who had SRS for a SBMs, Torres et al. [105] showed tumor control rates of 97% for patients
with a median follow-up of 24 months and 90% for those with a median follow-up of
40 months. Late toxicity was observed in 5% of patients treated with SRS and 5.2% patients
who received fSRT.

Some retrospective studies have reported the use hypofractionated SRT for SBMs, as
shown in Table 4 [98,100,108–111]. Using doses of 21–25 Gy delivered in 3–5 fractions, the
observed local control in six studies including 337 patients is 93–95% at 5 years, with a
reported cranial nerve toxicity of less than 5%. In a large retrospective series of 168 patients
receiving CyberKnife-based hypofractionated SRT for SBMs, Marchetti et al. [111] showed
a local control rate of 95% at 5 years with a toxicity rate of 3.7%, and similar results have
been observed in a few other studies using either CyberKnife or LINAC technologies.
In a systematic review on the clinical outcomes of hypofractionated SRT for intracranial
meningiomas including 630 patients reported in fourteen studies published between 2004
and 2016, Nguyen et al. [112] reported a crude control of 90–100% with median late toxicity
rates of about 10%.
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Table 4. Summary of selected published studies on conventionally fractionated radiotherapy for skull base meningiomas.

Authors Patients
(N) Technique

Median
Dose (Gy)/
Fractions

Median
Volume (mL)

Median
Follow-Up
(Months)

Local Control Late
Toxicity

Colombo et al.,
2009 [108] 150 * CK 16–25/2–5 7.5 (0.1–64) 30 96 3.5

Fokas et al., 2014
[98] 49 * LINAC 25–35/5 6.11 (1.9–35.7) 50 92.9 at 5 and 87.5

at 10 years 12 (G2)

Han et al., 2014
[100] 22 * LINAC 25/5 4.8 (0.88–20.38) 32 95 0.7

Navarria et al.,
2015 [109] 26 LINAC 25/5 13◦ 24.5 93% at 2 years G3, none

Marchetti et al.,
2016 [110] 143 CK 21–25/2–5 8 (0.1–126.3) 44 93 at 5 years 5.1

Marchetti et al.,
2019 [111] 168 CK 25/5 7.3 (0.1–76.8) 51 94% at 5 years 3.7

CK, CyberKnife; LINAC, linear accelerator; mean; * including skull base and intracranial meningiomas.

Based on several retrospective studies, hypofractionated SRT may represent an alter-
native to single-fraction stereotactic radiosurgery for the treatment of SBMs, especially for
those close to the optic apparatus. With regard to the development of radiation-induced
optic neuropathy, a similar risk <1% has been observed for maximum point doses to op-
tic apparatus of 12 Gy given in one fraction, 20 Gy in three fractions, and 25 Gy in five
fractions [113].

Over the last few decades, proton beam RT has been extensively employed in patients
with skull base tumors with the rationale of better covering of the target while sparing
surrounding critical structures compared to 3D-conformal RT and IMRT, especially in the
case of large and irregularly shaped lesions [85]. Several studies of proton beam therapy
for SBMs show 5-year local tumor control rates of 85–100% after either conventionally frac-
tionated and hypofractionated schedules, being consistent with those observed following
photon irradiation [101–103]. Using doses of 56 Gy, a variable occurrence of long-term
side effects of 9 to 59% is reported in three studies including 136 patients (Table 3). In a
small prospective study of 44 patients randomized to receive 55.8 Gy and 63.0 Gy (rel-
ative biological effectiveness, RBE) given as fractionated combined proton-photon RT,
Sanford et al. [103] showed local control rates of 98% at 10 years and 90% at 15 years. With
a median follow-up of 17 years, 26 patients (59%) experienced a grade 2 or higher late
toxicity, including 9 patients (20%) who experienced a cerebrovascular accident. Currently,
the superiority of proton beam therapy over advanced photon techniques in terms of
efficacy and toxicity remains to be proven.

