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IMPLICIT-EXPLICIT MULTISTEP METHODS FOR HYPERBOLIC SYSTEMS

WITH MULTISCALE RELAXATION

GIACOMO ALBI, GIACOMO DIMARCO AND LORENZO PARESCHI

Abstract. We consider the development of high order space and time numerical methods based on
Implicit-Explicit (IMEX) multistep time integrators for hyperbolic systems with relaxation. More specif-
ically, we consider hyperbolic balance laws in which the convection and the source term may have very
different time and space scales. As a consequence the nature of the asymptotic limit changes completely,
passing from a hyperbolic to a parabolic system. From the computational point of view, standard numer-
ical methods designed for the fluid-dynamic scaling of hyperbolic systems with relaxation present several
drawbacks and typically lose efficiency in describing the parabolic limit regime. In this work, in the con-
text of Implicit-Explicit linear multistep methods we construct high order space-time discretizations

which are able to handle all the different scales and to capture the correct asymptotic behavior, inde-
pendently from its nature, without time step restrictions imposed by the fast scales. Several numerical
examples confirm the theoretical analysis.

Key words. Implicit-explicit methods, linear multistep methods, hyperbolic balance laws, fluid-dynamic
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1. Introduction

The goal of the present work is to develop high order numerical methods based on IMEX linear
multistep (IMEX-LM) schemes for hyperbolic systems with relaxation [14, 38, 42]. These systems often
contain multiple space-time scales which may differ by several orders of magnitude. In fact, the various
parameters characterizing the models permit to describe different physical situations, like flows which pass
from compressible to incompressible regimes or flows which range from rarefied to dense states. This is
the case, for example, of kinetic equations close to the hydrodynamic limits [5,13,15,49]. In such regimes
these systems can be more conveniently described in terms of macroscopic equations since these reduced
systems permit to describe all the features related to the space-time scale under consideration [5, 49].
However, such macroscopic models can not handle all the possible regimes one is frequently interested in.
For such reason one has to resort to the full kinetic models. They permit to characterize a richer physics
but on the other hand they are computationally more expensive and limited by the stiffness induced by
the scaling under consideration [16].

The prototype system we will use in the rest of the paper is the following [8, 41]

(1.1)







∂tu+ ∂xv = 0,

∂tv +
1

ε2α
∂xp(u) = − 1

ε1+α
(v − f(u)) , α ∈ [0, 1]

where ε is the scaling factor and α characterizes the different type of asymptotic limit that can be
obtained. The condition p′(u) > 0 should be satisfied for hyperbolicity to hold true since the eigenvalues

of (1.1) are given by ±
√

p′(u)/εα. Note that, except for the case α = 0, the eigenvalues are unbounded
for small values of ε.

System (1.1) is obtained from a classical (2× 2) p-system with relaxation under the space-time scaling

t → t/ε1+α, x → x/ε and by the change of variables v = ṽ/εα, f(u) = f̃(u)/εα, where ṽ is the original

unknown and f̃(u) the original flux associated to the variable u in the non rescaled p-system. For α = 0,
system (1.1) reduces to the usual hyperbolic scaling

(1.2)







∂tu+ ∂xv = 0,

∂tv + ∂xp(u) = −1

ε
(v − f(u)) ,

whereas for α = 1 yields the so-called diffusive scaling

(1.3)







∂tu+ ∂xv = 0,

∂tv +
1

ε2
∂xp(u) = − 1

ε2
(v − f(u)) .

More in general, thanks to the Chapman-Enskog expansion [15], for small values of ε we get from (1.1)
the following nonlinear convection-diffusion equation

(1.4)















v = f(u)− ε1−α∂xp(u) + ε1+αf ′(u)2∂xu+O(ε2),

∂tu+ ∂xf(u) = ε1+α∂x

[

(

p′(u)

ε2α
− f ′(u)2

)

∂xu

]

+O(ε2).

In the limit ε → 0, for α ∈ [0, 1), we are led to the conservation law

(1.5)







v = f(u),

∂tu+ ∂xf(u) = 0,

while, when α = 1, in the asymptotic limit we obtain the following advection-diffusion equation

(1.6)







v = f(u)− ∂xp(u),

∂tu+ ∂xf(u) = ∂xxp(u).

Note that, the main stability condition for system (1.4) corresponds to

(1.7) f ′(u)2 <
p′(u)

ε2α
,
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and it is always satisfied in the limit ε → 0 when α > 0, whereas for α = 0 the function p(u) and f(u)
must satisfy the classical sub-characteristic condition [14, 38].

The space-time scaling just discussed, in classical kinetic theory, is related to the hydrodynamical limits
of the Boltzmann equation. In particular, for α = 0 it corresponds to the compressible Euler scaling,
whereas for α ∈ (0, 1) to the incompressible Euler limit. In the case α = 1 dissipative effects become
non-negligible and we get the incompressible Navier-Stokes scaling. We refer to [13, Chapter 11] and [49]
for further details and the mathematical theory behind the hydrodynamical limits of the Boltzmann
equation. Moreover, we refer to [36,39] for theoretical results on the diffusion limit of a system like (1.3).

The development of numerical methods to solve hyperbolic systems with stiff source terms has attracted
many researches in the recent past [10, 11, 17, 22, 24, 24, 28, 31, 33, 34, 37, 43, 44]. The main computational
challenge is related to the presence of the different scales that require a special care to avoid loss of
stability and spurious numerical solutions. In particular, in diffusive regimes the schemes should be
capable to deal with the very large characteristic speeds of the system by avoiding a CFL condition of
the type ∆t = O(εα). A particular successful class of schemes is represented by the so-called asymptotic-

preserving (AP) schemes which aims at preserving the correct asymptotic behavior of the system without
any loss of efficiency due to time step restrictions related to the small scales [18, 20, 30, 32].

In the large majority of these works, the authors focused on the specific case α = 0, where a hyperbolic
to hyperbolic scaling is studied, or to the case α = 1, where a hyperbolic to parabolic scaling is analysed.
Very few papers have addressed the challenging multiscale general problem for the various possible values
of α ∈ [0, 1] (see [8, 22, 32, 40]) and all of them refer to one-step IMEX methods in a Runge-Kutta
setting. We refer to [1, 2, 4, 19, 21, 26, 45, 47] for various IMEX-LM methods developed in the literature
and we mention that comparison between IMEX Runge-Kutta methods and IMEX-LM methods have
been presented in [26].

In the present work, following the approach recently introduced by Boscarino, Russo and Pareschi
in [8], we analyze the construction of IMEX-LM for such problems that work uniformly independently of
the choices of α and ε. By this, we mean that the schemes are designed in such a way as to be stable for all
different ranges of the scaling parameters independently of the time step. At the same time, they should
ensure high order in space and time and should be able to accurately describe the various asymptotic
limits. Moreover, whenever possible, the above described properties must be achieved without the need
of an iterative solver for non linear equations.

In [8], using a convenient partitioning of the original problem, the authors developed IMEX Runge-
Kutta schemes for a system like (1.1) which work uniformly with respect to the scaling parameters. Here,
we extend these results to IMEX-LM, previous results for IMEX-LM methods refer to the case α = 0
(see [19, 26]). Among others, there are two main reasons to consider the development of such schemes.
First, in contrast to the IMEX Runge-Kutta case, for IMEX-LM it is relatively easy to construct schemes
up to fifth order in time and typically they show a more uniform behavior of the error with respect
to the scaling parameters. Second, thanks to the use of BDF methods, it is possible consider only one
evaluation of the source term per time step independently of the scheme order. The latter feature is
particularly significant in term of computational efficiency for kinetic equations where often the source
term represents the most expensive part of the computation [18, 19].

The rest of the paper is organized as follows. In Section 2, we discuss the discretization of these
multiscale problems and motivate our partitioning choice of the system by analyzing a simple first or-
der IMEX scheme. Next, in Section 3, we introduce the general IMEX-LM methods and discuss the
asymptotic-preserving properties of our approach. Two classes of schemes are considered, AP-explicit
and AP-implicit accordingly to the way the diffusion term in the limit equation is treated. In Section 4,
we perform a linear stability analysis for 2×2 linear systems in the case of IMEX-LM methods based on a
backward-differentiation formula (BDF). In Section 5, the space discretization is briefly discussed. Several
numerical examples are reported in Section 6 which confirm the theoretical findings. Final considerations
and future developments are discussed at the end of the article.

2. First order IMEX discretization

In this part, we discuss a first order IMEX time-discretization of the relaxation system (1.1) and we
analyze its relationship with a reformulated system in which the eigenvalues are bounded for any value of
the scaling parameter ε. To this aim, following [8], we consider the following implicit-explicit first order
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partitioning of system (1.1)

(2.1)

un+1 − un

∆t
= −∂xv

n+1,

ε1+α v
n+1 − vn

∆t
= −

(

ε1−α∂xp(u
n) + vn+1 − f(un)

)

.

One can notice that in system (2.1) besides its implicit form, the second equation can be solved explicitly
by inversion of the linear term vn+1. This gives

(2.2) vn+1 =
ε1+α

ε1+α +∆t
vn − ∆t

ε1+α +∆t

(

ε1−α∂xp(u
n)− f(un)

)

.

Then, making use of the above relation and inserting it in the first equation, one gets

(2.3)
un+1 − un

∆t
+

ε1+α

ε1+α +∆t
vnx +

∆t

ε1+α +∆t
∂xf(u

n) =
∆t ε1−α

ε1+α +∆t
∂xxp(u

n),

while a simple rewriting of the second equation gives

(2.4)
vn+1 − vn

∆t
+

ε1−α

ε1+α +∆t
∂xp(u

n) = − 1

ε1+α +∆t
(vn − f(un)) .

Therefore, the IMEX scheme can be recast in an equivalent fully explicit form. Similarly to the continuous
case, depending on the choice of α, as ε → 0, we have different limit behaviors. For α ∈ [0, 1) we obtain

(2.5)
un+1 − un

∆t
+ ∂xf(u

n) = 0,

whereas in the case α = 1 we get

(2.6)
un+1 − un

∆t
+ ∂xf(u

n) = ∂xxp(u
n).

