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ABSTRACT 

Carbonate rocks are important archives of past ocean conditions as well as hosts of 

economic resources such as hydrocarbons, water, and minerals. Geologists typically perform 

compositional analysis of grain, matrix, cement and pore types in order to interpret depositional 

environments, diagenetic modification, and reservoir quality of carbonate strata. Such 

information can be obtained primarily from petrographic analysis, a task that is costly, labor-

intensive, and requires in-depth knowledge of carbonate petrology and micropaleontology. 

Recent studies have leveraged machine learning-based image analysis, including Deep 

Convolutional Neural Networks (DCNN), to automate description, classification and 

interpretation of thin sections, subsurface core images and seismic facies, which would accelerate 

data acquisition and reproducibility for these tasks. In carbonate rocks, this approach has been 

applied primarily to recognize carbonate lithofacies, and no attempt has been made to 

individually identify and quantify various types of carbonate grains, matrix, and cement. In this 

study, the applicability and performance of DCNN-based object detection and image 

classification approaches are assessed with respect to carbonate compositional analysis. The 

training data comprised of more than 13,000 individually labeled objects from nearly 4000 

carbonate petrographic images. The dataset is grouped into six and nine different classes for the 

image classification and object detection tasks, respectively. Even with a small and relatively 

imbalanced training set, the DCNN was able to achieve an F1 score of 92% for image classification 

and 84% mean precision for object detection by combining one-cycle policy, class weight, and 

label mixup-smoothing methods. This study highlights the inefficiency of image classification as 

an approach to replicating human description and classification of carbonate petrography. By 

contrast, DCNN-based object detection appears capable of approaching human speed and 

accuracy in the area of carbonate petrography because it is able to individually locate and identify 

different carbonate components with greater cost-efficiency, speed, and reproducibility than 

conventional (human) petrographic analysis.  
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1. INTRODUCTION 

Recent advances in the field of artificial intelligence have been driven by the development 

of Deep Convolutional Neural Networks (DCNN), which can surpass human accuracy in 

computer vision tasks such as detailed image classification and object detection (e.g., Krizhevsky 

et al., 2012; Ren et al., 2015; Shin et al., 2016). DCNNs employ a non-linear function approximation 

that can perform better than shallow neural networks in the analysis of large data sets (LeCun et 

al., 2015). A high-speed graphics processing unit (GPU) allows vast arrays of tools/libraries to 

build DCNN architectures, which enable the machine to hierarchically learn and extract features 

within an image through a general-purpose learning process (e.g., Goodfellow et al., 2016).  

Machine learning in general and deep learning in particular offer promising tools to build 

new, data-driven models Earth system sciences (Reichstein et al., 2019). In the field of petroleum 

exploration, these methods have been applied extensively to seismic phase inversion, multiphase 

flow, total organic carbon (TOC) estimation, reservoir characterization, fracture analysis, 

geophysical log correlation, drilling penetration, and porosity and permeability prediction with 

geophysical logs (Ashena and Thonhauser, 2015). Machine learning algorithms have also been 

applied successfully to other image-based, geoscience-related problems, such as such as satellite 

image mapping (e.g., Lynda, 2019), seismic facies classification (e.g., Qian et al., 2018), lithology 

classification (e.g., Saporetti et al., 2018), and mineral recognition and classification of igneous 

rocks (e.g., Izadi et al., 2017). Furthermore, Saporetti et al. (2018) and Silva et al. (2020) combined 

different machine learning algorithms (e.g., K-Nearest Neighbors, Decision Trees, and Support 

Vector Machine) to classify carbonate or siliciclastic rocks from rock physics- and well log-derived 

petrofacies, respectively. 
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Recently, the DCNN method has been applied to conduct various geoscience tasks, such 

as geological feature extraction from seismic attributes (Huang et al., 2017), history matching of 

geological facies models (Liu et al., 2019; Canchumuni et al., 2019), three dimensional porous 

media reconstruction (Mosser et al., 2017), reconstruction of relative geologic time from seismic 

image (Geng et al., 2020), and anomaly detection for geological carbon sequestration (Zhong et 

al., 2019). In addition, DCNN models have been applied widely to lithofacies classification in 

cores and thin section images (John and Kanagandran, 2019; Pires de Lima et al., 2019; 

Baraboshkin et al., 2020; Pires de Lima et al., 2020; Tang et al., 2020). To date, however, machine 

learning tools have been applied primarily to lithofacies classification. They have not yet been 

applied to the comprehensive identification, classification and quantification of individual grain 

and cement components in carbonate rocks.  

Petrographic analysis is the most commonly used technique to identify and classify the 

components and textures of carbonate rocks. This approach is typically labor-intensive and 

requires substantial prior knowledge. This limitation is compounded by the potential for bias and 

subjectivity in the human interpretation and classification of carbonate rocks (e.g., Dunham 

Classification; Dunham, 1962), limiting reproducibility among researchers (Lokier and Al-

Junaibi, 2016). Recently, automated approaches have been applied to perform quantitative 

petrographic analysis, such as point counting (Asmussen et al., 2015) and porosity measurement 

(Grove and Jerram, 2011; Amao et al., 2016), through image segmentation and thresholding. These 

methods were not fully automated, however, as the different types of carbonate constituents were 

still manually identified by geologists. Full automation would represent a major advance in the 

use of computerized tools for the petrographic description and classification of carbonate rocks. 
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Detailed and accurate characterization of carbonate constituents is important for applications to 

hydrocarbon reservoirs, freshwater aquifers, carbon capture and storage, the evolution of marine 

ecosystems, and paleoenvironmental reconstruction (e.g., Payne et al., 2006; Koeshidayatullah et 

al., 2016; Al-Ramadan et al., 2019; Koeshidayatullah et al., 2020). 

To date, the majority of studies on geological image analysis have been focused in 

applying DCNN-based image classification to automate identification and interpretation 

processes (e.g., Baraboshkin et al., 2020). A typical petrographic thin section of a carbonate rock 

sample (and the image thereof) has various carbonate components; therefore, a DCNN-based 

image classification approach requires the image to be manually segmented into separate parts 

prior to classification if the image contains multiple components (Fig. 1). In addition, the 

classification task often returns only a single predicted class for each image, even when multiple 

object classes are present in the image (Fig. 1). Therefore, this study aims to explore the 

application and limitations of DCNN-based image classification on carbonate petrography 

images. Furthermore, this paper, for the first time, studies the application of coupled DCNN-

based image classification and object identification tasks to simultaneously locate and identify 

multiple carbonate grain, matrix, and cement types within a single petrographic image (Fig. 1). 

