
ar
X

iv
:1

81
2.

05
48

5v
1 

 [
m

at
h.

N
A

] 
 1

2 
D

ec
 2

01
8

MULTI-SCALE VARIANCE REDUCTION METHODS BASED ON MULTIPLE

CONTROL VARIATES FOR KINETIC EQUATIONS WITH UNCERTAINTIES∗

GIACOMO DIMARCO†AND LORENZO PARESCHI‡

Abstract. The development of efficient numerical methods for kinetic equations with stochastic parameters is a
challenge due to the high dimensionality of the problem. Recently we introduced a multiscale control variate strategy which
is capable to accelerate considerably the slow convergence of standard Monte Carlo methods for uncertainty quantification.
Here we generalize this class of methods to the case of multiple control variates. We show that the additional degrees of
freedom can be used to improve further the variance reduction properties of multiscale control variate methods.
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1. Introduction. Hyperbolic and kinetic equations with random inputs have attracted a lot of
attention in the recent years [4, 15, 17, 22, 27, 28, 39]. Most of the literature on kinetic equations is based
on the use of Stochastic-Galerkin methods based on on generalized Polynomial Chaos [1,13,15,16,18,31,38]
and only recently these problems have been analyzed in the framework of statistical sampling methods
based on Monte Carlo (MC) techniques [2, 7, 9, 10, 12, 15, 23].

When dealing with kinetic equations, MC sampling methods present several advantages since they
afford simple integration of existing fast deterministic numerical solvers and parallelization techniques
which are essential to reduce the computational complexity of many kinetic equations [5,6,8]. In addition
MCmethods are effective when the probability distribution of the random inputs is not known analytically
or lacks of regularity when approaches based on stochastic orthogonal polynomials may be impossible to
use or may produce poor results [20, 37].

Recently in [7] we introduced a control variate technique which takes advantage of the multi-scale
nature of the kinetic equation which is capable to strongly accelerate the slow convergence of MC methods.
In this manuscript we generalize this class of multi-scale control variate methods (MSCV) to the case of
multiple-control variates. In particular we will show how the use of additional control variates functions
permit to further reduce the statistical variance of the methods. We refer to [24,25] for related approaches
in the general framework of multifidelity models.

From a mathematical viewpoint, we consider kinetic equations of the general form [3, 7]

∂tf + v · ∇xf =
1

ε
Q(f, f), (1.1)

where f = f(z, x, v, t), t ≥ 0, x ∈ D ⊆ R
dx , v ∈ R

dv , dx, dv ≥ 1, and z ∈ Ω ⊆ R
dz , dz ≥ 1, is a

random variable. In (1.1) the parameter ε > 0 is the Knudsen number and the particular structure of
the interaction term Q(f, f) depends on the kinetic model considered.

The most famous example is represented by the nonlinear Boltzmann equation of rarefied gas dy-
namics

Q(f, f) =

∫

Sdv−1×Rdv

B(v, v∗, ω, z)(f
′f ′

∗ − ff∗) dv∗ dω (1.2)
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where dv ≥ 2 and

v′ =
1

2
(v + v∗) +

1

2
(|v − v∗|ω), v′∗ =

1

2
(v + v∗)−

1

2
(|v − v∗|ω). (1.3)

Before going into the details of the presentation we introduce some notations and assumptions that
will be used in the sequel. If z ∈ Ω is distributed as p(z) we denote the expected value by

E[f ](x, v, t) =

∫

Ω

f(z, x, v, t)p(z) dz, (1.4)

and we introduce the following Lp-norm with polynomial weight [26, 30]

‖f(z, ·, t)‖p
Lp

s(D×Rdv )
=

∫

D×Rdv

|f(z, x, v, t)|p(1 + |v|)s dv dx. (1.5)

Next, for a random variable Z taking values in Lp
s(D × R

dv), we define

‖Z‖Lp
s(D×Rdv ;L2(Ω)) = ‖E[Z2]1/2‖Lp

s(D×Rdv ). (1.6)

The above norm, if p 6= 2, differs from

‖Z‖L2(Ω;Lp
s(D×Rdv )) = E

[

‖Z‖2Lp
s(D×Rdv )

]1/2

, (1.7)

used for example in [20]. Note that by Jensen inequality [29] we have

‖Z‖Lp
s(D×Rdv ;L2(Ω)) ≤ ‖Z‖L2(Ω;Lp

s(D×Rdv )). (1.8)

To avoid unnecessary difficulties in the sequel we consider norm (1.6) for p = 1. The same results hold
true for p = 2 (the two norms coincides) whereas their extension to norm (1.7) for p = 1 typically requires
Z to be compactly supported. We refer to [7, 20] and [15, Chapter 7] for further details.

Finally, we assume that the deterministic solver for (1.1), if the initial data f0 is sufficiently regular,
satisfies the estimate (see [7, 8, 21, 30, 32])

‖f(·, tn)− fn
∆x,∆v‖L1

2(D×Rdv ) ≤ C (∆xp +∆vq) , (1.9)

with C a positive constant which depends on time and on the initial data, and fn
∆x,∆v the computed

approximation of the deterministic solution f(x, v, t) at time tn on the mesh ∆x and ∆v. Here the positive
integers p and q characterize the accuracy of the discretizations in the phase-space and for simplicity,
we ignored the errors due to the time discretization and to the truncation of the velocity domain in the
deterministic solver [8]. We emphasize that the estimates here presented are purposely of a general nature
to illustrate the characteristics of the method, the application to specific kinetic models can clearly lead
to more targeted estimates but it is outside the objectives of the present work.

The remaining sections can be summarized as follows. In the next Section we survey the MSCV
methods introduced in [7]. Then, in Section 3 we extend these multi-scale approaches to the case of
multiple control variates. First we introduce a standard multiple control variate approach and then
consider the construction of recursive multiple control variate methods based on a hierarchical structure.
A particular attention is devoted to the case of two control variates. Section 4 is devoted to present
several numerical examples confirming the capability of the multiple control variate approach to provide
a strong variance reduction with respect to standard Monte Carlo and to further improve the methods
based on a single control variate. Some conclusions are reported at the end of the manuscript.
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2. Multi-scale control variate methods. In this section we survey the MSCV approach recently
introduced in [7]. The main idea of the method is to reduce the variance of standard Monte Carlo
estimators using as control variate the solution of a simpler kinetic model, which can be evaluated at a
fraction of the cost of the full model, with the same fluid limit behavior. We illustrate the method when
applied to the solution of a kinetic equation of the type (1.1) with deterministic interaction operator
Q(f, f) and random initial data f(z, x, v, 0) = f0(z, x, v).

2.1. Variance reduction strategies. Let us first consider the space homogeneous problem

∂f

∂t
= Q(f, f), (2.1)

where f = f(z, v, t) and with random initial data f(z, v, 0) = f0(z, v). In (2.1), without loss of generality,
we have fixed ε = 1 since in the space homogeneous case the Knudsen number scales with time. Under
suitable assumptions, one can show that f(z, v, t) exponentially decays to the unique steady state f∞(z, v)
such that Q(f∞, f∞) = 0 which satisfies

mφ(f0) = mφ(f
∞), mφ(f) :=

∫

Rdv

φ(v)f(z, v, t)dv, (2.2)

for some moments, for example φ(v) = 1, v, |v|2/2 in the classical settings of conservation of mass,
momentum and energy (see [33–36]). We emphasize that, for many space homogeneous kinetic models,
the equilibrium state can be computed directly from the initial data thanks to the conservation properties
(2.2).

We recall that, given M independent identically distributed (i.i.d.) samples fk(v, t), k = 1, . . . ,M ,
of the solution to (2.1), the standard Monte Carlo estimator reads

EM [f ] =
1

M

M
∑

k=1

fk(v, t). (2.3)

The above estimator satisfies [7, 20]

‖E[f ]− EM [f ]‖L1
2(D×Rdv ;L2(Ω)) ≤ CσfM

−1/2, (2.4)

where σf = ‖Var(f)1/2‖L1
2(D×Rdv ) and Var(f) = E[(E[f ] − f)2] is the variance.

