
Published: 19th September 2020
DOI: 10.4204/EPTCS.325
ISSN: 2075-2180

Site Map EPTCS Home Page Published Volumes Forthcoming Volumes

EPTCS 325

Proceedings 36th International Conference on
 Logic Programming

 (Technical Communications)

UNICAL, Rende (CS), Italy, 18-24th September 2020

Edited by: Francesco Ricca, Alessandra Russo, Sergio Greco, Nicola Leone, Alexander Artikis,
Gerhard Friedrich, Paul Fodor, Angelika Kimmig, Francesca Lisi, Marco Maratea, Alessandra

Mileo and Fabrizio Riguzzi

Preface
Francesco Ricca, Alessandra Russo, Sergio Greco, Nicola Leone, Alexander Artikis, Gerhard
Friedrich, Paul Fodor, Angelika Kimmig, Francesca Lisi, Marco Maratea, Alessandra Mileo
and Fabrizio Riguzzi

Invited talks (Main Conference)

Applications of Answer Set Programming where Theory meets Practice
 Esra Erdem 1

When Is It Morally Acceptable to Break the Rules? A Preference-Based Approach
 Francesca Rossi 2

Formal Reasoning Methods for Explainability in Machine Learning
 Joao Marquez-Silva 3

From Probabilistic Logics to Neuro-Symbolic Artificial Intelligence
 Luc De Readt 4

Invited talk (Women in Logic Prorgramming Track)

Norms, Policy and Laws: Modelling, Compliance and Violation
 Marina De Vos 5

Panel in Machine Ethics (Invited Paper)

Logic Programming and Machine Ethics
 Abeer Dyoub, Stefania Costantini and Francesca A. Lisi 6

Main Track

Datalog-Based Systems Can Use Incremental SMT Solving (Extended Abstract)
 Aaron Bembenek, Michael Ballantyne, Michael Greenberg and Nada Amin 18

Splitting a Hybrid ASP Program
 Alex Brik 21

Formal Semantics and Scalability for Datalog with Aggregates: A Cardinality-Based Solution
(Extended Abstract)

 Carlo Zaniolo, Ariyam Das, Youfu Li, Mingda Li and Jin Wang
35

Variant-based Equational Unification under Constructor Symbols
 Damián Aparicio-Sánchez, Santiago Escobar and Julia Sapiña 38

http://dx.doi.org/10.4204/EPTCS.325
http://eptcs.web.cse.unsw.edu.au/paper.cgi?ICLP2020.6
http://eptcs.web.cse.unsw.edu.au/paper.cgi?ICLP2020.8
http://eptcs.web.cse.unsw.edu.au/paper.cgi?ICLP2020.10

Solving Gossip Problems using Answer Set Programming: An Epistemic Planning Approach
Esra Erdem and Andreas Herzig

52

Justifications for Goal-Directed Constraint Answer Set Programming
 Joaquín Arias, Manuel Carro, Zhuo Chen and Gopal Gupta 59

SQuARE: Semantics-based Question Answering and Reasoning Engine
 Kinjal Basu, Sarat Chandra Varanasi, Farhad Shakerin and Gopal Gupta 73

A Logic Programming Approach to Regression Based Repair of Incorrect Initial Belief States
(Extended Abstract)

 Loc Pham, Enrico Pontelli, Fabio Tardivo and Tran Cao Son
87

A Hybrid Neuro-Symbolic Approach for Complex Event Processing (Extended Abstract)
 Marc Roig Vilamala, Harrison Taylor, Tianwei Xing, Luis Garcia, Mani Srivastava, Lance

Kaplan, Alun Preece, Angelika Kimming and Federico Cerutti
90

Data validation for Answer Set Programming (Extended Abstract)
 Mario Alviano and Carmine Dodaro 93

Automated Aggregator - Rewriting with the Counting Aggregate
 Michael Dingess and Miroslaw Truszczynski 96