For small values of ∆t, the scheme (2.3)-(2.4) corresponds up to first order in time to the system

(2.7)
∂tu+

ε1+α

ε1+α +∆t
∂xv +

∆t

ε1+α +∆t
∂xf(u) =

∆t ε1−α

ε1+α +∆t
∂xxp(u),

∂tv +
ε1−α

ε1+α +∆t
∂xp(u) = − 1

ε1+α +∆t
(v − f(u)) ,

where the following Taylor expansion has been employed at t = tn = n∆t

un+1 − un

∆t
= ∂tu

∣

∣

t=tn
+O(∆t),

vn+1 − vn

∆t
= ∂tv

∣

∣

t=tn
+O(∆t).

The main feature of system (2.7) is that its left-hand side has bounded characteristic speeds. These are
given by

(2.8) λα
±(∆t, ε) =

1

2

(

γ(1− θα)±
√

γ2(1− θα)2 + 4ε−2αθ2α

)

,

with

θα(∆t, ε) :=
ε1+α

ε1+α +∆t
,

and where, for simplicity, we considered f ′(u) = γ, γ ∈ R and p′(u) = 1 so that

(2.9) ∂xf(u) = f ′(u)∂xu = γ∂xu, ∂xp(u) = p′(u)∂xu = ∂xu.

If we fix ε and send ∆t → 0 we obtain the usual characteristic speeds of the original hyperbolic system,
i.e.

λα
±(0, ε) = ± 1

εα
,

while for a fixed ∆t, the characteristic speeds λα
+ and λα

− are respectively decreasing and increasing
functions of ε and, as ε → 0, they converge to

(2.10) λα
±(∆t, 0) =

1

2
(γ ± |γ|) .

In Figure 1, we show the shape of the eigenvalues (2.8) for γ = 1 and different values of the scaling
parameter α and the time step ∆t. We observe that when ε grows the absolute value of the eigenvalues
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Figure 1. Eigenvalues of the modified system (2.7) as a function of ε for different values
of the time step ∆t and choices of α.

diminish accordingly and when ε diminishes the eigenvalues grow but remain bounded by the finite time
step.

Thus, for a given ∆t, if we denote by ∆x the space discretization parameter, from the left hand side
of (2.7) we expect the hyperbolic CFL condition ∆t ≤ ∆x/|γ| in the limit ε → 0. On the other hand,
the stability restriction coming from the parabolic term requires ∆t = O(∆x2) when α = 1.

In the next Section, we will show how to generalize the above arguments to the case of high order
IMEX multistep methods.

3. AP-explicit and AP-implicit IMEX-LM methods

In this part, we focus our attention on order s, s-step IMEX-LM methods with s ≥ 2 (see Appendix
A.1 for derivation and order conditions). First we discuss methods that yield a fully explicit discretization
in the limit ε → 0. For clarity of presentation, we separate the discussion of the diffusive case α = 1 from
the general case α ∈ [0, 1). In the second part, we discuss IMEX-LM discretizations which deal with the
stiffness caused by the parabolic term in the asymptotic limit.
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3.1. AP-explicit methods in the diffusive case: α = 1. In this case, we can write the s−step
IMEX-LM for the original hyperbolic system (1.1) as follows

(3.1)

un+1 = −
s−1
∑

j=0

aju
n−j −∆t

s−1
∑

j=−1

cj∂xv
n−j ,

vn+1 = −
s−1
∑

j=0

ajv
n−j − ∆t

ε2





s−1
∑

j=0

bj∂xp(u
n−j) +

s−1
∑

j=−1

cjv
n−j −

s−1
∑

j=0

bjf(u
n−j)



 ,

where we introduced the following coefficients

(3.2)

Explicit aT = (a0, a1, . . . , as−1)

bT = (b0, b1, . . . , bs−1)

Implicit c−1 6= 0, cT = (c0, c1, . . . , cs−1).

Methods for which cj = 0, j = 0, . . . , s − 1 are referred to as implicit-explicit backward differentiation
formula, IMEX-BDF in short. Another important class of LM is represented by implicit-explicit Adams
methods, for which a0 = −1, aj = 0, j = 1, . . . , s− 1. We refer to Appendix A for a brief survey of some
IMEX multistep methods, and to [1, 2, 4, 19, 21, 26, 45, 47] for further details and additional schemes.

In what follows, we rely on the equivalent vector-matrix notation,

(3.3)
un+1 = −aT · U −∆tcT · ∂xV −∆tc−1∂xv

n+1,

vn+1 = −aT · V − ∆t

ε2
(

bT · ∂xp(U) + cT · V + c−1v
n+1 − bT · f(U)

)

,

where U = (un, . . . , un−s+1)T , V = (vn, . . . , vn−s+1)T , ∂xp(U) = (∂xp(u
n), . . . , ∂xp(u

n−s+1))T and
f(U) = (f(un), . . . , f(un−s+1))T are s-dimensional vectors.

Similarly to the one step scheme (2.1), we proceed by rewriting the multistep methods in the fully
explicit vector form. To that aim, we observe that the second equation in (3.3) can be explicitly solved
in terms of v due to the linearity in the relaxation part. This gives

(3.4)

vn+1 = − ε2

ε2 +∆tc−1
aT · V − ∆t

ε2 +∆tc−1

(

bT · ∂xp(U) + cT · V − bT · f(U)
)

= −aT · V +

(

aT − ε2aT

ε2 +∆tc−1
− ∆tcT

ε2 +∆tc−1

)

· V − ∆tbT

ε2 +∆tc−1
· (∂xp(U)− f(U)) ,

and thus

(3.5) vn+1 = −aT · V − ∆t

ε2 +∆tc−1

(

cT − c−1a
T
)

· V − ∆t

ε2 +∆tc−1
bT · (∂xp(U)− f(U)) .

Substituting equation (3.5) into the first one of (3.3) leads to

(3.6)

un+1 = −aT · U −∆t
(

cT − c−1a
T
)

· ∂xV+

+
∆t2c−1

ε2 +∆tc−1

(

cT − c−1a
T
)

· ∂xV +
∆t2c−1

ε2 +∆tc−1
bT · ∂x (∂xp(U)− f(U))

= −aT · U −∆t
ε2

ε2+∆tc−1

(

cT − c−1a
T
)

· ∂xV +
∆t2c−1

ε2 +∆tc−1
bT · ∂x (∂xp(U)− f(U)) .

Hence, we obtain the following system

(3.7)

un+1 + aT · U
∆t

= −ε2
(

cT − c−1a
T
)

ε2 +∆tc−1
· ∂xV +

∆tc−1

ε2 +∆tc−1
bT · ∂x (∂xp(U)− f(U)) ,

vn+1 + aT · V
∆t

= −
(

cT − c−1a
T
)

ε2 +∆tc−1
· V − 1

ε2 +∆tc−1
bT · (∂xp(U)− f(U)) ,

which is the generalization of system (2.4) to an s-step IMEX scheme.
Our aim now is to show that, similarly to the simple first order method analyzed in Section 2, the

above discretization for a small value of ∆t corresponds, up to first order in time, to a modified hyperbolic
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problem where the characteristic speeds are bounded even in the limit ε → 0. More precisely, see also [3],
for a smooth solution in time, by Taylor series expansion about t = tn, we have

U = e u
∣

∣

t=tn
−∆tJ∂tu

∣

∣

t=tn
+ . . .+ (−1)s

∆ts

s!
Js∂s

t u
∣

∣

t=tn
+O(∆ts+1)

V = e v
∣

∣

t=tn
−∆tJ∂tv

∣

∣

t=tn
+ . . .+ (−1)s

∆ts

s!
Js∂s

t v
∣

∣

t=tn
+O(∆ts+1),

where e is a vector of ones in Rs, J = (0, . . . , s − 1)T , ∂q
t , q = 1, . . . , s denotes the q-derivative and

the vector powers must be understood component-wise. Similarly, we can expand un+1 and vn+1 about
t = tn. Therefore, we obtain

un+1 + aT · U
∆t

=
(1 + aT · e)

∆t
u
∣

∣

t=tn
+ (1− aT · J)∂tu

∣

∣

t=tn
+O(∆t),

(3.8)
vn+1 + aT · V

∆t
=

(1 + aT · e)
∆t

v
∣

∣

t=tn
+ (1− aT · J)∂tv

∣

∣

t=tn
+O(∆t).

From the order conditions we have

1 + aT · e = 0, 1− aT · J = bT · e = c−1 + cT · e =: β,

and subsequentely
(

cT − c−1a
T
)

· e = cT · e+ c−1 = β.

Thus, scheme (3.7) for small values of ∆t can be considered as a first order approximation of the following
modified system

(3.9)

∂tu+
ε2

ε2 +∆tc−1
∂xv +

∆tc−1

ε2 +∆tc−1
∂xf(u) =

∆tc−1

ε2 +∆tc−1
∂xxp(u)

∂tv +
1

ε2 +∆tc−1
∂xp(u) = − 1

ε2 +∆tc−1
(v − f(u)) ,

where the factor β simplifies in all the terms.
Note that, the above system has exactly the same structure as system (2.7) (with c−1 = 1 and

α = 1) which was derived from to the first order time discretization. As a consequence, under the
same simplification assumptions (2.9) on the fluxes f(u) and p(u), the eigenvalues of the hyperbolic part
correspond to

(3.10) Λ±(∆t, ε) =
1

2

(

γ(1− θ1)±
√

γ2(1− θ1)2 + 4ε−2θ21

)

,

where

(3.11) θ1(∆t, ε) :=
ε2

ε2 +∆tc−1
.

Thus, the bounds for the characteristic velocities are the same as for the first order scheme and we get
the limit cases

Λ±(∆t, 0) =
1

2
(γ ± |γ|) , Λ±(0, ε) = ±1

ε
.