A simple variance reduction strategy is obtained by splitting the expected value of the solution as

E[f ](v, t) =

∫

Ω

f(z, v, t)p(z)dz

=

∫

Ω

f∞(z, v)p(z)dz +

∫

Ω

(f(z, v, t)− f∞(z, v))p(z)dz

= E[f∞](v) + E[f − f∞](v, t),

(2.5)

and exploiting the fact that E[f∞] can be evaluated with arbitrary accuracy at a negligible cost (for
example using a very fine grid of samples) since it does not depend on the solution computed at each
time step.

Now, if we use (2.5) and estimate

E[f ] ≈ E[f∞] + EM [f − f∞] (2.6)

we obtain an error of the type

‖E[f ](·, t)− E[f∞](·)− EM [f − f∞](·, t)‖L1
2(R

dv ;L2(Ω)) ≃ σf−f∞M−1/2.
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Since the non equilibrium part f − f∞ goes to zero in time exponentially fast, then also its variance goes
to zero, which means that for long times estimate (2.6) becomes exact and depends only on the accuracy
of the evaluation of E[f∞].

The above argument can be generalized by considering a time dependent approximation of the solution
f̃(z, v, t), whose evaluation is significantly cheaper than computing f(z, v, t), such that mφ(f̃) = mφ(f)

for some moments and that f̃(z, v, t) → f∞(z, v) as t → ∞.
For example, one can consider the space homogeneous Boltzmann equation (2.1) where Q(f, f) is

given by (1.2) and assume f̃(z, v, t) to be the exact solution of the space homogeneous BGK approximation

∂f̃

∂t
= ν(f̃∞ − f̃) (2.7)

with ν > 0 independent from z and for the same initial data f0(z, v). Thanks to the time invariance of
the equilibrium state we have f̃∞ = f∞ and we can write the exact solution to (2.7) as

f̃(z, v, t) = e−νtf0(z, v) + (1 − e−νt)f∞(z, v). (2.8)

We can assume that the expected value of the control variate E[f̃ ](v, t) is computed with arbitrary
accuracy at a negligible cost since it is a convex combination of the initial data and the equilibrium part.
We denote this value by

f̃(v, t) = e−νtf0(v) + (1− e−νt)f∞(v), (2.9)

where f0 = E[f0(·, v)] and f∞ = E[f∞](v) or accurate approximations of the same quantities.
If we now use the estimator

E[f ] ≈ E[f̃ ] + EM [f − f̃ ] (2.10)

we have an error like

‖E[f ](·, t)− E[f̃ ](·)− EM [f − f̃ ](·, t)‖L1
2(R

dv ;L2(Ω)) ≃ σf−f̃M
−1/2,

where even in this case, σf−f̃ → 0 as t → ∞.

2.1.1. Control variate estimators. The simple variance reduction argument presented in the
previous section can be used to formalize the following control variate estimator [7]

Ẽλ
M [f ](v, t) =

1

M

M
∑

k=1

fk(v, t)− λ

(

1

M

M
∑

k=1

f̃k(v, t)− f̃(v, t)

)

. (2.11)

The control variate estimator (2.11) is unbiased and consistent for any choice of λ ∈ R. In particular, for
λ = 0 we recover the standard MC estimator Ẽ0

M [f ] = EM [f ], whereas for λ = 1 we have the estimator

Ẽ1
M [f ] = f̃ + EM [f − f̃ ] corresponding to (2.10).

If we now consider the random variable

fλ(z, v, t) = f(v, z, t)− λ(f̃ (z, v, t)− f̃(v, t)),

we have E[fλ] = E[f ], EM [fλ] = Ẽλ
M [f ] and we can quantify its variance as

Var(fλ) = Var(f) + λ2Var(f̃)− 2λCov(f, f̃). (2.12)

We have the following [7]
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Theorem 2.1. The quantity

λ∗ =
Cov(f, f̃)

Var(f̃)
(2.13)

minimizes the variance of fλ at the point (v, t) and gives

Var(fλ∗

) = (1− ρ2
f,f̃

)Var(f), (2.14)

where ρf,f̃ ∈ [−1, 1] is the correlation coefficient between f and f̃ . In addition, we have

lim
t→∞

λ∗(v, t) = 1, lim
t→∞

Var(fλ∗

)(v, t) = 0 ∀ v ∈ R
dv . (2.15)

Using such an approach, in combination with a deterministic solver satisfying (1.9), one obtains the
following error estimate [7, 20]

‖E[f ](·, t)− Ẽλ∗

M [f ]‖L1
2(R

dv ;L2(Ω)) ≤ C
{

σfλ∗M−1/2 +∆vq
}

(2.16)

where σfλ∗ = ‖(1 − ρ2
f,f̃

)1/2Var(f)1/2‖L1
2(R

dv ), and C > 0 depends on the final time and on the initial

data. Here we ignored the statistical errors due to the approximation of the control variate expectation
and to the estimate of λ∗. Note that, since ρ2

f,f̃
→ 1 as t → ∞ the statistical error will vanish for large

times.
Remark 2.1. In practice, Cov(f, f̃) appearing in λ∗ is not known and has to be estimated. Starting

from the M samples we have the following unbiased estimators

VarM (f̃) =
1

M − 1

M
∑

k=1

(f̃k − EM [f̃ ])2, (2.17)

CovM (f, f̃) =
1

M − 1

M
∑

k=1

(fk − EM [f ])(f̃k − EM [f̃ ]), (2.18)

which allow to estimate

λ∗
M =

CovM (f, f̃)

VarM (f̃)
. (2.19)

It can be verified easily that λ∗
M → 1 as f → f∞.

2.2. Multiscale control variate estimators. Let us now consider the full space non homogeneous
problem (1.1). Again the idea is to compute the control variate function with a simplified model which
can be evaluated at a fraction of the computational cost of the full model. However, in the space non
homogeneous case the expectation of the control variate typically depends on time and must be estimated
along the simulation.

Assuming the classical setting of the Boltzmann equation (1.1)-(1.2), where the collision term char-
acterizes conservation of mass, momentum and energy, integration of (1.1) with respect to the collision
invariants φ(v) = 1, v, |v|2/2 gives the moments equations

∂tU + ∂xF(U) +∇x

∫

Rdv

v φ(f − f∞) dv = 0, (2.20)

where U = (ρ, u, T ), with density, mean velocity and temperature defined as

ρ =

∫

Rdv

fdv, u =
1

ρ

∫

Rdv

v fdv, T =
1

dρ

∫

Rdv

|v − u|2fdv, (2.21)
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and

F(U) =

∫

Rdv

v φf∞ dv, φ(v) = 1, v, |v|2/2.

Now, generalizing the space homogeneous method based on the local equilibrium f∞ as control variate
we can consider the Euler closure as control variate, namely to assume f = f∞ in (2.20). If we denote
by UF = (ρF , uF , TF )

T the solution of the fluid model

∂tUF + ∂xF(UF ) = 0, (2.22)

for the same initial data, the corresponding equilibrium state f∞
F can be used as control variate.