Deriving Theorems in Implicational Linear Logic, Declaratively
 Paul Tarau and Valeria de Paiva 110

A System for Explainable Answer Set Programming
 Pedro Cabalar, Jorge Fandinno and Brais Muñiz 124

Tabling Optimization for Contextual Abduction
 Ridhwan Dewoprabowo and Ari Saptawijaya 137

Burden of Persuasion in Argumentation
 Roberta Calegari and Giovanni Sartor 151

Continuous Reasoning for Managing Next-Gen Distributed Applications
 Stefano Forti and Antonio Brogi 164

Sequent-Type Calculi for Systems of Nonmonotonic Paraconsistent Logics
 Tobias Geibinger and Hans Tompits 178

Enhancing Linear Algebraic Computation of Logic Programs Using Sparse Representation
 Tuan Nguyen Quoc, Katsumi Inoue and Chiaki Sakama 192

LP2PB: Translating Answer Set Programs into Pseudo-Boolean Theories
 Wolf De Wulf and Bart Bogaerts 206

Recursive Rules with Aggregation: A Simple Unified Semantics (Extended Abstract)
 Yanhong A. Liu and Scott D. Stoller 220

Applications Track

Dynamic Multi-Agent Path Finding based on Conflict Resolution using Answer Set
Programming

 Basem Atiq, Volkan Patoglu and Esra Erdem
223

An application of Answer Set Programming in Distributed Architectures: ASP Microservices
 Stefania Costantini and Lorenzo De Lauretis 230

Less Manual Work for Safety Engineers: Towards an Automated Safety Reasoning with Safety
Patterns

 Yuri Gil Dantas, Antoaneta Kondeva and Vivek Nigam
244

Women in Logic Programming Track

Modeling Bitcoin Lightning Network by Logic Programming (Extended Abstract)
 Damiano Azzolini, Elena Bellodi, Alessandro Brancaleoni, Fabrizio Riguzzi and Evelina

Lamma
258

A Machine Learning guided Rewriting Approach for ASP Logic Programs
 Elena Mastria, Jessica Zangari, Simona Perri and Francesco Calimeri 261

Logical Judges Challenge Human Judges on the Strange Case of B.C.-Valjean 268

http://eptcs.web.cse.unsw.edu.au/paper.cgi?ICLP2020.11
http://eptcs.web.cse.unsw.edu.au/paper.cgi?ICLP2020.12
http://eptcs.web.cse.unsw.edu.au/paper.cgi?ICLP2020.13
http://eptcs.web.cse.unsw.edu.au/paper.cgi?ICLP2020.17
http://eptcs.web.cse.unsw.edu.au/paper.cgi?ICLP2020.18
http://eptcs.web.cse.unsw.edu.au/paper.cgi?ICLP2020.19
http://eptcs.web.cse.unsw.edu.au/paper.cgi?ICLP2020.20
http://eptcs.web.cse.unsw.edu.au/paper.cgi?ICLP2020.21
http://eptcs.web.cse.unsw.edu.au/paper.cgi?ICLP2020.22
http://eptcs.web.cse.unsw.edu.au/paper.cgi?ICLP2020.23
http://eptcs.web.cse.unsw.edu.au/paper.cgi?ICLP2020.24
http://eptcs.web.cse.unsw.edu.au/paper.cgi?ICLP2020.25
http://eptcs.web.cse.unsw.edu.au/paper.cgi?ICLP2020.27
http://eptcs.web.cse.unsw.edu.au/paper.cgi?ICLP2020.28
http://eptcs.web.cse.unsw.edu.au/paper.cgi?ICLP2020.29
http://eptcs.web.cse.unsw.edu.au/paper.cgi?ICLP2020.31
http://eptcs.web.cse.unsw.edu.au/paper.cgi?ICLP2020.32