3.1.1. Asymptotic preserving property for α = 1. Now, we study the capability of the schemes (3.3)
to become a consistent discretization of the limit system (1.6). To that aim, letting ε → 0, in the
reformulated scheme (3.7), we get from the first equation

(3.12)
un+1 + aT · U

∆t
= bT · ∂x (∂xp(U)− f(U)) ,

which corresponds to the explicit multistep scheme applied to the limiting convection-diffusion equation
(1.6). For this reason, from now on, we refer to this class of IMEX-LM schemes as AP-explicit methods.
On the other hand, we have for the second equation

c−1v
n+1 + cT · V = −bT · (∂xp(U)− f(U)) ,

or equivalently

(3.13) vn+1 = − cT

c−1
· V − bT

c−1
· (∂xp(U)− f(U)) .



8 GIACOMO ALBI, GIACOMO DIMARCO, AND LORENZO PARESCHI

Let us observe that in order to have at time tn+1 a consistent projection over the asymptotic limit a
condition over the states U = (un, .., un−s+1)T and V = (vn, .., vn−s+1)T should be imposed. This can
be resumed by saying that the vector of the initial data should be well prepared to the asymptotic state.
This means that for the first variable

(3.14) un−j = ūn−j + ũn−j
ε , lim

ε→0
ũn−j
ε = 0, j = 0, ..., s− 1,

where ūn−j is a consistent solution of the limit system (1.6) while ũn−j
ε is a perturbation that disappears

in the limit. An analogous relation should hold true for the second variable v, i.e.

(3.15) vn−j = v̄n−j + ṽn−j
ε , lim

ε→0
ṽn−j
ε = 0, j = 0, ..., s− 1,

where v̄n−j = f(un−j) − ∂xp(u
n−j), j = 0, . . . , s − 1 is a consistent projection of the asymptotic limit,

while ṽn−j
ε is a perturbation that disappears in the limit. Under this assumption, as a consequence of the

order conditions, relation (3.13) is an s-order approximation of the asymptotic limit v = f(u) − ∂xp(u)
and therefore, at subsequent time steps, the numerical solution is guaranteed to satisfy (3.14)-(3.15). If
such conditions are not imposed on the initial values, then the numerical solution may present a spurious
initial layer and deterioration of accuracy is observed. In particular, for IMEX-BDF methods, expression
(3.13) simplifies to

(3.16) vn+1 = − bT

c−1
· (∂xp(U)− f(U)) .

This shows that, even for non well prepared initial data in v but only in u we obtain an s-order approx-
imation of the equilibrium state and subsequently of the numerical solution for all times. This stronger
AP property of IMEX-BDF methods is satisfied also in the asymptotic limits analyzed for the various
schemes in the sequel of the manuscript. We refer to [18, 19, 43] for more detailed discussions.

3.2. AP-explicit methods in the general case: α ∈ [0, 1). The IMEX-LM scheme in vector form
reads

(3.17)
un+1 = −aT · U −∆tcT · ∂xV −∆tc−1∂xv

n+1,

vn+1 = −aT · V − ∆t

ε2α
bT · ∂xp(U)− ∆t

ε1+α

(

cT · V + c−1v
n+1 − bT · f(U)

)

.

Again, we rewrite the second equation by solving it in terms of vn+1 as follows

vn+1 = −aT · V − ∆t

ε1+α +∆tc−1

(

cT − c−1a
T
)

· V+

+
∆t

ε1+α +∆tc−1
bT · f(U)− ∆tε1−α

ε1+α +∆tc−1
bT · ∂xp(U),

and using this solution in the first equation, we obtain the explicit scheme

(3.18)

un+1 + aT · U
∆t

=
−ε1+α

(

cT − c−1a
T
)

ε1+α +∆tc−1
· ∂xV − ∆tc−1b

T

ε1+α +∆tc−1
· (∂xf(U)− ε1−α∂xxp(U)),

vn+1 + aT · V
∆t

=
−
(

cT − c−1a
T
)

ε1+α +∆tc−1
· V +

bT

ε1+α +∆tc−1
·
(

f(U)− ε1−α∂xp(U)
)

.

Considering, the same Taylor approximations (3.8) the above schemes corresponds up to first order in
time to the modified system

(3.19)

∂tu+
ε1+α

ε1+α +∆tc−1
∂xv +

∆tc−1

ε1+α +∆tc−1
∂xf(u) =

∆t c−1ε
1−α

ε1+α +∆tc−1
∂xxp(u),

∂tv +
ε1−α

ε1+α +∆tc−1
∂xp(u) = − 1

ε1+α +∆tc−1
(v − f(u)) .

Clearly, system (3.19) has again the same structure as (2.7). As a consequence, under the same simplifi-
cation assumptions (2.9), the eigenvalues of the hyperbolic part correspond to

(3.20) Λα
±(∆t, ε) =

1

2

(

γ(1− θα)±
√

γ2(1− θα)2 + 4ε−2αθ2α

)

,
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where θα is defined as follows

(3.21) θα(∆t, ε) :=
ε1+α

ε1+α +∆tc−1
,

and the bounds for the characteristic velocities for ε = 0 and ∆t = 0 are

Λα
±(∆t, 0) =

1

2
(γ ± |γ|) , Λα

±(0, ε) = ± 1

εα
.

3.2.1. Asymptotic preserving property for α ∈ [0, 1). We consider now the analogous asymptotic preserv-
ing property proved for the schemes (3.3) in the case of the schemes (3.17). Namely, we want to show
that (3.17) becomes a consistent discretization of the limit system (1.5) when ε → 0. Taking scheme
(3.18), we get from the first equation

(3.22) un+1 = −aT · U −∆tbT · ∂xf(U),

which is a standard explicit multistep discretization of the asymptotic hyperbolic limit, i.e. of equation
(1.5). On the other hand, we have for the second equation

c−1v
n+1 + cT · V = bT · f(U),

or equivalentely

(3.23) vn+1 = − cT

c−1
· V +

bT

c−1
· f(U).

As a consequence of the order conditions, equation (3.23) defines an s-order consistent approximation
of the asymptotic limit v = f(u) provided that the vector of the initial data is well prepared. These
conditions are the analogous of (3.14) and (3.15) except that now v̄n−j = f(un−j), j = 0, . . . , s− 1.

For IMEX-BDF methods (3.23) reduces to

(3.24) vn+1 =
bT

c−1
· f(U),

so that, even for non well prepared initial data in v but only in u we obtain an s-order approximation of
the equilibrium state and subsequently of the numerical solution for all times.

3.3. Removing the parabolic stiffness: AP-implicit methods. Although, the schemes developed
in the previous Section overcome the stiffness related to the scaling factor ε, there is another stiffness that
may appear in the equations close to the asymptotic limit. In fact, as shown previously, all the schemes
originate a fully explicit scheme in the limit.

In diffusive regimes, this typically leads to the time step restriction ∆t = O(∆x2) when

(3.25) ε1−α∆tc−1/(ε
1+α +∆tc−1) = O(1),

(see the diffusion coefficient in equation (3.19)). Therefore, for small ε and in the case of α ≃ 1, the main
stability restriction is due to the second order term of the Chapmann–Enskog expansion (1.4). Note that,
beside the case α = 1 and ε → 0 where we obtain a parabolic problem in the limit, the above time step
limitation may occur also in transient regimes for α 6= 1 as soon as (3.25) holds true.

For this reason, we modify the partitioning of the system taking also ∂xp(u) implicit in the second
equation as follows

un+1 = −aT · U −∆tcT · ∂xV −∆tc−1∂xv
n+1,

(3.26)

vn+1 = −aT · V − ∆t

ε1+α

(

cT · V + c−1v
n+1 − bT · f(U)

)

− ∆t

ε2α
(

cT · ∂xp(U) + c−1∂xp(u
n+1)

)

.

We can still solve the second equation in v, to get

vn+1 = −aT · V − ∆t

ε1+α +∆tc−1

(

cT − c−1a
T
)

· V+

+
∆t

ε1+α +∆tc−1
bT · f(U)− ∆tε1−α

ε1+α +∆tc−1

(

cT · ∂xp(U) + c−1∂xp(u
n+1)

)

,
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which, inserted into the first equation of (3.26) yields the IMEX formulation

(3.27)

un+1 + aT · U
∆t

= −ε1+α
(

cT − c−1a
T
)

ε1+α +∆tc−1
· ∂xV − ∆tc−1

ε1+α +∆tc−1
bT · ∂xf(U)

+
ε1−α∆tc−1

ε1+α +∆tc−1

(

cT · ∂xxp(U) + c−1∂xxp(u
n+1)

)

,

vn+1 + aT · V
∆t

= −
(

cT − c−1a
T
)

ε1+α +∆tc−1
· V +

1

ε1+α +∆tc−1
bT · f(U)

− ε1−α

ε1+α +∆tc−1

(

cT · ∂xp(U) + c−1∂xp(u
n+1)

)

.

Note that, except for the case in which p(u) is linear, in general, the first equation in (3.27) requires the
adoption of a suitable solver for nonlinear problems to compute un+1. By the same arguments of in the
previous Sections, for small values of ∆t, the scheme (3.27) corresponds up to first order to the modified
system (3.19). Thus, under the same simplification assumptions (2.9), the eigenvalues of the hyperbolic
part are given by (3.20).

3.3.1. Asymptotic preserving property for the AP-implicit methods. Finally, we conclude our analysis by
studying the asymptotic preserving property. As we will see the main difference is that in the asymptotic
limit the diffusive terms are integrated implicitly. For this reason we refer to this class of IMEX-LM
schemes as AP-implicit methods. We first consider the case α = 1. Taking the reformulated IMEX
scheme (3.27) and letting ε → 0 with α = 1, gives

(3.28)
un+1 + aT · U

∆t
= −bT · ∂xf(U) + cT · ∂xxp(U) + c−1∂xxp(u

n+1),

which correspond to the IMEX multistep scheme applied to the limiting convection diffusion problem
where the diffusion term is treated implicitly [1, 2]. Note that, for the second equation we have

c−1v
n+1 + cT · V = bT · f(U)− cT · ∂xp(U)− c−1∂xp(u

n+1),

or equivalently

(3.29) vn+1 = − cT

c−1
· V +

bT

c−1
· f(U)− cT

c−1
· ∂xp(U)− ∂xp(u

n+1),

which, under the assumption of well prepared initial values, as a consequence of the order conditions,
corresponds to a s-order approximation of the equilibrium projection v = f(u)− ∂xp(u).