In summary, fractionated RT is a safe and effective technique for the treatment of
patients with benign SBMs, with long-term local control consistent with those obtained
following SRS. The choice of appropriate technique should be based on tumor size and
site. In clinical practice, single doses of 8–10 Gy to the optic apparatus should be avoided
to limit the risk of radiation-induced optic neuropathy. This means that SRS is usually
suitable for patients with relatively small SBMs not in close proximity (less than 2 mm)
to the optic apparatus, whereas fractionated schedules using either photons or protons
would be preferred for tumors abutting the optic chiasm. Conventionally fractionated RT
would be preferred over hypofractionated RT for larger tumors extensively involving the
optic apparatus.
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6.2. Radiosurgery
6.2.1. Overview

SRS is nowadays widely accepted as a reliable alternative to microsurgery in selected
cases [114], especially in the elderly and in tumors in critical locations, lowering mortality,
morbidity and recurrences after surgery. The combined approach of subtotal resection and
SRS post-operative treatment is of increased use.

Cranial nerve preservation is of utmost importance and in this clinical setting, SBMs
represent the milestone of this phenomenon.

In the last decade, an increasing number of SBMs closer to critical brain structures
such as the anterior optic pathways, brain stem, etc., have undergone SRS more and more
often thanks to the introduction of innovative “volume staging” and “hypo-fractionated”
irradiation techniques and modalities [110].

The excellent effectiveness and safety of SRS are thus reported, with a described
5-year actuarial progression-free survival (PFS) and local tumor control rates (LTR) of
86.2–97.9% [115–117] with very low sequelae [118–120], if appropriate indications are
warranted, particularly regarding tumor volume and cytologic grading.

6.2.2. Posterior Fossa

As is well-known, the posterior fossa presents some unique anatomical features
resulting in a tiny space for mass effect. Surgical and radiosurgical features’ attitudes are
therefore peculiar. In the literature, despite its enormous development, surgery results
in mortality and morbidity (ranging in various studies from 40% to 96%), and could
lead to recurrence after subtotal removal. Even if resection remains a class-A choice in
cases with appreciable mass effect, a multimodality post-surgical approach is strongly
recommended. Recent papers have even proposed conservative subtotal resection leading
to the relief of mass effect and avoiding neurological injury, with SRS on the remnant [121].
In addition, posterior fossa meningiomas today are found at earlier stages of growth due
to MRI availability and spreading. These are frequently asymptomatic or associated with
minimal symptoms. Control rates reported following SRS have proved to guarantee a high
tumoral control rate both in post-operative recurrences and in newly diagnosed, small
non-symptomatic meningiomas [122–124] with progression-free survival rates greater than
90% [125,126]. Prognostic factors described in the literature for failures include age greater
than 65 years, prior history of radiotherapy, and increasing tumor volume [126,127].

Moreover, predictors of neurological deterioration after radiosurgery could include
large tumor volume, clival location or cerebellopontine angle (as opposed to tentorium
or foramen magnum), but these last factors show a low statistical relation. On the con-
trary, tumoral shrinkage after 3 years from radiosurgery and a dose >16 Gy have been
demonstrated to be positive prognostic factors [121].

6.2.3. WHO Grade II and III

WHO Grade II meningiomas appear much less effective to SRS. The reported 5- and
10-year LTC rates are much lower (49–77% and 0–24%, respectively) [128,129]. In the past
few years, these results caused fractionated RT to be advocated as an adjuvant or salvage
treatment of these neoplasms [130].

If we consider the recent literature, however, SRS proved to be safe and effective for
biopsy-proven WHO Grade II meningiomas. Adjuvant SRS following STR in small rem-
nants or small surgical beds resulted in equivalent rates of long-term LTC as adjuvant RT.

Finally, higher radiation doses similar to those applied for malignant tumors should
be recommended when possible for SRS treatment of atypical MNs [131].