Viviana Mascardi and Domenico Pellegrini

Sister Conferences and Journal Presentation Track

Accountable Protocols in Abductive Logic Programming (Extended Abstract)
 Marco Gavanelli, Marco Alberti and Evelina Lamma 276

Sampling-Based SAT/ASP Multi-Model Optimization as a Framework for Probabilistic
Inference (Extended Abstract)

 Matthias Nickles
278

Report: Datalog with Recursive Aggregation for Incremental Program Analyses (Extended
Abstract)

 Tamás Szabó, Gabór Bergmann, Sebastian Erdweg and Markus Voelter
280

Knowledge of Uncertain Worlds: Programming with Logical Constraints (Extended Abstract)
 Yanhong A. Liu and Scott D. Stoller 282

A Simple Extension of Answer Set Programs to Embrace Neural Networks (Extended Abstract)
 Zhun Yang, Adam Ishay and Joohyung Lee 284

Doctoral Consortium

Constraint Programming Algorithms for Route Planning Exploiting Geometrical Information
 Alessandro Bertagnon 286

Research Summary on Implementing Functional Patterns by Synthesizing Inverse Functions
 Finn Teegen 296

A Low-Level Index for Distributed Logic Programming
 Thomas Prokosch 303

Extending Answer Set Programs with Neural Networks
 Zhun Yang 313

Preface

This volume contains the Technical Communications and the Doctoral Consortium papers of the
36th International Conference on Logic Programming (ICLP 2020), held virtually in Rende (CS),
Italy, from September 20th to 25th, 2020. This is the first time that ICLP is run remotely together
with all co-located events due to the COVID pandemic.

Since the first conference held in Marseille in 1982, ICLP has been the premier international event
for presenting research in logic programming. The scope of the conference covers all areas of logic
programming including, but not restricted to:

Foundations:
Semantics, Formalisms, Answer-Set Programming, Non-monotonic Reasoning, Knowledge
Representation.

Declarative Programming:
Inference engines, Analysis, Type and mode inference, Partial evaluation, Abstract
interpretation, Transformation, Validation, Verification, Debugging, Profiling, Testing, Logic-
based domain-specific languages, constraint handling rules.

Related Paradigms and Synergies:
Inductive and Co-inductive Logic Programming, Constraint Logic Programming, Interaction
with SAT, SMT and CSP solvers, Logic programming techniques for type inference and
theorem proving, Argumentation, Probabilistic Logic Programming, Relations to object-
oriented and Functional programming, Description logics, Neural-Symbolic Machine
Learning, Hybrid Deep Learning and Symbolic Reasoning.

Implementation:

http://eptcs.web.cse.unsw.edu.au/paper.cgi?ICLP2020.38
http://eptcs.web.cse.unsw.edu.au/paper.cgi?ICLP2020.39
http://eptcs.web.cse.unsw.edu.au/paper.cgi?ICLP2020.40
http://eptcs.web.cse.unsw.edu.au/paper.cgi?ICLP2020.41

Concurrency and distribution, Objects, Coordination, Mobility, Virtual machines,
Compilation, Higher Order, Type systems, Modules, Constraint handling rules, Meta-
programming, Foreign interfaces, User interfaces.

Applications:
Databases, Big Data, Data Integration and Federation, Software Engineering, Natural
Language Processing, Web and Semantic Web, Agents, Artificial Intelligence, Bioinformatics,
Education, Computational life sciences, Education, Cybersecurity, and Robotics.

Besides the main track, ICLP 2020 included the following additional tracks and special sessions:

Applications Track: This track invites submissions of papers on emerging and deployed
applications of LP, describing all aspects of the development, deployment, and evaluation of logic
programming systems to solve real-world problems, including interesting case studies and
benchmarks, and discussing lessons learned.

Sister Conferences and Journal Presentation Track: This track provides a forum to discuss
important results related to logic programming that appeared recently (from January 2018 onwards)
in selective journals and conferences but have not been previously presented at ICLP.