On the other hand, in the case α ∈ [0, 1), we get the same asymptotic limit (3.22) of the AP-explicit
method (see Section 3.2.1)

(3.30) un+1 = −aT · U −∆tbT · ∂xf(U).

We will not discuss further this limit system, but we emphasize that (3.30) is obtained as the limit of the
implicit-explicit scheme (3.27) whereas (3.22) is obtained as the limit of the explicit scheme (3.18).

4. Linear stability analysis

Monotonicity properties for IMEX-LM have been previously studied in [4, 19, 21, 26, 27]. Due to the
well-known difficulties in extending the usual stability analysis for linear systems to the implicit-explicit
setting most results are limited to the single scalar equation. In our case, however, the schemes are
specifically designed to deal with systems in the form (1.1), and we need therefore to tackle the stability
properties in such a case. Here we show that, in the case of IMEX-BDF methods, we can generalize some
of the stability results for the single scalar equations to linear multiscale systems of the form

∂tu+ ∂xv = 0,
(4.1)

∂tv +
1

ε2α
∂xu = − 1

ε1+α
(v − γu),

where ε > 0, γ > 0 and α ∈ [0, 1]. Note that, for small values of ε, the above system when α = 1
reduces to the convection-diffusion equation ∂tu+ γ∂xu = ∂xxu, whereas when α = 0, if γ < 1, yields the
simple advection equation ∂tu+ γ∂xu = 0. To simplify notations, in the sequel we will assume γ = 1 and
α > 0. The case α = 0 is rather classical and follows straightforwardly from our analysis. Under these
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assumptions, the Chapman-Enskog expansion for small values of ε gives the limiting convection-diffusion
equation

(4.2) ∂tu+ ∂xu = ε1−α∂xxu+O(ε1+α).

In Fourier variables we get

û′ = −iξv̂,
(4.3)

v̂′ = − iξ

ε2α
û− 1

ε1+α
(v̂ − û),

where, for example, ξ = sin(2k)/∆x if we use central differences and k is the frequency of the correspond-
ing Fourier mode.

The change of variables y = û, z = εαv̂, λI = iξ/εα, λR = 1/ε1+α, λ = λI + λR ∈ C transforms the
system into the problem

y′ = −λIz, λ ∈ C,(4.4)
z′ = −(λI − λRε

α)y − λRz.

Let us note that the above problem is equivalent to the second order differential equation

(4.5) y′′ = −λRy
′ + λI(λI − λRε

α)y.

4.1. AP-explicit methods. We then apply an IMEX-LM method to system (4.4) as follows

yn+1 = −
s−1
∑

j=0

ajy
n−j − λI∆t

s−1
∑

j=−1

cjz
n−j(4.6)

zn+1 = −
s−1
∑

j=0

ajz
n−j − (λI − λRε

α)∆t
s−1
∑

j=0

bjy
n−j − λR∆t

s−1
∑

j=−1

cjz
n−j.(4.7)

In the case of IMEX-BDF methods the first equation (4.6) permits to write

zn+1 = − 1

∆tc−1λI



yn+1 +

s−1
∑

j=0

ajy
n−j





and more in general for j = 0, . . . , s− 1

(4.8) zn−j = − 1

∆tc−1λI

(

yn−j +

s−1
∑

h=0

ahy
n−j−h−1

)

.

Thus, by direct substitution into the second equation (4.7) we obtain a discretization to (4.5) in the form


yn+1 +

s−1
∑

j=0

ajy
n−j



 (1 + λR∆tc−1) = −
s−1
∑

j=0

aj

(

yn−j +

s−1
∑

h=0

ahy
n−j−h−1

)

+ λI(λI − λRε
α)∆t2c−1

s−1
∑

j=0

bjy
n−j.

Finally, we can rewrite the resulting scheme as

yn+1 = −
s−1
∑

j=0

ajy
n−j − 1

1 + λR∆tc−1

s−1
∑

j=0

aj

(

yn−j +

s−1
∑

h=0

ahy
n−j−h−1

)

(4.9)

+
λI(λI − λRε

α)∆t2c−1

1 + λR∆tc−1

s−1
∑

j=0

bjy
n−j .

Note that, the above IMEX-LM in the limit ε → 0 for α = 1 leads to the reduced scheme

(4.10) yn+1 = −
s−1
∑

j=0

ajy
n−j −∆t(i + ξ)ξ

s−1
∑

j=0

bjy
n−j ,

which corresponds to an explicit LMM for the convection-diffusion equation.
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Figure 2. AP-explicit methods. Stability regions of IMEX-BDF methods in terms of
zI = iξ∆t/εα and zR = ∆t/ε1+α. The different contour lines correspond to different
values of the scaling parameter εα.

The characteristic equation for scheme (4.9) reads

(4.11) ̺(ζ) +
1

1 + zRc−1
σ1(ζ)−

zI(zI − zRε
α)c−1

1 + zRc−1
σ2(ζ) = 0,

with zR = λR∆t, zI = λI∆t and

̺(ζ) = ζs +

s−1
∑

j=0

ajζ
n−j , σ1(ζ) =

s−1
∑

j=0

aj

(

ζn−j +

s−1
∑

h=0

ahζ
n−j−h−1

)

, σ2(ζ) =

s−1
∑

j=0

bjζ
n−j .

Stability corresponds to the requirement that all roots of (4.11) have modulus less or equal one and that
all multiple roots have modulus less than one. In Figure 2 we plot the stability regions of AP-explicit
IMEX-BDF schemes with respect to the variable zR and zI . The contour lines represent different values
of the scaling parameter εα. Note that, since we are assuming to use central differences, the stability
regions are inversely proportional to the value of εα, since ε1−α measures the strength of the diffusive term
in agreement with (4.2). As expected, as the order of the methods increase the corresponding stability
requirements become stronger and the various stability regions are reduced.
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Figure 3. AP-implicit methods. Stability regions of IMEX-BDF methods in terms of
zI = iξ∆t/εα and zR = ∆t/ε1+α. The different contour lines correspond to different
values of the scaling parameter εα.

4.2. AP-implicit methods. Next we apply an IMEX-LM method to (4.4) in the AP-implicit form

yn+1 = −
s−1
∑

j=0

ajy
n−j − λI∆t

s−1
∑

j=−1

cjz
n−j(4.12)

zn+1 = −
s−1
∑

j=0

ajz
n−j + λRε

α∆t

s−1
∑

j=0

bjy
n−j −∆t

s−1
∑

j=−1

cj(λRz
n−j + λIy

n−j).(4.13)

Thus, restricting to IMEX-BDF methods, by direct substitution of (4.8) into the second equation (4.13)
we get



yn+1 +

s−1
∑

j=0

ajy
n−j



 (1 + λR∆tc−1) = −
s−1
∑

j=0

aj

(

yn−j +

s−1
∑

h=0

ahy
n−j−h−1

)

− λIλR∆t2c−1ε
α

s−1
∑

j=0

bjy
n−j + (λI∆tc−1)

2yn+1,
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or equivalently

yn+1 = −
s−1
∑

j=0

ajy
n−j − 1

1 + λR∆tc−1

s−1
∑

j=0

aj

(

yn−j +
s−1
∑

h=0

ahy
n−j−h−1

)

(4.14)

− λIλR∆t2c−1ε
α

1 + λR∆tc−1

s−1
∑

j=0

bjy
n−j +

(λI∆tc−1)
2

1 + λR∆tc−1
yn+1.

Now, the above LMM method in the limit ε → 0 for α = 1 leads to the scheme

(4.15) yn+1 = −
s−1
∑

j=0

ajy
n−j −∆t iξ

s−1
∑

j=0

bjy
n−j −∆tξ2c−1y

n+1,

which corresponds to an implicit-explicit IMEX-BDF scheme for the convection-diffusion equation.
The characteristic equation associated to scheme (4.14) takes the form

(4.16) ̺(ζ) +
1

1 + zRc−1
σ1(ζ) +

zIzRε
αc−1

1 + zRc−1
σ2(ζ)−

z2Ic
2
−1

1 + zRc−1
ζs = 0.

We report in Figure 3 the stability regions of the AP implicit IMEX-BDF methods with respect to the
variable zR and zI . The contour lines, as for the AP explicit case, represent different values of the scaling
parameter εα. The second order method is uniformly stable when εα < 0.5, all other methods show
better stability properties compared to the AP-explicit case, in particular for large values of zR. Again
the stability regions diminish for increasing values of εα, in agreement with the limit problem (4.2), and
as the order of the methods increases.

5. Space discretization

In this section we briefly discuss the space discretization adopted in the numerical examples. For the
hyperbolic fluxes, we consider a WENO method of order five [48] combined with a Rusanov flux. We
stress that the space discretization is not constructed over the original discretized systems, namely (3.1),
(3.17) and (3.26). Instead, we introduce the space discretization on the reformulated systems (3.7) for
the AP-explicit with α = 1, on (3.18) for the AP-explicit with α ∈ [0, 1) and on (3.27) for the AP-
implicit case. In fact, the adopted IMEX partitioning of the system, which guarantees boundedness of
the eigenvalues, is of paramount importance to avoid instabilities of the fluxes and excessive numerical
dissipation typical of diffusive scaling limits [31, 40, 41]. As a consequence, the numerical diffusion is
chosen accordingly to (3.20) in the numerical fluxes reported below.