Similarly to the homogeneous case, the generalization to an improved control variate based on a
suitable approximation of the kinetic solution can be done with the aid of a more accurate fluid approx-
imation, like the compressible Navier-Stokes system, or a simplified kinetic model. In the latter case, we
can solve a BGK model

∂

∂t
f̃ + v · ∇xf̃ =

ν

ε
(f̃∞ − f̃), (2.23)

for the same initial data and use its solution as control variate.
More precisely, given M i.i.d. samples of the solution fk(x, v, t) and of the control variate f̃k(x, v, t)

we define the estimator

Ẽλ
M [f ](x, v, t) =

1

M

M
∑

k=1

fk(x, v, t)− λ

(

1

M

M
∑

k=1

f̃k(x, v, t)− f̃(x, v, t)

)

, (2.24)

where f̃(x, v, t) is an accurate approximation of E[f̃(·, x, v, t)].
The fundamental difference is that now the variance of

fλ(z, x, v, t) = f(z, x, v, t)− λ(f̃(z, x, v, t)− f̃(z, x, v, t))

will not vanish asymptotically in time since f∞ 6= f̃ , unless the kinetic equation is close to the fluid
regime, namely for small values of the Knudsen number. Thus, the first part of Theorem 2.1 is still valid,
however the optimal value

λ∗ =
Cov(f, f̃)

Var(f̃)
(2.25)

and the variance

Var(fλ∗) = (1− ρ2
f,f̃

)Var(f) (2.26)

now satisfy

lim
ε→0

λ∗(x, v, t) = 1, lim
ε→0

Var(fλ∗

)(x, v, t) = 0 ∀ (x, v) ∈ R
dx × R

dv . (2.27)

In fact, since as ε → 0 from (1.1) we formally have Q(f, f) = 0 which implies f = f∞ and f̃ = f∞, from
(2.25) and (2.26) we obtain (2.27).

Even if simulating the control variate system is much cheaper than the full model, since its compu-
tational cost is no more negligible we cannot ignore it. Thus, we assume that the control variate model
is computed over a fine grid of ME ≫ M samples and use the approximation

f̃(x, v, t) = EME
[f̃ ](x, v, t),
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in the estimator (2.24) which we will denote by Ẽλ
M,ME

[f ].
This, however, has an impact on the optimal value of λ in estimator (2.24). In fact, using the

independence of EM [·] and EME
[·] and the fact that by the central limit theorem [12, 19] we have

Var(EM [f ]) = M−1Var(f), Var(EME
[f̃ ]) = M−1

E Var(f̃), minimizing the variance now leads to the opti-
mal value

λ̃∗ =
ME

M +ME
λ∗, (2.28)

with λ∗ given by (2.25). This correction may be relevant in the cases when M and ME do not differ too
much. In our setting, however, ME ≫ M so that ME

M+ME
≈ 1 and we can assume λ̃∗ ≈ λ∗.

Using the optimal value (2.25) and an underlaying deterministic solver which satisfies (1.9), we obtain
the error estimate [7, 20]

‖E[f ](·, t)− Ẽλ∗

M,ME
[f ]‖L1

2(D×Rdv ;L2(Ω))
(2.29)

≤ C
{

σfλ∗M−1/2 + τfλ∗M
−1/2
E +∆xp +∆vq

}

where σfλ∗ = ‖(1 − ρ2
f,f̃

)1/2Var(f)1/2‖L1
2(D×Rdv ), τfλ∗ = ‖ρf,f̃Var(f)

1/2‖L1
2(D×Rdv ), the constant C > 0

depends on the final time and on the initial data. Now, ρ2
f,f̃

→ 1 as ε → 0, therefore in the fluid limit we

recover the statistical error of the fine scale control variate model.
Remark 2.2. For space non homogeneous simulations, since we typically are interested in the

evolution of the moments, one can compute the optimal value of λ with respect to a given moment mφ(f)
as

λ∗
φ =

Cov(mφ(f),mφ(f
∞
F ))

Var(mφ(f∞
F ))

(2.30)

where mφ(·) is defined by (2.2), so that λ∗
φ = λ∗

φ(x, t). This approach leads to a value of λ∗
φ which

depends on the moment evaluated and, since λ∗
φ is independent of the velocity, strongly reduces the storage

requirements. Note that, using (2.30) all estimates in this section for E[f ] translates easily into estimates
for E[mφ(f

∞
F )].

3. Multiple multi-scale control variates. The approach described in Section 2 is fully general
and accordingly to the particular kinetic model studied one can select a suitable approximated solution
as control variate which acts at a given scale. In this section we extend the methodology to the use of
several approximated solutions as control variates with the aim to further improve the variance reduction
properties of MSCV methods.

3.1. Multiple control variates. To keep notations simple we describe the method in the case of the
space homogeneous equation (2.1), the extension to the space non homogeneous case follows analogously
to Section 2.2 and is discussed at the end of the Section.

Let us consider f1(z, v, t), . . . , fL(z, v, t) approximations of f(z, v, t) solution to (2.1) whose properties
will be discussed later. We can define the random variable

fλ1,...,λL(z, v, t) = f(z, v, t)−

L
∑

h=1

λh(fh(z, v, t)− E[fh](v, t)). (3.1)

Clearly (3.1) is such that E[fλ1,...,λL ] = E[f ] and has variance

Var(fλ1,...,λL) = Var(f) +
L
∑

h=1

λ2
hVar(fh) + 2

L
∑

h=1

λh







L
∑

k=1
k 6=h

λkCov(fh, fk)− Cov(f, fh)






.
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In vector form, if we introduce notations

Λ = (λ1, . . . , λL)
T , b = (Cov(f, f1), . . . ,Cov(f, fL))

T

we have

Var(fΛ) = Var(f) + ΛTCΛ− 2ΛT b (3.2)

where C = (cij), cij = Cov(fi, fj) is the symmetric L× L covariance matrix.
Theorem 3.1. Assuming the covariance matrix is not singular, the vector

Λ∗ = C−1b, (3.3)

minimizes the variance of fΛ at the point (v, t) and gives

Var(fΛ∗

) =

(

1−
bT (C−1)T b

Var(f)

)

Var(f). (3.4)

Proof. To compute the minimizing values λ∗
h, h = 1, . . . , L the first order optimality conditions are

found by equating to zero the partial derivatives with respect to λh

∂Var(fΛ)

∂λh
= 0, h = 1, . . . , L. (3.5)

This corresponds to solve the following linear system

Cov(f, fh) =

L
∑

k=1

λkCov(fh, fk), h = 1, . . . , L, (3.6)

or in vector form

b = CΛ. (3.7)

Therefore, assuming the covariance matrix is not singular, we obtain the solution (3.3). It is easily shown,
via the second order optimality conditions that Λ∗ is indeed the variance-minimizing choice of Λ. By
direct substitution in (3.2) we obtain (3.4).

The control variate estimator based on (3.1) takes the form

EΛ
M [f ](v, t) = EM [f ](v, t)−

L
∑

h=1

λh (EM [fh](v, t)− fh(v, t)) , (3.8)

where fh(v, t) is an accurate approximation of E[fh](v, t), and we assumed to have M i.i.d. samples from
the solution f(z, v, t) and the control variate functions fh(z, v, t) for h = 1, . . . , L. To estimate the value
of the vector Λ∗ we can use directly the Monte Carlo samples as in the scalar case. The resulting MSCV
algorithm is summarized as follows:

Algorithm 3.1 (Multiple MSCV - homogeneous case).
1. Sampling: Sample M i.i.d. initial data from the random initial data f0 and approximate these

over the grid ∆v. Denote these samples by fk,0
∆v , k = 1, . . . ,M .

2. Solving:
(a) For each control variate and for each realization of the random input data fk,0

∆v , k = 1, . . . ,M ,
the resulting control variate model is solved numerically by a deterministic solver with mesh
width ∆v. We denote the resulting ensemble of deterministic solutions for h = 1, . . . , L at
time tn by

fk,n
h,∆v, k = 1, . . . ,M.
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(b) For each realization fk,0
∆v , k = 1, . . . ,M the underlying kinetic equation (2.1) is solved nu-

merically by the corresponding deterministic solver with mesh width ∆v. We denote the
solution at time tn by fk,n

∆v , k = 1, . . . ,M .
3. Estimating:

(a) Estimate the optimal vector of values Λ∗ solving

Cn
MΛ∗,n = bnM , (3.9)

where (Cn
M )ij = CovM (fn

i,∆v, f
n
j,∆v) and (bnM )i = CovM (fn

∆v, f
n
i,∆v).