Research Challenges in Logic Programming Track: This track invites submissions of papers
describing research challenges that an individual researcher or a research group is currently
attacking. The goal of the track is to promote discussions, exchange of ideas, and possibly stimulate
new collaborations. Papers submitted to this track do not go through the usual review and will not be
published in the proceedings they will be distributed at the conference as a technical report.

Special Session. Women in Logic Programming: This track aims to increase the visibility and
impact of women in LP. It invites submissions of papers in all areas of logic programming co-
authored by at least one woman and includes invited talks and presentations by women in logic
programming.

The organizers of ICLP 2020 were:

General Chairs

Sergio Greco, University of Calabria, Italy
Nicola Leone, University of Calabria, Italy

Program Chairs

Francesco Ricca, University of Calabria, Italy
Alessandra Russo, Imperial College London, UK

Organizing Chairs

Marco Calautti, University of Calabria, Italy
Carmine Dodaro, University of Calabria, Italy

Publicity Chair

Laura Pandolfo, Universitá degli Studi di Sassari, Italy

Applications Track Chairs

Alexander Artikis, University of Piraeus & NCSR Demokritos, Greece
Angelika Kimmig, Cardiff University, UK

Research Challenges in Logic Programming Track Chairs

Gerhard Friedrich, Universität Klagenfurt, Austria
Fabrizio Riguzzi, Universitá di Ferrara, Italy

Sister Conferences and Journal Presentation Track Chairs

Paul Fodor, Stony Brook University, USA
Marco Maratea, University of Genova, Italy

Women in Logic Programming Special Session Chairs

Francesca Alessandra Lisi, University of Bari Aldo Moro, Italy
Alessandra Mileo, INSIGHT Centre for Data Analytics, Dublin City University, Irland

Workshops Chair

Martin Gebser, University of Potsdam, Germany

Doctoral Consortium Chairs

Daniela Inclezan, Miami University, USA
Bart Bogaerts, Vrije Universiteit Brussel, Belgium

Programming Competition Chairs

Jessica Zangari, University of Calabria, Italy
Markus Hecher, Vienna University of Technology, Austria

Three kinds of submissions were accepted:

Technical papers for technically sound, innovative ideas that can advance the state of logic
programming;
Application papers that impact interesting application domains;
System and tool papers which emphasize novelty, practicality, usability, and availability of the
systems and tools described.

ICLP implemented the hybrid publication model used in all recent editions of the conference, with
journal papers and Technical Communications (TCs), following a decision made in 2010 by the
Association for Logic Programming. Papers of the highest quality were selected to be published as
rapid publications in this special issue of TPLP. The TCs comprise papers which the Program
Committee (PC) judged of good quality but not yet of the standard required to be accepted and
published in TPLP as well as extended abstracts from the different tracks and dissertation project
descriptions stemming from the Doctoral Program (DP) held with ICLP.

We have received 88 submissions of abstracts, of which 77 resulted in paper submissions,
distributed as follows: ICLP main track (53), Applications track (7 full papers and 1 short papers),
Sister Conferences and Journal Presentation track (6), Women in Logic Programming session (5 full
papers and 3 short papers) and Research Challenge Track (2 short papers). The Program Chairs
organized the refereeing process, which was undertaken by the PC with the support of external
reviewers. Each technical paper was reviewed by at least three referees who provided detailed
written evaluations. This yielded submissions short-listed as candidates for rapid communication.
The authors of these papers revised their submissions in light of the reviewers suggestions, and all
these papers were subject to a second round of reviewing. Of these candidates papers, 27 were
accepted as rapid communications, to appear in the special issue. In addition, the PC recommended
40 papers to be accepted as technical communications, to appear at Electronic Proceedings in
Theoretical Computer Science (EPTCS) either as full papers or extended abstracts, of which 38
were also presented at the conference (2 were withdrawn).