Such a method more closely approximates the human approach to carbonate petrography. The 

performances of different DCNNs architectures or frameworks for image classification and object 

detection tasks are compared in order to identify the most effective approaches. In addition, the 

deep learning approach is extended to quantify the abundances of different components within 

a sample. Methods to improve network and detection performance in the presence of limited 
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training data are also explored. The results suggest that fully automated carbonate petrography 

is feasible given current technology.  

2. DATA 

For this study, nearly 4000 images of carbonate petrographic thin sections of different 

scales or magnification, both in plane- and cross-polarized light, were compiled from various 

sources. Samples were drawn primarily from the Upper Permian through Middle Triassic of 

south China, Turkey, and Saudi Arabia and supplemented by images from carbonate 

petrography textbooks (Adams and Mackenzie, 1998; Scholle and Scholle, 2003; Flügel, 2013). In 

addition, images from a publicly accessible site, www.carbonateworld.com (Della Porta and 

Wright, 2009) and other studies in the primary literature were compiled for both training and 

testing purposes. These images cover different geological periods and various type of carbonate 

grains and cements. Images in the database were resized to 512x512 pixels and 224x224 pixels in 

order to increase the efficiency of training processes while still preserving the original features of 

carbonate constituents. The image sizes were selected for the image classification task, the 

training dataset was segmented and split into smaller images that represent six different 

carbonate components (Fig. 2A): (i) coated grains (29%); (ii) bioclasts (27%); micrite (7%); (iv) 

calcite cement (9%); (v) replacement dolomite (18%); and (vi) porosity (10%). For the object 

detection task, more than 13,000 individual carbonate components were manually labelled from 

the training datasets and divided into nine classes (Fig. 2B): (i) ooids (37%); (ii) peloids (9%); (iii) 

foramifera (9%); (iv) molluscs (11%); (v) other skeletal grains (13%); (vii) micrite (5%); (vii) calcite 

cement (6%); (viii) replacement dolomite (7%); and (ix) porosity (3%).  

 

http://www.carbonateworld.com/
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3. METHODS 

3.1 Computing Environment Setup 

In this study, a publicly accessible cloud service, Google Colaboratory (Colab) 

environment with access to NVIDIA Tesla T4 (2560 CUDA® Cores) or P100 GPUs (3584 CUDA® 

Cores) and up to 25 GB of high-memory Virtual Machines to build the algorithms, was used to 

train the model and to make predictions. This Jupyter notebook-based environment comes with 

preinstalled Python libraries/dependencies for DCNN-based image classification and object 

detection, including NumPy (1.17) (Oliphant, 2006), OpenCV (4.1.2) (Bradski, 2000), Scikit-learn 

(0.22.2) (Pedregosa et al., 2011), Imbalanced-learn (Lemaître et al., 2017) and Matplotlib (2.2.2) 

(Hunter, 2007). Various back-end libraries (API): TensorFlow (1.13-1.15) (Abadi et al., 2016), Keras 

(2.2.5) (Chollet et al., 2015), Pytorch (1.5) (Paszke et al., 2019), and fastai (Howard and Gugger, 

2020) were used to develop the DCNN architecture, preprocess the image dataset (e.g., image 

filtering and augmentation), and train the model. 

3.2 Data Annotation and Pre-processing 

ImageDataGenerator (Keras Library) and ImageDataBunch (fastai library) functions were 

used to create a labelled image dataset for the image classification task. For the object detection 

task, an open-source firmware, labelImg (Tzutalin, 2015), was used to generate object annotations 

in PASCAL visual object classes (VOC) and YOLO-accepted formats. 

The training dataset has substantial class imbalance among carbonate components, which 

may negatively impact the network and prediction performance. To reduce the effects of bias and 

class imbalance in the training dataset, multiple mitigation approaches were performed, 

including: data augmentation, constructing cross-validation sets, oversampling-undersampling 
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the dataset, and pre-determining the class weights (scikit-learn and Keras libraries). For cross-

validation sets StratifiedKFold by using scikit-learn library (Kohavi, 1995), the dataset was divided 

into 85% for training and 15% for testing and shuffled into five different combinations of training 

and testing datasets (K=5; Fig. 2C). This train-test split design was used based on optimum results 

during training and prediction processes compared to other test-split percentages (i.e. 10%, 20%, 

25%). For training purposes, data augmentation techniques (e.g., transform, color transformation, 

add noise, pixel filling, and flip; Keras Library) were used to generate a pseudo training dataset 

and increase the diversity of the data without actually collecting additional images. In addition, 

a label mixup method (“Bag of Freebies”; Zhang et al., 2019) was used to minimize overfitting by 

giving the network two images from either similar or different classes and creating a linear 

combination of them. 

Class imbalance is a common problem in machine learning, and it can be mitigated in 

several ways (e.g., data-level and algorithm-level methods; Buda et al., 2018; Johnson and 

Khoshgoftaar, 2019). In this paper, three different methods (data- and algorithm-level) were used 

and evaluated to address the effects of class imbalance. First, a combined oversampling-

undersampling technique (SMOTEENN; Imbalance-learn library) was used following the 

Synthetic Minority Over-sampling Technique (SMOTE; Chawla et al., 2002) and Edited Nearest 

Neighbors (ENN; Alejo et al., 2010), respectively. In addition, the BalancedBatchGenerator 

(Imbalance-learn and Keras Libraries) was used to perform the SMOTEENN technique across the 

whole dataset. This method balances the dataset by duplicating samples in the minority classes 

while removing samples from majority classes. This method is possible with an assumption that 

the overall abundance of different carbonate grains, cement and micrite is roughly similar in the 
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study material. Second, an algorithm-level method was tested by assigning different class 

weights based on the amount of material for each class in the training data (scikit-learn and Keras 

libraries; King and Zen, 2001), which penalizes majority and minority classes equally (i.e. higher 

weights are given to minority classes while lower class weights are assigned to majority classes). 

For the image classification task, the calculated class weight for (i) bioclast (27%) is 0.65; (ii) coated 

grains (29%) is 0.51; (iii) calcite cement (9%) is 1.9; (iv) replacement dolomite (18%) is 1.1; (v) 

micrite (7%) is 3.6; and (vi) porosity (10%) is 1.4. Finally, a soft sampling approach was tested by 

applying a focal loss function (Lin et al., 2017a) instead of cross-entropy loss. This method works 

by put more weights on hard-to-classify samples while down-weighting the easy-to-classify 

examples during training. This method is applied primarily for the DCNN-based object detection 

task. 