6.2.4. Combined MS–SRS Approach

A “combined Microsurgical-SRS approach” consists of a deliberate subtotal surgical
resection, leaving a remnant near critical structures, followed by SRS [132]. A partial
resection, due to its close-fitting position to neurovascular structures, results in increasing
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tumoral recurrence [133]. Therefore, in cases of atypical or anaplastic meningiomas, radio-
surgery always has to be taken into account as an option after surgical debulking [134,135].
In cases of cavernous sinus or/and Meckel’s cave involvement in the skull base, a complete
surgical resection might not be reliable, or very dangerous [12]. Common surgical strategies
include resecting the maximal part of the tumor, followed by SRS on the remnant, especially
if critically located. Radiosurgery in an early post-operative stage is nowadays routinely
performed in patients with Grade 1 MN after incomplete resection [119–121,136,137]. A
combined MS–SRS strategy has proved to be particularly worthy in cases of SBMs [137,138]
and in some centers, this strategy is decided with the patients before surgery [138]. On the
other hand, several studies have reported a progression of an untreated remnant for which
a “wait and scan” policy is adopted [136].

Therefore, in cases of a surgical remnant, an early SRS might be planned in Grade
1–Grade 2 MNs, in order to avoid recurrence [139].

6.2.5. Long-Term Follow-Up

In fact, many studies described excellent short to intermediate period results with 5-
and 10-year LTR rates ranging from 86% to 100% and from 69% to 97%, respectively [140,141].

Kondziolka et al. [142] published a retrospective study on meningioma patients treated
with GK (gamma-Kinife) SRS (70% of them located on the skull base and 97% WHO Grade
I or with typical imaging features of a benign MN). The overall LTC rate was 91%. The 10-
and 20-year actuarial rates of freedom from tumor progression of the targeted tumor after
SRS was 85.3% ± 2.9% at both time points.

The long-term risk of severe permanent side effects following the SRS for SKMs is
another controversial issue.

Recently, McClelland et al. [143] presented the results of an extensive analysis on the
risk of stroke after SRS. On a total of 1431 patients followed up for a median/mean interval
ranging from 75 to 144 months, 24 patients suffered a stroke following SRS, providing
a stroke rate of 1.7%. This risk proved to be 12 times lower than the risk that occurred
after fractionated proton-photon RT, and was comparable to that expected for the general
population. Thus, SRS appeared to have the same stroke risk profile as observation.

Recently, Talacchi et al. published a robust retrospective analysis on 170 cavernous
sinus meningiomas treated with GK SRS and followed up for at least 10 years. The LTC rate
at 15 years after SRS was 89%. Neurological status was stable or improved in 147 patients
(86.5%), independently of tumor shrinkage. WHO Grade I vs. Grade II histology (p = 0.019)
was proven to be the only independent variable for LTR [137].

Overall, these studies with long-term periods of observation for SBMs treated with
SRS led to the conclusion that long-term LTC rates were sustained at intervals of more than
10 years after SRS, as well [143].