We are deeply indebted to the Program Committee members and external reviewers, as the
conference would not have been possible without their dedicated, enthusiastic and outstanding work.
The Program Committee members of ICLP 2020 were:

Mario Alviano Michael Gelfond Ricardo Rocha

Nicos Angelopoulos Laura Giordano Chiaki Sakama
Marcello Balduccini Gopal Gupta Torsten Schaub
Mutsunori Banbara Michael Hanus Konstantin Schekotihin
Chitta Baral Manuel V. Hermenegildo Tom Schrijvers
Roman Barták Katsumi Inoue Guillermo R. Simari
Christoph Benzmüller Tomi Janhunen Tran Cao Son
Alex Brik Jianmin Ji Mohan Sridharan
François Bry Nikos Katzouris Theresa Swift
Pedro Cabalar Michael Kifer Paul Tarau
Francesco Calimeri Zeynep Kiziltan Hans Tompits
Manuel Carro Ekaterina Komendantskaya Francesca Toni
Angelos Charalambidis Evelina Lamma Irina Trubitsyna
Michael Codish Michael Leuschel Mirek Truszczynski
Stefania Costantini Vladimir Lifschitz German Vidal
Marc Denecker Francesca Alessandra Lisi Alicia Villanueva
Martín Diéguez Yanhong A. Liu David Warren
Carmine Dodaro Marco Maratea Jan Wielemaker
Agostino Dovier Viviana Mascardi Stefan Woltran
Thomas Eiter Yunsong Meng Jia-Huai You
Wolfgang Faber Emilia Oikarinen Shiqi Zhang
Thom Fruehwirth Magdalena Ortiz Neng-Fa Zhou
Marco Gavanelli Simona Perri
Martin Gebser Enrico Pontelli

The Program Committee members of the Applications track were:

Nicos Angelopoulos Gopal Gupta Mohan Sridharan
Chitta Baral Jianmin Ji Paul Tarau
Alex Brik Nikos Katzouris David Warren
François Bry Zeynep Kiziltan Jan Wielemaker
Francesco Calimeri Marco Maratea Shiqi Zhang
Angelos Charalambidis Yunsong Meng Neng-Fa Zhou
Martín Diéguez Konstantin Schekotihin
Martin Gebser Tom Schrijvers

The external reviewers were:

Gianvincenzo Alfano Rafael Kiesel Francesco Parisi
Elena Bellodi Vladimir Komendantskiy Sascha Rechenberger
Pierre Carbonnelle François Laferriere Javier Romero
Matthew Castellana Pedro Lopez-Garcia Elmer Salazar
Wolfgang Dvořák Julio Mariño Mantas Simkus
Serdar Erbatur Elena Mastria Takehide Soh
Francesco Fabiano Djordje Markovich Fabio Tardivo
Jorge Fandinno Simon Marynissen Yi Tong
Andrea Formisano Jose F. Morales David Tuckey
David Fuenmayor Johannes Oetsch Sarat Chandra Varanasi
Tobias Geibinger

The 16th Doctoral Consortium (DC) on Logic Programming was held in conjunction with ICLP
2020. It attracts Ph.D. students in the area of Logic Programming Languages from different
backgrounds (e.g. theoretical, implementation, application) and encourages a constructive and
fruitful advising. Topics included: theoretical foundations of logic and constraint logic
programming, sequential and parallel implementation technologies, static and dynamic analysis,
abstract interpretation, compilation technology, verification, logic-based paradigms (e.g., answer set
programming, concurrent logic programming, inductive logic programming) and innovative
applications of logic programming. This year the Doctoral Consortium accepted 4 papers in the
areas described above. We warmly thank all student authors, supervisors, referees, co-chairs,
members of the program committee and the organizing team that made the Doctoral Consortium
greatly successful.