(b) Compute the expectation of the random solution with the control variate estimator

EΛ∗

M [fn
∆v] =

1

M

M
∑

k=1

fk,n
∆v −

L
∑

h=1

λ∗,n
h

(

1

M

M
∑

k=1

fk,n
h,∆v − fnh,∆v

)

. (3.10)

Let us remark that, if we introduce the vector F = (F1, . . . , FL)
T , such that Fh = fh − E[fh],

E[Fh] = 0, h = 1, . . . , L, then equation (3.1) reads

fλ1,...,λL(z, v, t) = f(z, v, t)−

L
∑

h=1

λhFh(z, v, t), (3.11)

and thus, the variance of fΛ∗

is reduced to zero if f is in the span of the set of functions F1, . . . , FL.
Using Gram–Schmidt orthogonalization, we may assume that the L components of the control variate

vector F are orthogonal in the L2 inner product

〈f, g〉 =

∫

Ω

f(z)g(z)p(z)dz.

In fact, we have

〈Fh, Fk〉 = Cov(fh, fk) = Cov(Fh, Fk), h, k = 1, . . . , L.

We can construct the vector G = (G1, . . . , GL)
T , with orthogonal components, 〈Gh, Gk〉 = 0 for h 6= k,

as follows [11]

gh = fh −

h−1
∑

j=1

Cov(gj , fh)

Var(gj)
gj , h = 1, . . . , L, (3.12)

and define Gh = gh − E[gh], such that E[Gh] = 0, h = 1, . . . , L.
Then we may try to minimize the variance of the random variable

fγ1,...,γL(z, v, t) = f(z, v, t)−

L
∑

h=1

γhGh(z, v, t), (3.13)

which now using the orthogonality property reads

Var(fγ1,...,γL) = Var(f) +

L
∑

h=1

γ2
hVar(gh)− 2

L
∑

h=1

γhCov(f, gh).

Denoting with Γ = (γ1, . . . , γL)
T , D the diagonal matrix with elements dh = Var(gh) and with e the

vector with components eh = Cov(f, gh) we get

Var(fΓ) = Var(f) + ΓTDΓ− 2ΓT e. (3.14)
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By the same arguments as in Theorem 3.1, if the matrix D is not singular, we have that the vector
Γ∗ = D−1e minimizes the above variance. Thus we have proved the following result.

Theorem 3.2. If the control variate vector G = (G1, . . . , GL)
T in (3.13) has orthogonal components,

〈Gh, Gk〉 = 0 for h 6= k, then if 〈Gh, Gh〉 6= 0 the vector Γ∗ with components

γ∗
h =

Cov(f, gh)

Var(gh)
, h = 1, . . . , L, (3.15)

minimizes the variance of fΓ at the point (v, t) and gives

Var(fΓ∗) =

(

1−

L
∑

h=1

ρ2f,gh

)

Var(f) (3.16)

where ρf,gh ∈ [−1, 1] is the correlation coefficient between f and gh. Estimating the orthogonal set of
control variates using M samples by

EΓ
M [f ](v, t) = EM [f ](v, t)−

L
∑

h=1

γh (EM [gh](v, t)− gh(v, t)) , (3.17)

where gh(v, t) = E[gh](v, t) or its accurate approximation, in combination with a deterministic solver
satisfying (1.9), one obtains the following result [7, 20].

Proposition 3.3. Consider a deterministic scheme which satisfies (1.9) in the velocity space for the
solution of the homogeneous kinetic equation (2.1) with deterministic interaction operator Q(f, f) and
random initial data f(z, v, 0) = f0(z, v). Assume that the initial data is sufficiently regular.

Then, the MSCV estimate defined in (3.17) with the optimal values given by (3.15) satisfies the error
bound

‖E[f ](·, tn)− EΓ∗

M [fn
∆v]‖L1

2(R
dv ;L2(Ω)) ≤ C

{

σfΓ∗M−1/2 +∆vq
}

(3.18)

where σfΓ∗ =

∥

∥

∥

∥

(

1−
∑L

h=1 ρ
2
f,gh

)1/2

Var(f)1/2
∥

∥

∥

∥

L1
2(R

dv )

, and C > 0 depends on the final time and on the

initial data.
Proof. The bound follows from

‖E[f ](·, tn)− EΓ∗

M [fn
∆v]‖L1

2(R
dv ;L2(Ω))

≤ ‖E[f ](·, tn)− EΓ∗

M [f ](·, tn)‖L1
2(D×Rdv ;L2(Ω))

+‖EΓ∗

M [f ](·, tn)− EΓ∗

M [fn
∆v]‖L1

2(D×Rdv ;L2(Ω))

≤ C
{

σfΓ∗M−1/2 +∆vq
}

,

where the Monte Carlo bound in the first term now make use of (3.16) and the second term is bounded
by the discretization error of the deterministic scheme.

Here we ignored the statistical errors due to the approximation of the control variates expectations
and to the estimate of the vector Γ∗.

3.1.1. Two control variates. To exemplify the approach, it is interesting to consider the case
L = 2, where f1 = f0, the initial data, and f2 = f∞, the stationary state. In this case we know that f is
in the span of the control variates at t = 0 and as t → ∞.
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A straightforward computation shows that the optimal values λ∗
1 and λ∗

2 are given by

λ∗
1 =

Var(f∞)Cov(f, f0)− Cov(f0, f
∞)Cov(f, f∞)

∆
,

(3.19)

λ∗
2 =

Var(f0)Cov(f, f
∞)− Cov(f0, f

∞)Cov(f, f0)

∆
,

where ∆ = Var(f0)Var(f
∞)− Cov(f0, f

∞)2 6= 0.
Using M samples for both control variates the optimal estimator reads

E
λ∗
1 ,λ

∗
2

M [f ](v, t) = EM [f ](v, t)− λ∗
1 (EM [f0](v)− f0(v)) − λ∗

2 (EM [f∞](v)− f∞(v)) . (3.20)

Now, at t = 0 since f(z, v, 0) = f0(z, v) we clearly have λ∗
1 = 1 and λ∗

2 = 0 so that the estimator
(3.20) is exact

E1,0
M [f ](v, 0) = f0(v).

Moreover, by the same arguments as in Theorem 2.1, for large times since f(z, v, t) → f∞(z, v) from
(3.19) we get

lim
t→∞

λ∗
1 = 0, lim

t→∞
λ∗
2 = 1,

and thus, the variance of the estimator vanishes asymptotically in time

lim
t→∞

E
λ∗
1 ,λ

∗
2

M [f ](v, t) = E0,1
M [f ](v) = f∞(v).

We emphasize that this last example can be seen as a generalization of the scalar case based on the BGK
model. In fact, the estimator (2.11) based on (2.8)-(2.9) can be written in the form (3.20) as

Eλ∗

M [f ](v, t) = EM [f ](v, t)− λ̃∗
1 (EM [f0](v) − f0(v)) − λ̃∗

2 (EM [f∞](v) − f∞(v))

where

λ̃∗
1 = e−tλ∗, λ̃∗

2 = (1 − e−t)λ∗.

Therefore, the scalar control variate based on the BGK model can be understood as a suboptimal solution
to the our minimization problem for the control variates f0 and f∞. In particular, if the solution f has
the form (2.8), namely the full model is the BGK model, then it is in the span generated by f0 and f∞

and we obtain λ∗
1 = λ̃∗

1 and λ∗
2 = λ̃∗

2.

3.2. Hierarchical multiple control variates. The multiple control variate approach just de-
scribed presents some limitations. First the linear system (3.9) may be difficult to solve due to ill
conditioning of the covariance matrix and additionally the estimation of the coefficients in the matrix
requires the use of a control variate independent number of samples. This last aspect can represent a
serious limitation in space non homogeneous situations in which the control variates may be originated
from models that operate at the various spatio-temporal scales of the problem with different levels of
complexity.