Given a generic flux function F (Q) of Q ∈ Rn, we first reconstruct the unknown values at the interfaces
Q−, Q+ and successively we employ the numerical Rusanov flux defined as follows

(5.1) H(Q−, Q+) =
1

2

[

F (Q+) + F (Q−)−Θ(F ′(q))S(Q+ −Q−)
]

, Θ(F ′(Q)) = max
Q∈[Q−,Q+]

{|λ(F ′(Q))|}

where maxq∈[Q−,Q+]{|λ(F ′(Q))|} represents the maximum modulus of the eigenvalues of the Jacobian

matrix F ′(Q) and S ∈ Rn×n a transformation matrix. Hence, for systems (3.7), (3.18), (3.27) and
according to (3.10), (3.20), this value will depend on the scaling parameter ε and the choice of the
discretization steps. In particular for the general hyperbolic system (1.1), independently on the scaling
factor α, we have two unknowns Q = (u, v)T and three fluxes

f̂i+ 1
2
=

1

2

[

(f(u+
i+ 1

2

) + f(u−

i+ 1
2

))− Θ(u, v)(u+
i+ 1

2

− u−

i+ 1
2

)
]

,(5.2)

v̂i+ 1
2
=

1

2

[

(v+
i+ 1

2

+ v−
i+ 1

2

)−Θ(u, v)(u+
i+ 1

2

− u−

i+ 1
2

)
]

(5.3)

and

p̂i+ 1
2
=

1

2

[

(p(u+
i+ 1

2

) + p(u−

i+ 1
2

)) −Θ(u, v)(v+
i+ 1

2

− v−
i+ 1

2

)
]

,(5.4)
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where to comply with (5.1) we consider

(5.5) S =





0 1

1 0



 , Θ(u, v) =
1

2

(

γ(1− θα)±
√

γ2(1 − θα)2 + 4ε−2αθ2α

)

, γ = f ′(u).

The generic variables w reconstructed at the grid interfaces (i+ 1
2 ) and (i− 1

2 ) respectively on the right

w−

i+ 1
2

and on the left side w+
i− 1

2

are given by

(5.6) w−

i+ 1
2

=

2
∑

r=0

ωrw
(r)

i+ 1
2

, w+
i− 1

2

=

2
∑

r=0

ωrw̃
(r)

i+ 1
2

with weights

(5.7) ωr =
αr

∑2
s=0 αs

, αr =
dr

(ε+ βr)2
, ω̃r =

α̃r
∑2

s=0 α̃s

, α̃r =
d̃r

(ε+ βr)2
,

and with standard smoothness indicators

β0 =
13

12
(wi − 2wi+1 + wi+2)

2 +
1

4
(3wi − 4wi+1 + wi+2)

2

β1 =
13

12
(wi−1 − 2wi + wi+1)

2 +
1

4
(wi−1 + wi+1)

2

β2 =
13

12
(wi−2 − 2wi−1 + wi)

2 +
1

4
(3wi−2 − 4wi−1 + wi)

2,

where ε = 10−8, d0 = 3/10 = d̃2, d1 = 3/5 = d̃1 and d2 = 1/10 = d̃0. Finally, the values w
(r)

i+ 1
2

and

w
(r)

i+ 1
2

represent the third order reconstructions of the pointwise values w̄i. These are obtained through

the formulas

(5.8) w
(r)

i+ 1
2

=

2
∑

j=0

crjw̄i−r+j , w
(r)

−
1
2

=

2
∑

j=0

c̃rjw̄i−r+j , r = 0, 1, 2

where w̄i−r+j are the pointwise values of the unknown evaluated at the points Sr(i) = {xi−r, .., xi−r+2}
r = 0, 1, 2. Since, we use equispaced grid points, the coefficients crj can be precomputed and their values
are reported in Table 1.

Table 1. Coefficients crj for the 5-th order WENO reconstruction on equispaced grid points.

r j = 0 j = 1 j = 2

-1 11/6 -7/6 1/3

0 1/3 5/6 -1/6

1 -1/6 5/6 1/3

2 1/3 -7/6 11/6

In addition, we have a second order term ∂xxp(u) which, for the AP-explicit case, may be discretized
by two consecutive application of the Rusanov flux with WENO reconstruction of the state variables
and with numerical diffusion Θ(u, v) fixed equal to zero, or by a specific space discretization which is
consistent with the limit problem. For example, by a sixth order finite difference formula

(5.9) ∂xxp(u(xi)) ≃
ap(ui−3) + bp(ui−2) + cp(ui−1) + dp(ui) + cp(ui+1)− bp(ui+2) + ap(ui+3)

(∆x)2

with a = 1/90, b = −3/20, c = 3/2, d = −49/18. This latter approach has been adopted in the case of
AP-implicit schemes, since the term ∂xxp(u) is implicit and we want to avoid nonlinearities induced by
the WENO reconstructions.
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6. Numerical validation & applications

In this Section, we present different numerical tests to validate the analysis performed in the previous
Sections. In particular, we report results for the IMEX linear multistep from order two up to order
five both for the AP-explicit and for the AP-implicit formulations. For the details about the IMEX-LM
methods used we refer to Appendix A. We remark that other IMEX-LM methods can be included as well
in the present formulation, see for example [45, 47]. In all test cases, the initial data has been chosen
well prepared and the IMEX-LM methods have been initialized with a third order IMEX Runge-Kutta
scheme (see [7]) with a time step which satisfies the accuracy constraints.

6.1. Test 1. Numerical convergence study for a linear problem. We consider the following linear
hyperbolic model with diffusive scaling for α = 1

(6.1)







∂tu+ ∂xv = 0,

∂tv +
1

ε2
∂xu = − 1

ε2
(v − γu),

where γ > 0. In the diffusive limit ε → 0 the second equation relaxes to the local equilibrium

v = γu− ∂xu,

substituting into the first equation this gives the limiting advection-diffusion equation

(6.2) ∂tu+ γ∂xu = ∂xxu.

In particular, we consider the model (6.1) solved on the domain x ∈ [0, 1], with γ = 1 and periodic
boundary conditions and with smooth initial data given by

(6.3) u(x, 0) = sin(2xπ), v(x, 0) = sin(2xπ)− cos(2xπ).

Note that, the initial data is well prepared, in the sense that v(x, 0) = u(x, 0) − ∂xu(x, 0). For this
specific problem, we numerically estimate the order of convergence of the schemes for various values of
ε = 1, 0.1, 0.01, 0.001 by measuring the space and time L1-error of the numerical solutions computed by
using as reference solution the thinner grids. Namely, given a coarser grid ∆x1 = 1/N with N = 128 we
consider

(6.4) ∆xk+1 = ∆xk/2 with k = 1, .., 4.

The time step for AP-explicit methods is chosen as ∆t = λ∆xmax {ε,∆x}, with λ = 0.25. Namely, the
largest between the CFL condition imposed by the hyperbolic part and by the limiting parabolic part of
the equations. Instead, for implicit schemes we choose ∆t = λ∆xmax {ε, 1} since the diffusion term is
integrated implicitly in the limit.

The local truncation error is measured for the two components u and v as follows

Ek
∆x,∆t(u) = |uk

∆x,∆t(·, T )− uk−1
∆x,∆t(·, T )|, Ek

∆x,∆t(v) = |vk∆x,∆t(·, T )− vk−1
∆x,∆t(·, T )|,

and the order of convergence is estimated by computing the rate between two L1 errors of distinct
numerical solutions

(6.5) pk(u) = log2(‖Ek−1
∆x,∆t(u)‖1/‖Ek

∆x,∆t(u)‖1), pk(v) = log2(‖Ek−1
∆x,∆t(v)‖1/‖Ek

∆x,∆t(v)‖1).
The analysis is performed for several different IMEX linear multi-step schemes from second to fifth order
(see Appendix A). In particular, we focus on the BDF and the TVB classes of IMEX multistep methods
thanks to their favorable stability properties (see [26,27] for details and derivation). We report in Table 2
the space-time L1 errors and the relative rates of convergence for increasing size of the meshes considering
N = 2k points with k = 8, .., 11 for the u variable, while the space-time L1 errors and the relative rates
of convergence for the v variable are shown in Table 3 for the AP-explicit schemes. In Table 4 and 5, we
report the corresponding L1 errors and rates of convergence for the AP-implicit schemes. In all cases we
can conclude that the expected orders of convergence are achieved by the schemes for the different values
of the asymptotic parameter ε and that the behavior of the schemes outperforms the corresponding IMEX
Runge-Kutta methods for the non conserved quantity v (see Table 2 in [8] for example). In particular,
we observe the tendency of 4-th order methods to achieve higher then expected convergence rates on the
conserved quantity u for moderate values of the stiffness parameter. The same tendency, on both variables
u and v, is observed for 5-th order methods close to the diffusion limit particularly in the AP-implicit case.
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On the contrary, the 4-th order schemes in the AP-explicit implementation produce a slight deterioration
on the non conserved quantity v which is not observed in the AP-implicit setting. The SG(3,2) scheme
also suffers of a slight deterioration of accuracy close to the diffusion limit in the AP-explicit form. It
should be noted that scheme in AP-explicit form close to the fluid limit have a smaller truncation error
with respect to time thanks to the CFL condition ∆t = O(∆x2). This can be observed by comparing the
L1-errors of the AP-explicit and AP-explicit formulations for ε = 0.001. Finally, in Figure 4 and 5, we
summarized in a plot the order of convergence for the mesh corresponding to 256 nodes as a function of
ε for the AP-explicit and AP-implicit methods. These plots emphasize that the convergence rate for all
schemes is almost uniform.

Table 2. L1 error and estimated convergence rates for u in the AP-explicit case.