The DC Program Committee members were:

Carmine Dodaro Martin Gebser
Jorge Fandinno Jose F. Moralesr
Fabio Fioravanti Zeynep G. Saribatur
Paul Fodor Frank Valencia

We would also like to express our gratitude to the full ICLP 2020 organization committee. Our
gratitude must be extended to Torsten Schaub as current President and Thomas Eiter as incoming
President of the Association of Logic Programming (ALP), to Marco Gavanelli in the role of
conference-coordinator for ALP, to all the members of the ALP Executive Committee and to Mirek
Truszczynski, Editor-in-Chief of TPLP. Also, to the staff at Cambridge University Press for their
assistance. We would also like to thank Rob van Glabbeek, Editor-in-Chief of EPTCS, for helping
the Program Chairs with their prompt support. Finally, we wish to thank each author of every
submitted paper, since their efforts keep the conference alive and the participants to ICLP for
bringing and sharing their ideas and latest developments. This is particularly appreciated in this 36th
edition of the conference which has run during the unprecedented time of the COVID pandemic.

Francesco Ricca, Alessandra Russo, Sergio Greco, Nicola Leone, Alexander Artikis, Angelika
Kimmig,
Gerhard Friedrich, Fabrizio Riguzzi, Paul Fodor, Marco Maratea, Francesca Alessandra Lisi,
Alessandra Mileo (Eds.)

Applications of Answer Set Programming
where Theory meets Practice
Esra Erdem (Sabanci University, Turkey)

We have been investigating applications of Answer Set Programming (ASP) in various domains,
ranging from historical linguistics and bioinformatics to economics and robotics. In these
applications, theory meets practice around challenging computational problems, and they all start a
journey towards benefiting science and life. ASP plays an important role in this journey, sometimes
as a declarative programming paradigm to solve hard combinatorial search problems (e.g.,
phylogeny reconstruction for Indo-European languages, multi-agent path finding in autonomous
warehouses, matching problems in economics), and sometimes as a knowledge representation
paradigm to allow deep reasoning and inferences over incomplete heterogeneous knowledge and
beliefs of agents (e.g., hybrid planning for robotic manipulation, diagnostic reasoning in cognitive
factories, explanation generation for biomedical queries). In this talk, we will share our experiences
from such different applications of ASP, and discuss its role and usefulness from different
perspectives.

2. Damiano Azzolini, Fabrizio Riguzzi, Evelina Lamma, Elena Bellodi & Riccardo Zese (2018):
Modeling Bitcoin Protocols with Probabilistic Logic Programming. In Elena Bellodi & Tom
Schrijvers, editors: Proceedings of the 5th International Workshop on Probabilistic Logic
Programming, PLP 2018, co-located with the 28th International Conference on Inductive
Logic Programming (ILP 2018), Ferrara, Italy, September 1, 2018,CEUR Workshop
Proceedings2219, CEUR-WS.org, pp. 49–61. Available at http://ceur-ws.org/Vol-
2219/paper6.pdf.

3. Satoshi Nakamoto (2008): Bitcoin: A peer-to-peer electronic cash system.
4. Joseph Poon & Thaddeus Dryja (2016): The bitcoin lightning network: Scalable off-chain

instant payments.
5. Fabrizio Riguzzi (2018): Foundations of Probabilistic Logic Programming. River Publishers,

Gistrup, Denmark.
6. Elias Rohrer, Julian Malliaris & Florian Tschorsch (2019): Discharged Payment Channels:

Quantifying theLightning Network's Resilience to Topology-Based Attacks. In: 2019 IEEE
European Symposium on Security and Privacy Workshops (EuroS&PW), IEEE, pp. 347–356,
doi:10.1109/EuroSPW.2019.00045.

7. István András Seres, László Gulyás, Dániel A Nagy & Péter Burcsi (2020): Topological
analysis of bitcoin's lightning network. In: Mathematical Research for Blockchain Economy,
Springer, pp. 1–12.