To overcome such drawbacks here we formulate a recursive construction of the multiple control variate
estimator (3.8). To this aim, let us assume that the control variates f1, . . . , fL represent kinetic models
with an increasing level of fidelity. Under this assumption the control variate f1 represents the less
accurate model whereas the control variate fL is the closer model to the full model f .

To start with, we estimate E[f ] with ML samples using fL as control variate

E[f ] ≈ EML
[f ]− λ̂L (EML

[fL]− E[fL]) .
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Next, to estimate of E[fL] we use ML−1 ≫ ML samples and consider fL−1 as control variate

E[fL] ≈ EML−1 [fL]− λ̂L−1

(

EML−1 [fL−1]− E[fL−1]
)

.

Similarly, in a recursive way we can construct estimators for the remaining expectations of the control
variates E[fL−2],E[fL−3], . . . ,E[f2] using respectively ML−3 ≪ ML−4 ≪ . . . ≪ M1 samples until

E[f2] ≈ EM1 [f2]− λ̂1 (EM1 [f1]− E[f1]) ,

and we stop with the final estimate

E[f1] ≈ EM0 [f1],

with M0 ≫ M1.
By combining the estimators of each stage together we obtain the recursive MSCV estimator

Er,Λ̂
L [f ] = EML

[f ]− λ̂L

(

EML
[fL]− EML−1 [fL]

+ λ̂L−1

(

EML−1 [fL−1]− EML−2 [fL−1] (3.21)
. . .

+ λ̂1 (EM1 [f1]− EM0 [f1]) . . .)) .

Now if we compute the optimal values λ̂∗
h independently for each recursive stage by ignoring the errors

due to the approximations of the various expectations, if Var(fh) 6= 0, we obtain

λ̂∗
h =

Cov(fh+1, fh)

Var(fh)
, h = 1, . . . , L (3.22)

where we used the notation fL+1 = f . We refer to this set of values, which avoids the solution of the
resulting linear system, as quasi-optimal. Note that, since the control variates fh+1 and fh are known on
the same set of samples Mh the values λ̂∗

h can be estimated using (2.17)-(2.18).
The estimator (3.21) can be recast in the form

EΛ̂
L [f ] = EML

[fL+1]−

L
∑

h=1

λh(EMh
[fh]− EMh−1

[fh])

(3.23)

= λ1EM0 [f1] +

L
∑

h=1

(λh+1EMh
[fh+1]− λhEMh

[fh]),

where we defined

λh =

L
∏

j=h

λ̂j , h = 1, . . . , L, λL+1 = 1. (3.24)

Since by the central limit theorem [12,19] we have Var(EM [f ]) = M−1Var(f), using the independence of
the estimators EMh

[·], h = 0, . . . , L, the total variance of the estimator (3.23) is

Var(EΛ̂
L [f ]) = λ2

1M
−1
0 Var(f1)

(3.25)

+

L
∑

h=1

M−1
h

{

λ2
h+1Var(fh+1) + λ2

hVar(fh)− 2λh+1λhCov(fh+1, fh)
}

.
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Now, the first order optimality conditions

∂Var(EΛ̂
L [f ])

∂λh
= 0, h = 1, . . . , L

leads to the tridiagonal system for h = 1, . . . , L

M−1
h−1 {λhVar(fh)− λh−1Cov(fh, fh−1)}+M−1

h {λhVar(fh)− λh+1Cov(fh+1, fh)} = 0,

or equivalently

λhVar(fh)− λh−1
Mh

Mh−1 +Mh
Cov(fh, fh−1)− λh+1

Mh−1

Mh−1 +Mh
Cov(fh+1, fh) = 0 (3.26)

where we assumed λ0 = 0 and λL+1 = 1. The resulting system can be solved efficiently by the usual
Thomas algorithm for tridiagonal systems provided Var(fh) 6= 0, h = 1, . . . , L.

System (3.26) can be rewritten as

λhVar(fh)− λh+1Cov(fh+1, fh) =
Mh

Mh−1 +Mh
(λh−1Cov(fh, fh−1) + λh+1Cov(fh+1, fh))

which, reverting to the original control variate variables becomes

λ̂hVar(fh)− Cov(fh+1, fh) =
Mh

Mh−1 +Mh

(

λ̂hλ̂h−1Cov(fh, fh−1) + Cov(fh+1, fh)
)

.

Thus, the quasi-optimal values (3.22) solves the above system up to O(Mh/(Mh−1 +Mh)).
Theorem 3.4. The vector Λ∗ = (λ∗

1, . . . , λ
∗
L)

T solution of the tridiagonal system (3.26) minimizes the

variance of the estimator (3.23). In particular the vector Λ̂∗ = (λ̂∗
1, . . . , λ̂

∗
L)

T of quasi-optimal solutions
given by (3.22) is such that

L
∏

j=h

λ̂∗
j = λ∗

h +O (µ̄h) , h = 1, . . . , L (3.27)

where µ̄h = max
h≤k≤L

{

Mk

Mk−1 +Mk

}

.

Proof. We can rewrite (3.26) in the form CΛ = b where C = Ĉ +MC0 with

Ĉ =













c11 −c12 0

0
. . .

. . .

. . .
. . . −cL−1L

0 0 cLL













, C0 =













0 c12 0

−c21
. . .

. . .

. . .
. . . cL−1L

0 −cLL−1 0













,

cij = Cov(fi, fj), M = diag{µ1, . . . , µL}, µh = Mh/(Mh−1 +Mh) and b = (I−M)b̂, b̂ = (0, . . . , 0,Cov(f, fL))
T
.

By construction the vector Λ∗, such that (Ĉ +MC0)Λ
∗ = (I −M)b̂, minimizes the variance of (3.23).

Let us define the vector Λ̃∗ of elements
∏L

j=h λ̂
∗
j , h = 1, . . . , L where λ̂∗

j are given by (3.22). We have

ĈΛ̃∗ = b̂ so that

Ĉ(Λ∗ − Λ̃∗) = −M(b̂+ C0Λ
∗)

therefore if Var(fh) 6= 0, h = 1, . . . , L we can write

Λ̃∗ = Λ∗ + Ĉ−1M(b̂+ C0Λ
∗).
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Now, since Ĉ−1 is upper triangular and M diagonal we have (3.27).
We can summarize the details of the method, when applied to the space homogeneous problem (2.1)

in combination with a deterministic solver, in the following algorithm.
Algorithm 3.2 (Recursive multiple MSCV - homogeneous case).
1. Sampling: For each control variate fh, we draw a number Mh of i.i.d. samples from the random

initial data f0 and approximate these over the mesh ∆v. Denote these control variate dependent
number of samples for h = 1, . . . , L by

fk,0
h,∆v, k = 1, . . . ,Mh

and set fk,0
∆v = fk,0

L,∆v, k = 1, . . . ,ML.
2. Solving:

(a) For each control variate and for each realization of the random input data fk,0
h,∆v, k =

1, . . . ,Mh, the resulting control variate model is solved numerically by a deterministic solver
with mesh widths ∆v. We denote the resulting ensemble of deterministic solutions for h =
1, . . . , L at time tn by

fk,n
h,∆v, k = 1, . . . ,Mh.