ε = 1 ε = 0.1 ε = 0.01 ε = 0.001

IMEX N ‖Ek
∆x,∆t‖1 Rate ‖Ek

∆x,∆t‖1 Rate ‖Ek
∆x,∆t‖1 Rate ‖Ek

∆x,∆t‖1 Rate

IM
E
X
-

S
G
(3
,2
) 128 9.9402e-05 – 8.2324e-05 – 0.00019196 – 1.0662e-07 –

256 3.0565e-05 1.7014 2.5215e-05 1.707 5.7846e-05 1.7305 4.262e-08 1.3229

512 8.3499e-06 1.8721 6.8755e-06 1.8748 1.5671e-05 1.8841 1.1871e-08 1.8441

IM
E
X
-

B
D
F
2

128 4.4737e-05 – 3.6789e-05 – 8.9909e-05 – 9.2432e-08 –

256 1.4423e-05 1.6331 1.1759e-05 1.6455 2.8204e-05 1.6726 2.4676e-08 1.9053

512 4.0033e-06 1.8491 3.2494e-06 1.8555 7.7212e-06 1.869 6.0694e-09 2.0235

IM
E
X
-

T
V
B
(3
,3
) 128 7.3451e-08 – 1.2994e-07 – 5.0813e-06 – 3.1308e-08 –

256 1.2953e-08 2.5035 1.8201e-08 2.8358 7.5974e-07 2.7416 3.8147e-09 3.0369

512 1.8478e-09 2.8094 2.4055e-09 2.9197 1.0251e-07 2.8898 4.4859e-10 3.0881

IM
E
X
-

B
D
F
3

128 8.7902e-08 – 1.6714e-07 – 6.6227e-06 – 5.8099e-08 –

256 1.5388e-08 2.514 2.4439e-08 2.7738 9.8974e-07 2.7423 6.0486e-09 3.2638

512 2.1902e-09 2.8127 3.2815e-09 2.8968 1.3293e-07 2.8964 6.5821e-10 3.2

IM
E
X
-

T
V
B
(4
,4
) 128 2.2234e-08 – 6.9585e-09 – 1.2029e-06 – 2.0263e-07 –

256 8.4006e-10 4.7262 1.7448e-10 5.3177 9.1633e-08 3.7145 5.8212e-09 5.1214

512 4.7195e-11 4.1538 3.7747e-12 5.5305 6.0883e-09 3.9118 2.2316e-10 4.7052

IM
E
X
-

B
D
F
4

128 2.3209e-08 – 7.4749e-09 – 4.5554e-07 – 2.449e-08 –

256 6.8151e-10 5.0898 2.1477e-10 5.1212 3.3431e-08 3.7683 1.1948e-09 4.3573

512 2.9394e-11 4.5352 5.499e-12 5.2875 2.2255e-09 3.909 6.3684e-11 4.2297

IM
E
X
-

T
V
B
(5
,5
) 128 1.043e-08 – 4.1161e-08 – 9.4337e-09 – 1.9208e-07 –

256 3.2924e-10 4.9854 1.2742e-09 5.0137 3.3621e-10 4.8104 2.4637e-09 6.2848

512 1.4718e-11 4.4835 4.7629e-11 4.7416 1.0529e-11 4.9969 5.4809e-11 5.4903

IM
E
X
-

B
D
F
5

128 4.9951e-08 – 3.49e-08 – 4.906e-09 – 1.7525e-08 –

256 1.5618e-09 4.9992 1.0894e-09 5.0016 1.5768e-10 4.9594 4.2623e-10 5.3616

512 5.6577e-11 4.7869 3.2187e-11 5.0809 4.6748e-12 5.076 1.1341e-11 5.232

6.2. Test 2: Riemann problem for the linear model. Next, we consider a Riemann problem defined
on the space interval [0, 4] with discontinuous initial data as follows

(6.6)







uL = 4.0, vL = 0, 0 ≤ x ≤ 2,

uR = 2.0, vR = 0, 2 < x ≤ 4.
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Table 3. L1 error and estimated convergence rates for v in the AP-explicit case.

ε = 1 ε = 0.1 ε = 0.01 ε = 0.001

IMEX N ‖Ek
∆x,∆t‖1 Rate ‖Ek

∆x,∆t‖1 Rate ‖Ek
∆x,∆t‖1 Rate ‖Ek

∆x,∆t‖1 Rate

IM
E
X
-

S
G
(3
,2
) 128 4.1297e-05 – 0.0015868 – 0.30746 – 0.017621 –

256 1.3046e-05 1.6624 0.00049005 1.6951 0.092824 1.7278 0.006956 1.341

512 3.6092e-06 1.8538 0.00013416 1.869 0.025173 1.8826 0.0019759 1.8158

IM
E
X
-

B
D
F
2

128 5.3468e-05 – 0.0010541 – 0.14541 – 0.015341 –

256 1.7643e-05 1.5996 0.00034308 1.6194 0.045795 1.6669 0.0040821 1.91

512 4.9529e-06 1.8328 9.5659e-05 1.8426 0.012564 1.8658 0.001048 1.9616

IM
E
X
-

T
V
B
(3
,3
) 128 7.2288e-07 – 8.2789e-06 – 0.0083555 – 0.0044838 –

256 1.1051e-07 2.7096 1.2742e-06 2.6999 0.0012579 2.7317 0.00064242 2.8031

512 1.5103e-08 2.8712 1.7412e-07 2.8714 0.0001703 2.8849 8.423e-05 2.9311

IM
E
X
-

B
D
F
3

128 6.3076e-07 – 8.0827e-06 – 0.010784 – 0.0087392 –

256 9.8098e-08 2.6848 1.2676e-06 2.6727 0.0016207 2.7342 0.00099636 3.1328

512 1.3503e-08 2.861 1.7436e-07 2.862 0.0002183 2.8923 0.00011713 3.0885

IM
E
X
-

T
V
B
(4
,4
) 128 8.1836e-08 – 8.5455e-08 – 0.0019902 – 0.033128 –

256 3.443e-09 4.571 7.8768e-09 3.4395 0.00015204 3.7104 0.00099626 5.0554

512 1.5925e-10 4.4343 6.285e-10 3.6476 1.0128e-05 3.9079 4.1573e-05 4.5828

IM
E
X
-

B
D
F
4

128 6.8621e-08 – 2.6004e-08 – 0.00076076 – 0.0045931 –

256 2.4028e-09 4.8359 2.607e-09 3.3183 5.5621e-05 3.7737 0.00022733 4.3366

512 5.3325e-11 5.4938 2.1977e-10 3.5683 3.7004e-06 3.9099 1.2649e-05 4.1676

IM
E
X
-

T
V
B
(5
,5
) 128 1.7977e-08 – 2.1366e-07 – 9.0073e-06 – 0.030281 –

256 4.6141e-10 5.2839 6.7708e-09 4.9798 3.4995e-07 4.6858 0.00039906 6.2457

512 6.7507e-11 2.773 1.182e-10 5.84 1.1336e-08 4.9481 9.4581e-06 5.3989

IM
E
X
-

B
D
F
5

128 1.2276e-07 – 1.533e-07 – 1.6471e-06 – 0.0022391 –

256 3.8413e-09 4.9981 4.7927e-09 4.9993 5.7491e-08 4.8405 5.2309e-05 5.4197

512 2.5154e-10 3.9327 1.9215e-10 4.6405 1.4584e-09 5.3009 1.3736e-06 5.251

For the above initial data, the linear hyperbolic system in the form (1.1) with zero-flux boundary condi-
tions is solved and comparisons with different values of the relaxation parameter ε are shown. The same
problem has been studied in [8] using IMEX Runge-Kutta schemes.

In the limit ε → 0, the exact solution of the corresponding advection-diffusion equation is known and
it reads

(6.7) u(x, t) =
1

2
(uL + uR) +

1

2
(uL − uR)erf

(

t− x+ 2

2
√
t

)

,

with erf(x) the error function. We report in Figure 6 the numerical solution for u at final time T =
0.25 computed using two different time integration schemes, namely the IMEX-BDF2, and the IMEX-
TVB(4,4). We choose N = 80 points in space, and compare the AP-explicit approach (3.18), with
the AP-implicit one (3.27). The reference solution is computed with the IMEX-BDF5 scheme using
∆tref = ∆t/10 and N = 200 space points. In order to preserve the CFL conditions the time steps for the
different regimes of ε are selected as follows: in the AP-explicit case ∆t = λ∆xmax{ε,∆x} and in the
AP-implicit case ∆t = λ∆xmax{ε, 1} with λ = 0.4. In Figure 6, for the diffusive limit, we observe that
the different schemes agree well with the exact solution (6.7). In the hyperbolic regime, ε = 0.5, the shock
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Table 4. L1 error and estimated convergence rates for u in the AP-implicit case.