7. The Role of Systemic Treatments

Systemic treatment in meningiomas should be considered for recurrent disease when
a surgical or radiotherapy approach cannot be considered. There is little evidence in the
literature to support a systemic therapeutic treatment, with few cases and with scarce
prospective data. However, the greater knowledge of the molecular and genetic aspect of
this type of tumor has led to the experimentation of new systemic therapeutic strategies.
Hydroxyurea is the most studied drug in this setting: the results of some retrospective
studies appear to be limited and with contradictory results [144–146]. An Italian random-
ized study analyzed the association of hydroxyurea with or without imatinib for recurrent
or progressive meningiomas: despite the small number of patients enrolled, the arm with
hydroxyurea alone showed a trend for more activity [147]. The possibility of adding a sys-
temic treatment as adjuvant therapy after surgery was also evaluated in a small prospective
study that enrolled 14 patients, treated with cyclophosphamide, adriamycin and vincristine
after surgery and radiotherapy; this approach demonstrated moderate efficacy with partial
response and disease stability in 3 and 11 patients, respectively, obtaining a median overall
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survival (OS) of 5.3 years (95% CI, 2.6–7.6) and a progression-free survival of 4.6 years (95%
CI, 2.2–7.1) [148]. In relation to the high expression of progesterone receptors in menin-
gioma, some hormonal agents have been studied as possible systemic therapy: discrete
rates of disease control were obtained with tamoxifen in a phase II study in unresectable
and refractory meningioma [149], while in a larger, randomized, phase III study (SWOG
S9005) [150], mifepristone, an anti-progestogen agent, demonstrated no significant benefit
in overall survival compared to placebo alone [151]. Another type of therapeutic approach
evaluated in clinical studies is the use of somatostatin analogs; in a small study, these
drugs demonstrated moderate activity in 10/16 treated patients [152], while in another
prospective phase II study, no benefit in terms of activity was found other than a best
response of disease stability [153]. A recent study evaluated the association of octreotide
with everolimus, an mTOR inhibitor, in recurrent or relapsed meningioma, ineligible for
further surgery/radiotherapy. Enrolled patients received octreotide (30 mg/d, day 1) and
everolimus (10mg/d, days 1–28) and the primary endpoint of the study was 6mPFS; a total
of 20 patients were enrolled, including 2 WHO grade I meningiomas, 10 with WHO grade II
and 8 with WHO grade III meningiomas (4 patients harbored NF2 germline mutation). The
6mPFS was 55% (95%CI 31.3–73.5%). In 78% of patients, a >50% decrease in tumor growth
rate at 3 months was observed [154]. The high expression of pro-angiogenic factors in
meningiomas has led to research on possible anti-angiogenic therapies: in a phase II study,
the efficacy of sunitinib, a multi-kinase inhibitor of VEGFR and PDGFR, was evaluated in
patients with grade II and grade III meningiomas, reporting a median PFS of 5.2 months
(95%CI 2.8–8.3), median OS of 24.6 months (95%CI 16.5–38.4) and the 6m-PFS rate was
42% [155]. In another retrospective study, the role of bevacizumab, a monoclonal antibody
directed against the vascular endothelial growth factor VEGF, was evaluated, demonstrat-
ing a 6m-PFS of 43.8% (95%CI, 15.7–69.1) in high-grade meningiomas [156]. In a further
phase II study, bevacizumab was tested in 40 patients with WHO Grade I–III meningioma
patients, showing a partial response (PR) in only 5% of atypical meningiomas as the best
response to treatment and stable disease (SD) in 100%, 85% and 82%, respectively [157].
Combination therapies with bevacizumab were tested, particularly in a phase II study in
which bevacizumab was combined with everolimus, an inhibitor of the mTOR pathway, in
WHO Grade I–III progressive/refractory meningiomas; this study demonstrated that the
drug combination resulted in stable disease (SD) as the best response in 15 of 17 enrolled
patients (88%) with 6 patients having a stable disease duration >12 months. Median PFS
was 22 months (95% CI 4.5–26.8) and was found to be superior in patients with grade II–III
meningioma (22 months) compared to grade I tumors tumors (17.5 months) [158].

A recent comprehensive review of the literature ultimately concluded that, in view
of the lack of clinical evidence on improved survival and related toxicity, the use of
bevacizumab should be carefully and individually evaluated [159].

Other tyrosine kinase inhibitors have been evaluated as possible treatments in patients
with progressive meningioma: Vatalanib, a multi-targeted tyrosine kinase inhibitor, was
tested in a phase II study in patients with WHO grade II and III meningioma. This study
demonstrated that 6m-PFS was found to be 64% and 37.5% in grade II and III meningiomas,
respectively, with a median PFS of 6.5 for grade II meningiomas and 3.6 months for grade
meningiomas, respectively. The median OS was 26 months and 23 months for grade II
patients and for patients with grade III histology, respectively [160].

The better understanding of the molecular and genetic aspects of meningioma has led
to the development of several trials on personalized therapy: there is an ongoing phase II
trial (NCT02523014) with Vismodegib (inhibitor of Hedgehog signaling pathways used in
the treatment of basal cell carcinoma) associated with a FAK focal adhesion kinase inhibitor
(GSK2256098SMO) in mutated SMO/PTCH1 meningiomas. Meningiomas are the second
most common tumor in patients diagnosed with neurofibromatosis (NF) 2; in these cases,
the loss of NF2 expression is associated with the activation of the mTOR pathway.