3.3. Deep Convolutional Neural Networks 

A full convolutional neural network (CNN) was first introduced nearly four decades ago 

to recognize handwriting and digits (LeNet; LeCun et al., 1989). Here, the convolution operation 

works as an element-wise matrix multiplication between the filter (a two-dimensional array of 

weights) and filter-sized patch of the input, which is followed by summing the elements of the 

produced matrix, resulting in a single number (scalar product). The rise of CNN occurred in 2012, 

when Krizhevsky et al. (2012) built a DCNN model (AlexNet) to recognize different image classes 

in an ImageNet dataset (Deng et al., 2009). This deep convolutional neural network perceives 

images as tensors and arranges its neurons as a 3D volume (height, weight and depth (Red-Green-

Blue channel)) (Fig. 3). In general, the architecture of a DCNN is very similar to a CNN.  It consists 

of input, output and multiple layers in between, including (Fig. 3): (i) convolutional layers; (ii) 
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activation layers; (iii) pooling layers; and (iv) fully connected layers (e.g., Goodfellow et al., 2016). 

Matrix operations between these layers and different filters allow the network to learn different 

features (high- to low-level feature) within an image. In the fully connected layer, a SoftMax 

function (Bridle, 1990) is used to calculate the prediction of different classes (Fig. 3). Furthermore, 

to optimize the learning processes (i.e., to find global minimum in order to minimize the loss), 

different hyper-parameters within the layers, such as learning rate, loss, and activation functions, 

can be fine-tuned (Goodfellow et al., 2016). In this paper, sparse categorical cross-entropy loss, 

rectified linear unit (ReLU) and adaptive learning rate optimization algorithm (Adam=Adaptive 

Momentum Estimation; Kingma and Bas, 2014) were used to increase the network performance. 

DCNNs are typically trained on very large datasets (millions of images and thousands of 

classes; e.g., ImageNet). In geoscientific problems, however, such large-scale, annotated datasets 

are often difficult or impossible to obtain. The most commonly used technique employed when 

only limited training data are available is called “transfer learning” (e.g., Bengio, 2012; Shin et al., 

2016; Tan et al., 2018). In transfer learning, the dataset does not need to be independent and 

identically distributed and the network is not trained from scratch. Instead, the networks or 

learning parameters are first trained on the domain model where very large datasets are available 

(e.g., CIFAR-10 and -100 (https://www.cs.toronto.edu/~kriz/cifar.html; Krizhevsky et al., 2009), 

ImageNet (http://www.image-net.org/; Deng et al., 2009) and Microsoft COCO 

(http://cocodataset.org/; Lin et al., 2014)). These pre-trained parameters (e.g., weights) and layers 

are transferred to perform certain computer vision tasks in the target model (e.g., DCNN-based 

carbonate image classification). In general, the training process of the transfer learning method 

requires less computation time and performs better because of the presence of pre-trained 

https://www.cs.toronto.edu/~kriz/cifar.html
http://www.image-net.org/
http://cocodataset.org/
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weights and learning parameters to perform feature extraction from an image of interest. 

However, as the network was trained in a domain model where it contains images or objects that 

do not resemble carbonate components, networks were fine-tuned in this study by adding hidden 

layers with several different weight initializations (Keras Library; e.g., He initialization (He et al., 

2015)). Furthermore, several studies have successfully used this transfer learning method to 

classify image-based carbonate-siliciclastic lithofacies (e.g., Pires de Lima et al., 2019; Baraboshkin 

et al., 2020). 

3.4 Image Classification 

In this study, the image classification task was conducted using two DCNN architectures: 

VGG16 (Virtual Geometry Group, Oxford University; Simonyan and Zisserman, 2014) and 

Inception-Resnet v2 (Szegedy et al., 2017) (Fig. 4A-B; Table 1). These two architectures have been 

successfully applied to large-scale image recognition tasks (e.g., ImageNet dataset). Therefore, 

this study applied transfer learning procedure by using these pre-existing architectures and pre-

trained initialization weight.  

The VGG16 architecture consists of 16 layers that have weights and approximately 138 

million total trainable parameters (Simonyan and Zisserman, 2014); hence, it requires a high 

number of floating-point operations (FLOPS). The network consists of: (i) convolution layers of 

3x3 filters with stride of 1; (ii) a maxpooling layer of 2x2 filter with a stride of 2; (iii) padding size; 

(iv) three fully connected layers at the end of the network output (Fig. 4A). In this paper, the 

VGG16 architecture was fine-tuned by adding batch normalization layers between convolution 

and pooling layers and by introducing dropout layers after the fully connected layers (Fig. 4A). 

The Inception-Resnet architecture is a combination of inception and residual architectures (Fig. 
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4B; Szegedy et al., 2017), with half as many parameters as the VGG16 (66 million), yet greater 

depth than VGG16 (up to 152 layers) and slightly lower FLOPS (Bianco et al., 2018). Here, the 

hybrid inception module consists of convolution layers with different size of filters (1x1, 3x3) and 

the different inception modules were combined with residual connection, which replaces the 

pooling layer in the naive inception module (Szegedy et al., 2017). The purpose of the 1x1 

convolutions (bottleneck layers) in the inception module is to reduce feature depth of the output 

in order to match the dimension of input and output and to reduce the number of learning 

parameters. Furthermore, a dropout layer was added after the final fully connected layer to 

regularize the model and avoid overfitting (Fig. 4B).  

During the training process, the network performance was monitored by comparing the 

training and validation/test loss as the training steps or epoch increased. Furthermore, several 

metrics (accuracy, precision, recall and F1-score) (Fawcett, 2006) and the confusion matrix 

(Fawcett, 2006) were calculated to evaluate the performance of each network architecture on the 

prediction of image classes (Table 2). Here, TP is true positive, TN is true negative, FP is false 

positive, and FN is false negative. Accuracy measures the ratio between correct prediction and 

total observation whereas precision calculates the proportion of correct identification when the 

feature is present. Recall measures the sensitivity of the correct prediction and the F1-score is the 

weighted average of Precision and Recall. Overall, the F1-score is more useful than accuracy in 

evaluating the prediction performance.  
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3.5 Object Identification 

The object identification task for carbonate rock components was performed to 

individually locate multiple objects within a single image. This study used one- and two-stage 

detectors and compared their performances (Fig. 5A-B; Table 1).  

In general, a one-stage detection pipeline does not have a region proposal network 

module that creates a sophisticated end-to-end single detection framework (Liu et al., 2016) (Fig. 

5A). For this one-stage detector, SSD (Single Shot Multibox Detector; Liu et al., 2016) and YOLOv3 

(You Only Look Once version 3; Redmon and Farhadi, 2018) frameworks were applied. Both use 

a single convolutional neural network and a fixed set of default bounding boxes. The YOLO 

method uses Darknet architecture as the backbone and treats the object detection task as a 

regression problem in order to create different bounding boxes and predict their class 

probabilities (Redmon et al., 2016). For the SSD method, this study used and compared two 

different architectures as the backbone: ResNet (RetinaNet) and MobileNet (TensorFlow 

detection model zoo; https://github.com/tensorflow/models). The main differences between the 

two architectures are that the RetinaNet employs a feature pyramid network (FPN; Lin et al., 

2017b), focal loss function and cosine annealing learning rate (Lin et al., 2017a).  