(b) For each realization fk,0
∆v , k = 1, . . . ,ML the underlying kinetic equation (1.1) is solved

numerically by the corresponding deterministic solver with mesh widths ∆v. We denote the
solution at time tn by fk,n

∆v , k = 1, . . . ,ML.
3. Estimating:

(a) Estimate the optimal vector of values Λ̂∗ as

λ̂∗,n
h =

CovMh
(fn

h+1,∆v, f
n
h,∆v)

VarMh
(fn

h,∆v)
, h = 1, . . . , L (3.28)

where we used the notation fk,n
L+1,∆v = fk,n

∆v , k = 1, . . . ,ML.
(b) Compute the expectation of the random solution with the control variate estimator

EΛ̂∗

L [fn
∆v] =

1

ML

ML
∑

k=1

fk,n
∆v −

L
∑

h=1

λ∗,n
h

(

1

Mh

Mh
∑

k=1

fk,n
h,∆v − fnh,∆v

)

, (3.29)

where

fnh,∆v =
1

Mh−1

Mh−1
∑

k=1

fk,n
h,∆v, λ∗,n

h =
L
∏

j=h

λ̂∗,n
j , h = 1, . . . , L.

Regarding the error bound that we obtain using (3.23) with the values given by (3.22) le us observe
that if, at each stage, we denote

Eλ̂h

Mh
[fh] = EMh

[fh]− λ̂h

(

EMh
[fh−1]− EMh−1

[fn
h−1]

)

then by the error bound (2.29) we have

‖E[fh](·, t)− E
λ̂∗
h

Mh
[fh](·, t)‖L1

2(R
dv ;L2(Ω)) ≤ Ch

{

σhM
−1/2
h + τhM

−1/2
h−1

}

where Ch > 0 is a suitable constant and we defined

σh =

∥

∥

∥

∥

(

1− ρ2fh,fh−1

)1/2

Var(fh)
1/2

∥

∥

∥

∥

L1
2(R

dv )

, τh = ‖ρfh,fh−1
Var(fh)

1/2‖L1
2(R

dv ). (3.30)
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Using the recursive estimator, in combination with a deterministic solver satisfying (1.9), we can write

‖E[f ](·, tn)− EΛ̂∗

L [fn
∆v]‖L1

2(R
dv ;L2(Ω))

≤ ‖E[f ](·, tn)− EΛ̂∗

L [f ](·, tn)‖L1
2(R

dv ;L2(Ω))

+‖EΛ̂∗

L [f ](·, tn)− EΛ̂∗

L [fn
∆v]‖L1

2(R
dv ;L2(Ω)).

The second term is bounded as usual by the discretization error of the scheme, whereas, ignoring the
statistical errors in estimating the quasi-optimal vector of values Λ̂∗, the first term can be estimated
recursively as

‖E[f ](·, tn)− EΛ̂∗

L [f ](·, tn)‖L1
2(R

dv ;L2(Ω))

≤ CL

{

σLM
−1/2
L

+|‖λ̂∗
L(E[fL−1](·, t

n)− EΛ̂∗

L−1[fL−1](·, t
n))‖L1

2(R
dv ;L2(Ω))

}

≤ CL

{

σLM
−1/2
L + τLCL−1

{

σL−1M
−1/2
L−1 (3.31)

+‖λ̂∗
L−1(E[fL−2](·, t

n)− EΛ̂∗

L−2[fL−2](·, t
n))‖L1

2(R
dv ;L2(Ω))

}

. . .

≤ C

(

L
∑

h=1

ξhσhM
−1/2
h + ξ0M

−1/2
0

)

where we defined

ξh =

L
∏

j=h+1

τj . (3.32)

Thus we have proved the following result
Proposition 3.5. Consider a deterministic scheme which satisfies (1.9) in the velocity space for the

solution of the homogeneous kinetic equation (2.1) with deterministic interaction operator Q(f, f) and
random initial data f(z, v, 0) = f0(z, v). Assume that the initial data is sufficiently regular.

Then, the recursive MSCV estimate defined in (3.21) with satisfies the error bound

‖E[f ](·, tn)− E
Λ̂∗

h

L [fn
∆v]‖L1

2(R
dv ;L2(Ω))

(3.33)

≤ C

(

L
∑

h=1

ξhσhM
−1/2
h + ξ0M

−1/2
0 +∆vq

)

where ξh are given by (3.32), and C > 0 depends on the final time and on the initial data.
Finally, concerning the relations between the recursive MSCV estimator (3.23) and the Multi-level

Monte Carlo (MLMC) approach [7, 20], we made the following remarks.
Remark 3.1.
• We can emphasize the analogies with MLMC by using as control variates a hierarchy of dis-
cretizations of the kinetic equation with random inputs. In the case of a cartesian grid this
aims at constructing a velocity discretization with corresponding mesh width ∆vh that satisfy
∆vh = 21−h(∆v1), h = 1, . . . , L where ∆v1 is the mesh width for the coarsest resolution. To
avoid unessential difficulties, we denote by fh(z, v, t), h = 1, . . . , L, the continuous representa-
tion, for example by polynomial interpolation, of the corresponding numerical solution at time t
obtained with the underlaying deterministic method using mesh width ∆vh.
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Under these assumptions, fixing λh = 1, h = 1, . . . , L in (3.23), we get the classical MLMC
estimator [10]

E1

L[f ](v, t) = EM0 [f1] +

L
∑

h=1

(EMh
[fh+1 − fh]), (3.34)

where we used the notation 1 = (1, . . . , 1)T . Note that, as a side result of our derivation, using
the quasi-optimal values (3.22) in (3.23) (or the optimal values solution to (3.26)) with the
hierarchical grid constructed above we obtain a quasi-optimal (optimal) version of MLMC.

• Similarly to MLMC methods, in the recursive MSCV estimator (3.23) the largest number of
samples M0 is required on the less accurate model f1, where the samples are cheaper, whereas
only a small number ML of samples are needed on the full model. The two key differences between
the recursive MSCV estimator (3.23) and the MLMC approach (3.34) consist in the choice of
low fidelity models as control variates instead of a hierarchy of discretizations and in using the
quasi-optimal values (3.22) (or the optimal values solution to (3.26)) instead of fixing λh = 1,
h = 1, . . . , L.

3.3. Multiple multi-scale control variates estimators. For non homogeneous problems, as in
the scalar case summarized in Section 2.2, the main difference is that we cannot assume to know the
expectation of the control variate or that it can be computed accurately at a negligible computational
cost. Each control variate, in fact, acts at a certain scale and requires the numerical solution of a suitable
time dependent model in the phase space.

Now, the MSCV estimator (3.8), based on the multiple control variates f1(z, x, v, t), . . ., fL(z, x, v, t)
for the solution f(z, x, v, t) to problem (1.1), reads

EΛ
M,ME

[f ](x, v, t) = EM [f ](x, v, t)−

L
∑

h=1

λh (EM [fh](x, v, t) − EME
[fh](x, v, t)) , (3.35)

where ME ≫ M samples have been used to estimate the expectations of the control variates E[fh(z, v, t)].
As in the scalar case, minimization of the variance of (3.35), leads to the optimal values

Λ̃∗ =
ME

M +ME
Λ, (3.36)

with Λ∗ given by (3.3). In the sequel we assume ME ≫ M so that ME

M+ME
≈ 1.

The extension of algorithms 3.1 to the non homogeneous case is reported below.
Algorithm 3.3 (Multiple MSCV - non homogeneous case).
1. Sampling:

(a) Sample ME i.i.d. initial data fk
0 , k = 1, . . . ,ME from the random initial data f0 and

approximate these over the grid characterized by ∆x and ∆v.
(b) Sample M ≪ ME i.i.d. initial data fk

0 , k = 1, . . . ,M from the random initial data f0 and
approximate these over the grid characterized by ∆x and ∆v.

2. Solving:
(a) For each control variate and for each realization fk,0

∆v , k = 1, . . . ,ME, the resulting control
variate model is solved numerically by a deterministic solver with mesh widths ∆x,∆v.
We denote the resulting deterministic solutions for h = 1, . . . , L at time tn by fk,n

h,∆x,∆v,
k = 1, . . . ,ME and estimate their expectations by

fnh,∆x,∆v =
1

ME

ME
∑

k=1

fk,n
h,∆x,∆v.
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(b) For each realization fk,0
∆x,∆v, k = 1, . . . ,M the underlying kinetic equation (1.1) is solved

numerically by the corresponding deterministic solver with mesh widths ∆x,∆v. We denote
the solution at time tn by fk,n

∆x,∆v, k = 1, . . . ,M .
3. Estimating:

(a) Estimate the optimal vector of values Λ∗ solving

Cn
ME

Λn = bnM , (3.37)

where (Cn
ME

)ij = CovME
(fn

i,∆x,∆v, f
n
j,∆x,∆v) and (bnM )i = CovM (fn

∆x,∆v, f
n
i,∆x,∆v).