ε = 1 ε = 0.1 ε = 0.01 ε = 0.001

IMEX N ‖Ek
∆x,∆t‖1 Rate ‖Ek

∆x,∆t‖1 Rate ‖Ek
∆x,∆t‖1 Rate ‖Ek

∆x,∆t‖1 Rate

IM
E
X
-

S
G
(3
,2
) 128 0.0001009 – 8.4701e-05 – 0.00019279 – 0.015388 –

256 3.1168e-05 1.6948 2.6145e-05 1.6958 5.8207e-05 1.7278 0.0047058 1.7093

512 8.5342e-06 1.8687 7.1564e-06 1.8692 1.5785e-05 1.8826 0.0012828 1.8751

IM
E
X
-

B
D
F
2

128 4.5983e-05 – 3.8769e-05 – 9.0615e-05 – 0.0074794 –

256 1.4986e-05 1.6175 1.2626e-05 1.6185 2.8544e-05 1.6666 0.0023976 1.6413

512 4.1817e-06 1.8414 3.5217e-06 1.8421 7.8321e-06 1.8657 0.00066348 1.8535

IM
E
X
-

T
V
B
(3
,3
) 128 5.6622e-08 – 1.5426e-07 – 5.1657e-06 – 0.00024864 –

256 9.4982e-09 2.5756 2.2969e-08 2.7476 7.7718e-07 2.7326 3.7993e-05 2.7103

512 1.3103e-09 2.8577 3.121e-09 2.8796 1.0522e-07 2.8849 5.1683e-06 2.878

IM
E
X
-

B
D
F
3

128 7.3382e-08 – 1.8956e-07 – 6.7012e-06 – 0.0002871 –

256 1.2326e-08 2.5737 2.8971e-08 2.7099 1.0064e-06 2.7352 4.443e-05 2.6919

512 1.7158e-09 2.8448 3.9775e-09 2.8647 1.3555e-07 2.8923 6.0575e-06 2.8747

IM
E
X
-

T
V
B
(4
,4
) 128 2.9453e-08 – 2.5367e-08 – 1.2204e-06 – 2.9521e-05 –

256 1.2448e-09 4.5645 7.248e-10 5.1292 9.3626e-08 3.7044 2.2475e-06 3.7153

512 5.0075e-11 4.6356 1.6962e-11 5.4172 6.2417e-09 3.9069 1.5677e-07 3.8416

IM
E
X
-

B
D
F
4

128 2.582e-08 – 7.3488e-09 – 4.6271e-07 – 1.2261e-05 –

256 8.5367e-10 4.9187 2.0595e-10 5.1572 3.4155e-08 3.7599 8.3808e-07 3.8709

512 1.6737e-11 5.6726 1.69e-12 6.9291 2.2839e-09 3.9025 5.5639e-08 3.9129

IM
E
X
-

T
V
B
(5
,5
) 128 3.6171e-08 – 3.5169e-08 – 9.4689e-09 – 1.1944e-06 –

256 1.1333e-09 4.9962 1.1385e-09 4.9491 3.3274e-10 4.8308 7.5898e-09 7.298

512 5.1332e-11 4.4646 6.4841e-11 4.1341 1.2796e-11 4.7006 3.7672e-10 4.3325

IM
E
X
-

B
D
F
5

128 2.0507e-08 – 2.7439e-08 – 4.9118e-09 – 1.3221e-06 –

256 6.2502e-10 5.0361 8.5434e-10 5.0053 1.5808e-10 4.9575 2.1912e-08 5.915

512 2.5331e-11 4.625 3.7038e-11 4.5277 1.5295e-12 6.6914 1.0639e-09 4.3643

is correctly captured compared to the reference solution by both schemes with a slightly better resolution
in the case of IMEX-TVB(4,4) for the AP-implicit approach. Note that, no spurious oscillations are
observed for IMEX-BDF2 scheme, even if it does not satisfy any specific TVB stability property in the
hyperbolic regime.

6.3. Test 3: Barenblatt solution for the porous media equation. We then consider a nonlinear
diffusion limit, by considering the following hyperbolic system with diffusive relaxation

(6.8)







∂tu+ ∂xv = 0,

∂tv +
1

ε2
∂xu = − 1

ε2+α
k(u)v.

This problem has been previously studied in [33, 41]. Note that, when k(u) = 1, the system (6.8) is a
model of relaxing heat flow and, as ε → 0, it relaxes towards the heat equation

(6.9) ∂tu = εα∂xxu, v = −∂xu.
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Table 5. L1 error and estimated convergence rates for v in the AP-implicit case.

ε = 1 ε = 0.1 ε = 0.01 ε = 0.001

IMEX N ‖Ek
∆x,∆t‖1 Rate ‖Ek

∆x,∆t‖1 Rate ‖Ek
∆x,∆t‖1 Rate ‖Ek

∆x,∆t‖1 Rate

IM
E
X
-

S
G
(3
,2
) 128 4.4648e-05 – 0.00089276 – 0.30567 – 0.11134 –

256 1.3846e-05 1.6891 0.00027568 1.6953 0.092283 1.7278 0.032643 1.7702

512 3.7984e-06 1.866 7.5475e-05 1.8689 0.025026 1.8826 0.0087961 1.8918

IM
E
X
-

B
D
F
2

128 2.3413e-05 – 0.00042114 – 0.14368 – 0.060252 –

256 7.6904e-06 1.6062 0.00013723 1.6177 0.045257 1.6667 0.0174 1.7919

512 2.1539e-06 1.8361 3.8288e-05 1.8416 0.012418 1.8657 0.0046647 1.8992

IM
E
X
-

T
V
B
(3
,3
) 128 2.0289e-07 – 1.2756e-06 – 0.0081773 – 0.001989 –

256 3.279e-08 2.6294 1.9536e-07 2.707 0.0012317 2.731 0.00026696 2.8974

512 4.5301e-09 2.8557 2.6669e-08 2.8729 0.00016679 2.8845 3.4663e-05 2.9451

IM
E
X
-

B
D
F
3

128 2.3141e-07 – 1.3649e-06 – 0.010612 – 0.0023402 –

256 3.8064e-08 2.6039 2.1348e-07 2.6766 0.0015951 2.7339 0.00032067 2.8674

512 5.2868e-09 2.848 2.9369e-08 2.8617 0.00021487 2.8921 4.2074e-05 2.9301

IM
E
X
-

T
V
B
(4
,4
) 128 7.1151e-08 – 9.5652e-08 – 0.0019469 – 0.00028374 –

256 2.6963e-09 4.7218 2.8851e-09 5.0511 0.0001488 3.7098 1.6152e-05 4.1348

512 1.0634e-10 4.6642 3.3063e-10 3.1253 9.9148e-06 3.9076 1.0431e-06 3.9527

IM
E
X
-

B
D
F
4

128 6.5438e-08 – 1.7232e-08 – 0.00074557 – 9.082e-05 –

256 2.1846e-09 4.9047 4.6192e-10 5.2213 5.4526e-05 3.7733 5.8265e-06 3.9623

512 3.0347e-11 6.1697 3.0551e-11 3.9183 3.6281e-06 3.9097 3.7459e-07 3.9592

IM
E
X
-

T
V
B
(5
,5
) 128 8.0907e-08 – 1.4931e-07 – 8.7961e-06 – 3.1526e-05 –

256 2.3712e-09 5.0926 4.7065e-09 4.9875 3.4175e-07 4.6859 2.7811e-07 6.8247

512 1.4198e-10 4.0619 5.5157e-11 6.415 1.1008e-08 4.9563 9.1116e-09 4.9318

IM
E
X
-

B
D
F
5

128 4.6717e-08 – 1.0372e-07 – 1.6077e-06 – 9.3079e-06 –

256 1.4517e-09 5.0081 3.1885e-09 5.0237 5.6036e-08 4.8425 1.6743e-07 5.7968

512 8.9081e-12 7.3484 1.0165e-10 4.9711 1.4002e-09 5.3226 7.4625e-09 4.4878

On the other hand, by choosing k(u) = (2u)−1, the limiting equation for this model results in the porous
media equation

(6.10) ∂tu = εα∂xxu
2, v = −2u∂xu.

For this problem we consider the IMEX-BDF2 and the IMEX-BDF5 schemes for α = 0 by computing
the numerical solution with N = 80 mesh points, using the AP-explicit approach and selecting the time
step as ∆t = λ∆xmax{ε,∆x} with λ = 0.4.

The numerical solution in the limit ε → 0 is compared with the analytical Barenblatt solution for the
porous media equation [6]

(6.11) u(x, t) =















1

r(t)

[

1−
(

x

r(t)

)2
]

, |x| ≤ r(t),

0, |x| > r(t),

where r(t) = [12(t+ 1)]1/3, t ≥ 0 and x ∈ [−10, 10]. Note that the above solution defines also the initial
state of the system where in addition we considered v(x, t = 0) = 0. In Figure 7, this comparison is shown
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Figure 4. Order of convergence of AP-explicit methods in the L1−norm using (6.5) for
the u variable (left) and the v variable (right).
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Figure 5. Order of convergence of AP-implicit methods in the L1−norm using (6.5) for
the u variable (left) and the v variable (right).

using ε = 10−6 at time T = 3. The sharp front of the Barenblatt solution is very well captured by both
schemes without observing any relevant different by the increase order of accuracy of the IMEX-BDF5
method. This is somewhat expected, since the CFL condition ∆t = O(∆x2), in practice, gives to the
IMEX-BDF2 scheme the same accuracy of a fourth order method. Therefore, the accuracy barrier here
is represented by the 5-th order space discretization method.

6.4. Test 4: Applications to the Ruijgrook–Wu model. We consider, in this last test case, an
application of the schemes to the so-called Ruijgrook–Wu model of rarefied gas dynamic [8,22,23,33,41,46]

(6.12)











M∂tf
+ + ∂xf

+ = − 1

Kn
(af+ − bf− − cf+f−),

M∂tf
− − ∂xf

− =
1

Kn
(af+ − bf− − cf+f−),

where f+ and f− denote the particle density distribution at time t, position x and with velocity +1 and
−1 respectively. Here Kn is the Knudsen number, M is the Mach number of the system and a,b and c are
positive constants which characterize the microscopic interactions . The local (Maxwellian) equilibrium
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Figure 6. Test 2. Riemann problem for linear system with diffusive scaling (6.1) at
final time T = 0.25. Hyperbolic regime with ε = 0.5 (left) and diffusive regime with
ε = 10−6 (right). Top row AP-explicit approach, bottom row AP-implicit approach.
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Figure 7. Test 3. Comparison between the Barenblatt analytical solution of system
(6.10), and the numerical solution obtained from system (6.8) with k(u) = (2u)−1 and
ε = 10−6 at time T = 3.
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f±
∞ is characterized by

(6.13) f+
∞ =

bf−
∞

a− cf−
∞

.

The macroscopic variables for the model are the density u and momentum v defined by

(6.14) u = f+ + f−, v = (f+ − f−)/M.

The nondimensional multiscale problem is obtained taking M = εα and Kn = ε, the Reynolds number of
the system is then defined as usual according to Re = M/Kn = 1/ε1−α. In macroscopic variables taking
a = b = 1/2, c = M = εα this can be written as [22]

(6.15)







∂tu+ ∂xv = 0 ,

∂tv +
1

ε2α
∂xu = − 1

ε1+α

[

v − 1

2

(

u2 − ε2αv2
)

]

.

The model has the nice feature to provide nontrivial limit behaviors for several values of α including the
corresponding compressible Euler (α = 0) limit and the incompressible Euler (α ∈ (0, 1)) and Navier-
Stokes (α = 1) limits (see [22, 23]). In [41] the above model has been used under a similar but different
scaling. If we denote with the pair α̃, ε̃ the scaling parameters in [41], these correspond to take M = ε̃,
Kn = ε̃1+α̃. The two scaling can be made equivalent for α 6= 0, if we map the pair α, ε into α̃, ε̃ as follows

(6.16) α̃ =
1− α

α
, ε̃ = εα, α 6= 0.