A two-stage detection pipeline commonly consists of two modules: (i) a region proposal 

module that uses a DCNN to propose regions and the type of object to consider in the region; and 

(ii) a detection generator module that uses a DCNN for extracting features from the proposed 

regions and outputting the bounding box and class labels (Fig. 5B; Girshick et al., 2015). For the 

two-stage detector, this study compared the performance of R-FCN (Region-based Fully 

Convolutional Neural Networks; Dai et al., 2016) with a ResNet backbone and faster-RCNN 

https://github.com/tensorflow/models
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(faster-Region proposal Convolutional Neural Networks; Ren et al., 2015) with Inception-ResNet 

V2 backbone to classify and identify the different carbonate rock components. This framework 

uses a similar two-stage pipeline and input image size as faster R-CNN framework. The main 

differences between faster R-CNN and R-FCN are (i) the R-FCN framework uses ResNet101 to 

perform feature extraction and (ii) the R-FCN framework is computationally more efficient in 

proposing regions of interest by using a fully convolutional network. 

Similar to the image classification problem, the performance of different object detection 

models was measured by calculating the pattern analysis, statistical modelling, and 

computational learning (PASCAL)-style average precision (AP) of each class (Fig. 5C) and the 

mean average precision (mAP) across all classes. In this detection task, the true positive can be 

predefined from the Intersection over Union (IoU) threshold value where the IoU measures the 

overlap between the ground truth bounding box and predicted bounding box (Fig. 5C). Here, the 

threshold value IoU of 0.5 was used to distinguish between true positive, false positive, and false 

negative (Fig. 5C). During the training process, network performance was evaluated by 

monitoring the classification and localization loss, instead of training and validation loss as in the 

image classification task.  

4. RESULTS 

4.1 Image Classification 

VGG16 – The training process was conducted across 3500 training batches following a 

one-cycle policy method (Smith, 2018; fastai and Keras libraries) and the presented model 

represents the best accuracy from the cross-validation sets (Fig. 6A). Overall, the training loss 

decreased from > 3 to 0.09 as the number of processed training batches increases (Fig. 6A). While 
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the validation loss also dropped as the training progressed (from 2.3 to 0.8), it failed to converge 

with the training curve (Fig. 6A). Application of class weights produced a lower validation loss 

(~0.55) and improved prediction performance during the testing stage (Fig. 6B and Table 3). 

Across the six classes of carbonate components, the mean F1-score for all classes is 0.84 and this 

architecture performed best at identifying bioclasts and coated grains, but struggled to accurately 

identify calcite cement (Table 3 and Fig. 6B). It achieved the highest precision for coated grains 

and dolomite classes (0.90) and the lowest precision for calcite cement (0.72) (Table 3 and Fig. 6B). 

Bioclasts and micrite have comparably high recall (0.89-0.90) whereas calcite cement has the 

lowest recall (0.74) (Table 3 and Fig. 6B).  

Inception-Resnet v2 – A similar training process was performed for the Inception-Resnet 

v2 architecture (one-cycle policy and cross validation) but it involved less processed training 

batches (Fig 6C). In the Inception-Resnet v2 architecture, the training loss converged after 1800 

training batches and the loss dropped from > 2 to 0.01 (Fig. 6C). Overall, the validation loss for 

this model is much lower than for the VGG16 (0.41) and the application of class weights further 

improved the validation loss (0.19) and prediction performance (Fig. 6C-D). The mean F1-score of 

the six studied classes is 0.92 (Table 3) with four out of six classes have F1-scores higher than 0.9 

(Table 3; Fig. 6D). The highest precision and recall were obtained for bioclasts (0.97) and micrite 

(1.0), respectively (Table 3 and Fig. 6D). In contrast, precision (0.79) and recall (0.82) were lowest 

for calcite cement (Table 3 and Fig. 6D). Overall, the Inception-ResNet v2 architecture 

outperformed the VGG16 architecture during the prediction stage (Table 3). Performance across 

classes was similar between architectures, with coated grains showing the highest recall and 

calcite cement the lowest recall.  
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Although this method achieved satisfactory performance in distinguishing among 

carbonate components, it contains a fundamental weakness in that it can only recognize one class 

per image even when multiple components are present in the image (Fig. 7). It is therefore not 

well suited for interpreting petrographic images of complex rock samples. Application of this 

method alone is therefore unable to replicate human interpretation of carbonate petrography. In 

an attempt to overcome this fundamental limitation of the image classification technique, this 

study combined image classification with object identification in order to perform a more robust 

carbonate petrography description and interpretation. 

4.2 Object Identification  

Five different object detection frameworks were compared, including both one-stage 

(YOLOv3, SSD and RetinaNet) and two-stage (faster R-CNN and R-FCN) detectors. The training 

processes were conducted until the bounding box classification loss has reached less than 0.05 or 

plateaued. During the training processes, various features were extracted of different classes to 

help understand and improve the confidence during object recognition processes (Fig. 8). The 

performance for this object detection task is measured by the average precision on the IoU of 0.5 

(AP0.5) for each class, mean of average precision (mAP) and inference time required to perform a 

prediction (Fig. 9A-B and Table 4). 

4.2.1. One-stage detectors 

YOLOv3 – In this framework, the AP0.5 varies from class to class, ranging from 0.59 

(peloids) to 0.89 (ooids), with the average is 0.72 (Table 4). The average inference time is 18.4 

milliseconds per image. Overall, the YOLOv3 framework has the highest AP0.5 for the ooids and 
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molluscs classes among one-stage detectors (Fig. 9A). The YOLOv3 has the fastest detection speed 

and the second lowest detection accuracy out of the five different frameworks (Fig. 9B).  

SSD– This framework shows the highest AP0.5 in the ooids class (0.76) whereas the micrite 

class has the lowest AP0.5 (0.53), with the mAP around 0.66 (Table 4; Fig. 9A). The average 

detection speed per image is 68.2 milliseconds (Fig. 9B). Compared to other one-stage detectors, 

this framework has the lowest AP0.5 for all studied classes. This network displays the lowest 

detection accuracy (0.66) and second fastest detection speed (Fig. 9B). 