(b) Compute the expectation of the random solution with the control variate estimator

EΛ∗

M,ME
[fn

∆x,∆v] =
1

M

M
∑

k=1

fk,n
∆x,∆v −

L
∑

h=1

λ∗,n
h

(

1

M

M
∑

k=1

fk,n
h,∆x,∆v − fnh,∆x,∆v

)

. (3.38)

In the space non homogeneous case, similarly to the case where the control variates expectations are
known, we can apply the Gram–Schmidt orthogonalization procedure (3.12) and use the estimator

EΓ
M,ME

[f ](v, t) = EM [f ](x, v, t)−

L
∑

h=1

γh (EM [gh](x, v, t) − EME
[gh](x, v, t)) , (3.39)

with the optimal vector of values Γ∗ defined by (3.15). For the estimator (3.39) we have the following
generalization of the error estimate (3.18).

Proposition 3.6. Consider a deterministic scheme which satisfies (1.9) for the solution of the
kinetic equation of the form (1.1) with deterministic interaction operator Q(f, f) and random initial data
f(z, x, v, 0) = f0(z, x, v). Assume that the initial data is sufficiently regular.

Then, the MSCV estimate defined in (3.39) with the optimal values given by (3.15) satisfies the error
bound

‖E[f ](·, tn)− EΓ∗

M,ME
[fn

∆x,∆v]‖L1
2(D×Rdv ;L2(Ω))

(3.40)

≤ C
{

σfΓ∗M−1/2 + τfΓ∗M
−1/2
E +∆xp +∆vq

}

with σ2
fΓ∗ =

∥

∥

∥

(

1−
∑L

h=1 ρ
2
f,gh

)

Var(f)
∥

∥

∥

L1
2(D×Rdv )

, τ2
fΓ∗ =

∥

∥

∥

∑L
h=1 ρ

2
f,gh

Var(f)
∥

∥

∥

L1
2(D×Rdv )

, and C > 0

depends on the final time and on the initial data.

Proof. We have

‖E[f ](·, tn)− EΓ∗

M,ME
[fn

∆x,∆v]‖L1
2(D×Rdv ;L2(Ω))

≤ ‖E[f ](·, tn)− EΓ∗

M [fn
∆x,∆v]‖L1

2(D×Rdv ;L2(Ω))

+‖EΓ∗

M [fn
∆x,∆v]− EΓ∗

M,ME
[fn

∆x,∆v]‖L1
2(D×Rdv ;L2(Ω))

= I1 + I2.

The first term I1 can be bounded similarly to (3.18) to get

‖E[f ](·, tn)− EΓ∗

M [fn
∆x,∆v]‖L1

2(D×Rdv ;L2(Ω))

≤ C1

{

σfΓ∗M−1/2 +∆xp +∆vq
}

.
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Using the fact that, ignoring the statistical error in estimating γ∗
h, from (3.17) and (3.39) we have

EΓ∗

M [fn
∆x,∆v]− EΓ∗

M,ME
[fn

∆x,∆v] =

L
∑

h=1

γ∗,n
h

(

E[gnh,∆x,∆v]− EME
[gnh,∆x,∆v]

)

.

From (3.15) the second term I2 can be bounded by

‖EΓ∗

M [fn
∆x,∆v]− EΓ∗

M,ME
[fn

∆x,∆v]‖L1
2(D×Rdv ;L2(Ω))

≤ C2

{

τfΓ∗M
−1/2
E +∆xp +∆vq

}

.

Similarly, the recursive MSCV estimator (3.23), based on a hierarchy of multiple control variates
f1(z, x, v, t), . . ., fL(z, x, v, t) with increasing level of fidelity for the solution f(z, x, v, t) to problem (1.1),
is

EΛ
L [f ](x, v, t) = EML

[f ](x, v, t)−

L
∑

h=1

λh

(

EMh
[fh](x, v, t)− EMh−1

[fh](x, v, t)
)

, (3.41)

with Mh−1 ≫ Mh and where now the optimal values of Λ∗ = (λ∗
1, . . . , λ

∗
L)

T are obtained from the quasi-
optimal solution (3.22) using (3.24) or by the correction introduced by the solution of the tridiagonal
system (3.26) if relevant.

In this case, the extension of algorithms 3.2 and estimate (3.33) to the non homogeneous case follows

straightforwardly simply replacing fn,k
∆v and fn,k

h,∆v with fn,k
∆x,∆v and fn,k

h,∆x,∆v, and is omitted for brevity.
Finally, due to its importance in practical applications, we describe the details of the hierarchical

method in the case L = 2.

3.3.1. Two multi-scale hierarchical control variates. Let us focus on the case of a recursive
multiscale estimator with two control variates L = 2. To this aim we consider f1(z, x, v, t) as the
equilibrium state f∞

F (z, x, v, t) associated to the system of Euler equations

∂tUF + ∂xF(UF ) = 0, (3.42)

with UF = (ρF , uF , TF )
T , and corresponding to the limit case ε → 0 in (1.1). As a second control variate

we consider f2(z, x, v, t) as the solution of the BGK model

∂

∂t
f2 + v · ∇xf2 =

ν

ε
(f∞

2 − f2). (3.43)

Both models are solved for the same initial data f0(z, x, v). Now, the Euler equations are used as control
variate to improve the computation of the expectation in the BGK model, that in turn is used as control
variate to improve the computation of the expectation in the full Boltzmann model.

The recursive estimator now reads

Eλ̂1,λ̂2

2 [f ] = EM2 [f ]− λ̂2

(

EM2 [f2]− EM1 [f2] + λ̂1 (EM1 [f1]− EM0 [f1])
)

, (3.44)

where M0 ≫ M1 ≫ M2. If we define λ2 = λ̂2 and λ1 = λ̂1λ̂2 their optimal values are computed as
solutions of system (3.26) for L = 2

λ1Var(f1)− λ2(1− µ1)Cov(f2, f1) = 0

λ2Var(f2)− λ1µ2Cov(f2, f1) = (1 − µ2)Cov(f, f2).
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with µh = Mh/(Mh−1 +Mh), which gives

λ∗
1 =

(1− µ1)(1− µ2)Cov(f2, f1)Cov(f, f2)

Var(f1)Var(f2)− (1− µ1)µ2Cov(f2, f1)
2 (3.45)

λ∗
2 =

(1 − µ2)Var(f1)Cov(f, f2)

Var(f1)Var(f2)− (1− µ1)µ2Cov(f2, f1)2
. (3.46)

The quasi-optimal values are obtained assuming µ1, µ2 ≈ 0 and are characterized by

λ̂∗
1 =

Cov(f2, f1)

Var(f1)
, λ̂∗

2 =
Cov(f, f2)

Var(f2)
. (3.47)

In the fluid limit ε → 0 we have f, f1, f2 → f∞ so that

lim
ε→0

λ∗
1 =

(1− µ1)(1− µ2)

1− (1 − µ1)µ2
=

M0

M0 +M1 +M2
, lim

ε→0
λ∗
2 =

(1 − µ2)

1− (1 − µ1)µ2
=

M0 +M1

M0 +M1 +M2
,

then

lim
ε→0

E
λ∗
1 ,λ

∗
2

2 [f ] =
M0EM0 [f

∞] +M1EM1 [f
∞] +M2EM2 [f

∞]

M0 +M1 +M2
.