Virtusertib, a dual mTORC1/mTORC2 inhibitor, was evaluated in a phase II trial in
18 patients; the treatment was associated with an objective response rate in 5–10% in NF2
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meningioma and schwannoma [161]. Noteworthily, Trabectedin, an alkaloid antineoplastic
drug approved for treatment of soft tissue sarcoma and ovarian cancer [162,163], was tested
in the Phase II EORTC 1320 trial in adult patients with WHO grade II or III meningioma,
after surgery and radiotherapy, and did not improve PFS and OS with greater toxicity than
local standard of care [164].

Due to excellent results obtained with immunotherapy in some types of tumors, several
ongoing trials are also testing the efficacy of nivolumab (NCT02648997) and pembrolizumab
(NCT03016091; NCT03279692) in patients with recurrent high-grade meningioma.

8. Current Thinking and Future Perspectives

In most cases, intracranial meningiomas can be considered benign lesions. However,
10-year tumor recurrence rate ranges from 10 to 32% and surgical mortality rate can account
up to 14.3% [79].

In summary, SBM treatment relies upon a multidisciplinary approach. First-line
treatments include surgery for symptomatic SBMs, followed by (in selected cases) fSRT
or SRS.

The postoperative treatment is individualized according to a combination of different
clinical, radiological, surgical and histological factors.

Figure 3 provides an overview of current advances in multidisciplinary management
of SBMs.

Figure 3. Workflow for the standard treatment options in SBMs. When a “wait and see” approach is chosen, MRI is
performed every 6 months. If patients remain asymptomatic, MRI is performed annually after 5 years. For WHO grade III
SBMs, fSRT is recommended across all surgical resection classes. WHO, World Health Organization; fSRT, fractionated
stereotactic radiotherapy; SRS, stereotactic radiosurgery.
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The current literature shows that SRS and fSRT constitute a safe and efficient treat-
ment option in SBMs both as an alternative to surgery in selected cases, and as adjuvant
post-operative complementary treatment in accordance with the histological grade and
the extent of resection achieved. Specifically, Grade II meningiomas represent a highly het-
erogeneous group with different clinical behavior that still lack therapeutic postoperative
guidelines [89–91].

To date, pharmacological alternatives, including immunotherapy, have been devel-
oped but none of them have demonstrated a significant outcome benefit. Future clinical
trials, designed in accordance with molecular characterization, could define a novel treat-
ment classification. Molecular characterization of meningiomas based on NF2, but also
AKT, SMO, TRAF7 status, detects the subgroup of meningiomas with different clinical be-
havior, posing thus the bases for a novel meningioma classification. Recently, methylation
profiles of meningiomas seem to very accurately predict tumor behavior; for example, the
recurrence risk in olfactory groove meningiomas shows a significant correlation with SMO
mutations. The latter mutations could be targeted by specific molecules [165,166].

In terms of RT, the future trials should define the proper dose-scheduling (higher or
lower dose for primary or adjuvant approach) based on molecular behavior. Moreover,
the use of proton therapy should be integrated in SBM management (aggressive histology,
progressive or recurrent lesions) especially for the lower dose delivered to the surrounding
healthy brain tissue (i.e., optic nerve and the brainstem) [165].

Although still in the beginning stages, these complementary molecular perspectives
integrated into the classification could be associated with innovative and personalized
treatment approaches [14,166].

9. Conclusions

Understanding the pathological anatomy and performing a preoperative anatomo-
radiological evaluation is of utmost importance in the surgical planning and management
of SBM.

Considering the technical challenges in SBM surgery, a multimodal treatment, in
combination with radiosurgery and radiation therapy, is considered more and more to
achieve a satisfactory functional outcome and tumor control. Advances in technology,
genomics and radiomics could lead to enhanced profiling of tumor biology, with consequent
refinement of treatment according to the principles of precision medicine.

In light of all these innovations, a specialized multidisciplinary approach is mandatory
in SBM management, paving the way for “Centers of excellence”, ensuring an adequate
workload and appropriate technological resources.
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