RetinaNet—The RetinaNet has the highest AP0.5 for all classes except ooids and molluscs 

among one-stage detector pipelines (Table 4). Its highest AP0.5 is for foraminifera (0.86) while its 

lowest AP0.5 is for micrite (0.69) (Fig. 9A). In addition, this framework has the highest mAP (0.79), 

but slowest detection speed (101.8 milliseconds per image) when compared to other one-stage 

detection pipelines (Fig. 9B). Among other one- and two-stage detectors, the RetinaNet has the 

second highest accuracy and third fastest detection speed (Table 4 and Fig. 9B). 

4.2.2. Two-stage detectors 

Faster R-CNN – In this framework, the highest AP0.5 is observed for ooids (0.95) (Fig. 9 A; 

Table 4) while the lowest AP0.5 is for calcite cement (0.75) (Fig. 9A; Table 4). Different examples of 

the performance of this framework on the validation or test dataset, specifically the high accuracy 

in detecting different types of carbonate grains (ooids, molluscs, foraminifera) were evaluated by 

using petrographic images from published literature (Figs. 10 and 11). Overall, this framework 

outperformed the other one-stage and two-stage detection frameworks, where it shows the 

highest AP0.5 for all studied classes and mAP (0.84) (Fig. 9B). However, this framework has the 
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slowest inference time compared to other one-s and two-stage detectors when predicting the 

different objects in a single image (814 milliseconds per image; Fig. 9B; Table 4).  

R-FCN – In this framework, the AP0.5 varies substantially among classes, from 0.54 (calcite 

cement) to 0.92 (ooids) (Fig. 9A; Table 4). Among the five detection frameworks, the mAP of this 

framework is the third highest (0.76) while the detection speed is the second slowest (277.8 

milliseconds per image) (Fig. 9B; Table 4). 

4.3 Object Counting and Porosity Calculation 

For these tasks, the number of predicted bounding boxes for each class in an image were 

calculated to perform automatic object counting (Figs. 10 and 11). A total of 15 tests were 

conducted on samples from an oolitic grainstone facies and this automated object counting 

method never overcounts the number of grains, with the level of agreement varies from 0.56 to 

0.95 (Table 5).  In some analysis, the deep learning method can match the manual grain counts, 

in particular when the grain counts are less than 20 (Table 5). Overall, a good agreement between 

manual grain counting and deep learning-guided object counting was observed (av. 87% 

accuracy; Table 5). Furthermore, this study applied a combined adaptive Gaussian threshold and 

HSV filtering on the detected bounding box for the porosity class (Fig. 12) to isolate the blue-dyed 

pore space with the surrounding grains/matrix in the samples. Here, the proposed method 

provides a very close porosity estimation (av. 90% accuracy; Table 5). There are two examples 

where the estimated porosity values are substantially higher than the actual core plug porosity. 
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5. DISCUSSION 

5.1. Fully Automated Carbonate Petrography 

This study presents an evaluation of two different DCNN-based image analysis 

techniques, image classification and object detection, in describing and classifying carbonate 

petrographic images. A few prior studies have attempted DCNN-based image classification in 

order to identify carbonate lithofacies (e.g., Pires de Lima et al., 2019; John and Kanagandran, 

2019), but no previous studies have attempted an object detection approach. In general, DCNN-

based object detection is more efficient than image classification because: (i) there is no need to 

split the image into several smaller images to label the image class (Fig. 3) and (ii) it can provide 

more direct information about the identified features as well as their relative abundances and 

volumetric contributions. Although the image classification task can be used to predict multiple 

classes within a single image (Fig. 3), the different predicted classes may not necessarily represent 

different components, but may just occur because of a misclassified prediction of a single 

component (e.g., predicted output for micritized coated grains can be as either ooids, peloids or 

micrite; Fig. 3). In contrast, the object detection task can provide different predicted bounding 

boxes for an image that individually allocate different grains and cement types with various 

confidence levels.  

Based on the results of the tests run in this study, it appears that the object detection 

approach is the more direct and effective route toward fully automated carbonate petrographic 

description. This method also more closely mimics the process of human-based petrographic 

description where individual carbonate components are identified and characterized 

simultaneously for a single image. In addition, this method can be used to estimate the number, 



Koeshidayatullah et al. (2020) 

size and volume of carbonate grains from the locations and sizes of the detected bounding boxes. 

This information is crucial for performing textural identification of carbonate lithofacies based on 

the Dunham textural classification scheme (Dunham, 1962). One of the main reasons for 

inconsistencies in manual carbonate lithofacies classification is the incorrect identification of 

carbonate grain types and incorrect estimation of the proportions of different carbonate grain 

types, cement, and micrite (i.e. misclassifications between matrix and grain supported facies, and 

fine and coarse-grained facies) (Lokier and Junaibi, 2016). This weakness of manual classification 

persists in DCNN-based automatic identification of carbonate facies using the Dunham 

classification scheme (John and Kanagandran, 2019). The object detection approach using DCNN, 

proposed in this study, could lay a foundation towards a more robust method for classifying 

lithofacies based on the detection and quantification of individual carbonate components. Similar 

conclusions have been reached in other fields, such as medical imaging, object detection 

outperforms image classification for characterizing medical microscopic images (Wang et al., 

2019). 

In both image classification and object detection tasks, calcite cement and micrite are 

recognized less accurately than carbonate grains. There are two contributing factors for this 

difference: (i) calcite cement and micrite often have diffuse object boundaries and (ii) carbonate 

grains can be micritized or recrystallized, blurring the conceptual distinctions between micrite, 

cement, and grains. For example, micritized foraminifera can be labelled as either foraminifera or 

micrite and the more appropriate label will depend upon the study objective. Furthermore, the 

training dataset used in this study consists predominantly of Permo-Triassic samples; hence, the 
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ability to recognize certain types of carbonate grains which are not present in this interval may 

be less accurate.  

The object detection approach entails a tradeoff between detection speed and accuracy 

(Fig. 9B). In this study, the highest accuracy is obtained from the faster R-CNN method, but it has 

the slowest detection speed. This issue is not significant for the analysis of a small number of 

static images, where the overall computational time is still sufficiently short for research 

purposes. However, if one were to conduct the object detection task in real time, for example on 

streaming video, the YOLOv3 or RetinaNet may combine speed and accuracy in more useful 

ways (Fig. 9B; Table 4) (see supplementary material Video_1_Petrography streaming or access 

the file from https://github.com/ardikoes/Carbonate_ML.git). Furthermore, object detection tools 

can increase the accuracy and efficiency of lithological description and classification from both 

subsurface cores and wellbore cuttings. In such cases, carbonate reservoir characterization for 

hydrocarbon exploration processes could benefit from the application of this approach. 