Note, that the non-linearity on the source term depends both on u and v, so that we have f = f(u, v) in
(1.1). Nevertheless, following the same strategy described in the previous Sections, our methods can be
applied in a straightforward way also in this situation.

For the Ruijgrook–Wu model (6.15) it can be shown, via Chapman-Enskog expansion, that for α ∈
(1/3, 1] so that 2α > 1− α and small values of ε we have

(6.17) v =
1

2
u2 − ε1−α∂xu+O(ε2α).

Then, the solution behavior is characterized by the viscous Burgers equation

(6.18) ∂tu+ ∂x

(

u2

2

)

= ε1−α∂xxu+O(ε2α).

In the sequel, for Test 4a we apply the AP-explicit approach with ∆t = λ∆xmax{ε,min{1,∆x/ε1−α}},
λ = 0.4 which again corresponds to the maximum between the CFL of the hyperbolic part and the one
originated by the limiting viscous Burger equation, whereas for Test 4b and Test 4c we use the AP-implicit
approach with ∆t = λ∆xmax{ε, 1} and λ = 0.1. Therefore, for ε ≤ 1 the AP-implicit approach uses the
same CFL condition in all test cases independently of ε and α. The reference solution is computed using
the IMEX-BDF5 scheme with time step ∆tref = ∆t/10 and Nref = 400 space points. The initial data
for the non conserved quantity v has been taken well prepared accordingly to (6.17). In the sequel we
will restrict to α̃ ∈ [0, 1] as in [41], therefore, from (6.16), we have α ∈ [0.5, 1]. Note, however, that the
schemes can be applied for any value of α > 0. We refer to [22] for results in the fluid limit α = 0.

Test 4a. Riemann problem. We select the Riemann problem characterized by (6.6) as initial data. The
numerical parameters are also the same of the previous test case, therefore we fix the final time T = 0.25,
and we compute the solution u(x) using two different time AP-explicit integration schemes, BDF2 and
TVB(4,4) with N = 100 points in space.

In Figure 8 we report in the left column the behavior in the rarefied (non stiff) regime ε = 0.5 and
in the right-column the limit behavior ε = 10−6, whereas top row depicts the behavior for α = 1 and
bottom row α = 2/3. Even if the rarefied solutions for the different values of α are similar, we remark
the difference of the solution profiles in the limit ε → 0. For α = 1 we obtain the classical viscous Burger
equation where the discontinuity is smeared out by the diffusion term, while for α = 2/3 we have the
sharp shock formation of the inviscid Burger equation. In both cases the methods yield an accurate
description of the dynamic without spurious oscillations or excessive numerical dissipation.
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Figure 8. Test 4a. Riemann problem for the non linear Ruijgrook–Wu model (6.15) at
final time T = 0.25 with AP-explicit methods. Rarefied regime with ε = 0.5 (left) and
limiting behavior for ε = 10−6 (right). Top row α = 1, bottom row α = 2/3.

Test 4b. Propagation of a square wave. Next, we consider the Ruijgrook–Wu model, in the space interval
[−0.5, 0.5] with initial data defined as follows

u0(x) =

{

1 if |x| ≤ 1/8

0 otherwise,
v0(x) = 0,(6.19)

where we account for reflecting boundary conditions, i.e. v = 0, ∂xu = 0 on the boundaries x = ±0.5.
This test problem has been previously studied in [8, 41] with IMEX Runge-Kutta methods. We study
the solution to (6.15) for three different regimes of the parameters α and ε and we solve the model
with N = 100 space grid points using the AP-implicit IMEX-BDF4 method. We report in Figure 9 the
evolution of the solution for the density u and the momentum v, respectively on the top and bottom
rows. The first column represents the rarefied regime, for ε = 0.7, α = 1. In this regime, the transport
part dominates and the initial data propagates in the directions of the particles. This behavior is well
described by the method without spurious numerical oscillations. In the second column we have the
hyperbolic limit for ε = 10−12, α = 2/3, corresponding to the inviscid Burger equation with a shock
propagating in the right direction. Even in this case the shock profile is well captured. Finally, in the last
column we report the parabolic limit for ε = 10−10, α = 4/5, corresponding to a viscous Burger equation.
As expected, the shock profile is regularized by the presence of the diffusive term.
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Figure 9. Test 4b. Non linear Ruijgrook–Wu model (6.15) with discontinuous initial
data (6.19), top column reports the density, bottom column the momentum. Left row
ε = 0.7, α = 1 and final time T = 0.2, middle row ε = 10−12, α = 2/3 final time T = 0.5,
right row ε = 10−10, α = 4/5, with final time T = 0.5. The AP-implicit formulation has
been used.

Test 4c. Anisotropy of the multiscale parameter α. In the last test case, we solve the model (6.15)
considering a multiscale parameter α to be a function of the space x, whereas the relaxation parameter is
fixed to ε = 10−8. This test aims at reproducing a realistic situation where the scaling terms may depend
on the physical quantities and vary in the different regions of the computational domain. We report the
results obtained using the AP-implicit scheme with IMEX-BDF3 and the same discretization parameters
of the previous test case. The initial date is defined in the space interval [−0.5, 0.5] as follows

u0(x) =

{

1 if |x| ≤ 1/8

0.5 otherwise,
v0(x) = 0.(6.20)

In the left column of Figure 10, we report the value of function α(x) as a function of the space,
varying between 0.5 (hyperbolic regime) and 1 (parabolic regime). The central and right columns depict
respectively the evolution of u(x, t) and v(x, t) showing the initial and final profiles, a similar test case
has been presented in [8] for IMEX Runge-Kutta methods.

In the first row, we account a single variation of the regime from the hyperbolic to the parabolic

α(x) = 1− 1

2
H(x), where H(x) =

1

1 + exp(x/δ)
, δ = 0.01.

At final time T = 0.05 we observe a rarefaction wave moving to the left (in the hyperbolic regime)
and a smooth profile on the right (in the parabolic regime). Note that, the method captures well the
complicated shock structure even at the interface between the two regions.

Second row considers two variations of the the regime from hyperbolic to parabolic, choosing α(x) as

α(x) =
1

2
− 1

2
(H(x+ 0.075)−H(x− 0.075)) ,

at final time is T = 0.1 we observe that the discontinuous initial data u0(x) is blunted within the parabolic
regime, whereas a shock and rarefaction waves emerge in the hyperbolic one, both well described by the
numerical method.



26 GIACOMO ALBI, GIACOMO DIMARCO, AND LORENZO PARESCHI

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Parabolic regime

Hyperbolic regime
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Parabolic regime

Hyperbolic regime
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

Figure 10. Test 4c. Non linear Ruijgrook–Wu model with space dependent α and
ε = 10−8. Left column shows the space variation of the multiscale parameter, whereas
the central and right columns depict the evolution of the density u and momentum v
from the initial data u0(x), v0(x) to final time. Top row accounts a single variation from
hyperbolic to parabolic and final time T = 0.05, whereas second row has two transitions
and final time T = 0.1.

7. Conclusions

In this work we have developed a unified IMEX multistep approach for hyperbolic balance laws under
different scalings. These problems, inspired by the classical hydrodynamical limits of kinetic theory
[13], are challenging for numerical methods since the nature of the asymptotic behavior is not known
a-priori and depends on the scaling parameters. Therefore, the schemes should be able to capture
correctly asymptotic limits characterized by hyperbolic conservation laws as well as diffusive parabolic
equations. A major difficulty in the schemes construction is represented by the unbounded growth of the
characteristic speeds of the system in diffusive regimes. For these problems, we developed two different
kind of approaches, originating a problem reformulation with bounded characteristic speeds, and which
lead respectively to explicit (AP-explicit) or explicit-implict (AP-implicit) time discretizations of the
asymptotic limit. Several numerical results for linear and non linear hyperbolic relaxation systems have
confirmed that the IMEX multistep methods are capable to describe correctly the solution for a wide
range of relaxation parameters and for different values of the scaling coefficient α. Compared to the
IMEX Runge-Kutta approach developed in [8] the IMEX multistep schemes here constructed present
several advantages. In particular, it is possible to achieve easily high order accuracy and in general a
more uniform behavior of the error with respect to the scaling parameters is observed. In addition,
when dealing with computationally challenging problems such as the case of kinetic equations with stiff
collision terms its is possible to strongly reduce the number of evaluations of the most expensive part of
the computation represented by the source term. Future research will be in the direction of extending
the present results to the more difficult case of diffusion limits for non linear kinetic equations and, more
in general, to the case of low Mach number limits and all Mach number flows [7, 25, 28, 29, 37].
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Appendix A. Order conditions for IMEX-LM methods and examples

In this appendix we give the details of the particular IMEX-LM methods used in the manuscript. Let
us recall that an order p, s-step, IMEX-LM scheme is obtained provided that

(A.1)

1 +

s−1
∑

j=0

aj = 0,

1−
s−1
∑

j=0

jaj =
s−1
∑

j=0

bj =
s−1
∑

j=−1

cj ,

1

2
+

s−1
∑

j=0

j2

2
aj = −

s−1
∑

j=0

jbj = c−1 −
s−1
∑

j=0

jcj .

...

1

p!
+

s−1
∑

j=0

(−j)p

p!
aj =

s−1
∑

j=0

(−j)p−1

(p− 1)!
bj =

c−1

(p− 1)!
+

s−1
∑

j=0

(−j)p−1

(p− 1)!
cj ,

Moreover the following theorem holds true [4]

Theorem 1. For an s-step IMEX scheme we have

(1) If p ≤ s the 2p + 1 constraints of (A.1) are linearly independent, therefore there exist s-step
IMEX-LM schemes of order s.

(2) An s-step IMEX-LM scheme has accuracy at most s.
(3) The family of s-step IMEX-LM schemes of order s has s parameters.

Listed below the IMEX-LM methods analyzed along the paper, for further details and additional
methods we refer to [1, 2, 19, 26, 45, 47].
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