Accountable Protocols in Abductive Logic
Programming (Extended Abstract)
Marco Gavanelli (University of Ferrara)

 Marco Alberti (University of Ferrara)
 Evelina Lamma (University of Ferrara)

Abstract

Finding the responsible of an unpleasant situation is often difficult, especially in artificial agent
societies.

SCIFF is a language to define formal rules and protocols in agent societies, and an abductive proof-
procedure for compliance checking. However, how to identify the responsible for a violation is not
always clear.

In this work, a definition of accountability for artificial societies is formalized in SCIFF. Two tools
are provided for the designer of interaction protocols: a guideline, in terms of syntactic features that
ensure accountability of the protocol, and an algorithm (implemented in a software tool) to
investigate if, for a given protocol, non-accountability issues could arise.

1 Introduction

The current economic world is strongly based on large corporations, that have been able to provide
large economic benefits, such as cheaper prices for everyday goods and better employment rates, but
that also represented large problems in case of failure. Every person can list problems in his/her own
country in which a large firm misbehaved, e.g., polluting the environment, or by failing in a
disastrous way causing huge losses for small investors. In many cases, the firm itself cannot be
punished for its misbehavior, because a company cannot be sent to jail. One hopes that the culprit of
the misbehavior (e.g., the CEO) is punished, but in many cases the complex behavior of an
organization depends on the policies established by previous members (that might even be dead), by
common practices, or by the fact that many individuals contributed to the disaster each for an
inconceivably small amount.

http://ceur-ws.org/Vol-2219/paper6.pdf

In the literature of moral responsibility, there exist different notions of responsibility. Van de Poel et
al. [3] distinguish five moral meanings of responsibility: accountability, blameworthiness, liability,
obligation and virtue.

The ascription of responsibility-as-accountability has the following implication: i is
responsible-as-accountable for φ implies that i should account for (the occurrence of) φ,
in particular for i's role in doing, or bringing about φ, or for i's role in failing to prevent
φ from happening, where i is some agent, and φ an action or a state-of-affairs.

and

Accountability implies blameworthiness unless the accountable agent can show that a
reasonable excuse applies that frees her from blameworthiness. So holding an agent i
accountable shifts the burden of proof for showing that i is not blameworthy to the
agent i: the agent is now to show - by giving an account - that she is not blameworthy.

In this work, we focus on the SCIFF system [1], a complete system for defining and checking the
compliance of agents to interaction protocols. It includes a language to define agent interaction
protocols and to relate a current state of affairs with one or more expected behaviors of the agents,
formalized as a set of expectations. The language was designed to leave freedom to agents, not
overconstraining them to follow statically pre-defined paths, but, instead, to assert explicitly the
obligatory actions and those that are forbidden, while leaving everything not explicitly stated as a
possible action that an agent can perform if it is convenient. An abductive proof-procedure accepts
asynchronous events and reasons about them through the protocol definition, generates the expected
behavior of the agents, and checks if the actual behavior matches with the expectations.

SCIFF lacks a concept of responsibility, because expectations, unlike commitments, are not
characterized by a debtor, due to different language design objectives: while SCIFF is able to detect
violations of the protocols, it is not always clear which agent is responsible for the wrong state of
affairs.

In this work, we address the problem by adopting the accountability version of responsibility.
Accountability in the proposed setting stands for the possibility to account for the wrong state of
affairs of an agent that is the one that performed (or did not perform) the action in its expected
behavior. The agent might then, by reasoning on the protocol and the state of affairs (again, using
the SCIFF proof procedure), be able to account for its own behavior. The agent might be able to find
an explanation in which its expected behavior is fulfilled, and in such a case it cannot be held
responsible for the violation. In some cases, this might happen because another agent is actually
responsible for the violation, but in other cases it might be due to a wrong design of the interaction
protocol.