5.2. Performance Evaluation 

This study compared different deep learning models for both image classification and 

object identification tasks. For classifying different carbonate components through image 

classification, the inception-ResNet architecture has clearly outperformed the VGG16 model as 

the VGG16 model fails to converge, hence giving lower accuracy when performing new 

predictions due to probably overfitting problem. Furthermore, the VGG16 model require more 

training time and computing resources than the inception-ResNet model, although the latter has 

a much deeper layer. The creator of VGG16 model (Simonyan and Zisserman, 2014) encountered 

a similar issue and suggested pre-training of the model in smaller networks to mitigate this issue. 

https://github.com/ardikoes/Carbonate_ML.git
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Pre-training is time consuming, however, and may not be worth the sacrifice of speed. Similar 

optimization processes, such as cross validation and one-cycle policy (Smith, 2018), did not 

significantly improve the VGG16 model in this study relative to the inception-ResNet model. One 

reason why the VGG16 model performs poorly could be the limited size of the dataset (even after 

data augmentation). The total number of trainable parameters in VGG16 is twice that of the 

inception-ResNet model, which makes the VGG16 mode data “hungry” and also prone to 

overfitting. In addition, there is the vanishing or exploding gradient problem for very deep 

networks, as highlighted by Goodfellow et al. (2016), which makes the network unstable and 

learning process harder to progress. This problem is not encountered in the ResNet architecture 

because the residual blocks allow the gradient to flow continuously or uninterrupted. Although 

it is possible to increase the performance of VGG16 by fine tuning the hyper-parameters, the high 

accuracy achieved by the inception-ResNet architecture made this approach unnecessary.  

For the object detection task, this study utilized either ResNet or Inception-ResNet 

architecture as the feature extractor, hence the issues encountered in the image classification task 

were not present. The comparison of five distinct object detection frameworks show that there is 

a significant tradeoff between detection accuracy and speed (Fig. 9B), and this tradeoff appears 

to be general to the method (Huang et al., 2017). In our study, the faster R-CNN (two-stage 

detectors) show the highest accuracy but slowest detection speed.  The main reason is the one-

stage detectors run the object detection task directly over a dense sampling of proposed bounding 

boxes without first performing a region proposal step (Fig. 5). Furthermore, the one stage 

detectors struggle when the image contains multiple objects of different classes. Soviany and 

Ionescu (2018) highlighted this issue and utilized PASCAL VOC 2007 dataset to propose an image 
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difficulty predictor (i.e. differentiate easy versus hard image) to split the test image instead of 

random split as a pre-treatment stage before the detection task. By feeding the difficult image to 

two-stage detectors and easy image to one-stage detectors, the tradeoff between detection speed 

and accuracy can be reduced. 

5.3. Improving Accuracy with Limited and Imbalanced Datasets 

DCNN-based methods are generally data hungry when performing a narrow task. These 

datasets typically comprise tens of millions of images, divided into hundreds of classes. 

Depending on the applications, collecting this quantity of data for geological applications, 

including petrographic images, can be very difficult to achieve. Therefore, different algorithm 

optimizations are necessary to better train the networks. Network optimization is often achieved 

by applying various hyperparameters fine-tuning approaches such as weight initialization, batch 

normalization, and regularization (Goodfellow et al., 2016). Here, in addition to applying these 

methods, a one-cycle policy (Smith, 2018) by using the fastai library was used to optimize the 

learning rate. One of the important methods under the one-cycle policy is the use of a cosine 

scheduler for learning rate decay that allows the network to train better and converge faster. 

Furthermore, this study applied different data augmentation procedures, including: (i) 

transforming the image (reshape, filter, transform, and introduce noise; Keras library) and (ii) 

label Mixup (class mixing in the training dataset) and smoothing (decrease the label confidence 

to 0.9 to replace one hot encoded labelling) using the fastai library. The first method, which is 

commonly used in DCNN-based image classification analysis (e.g., Perez and Wang, 2017), 

achieved little improvement in the classification and detection accuracies (+ 0.2 to 1.5%). This 

failure occurred because such data augmentation does not increase the variability of dataset 
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significantly. The second method shows a more significant impact on the overall prediction 

performance and improved the average precision of all classes (AP0.5: + 2 to 5%; Table 4). This 

approach was more successful because it makes the neural networks more robust to noise and 

model overfitting. 

Another common and significant challenge is class imbalance in the training dataset, 

which has been observed in other research fields (Buda et al., 2018), such as medical analysis 

(Grzymala-Busse et al., 2004) and remote sensing (Johnson et al., 2013). Many studies have 

discussed the significant detrimental impact of this issue to the learning processes and proposed 

different approaches to attenuate its effect (Buda et al., 2018 and references therein). Here, two 

methods were compared and evaluated. The class weight method outperformed the 

oversampling-undersampling method in this study (Fig. 6A and C). The class weight method 

allows the networks to put more emphasis on the minority classes and less emphasis on the 

majority classes by equally penalizing their weights. While oversampling has been suggested to 

outperform other mitigation methods and does not cause overfitting in DCNN (Buda et al., 2018), 

the main disadvantages of oversampling-undersampling method are the possibility to remove 

important features in the original dataset and synthetically creating dataset which may ignore the 

actual distribution of data abundance and availability. In addition, the comparison conducted 

herein shows that the sampling method tends to cause overfitting (Fig. 6A and C). Furthermore, 

this paper used a cost-sensitive learning by applying a focal loss function (Lin et al., 2017a) instead 

of a categorical cross-entropy loss function to attenuate the class imbalance issue. Several studies 

in different fields have shown the advantage of applying a focal loss function to improve the 

network and prediction performance (Chatterjee et al., 2019; Sun et al., 2019; Celik et al., 2020). In 
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this study, these augmentation and class imbalance mitigation methods, coupled with one-cycle 

policy, were the most successful approach to mitigating the challenges of a limited, imbalanced 

training dataset. 

6. FUTURE RECOMMENDATIONS 

Deep Convolution Neural Networks show substantial promise in the tasks of image 

classification and object identification in carbonate rocks. The main advantage of DCNN-based 

object detection is the ability to accurately locate and identify different components individually. 

In addition, this method enables real-time carbonate petrography with optimum accuracy and 

speed.  

There remain several key areas for improvement. First, classes may be mislabeled even 

when the model loss is very low (< 0.1). This phenomenon may occur because of the complex 

nature and diagenetic alteration of carbonate components (e.g., completely recrystallized skeletal 

grains often mislabeled as calcite cement or micritized grain can be mistakenly classified as 

micrite). In general, grains tend to be bounded objects that can be fit well with bounding boxes 

whereas cements tend to be interstitial and so are not easily isolated by bounding boxes if they 

are continuous in the pore space between grains. An expanded annotated training dataset for 

these classes and other carbonate grain types across geologic timescales may improve the overall 

learning processes, performance and prediction. In addition, a higher-level skeletal grain 

classification (e.g., phylum or class/genera level) is necessary for applications in carbonate 

paleoecology and biostratigraphy as well as for refined interpretation of depositional 

environment. Furthermore, certain carbonate grains, especially skeletal grains, have limited 
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stratigraphic distributions and so a tool that can be applied to any particular time interval would 

require at least some training images of the same age. 

Second, smaller carbonate grains (< 50 microns) are either difficult to detect or detected 

with low accuracy (< 30 % confidence) during the object detection task. The small object detection 

problem has also been encountered in recognizing real world objects using DCNN (Hu et al., 

2018). This problem occurs because of the iterative combination of low-level features during the 

convolution process which make small object difficult to detect and also the saliency DCNN 

model where it tends to focus on bigger objects in an image (Hu et al., 2018) because small objects 

are represented by fewer pixels. To mitigate this issue, Hu et al. (2018) suggested multiscale 

feature extractions from different convolution layers and combined these features to a 1-D vector. 

Another method that may be applied is remote sensing region-based convolutional neural 

network (R2-CNN; Pang et al., 2019) by using Tiny-Net and intermediate global attention block 

as the backbone.  

Furthermore, future work should focus to apply either supervised or unsupervised 

semantic and instance segmentation (e.g., mask R-CNN; He et al., 2017 or U-Net; Ronneberger et 

al., 2015) as the next step after object detection in order to provide a more reliable interpretation 

of carbonate petrography and lithofacies classification. This method will also allow a better 

characterization of pore types in carbonate rocks. In addition, future work could explore the 

application of LSTM model (Long Short-Term Memory) with Recurrent Neural Networks (RNN) 

(Hossain et al., 2019) to provide automatic carbonate microfacies description and the application 

of AttnGAN (Xu et al., 2018) to create carbonate thin section image from image description. When 

the size of the training dataset cannot be significantly increased, an alternative approach to create 
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significantly larger and statistically meaningful synthetic dataset is to apply Generative 

Adversarial Networks (GANs) (Goodfellow et al., 2014; Goodfellow et al., 2016; Choi et al., 2018). 

Several survey studies have shown how image augmentation from GANs method can 

significantly improve the performance of the algorithms and provide a more close-to-real world 

examples for the model to learn (Wu et al., 2017; Pan et al., 2019). Nanjo and Tanaka (2020) have 

successfully applied this method to reconstruct and interpret carbonate thin section image from 

a sketch of labelled image using GAN method. Hence, further development of this method maybe 

worth exploring in the future. 

7. CONCLUSIONS 

  This study has successfully performed a fully automated identification of different 

carbonate constituents by coupling DCNN-based image classification and object detection 

approaches. The results show a promising potential of deep learning application to automate 

carbonate petrography description and interpretation where high level performance was 

achieved from both image classification and object detection tasks (> 80% accuracy) even with 

limited training data. Furthermore, this method can perform grain identification and 

quantification simultaneously at much greater speed than human-based analysis. 

For the image classification task, the Inception-ResNet architecture shows a better 

performance than the VGG16 architecture in terms of training speed and classification accuracy. 

The presence of residual connections in Inception-ResNet network helps the network to train 

better even with limited dataset. However, this study determined that performing image 

classification alone would not suffice to mimic how a human describes or interprets a carbonate 

petrographic image. Therefore, this study, for the first time, used DCNN-based object detection 
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task to compliment image classification analysis in order to perform a more robust and closer to 

human approach of carbonate petrography interpretation. In the object detection task, the highest 

detection accuracy is obtained from the faster R-CNN framework, although its detection speed is 

the slowest among other frameworks. Depending on the type of analysis, the other four object 

detection frameworks may also be useful to perform fully automated carbonate petrography.  

While for image analysis the detection speed is not really an issue, if to apply this system for real-

time petrography analysis the YOLOv3 or RetinaNet will perform better.  

In addition, this study explored different approaches to improve network performance 

and accuracy in the availability of a limited dataset and proposed that data augmentation (label 

mixup and smoothing) generally works better than other data augmentation procedures (resize, 

flip and introduce noise to the image). Coupling the proposed data augmentation with a focal 

loss function and cosine learning rate scheduler can improve the accuracy (AP0.5: +2 to 5%). 

Furthermore, this study discussed the various future pathways that can be considered to further 

advance the application of deep learning to solve carbonate petrography and geoscience-related 

problems, in general. Compiling more datasets across geologic timescales and different grain 

components is a necessary step in order to improve the prediction capability and the ability for 

the model to generalize and perform a robust fully automated carbonate petrography. Ultimately, 

application and development of this advanced method could aid to understand variation in 

carbonate factories across geologic timescales and optimize the characterization of carbonate 

reservoir. 
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FIGURES AND FIGURE CAPTIONS 

 

Figure 1. Comparison of two DCNN-based image analysis protocols (modified from Wang et al., 

2019). (A) Image classification pipeline. (B) Object detection pipeline. The object detection 

pipeline differs from the image classification pipeline in that it does not require image 

segmentation and is capable of returning multiple classes from a single image. 
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Figure 2. Distribution of the dataset for each DCNN-based image analysis. (A) Image 

classification dataset. (B) Object detection dataset. (C) Cross validation set (k=5) used in this study, 

where the dataset is divided into 85% training data and 15% validation/test data. 
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Figure 3. A typical architecture of CNN with multiple convolutional and activation layers as 

feature maps and pooling layers as pooled maps (modified from Krizhevsky et al., 2012). In 

addition, there is a fully connected layer at the end of the model as the classifier. 
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Figure 4. Schematic representation of the two different DCNN-based image classification 

architectures used for this work. (A) VGG16 architecture. (B) Inception-ResNet v2 architecture. 
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Figure 5. Visualization of object detection pipelines (after Huang et al., 2017). (A) One-stage 

detector framework showing an end-to-end detection pipeline from feature extraction to 

detection. (B) Two-stage detector framework with an addition of region proposal network 

(proposal generator) after the feature extraction and before the detection processes. (C) 

Illustration of true positive, false positive and false negative with IoU threshold value of 0.5. 
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Figure 6. Evaluation of network performance during the training and prediction processes. (A-B) 

Model performance (loss) during training process for VGG16 architecture and the resulted 

prediction presented as a confusion matrix. (C-D) Model performance (loss) during training 

process for Inception-Resnet v2 and the resulted prediction presented as a confusion matrix. 