For this reason, we define formally a notion of accountability of the interaction protocol. The idea is
that a protocol is accountable if it allows to identify the agent (or agents) responsible for each
possible violation. If the interactions in an organization or society are ruled by an accountable
protocol, then, for each possible undesirable state of affairs, one or more agents will be
unambiguously held responsible.

The formal definition allows us to provide guidelines and tools for the developer of interaction
protocols. The guidelines are syntactic conditions that ensure a-priori the accountability of a
protocol. We identify a syntactic characterization of a fairly large class of protocols and prove that
protocols in such class are accountable. Various protocols taken from the list of SCIFF applications
belong to this class.

However, even protocols that do not belong to the identified class may be accountable. For existing
protocols, the user might not want to completely re-design the protocol, and in this case a tool that
checks the protocol for accountability might be more suitable. We propose a tool to detect if a
protocol has non-accountability issues. If there exists such an issue, the tool also provides a
counterexample, i.e., a course of events with protocol violation, but for which no agent can be held
responsible. We tested, through such tool, protocols modeled in the past with SCIFF, and we were

able to identify non-accountability of two protocols that were completely reasonable for the task for
which they were designed. Thanks to the tool and the provided counterexample, it was then easy for
the designer to fix the protocol.

References

1. Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma, Paola Mello & Paolo
Torroni (2008): Verifiable Agent Interaction in Abductive Logic Programming: the SCIFF
Framework. ACM Transactions on Computational Logic 9(4), pp. 29:1-29:43,
doi:10.1145/1380572.1380578.

2. Marco Gavanelli, Marco Alberti & Evelina Lamma (2018): Accountable Protocols in
Abductive Logic Programming. ACM Transactions on Internet Technology 18(4), pp. 46:1-
46:20, doi:10.1145/3107936.

3. Ibo Van de Poel, Lambèr Royakkers & Sjoerd D. Zwart (2015): Moral Responsibility and the
Problem of Many Hands. Routledge Studies in Ethics and Moral Theory, Routledge,
doi:10.4324/9781315734217.

Footnotes:

1The full version of this extended abstract can be found in [2].

Sampling-Based SAT/ASP Multi-Model
Optimization as a Framework for Probabilistic
Inference (Extended Abstract)
Matthias Nickles (School of Computer Science, National University of Ireland, Galway)

Email: matthias.nickles@nuigalway.ie

This extended abstract reports an earlier work [8] which introduced multi-model
optimization through SAT witness or answer set sampling where the sampling process
is controlled by a user-provided differentiable loss function over the multiset of
sampled models. Probabilistic reasoning tasks are the primary use cases, including
deduction-style probabilistic inference and hypothesis weight learning. Technically, our
approach enhances a CDCL-based SAT and ASP solving algorithm to differentiable
satisfiability solving (respectively differentiable answer set programming), by using a
form of Gradient Descent as branching literal decision approach, and optionally a cost
backtracking mechanism. Sampling of models using these methods minimizes a task-
specific, user-provided multi-model loss function while adhering to given logical
background knowledge (background knowledge being either a Boolean formula in CNF
or a logic program under stable model semantics). Features of the framework include its
relative simplicity and high degree of expressiveness, since arbitrary differentiable cost
functions and background knowledge can be provided.

Keywords: Boolean Satisfiability Problem, Probabilistic Logic Programming, Answer
Set Programming, Differentiable Satisfiability, Weighted Sampling, PSAT, Optimization

With this extended abstract, we report and summarize an earlier publication [8] which introduced an
approach to finding an optimal multiset of satisfying Boolean variable assignments or answer sets
by means of loss function gradient-steered sampling. The sampling process minimizes a user-
defined objective function using a new optimization method which we call Differentiable
Satisfiability Solving respectively Differentiable Answer Set Programming [7] (∂SAT/∂ASP).

http://dx.doi.org/10.1145/1380572.1380578
http://dx.doi.org/10.1145/3107936
http://dx.doi.org/10.4324/9781315734217