Overall, the Inception-Resnet network outperforms the VGG16 network.  
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Figure 7. Visualization of the correctly predicted image classes. Note that although the predicted 

class is present in the image, there are other unidentified objects that should belong to other 

classes.  
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Figure 8. Different visualization maps, including heat map, saliency map and feature maps that 

were generated during the training process (feature extraction stage) using Keras and Pytorch 

libraries (Samek et al., 2016). These maps help to illustrate how the network performed and what 

features were extracted during different convolutional operation blocks. 
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Figure 9. Evaluation performance of the different object detector frameworks on the validation 

or test set. (A) Average precision (AP) of different carbonate components. Note that the Faster R-

CNN method achieved the highest AP for all class. (B) Cross plot between detection accuracy 

(mAP) and speed (inference time). The fastest detection speed is achieved with the YOLO v3 

framework whereas the highest accuracy is observed when using Faster R-CNN framework. The 

best tradeoff between detection speed and accuracy is obtained from the RetinaNet framework. 
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Figure 10 Examples of petrographic images with predicted carbonate components for each 

identified object. (A) High confidence detection of molluscs grain (sample name: TK-61.5). (B) 

Foraminifera and skeletal grains (carbonateworld.com). (C) Ooids grain with concentric cortices 

(sample name: TK-45.5). Note that the detection can separately detect two individual ooids within 

a compound grain. (D) Correctly classified ooids in a case where the internal structure is 

completely obliterated or dissolved (image from Eltom et al., 2017). 



Koeshidayatullah et al. (2020) 

 

Figure 11.  Examples of petrographic images where both grain and cement were detected and 

with high level accuracy. (A) Ooids with radial cortices and calcite cement (carbonateworld.com). 

(B) Small ooids grains and recrystallized molluscs grain by calcite cement (sample name: TK-

18.1). (C) Ooids grain with concentric cortices (sample name: DJ12-2). (D) Dolomite minerals 

(image from: https://www.flickr.com/photos/zeesstof/1439328806/in/photostream/).  

https://www.flickr.com/photos/zeesstof/1439328806/in/photostream/
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Figure 12. Petrographic images showing various porosity types in carbonate rocks. (A) 

Intraparticle porosity (carbonateworld.com). (B) Moldic porosity in crystalline dolomite (image 

from: Burchette, 2019). (C) Inter- and intracrystalline porosity (carbonateworld.com). (D). 

Oomoldic porosity (image from: Eberli et al., 2003). 
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TABLES 

Task Architecture  

DCNN-based Image Classification VGG16 

 

Inception-Resnet v2 

DCNN-based Object Detection 

One-stage detector YOLO v3_Darknet53 

SSD_Mobilenet v2 

SSD_Resnet FPN (RetinaNet) 

Two-stage detector Faster R-CNN_Inception-Resnet v2 (FPN+Cosine scheduler) 

RFCN_Resnet101 

 

Table 1. Summary of different architectures or frameworks used in this study to evaluate DCNN-

based image classification and object detection tasks for carbonate petrography images. 
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Evaluation Metrics 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑇𝑃 

𝑇𝑃 +  𝐹𝑃  
 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 

 

Table 2. Calculation of evaluation metrics based on the percentage between correctly classified 

and misclassified classes. 
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 Table 3. Performance evaluation (precision, recall and F-1 score) during the prediction stage. 

 

 

 

 

 

VGG16 

  Precision Recall F1-score Support 

Bioclast 0.87 0.90 0.89 206 

Calcite Cement 0.72 0.78 0.75 49 

Coated Grains 0.90 0.86 0.88 145 

Dolomite 0.90 0.84 0.87 108 

Micrite 0.74 0.89 0.81 28 

Porosity 0.85 0.80 0.83 66 

mean/total 0.83 0.85 0.84 602 

Inception-ResNet-V2 

  Precision Recall F1-score Support 

Bioclast 0.97 0.97 0.97 198 

Calcite Cement 0.79 0.82 0.80 49 

Coated Grains 0.95 0.96 0.95 143 

Dolomite 0.95 0.91 0.93 112 

Micrite 0.93 1.00 0.97 28 

Porosity 0.89 0.89 0.89 72 

mean/total 0.91 0.92 0.92 602 
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Detection Pipeline  Backbone 

Ooids Peloids Dolomite 

Calcite  

Cement 

Forams Molluscs Skeletal Micrite Porosity 

mAP 

(%) 

Average 

Inference  

Time 

(ms/image) 

AP0.5(%) 

One-stage detector             

YOLOv3 (512x512) Darknet-53 0.89 0.60 0.75 0.65 0.77 0.83 0.71 0.65 0.64 0.72 18.4 

SSD (512x512) MobileNet 0.76 0.54 0.71 0.64 0.68 0.70 0.72 0.53 0.69 0.66 68.2 

RetinaNet (324x324) ResNet50-FPN 0.87 0.76 0.84 0.73 0.86 0.82 0.77 0.69 0.83 0.80 101.8 

             

Two-stage detector             

Faster R-CNN (512x512) Inception-ResNet-v2 0.95 0.76 0.92 0.75 0.88 0.91 0.81 0.72 0.88 0.84 818.4 

R-FCN (512x512) ResNet 101 0.92 0.67 0.89 0.54 0.87 0.88 0.70 0.59 0.76 0.76 277.8 

 

Table 4. Performance evaluation of different object detection frameworks from both one-stage and two-stage detectors. Bold numbers 

represent the best precision for each class when compared to other object detector frameworks.
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  Image Analysis Deep Learning Level of Agreement 

  

Point 

Counting 

Porosity 

(%) 

Object 

Counting 

Porosity 

(%) 

Grain 

Counting 

Porosity 

(%) 

Sample 1 14 11.4 11 12.4 0.79 1.09 

Sample 2 84 8.6 71 7.8 0.85 0.91 

Sample 3 42 15.9 24 14.6 0.57 0.92 

Sample 4 154 3.6 122 3 0.79 0.83 

Sample 5 29 10.5 29 10.1 1.00 0.96 

Sample 6 32 22.9 27 21.5 0.84 0.94 

Sample 7 6 2.6 6 2.1 1.00 0.81 

Sample 8 101 1.4 88 1.2 0.87 0.86 

Sample 9 12 3.4 12 3.2 1.00 0.94 

Sample 10 16 2.4 15 2.4 0.94 1.00 

Sample 11 39 2.1 22 3.5 0.56 1.67 

Sample 12 44 1.5 40 1.3 0.91 0.87 

Sample 13 11 14.8 11 14.2 1.00 0.96 

Sample 14 5 12.3 5 9.7 1.00 0.79 

Sample 15 22 11.1 21 10.5 0.95 0.95 

 

Table 5. Comparison between traditional image analysis and deep learning-based image analysis 

in conducting point counting and porosity measurement. 

 

 

 