On the contrary, the quasi-optimal values are such that

lim
ε→0

λ̂∗
1 = 1, lim

ε→0
λ̂∗
2 = 1

and therefore

lim
ε→0

E
λ̂∗
1 ,λ̂

∗
2

2 [f ] = EM0 [f
∞]

which corresponds to the equilibrium solution over the finest grid of samples.

4. Numerical examples. In this Section, we discuss several numerical examples with the aim of
illustrating the characteristics of the multiple control variate strategies described in the previous Sections.
We focus on the two control variates approach 3.1.1 and on the multi-scale hierarchical multiple control
variates one in the case where the hierarchy consists of two models with an increasing level of fidelity as
described in Section 3.3.1. We use shorthands MC, MSCV, MSCV2 and MSCVH2 to denote, respectively,
the standard Monte Carlo, the single multi-scale control variate, the multiple multi-scale control variates
and the hierarchical multiple multi-scale control variates.

The first test problem consists of a space homogeneous case with uncertain initial data, the second
test problem is a Riemann problem with uncertainties in the initial state while the third test problem
has randomness in the boundary condition. These tests are analogous to those considered in [7] using
a single control variate and our precise aim is to show that with a multiple control variates approach it
is possible to achieve better results in terms of the ratio between computational cost and accuracy. In
all our numerical tests the velocity space is two dimensional dv = 2, the velocity domain is truncated to
[−vmin, vmax]

2 and the collision integral is solved by the fast spectral method [8,21]. In the sequel, all the
statistical errors have to be intended in the sense of the average where Ma = 10 values have been used
to compute the mean.

4.1. Space homogeneous Boltzmann equation. We consider the space homogeneous Boltzmann
equation (2.1). We compare the case of the single control variate based on the BGK model 2.1.1 with
the case of the two control variates approach of Section 3.1.1. The number of samples used to compute
the expected solution for the Boltzmann equation is M = 100. Note that, since the control variates do
not contribute to the overall computational cost their expected values are computed with high accuracy
using orthogonal polynomials.
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Figure 4.1. Test 1. L2 norm of the error in time for the expectation of the distribution function for the MC method,
the MSCV method based on the BGK solution and the MSCV2 method based on the two control variates f0 and f∞.

4.1.1. Test 1. Uncertain initial data. The initial condition is a two bumps problem with uncer-
tainty

f0(z, v) =
ρ0
2π

(

exp

(

−
|v − (2 + sz)|2

σ

)

+ exp

(

−
|v + (1 + sz)|2

σ

))

(4.1)

with s = 0.2, ρ0 = 0.125, σ = 0.5 and z uniform in [0, 1]. The velocity space is discretized with Nv = 642

points. We choose vmin = vmax = 16. The time integration has been performed with a 4-th order
Runge-Kutta method using ∆t = 0.05 and a final time Tf = 10.

In Figure 4.1, we report the L2 error with respect to the random variable in the computation of
the expected value for the distribution function E[f ](v, t) for the various methods. Clearly, all MSCV
methods provide a gain in accuracy of several orders of magnitudes with respect to standard Monte Carlo.
In particular, we observe that MSCV2 method based on two control variates permits to gain one order
of accuracy with respect to the standard MSCV approach.

In Figure 4.2 we report the shape of the optimization coefficients λ∗
1(v, t) and λ∗

2(v, t) at the final
time. It is possible to observe that λ∗

1(v, t) is approaching zero and λ∗
2(v, t) is approaching one, except in

the regions where the solution still differs from its equilibrium value.

4.2. Space non homogeneous Boltzmann equation. Next, we consider the space non homoge-
neous Boltzmann equation (1.1). Concerning the space-time discretization, we make use of a fifth order
WENO method [14] for the spatial discretization and a second order explicit Runge-Kutta method for the
time discretization. The time step is the same for all methods and is taken as ∆t = min{∆x/(2vmax), ε}
with ε the Knudsen number. Let observe that other time integrators can be used to solve the problem
related to the stiffness of the collision operator which avoid the strict CFL condition coming from the
solution of the relaxation phase (see [8] for example). However, since this is not the core of the problem
treated here, we will not discuss this issue in the rest of the paper.

In all test cases we focus on the use of the BGK model and the Euler equations as control variates.
Since the ratio between accuracy and computational cost is of primary importance, we report in the
following some estimates about the computational cost of the different models employed in the simulations.
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Figure 4.2. Test 1. Optimal coefficients λ∗
1
(v, t) (left) and λ∗

2
(v, t) (right) at the final time Tf = 10.

The cost involved in the solution of the Boltzmann equation can be estimated by

C(f) = CNdv−1
a Ndv

v log2(N
dv

v )Ndx

x

the cost of the solution of the BGK equation by

C(f̃) = C1N
dv

v Ndx

x

while the cost of the solution of the compressible Euler system by

C(f∞
F ) = C2N

dx

x ,

where C, C1 and C2 are suitable constants, Na is the number of angular directions in the velocity space
used in the spectral discretization of the Boltzmann operator, Nv the number of grid points in velocity
space, Nx the number of grid points in physical space and dv and dx respectively the dimensions in
velocity and space. We use Nx = 100, Nv = 32, dx = 1, Na = 8 and dv = 2 while a rough estimation
of the ratio between the coefficients C, C1 and C2 gives C/C1 ≈ 1.25 and C/C2 ≈ 1. Concerning the
number of samples of the random variable, we employ M = 10 points for the Boltzmann model while the
numbers ME1 ≫ M and ME2 ≫ M of samples used for the control variates models are discussed in the
sequel.

The multiple control variates strategy is applied here in two different ways:
• The hierarchical method described in Section 3.3.1 based on the BGK model and the Euler
system.

• The two control variates method of Section 3.1 where two different BGK models are used. The
first one uses ν1 = ρ while the second one ν2 = 0.125ρ as relaxation frequencies. This choice is
due to the fact that it is known that the BGK model tends to over-relax to the equilibrium state
compared to the standard Boltzmann operator.

The standard MSCV method is computed using the BGK model as control variate.

4.2.1. Test 2. Sod test with uncertain initial data. The initial conditions are

ρ0(x) = 1, T0(z, x) = 1 + sz if 0 < x < L/2 (4.2)

ρ0(x) = 0.125, T0(z, x) = 0.8 + sz if L/2 < x < 1 (4.3)
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Figure 4.3. Test 2. Sod test with uncertainty in the initial data. L2 norm of the error for the standard MC method,
the MSCV method and the hierarchical multiple control variate MSCVH2 method for the expectation of the temperature
(left) and for the density (right). The number of samples used for Boltzmann equation is M = 10, for the BGK model
is ME1

= 100 while for the compressible Euler system is ME2
= 105. Top: ε = 10−2. Middle: ε = 10−3. Bottom:

ε = 2× 10−4.
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Figure 4.4. Test 2. Sod test with uncertainty in the initial data. Temperature profile at final time on the left. Density
profile at final time on the right. Expectation for the Boltzmann model and the two BGK models with ν = ρ and ν = 0.125ρ.

with s = 0.25, z uniform in [0, 1] and equilibrium initial distribution

f0(z, x, v) =
ρ0(x)

2π
exp

(

−
|v|2

2T0(z, x)

)

.

The velocity space is truncated with vmin = vmax = 8.
We perform three different computations corresponding to ε = 10−2, ε = 10−3 and ε = 2 × 10−4.

The final time is fixed to Tf = 0.875.
In Figure 4.3, we report the L2 norms of the errors for the standard MC method, the MSCV approach

and the hierarchical MSCVH2 method for the expected value of the temperature and the density as a
function of time. The number of samples used for the BGK model isME1 = 100 while for the compressible
Euler system isME2 = 105. In all regimes the gain of the hierarchical approach is remarkable and improves
for smaller values of the Knudsen number.

Next, we discuss the numerical results of the two multi-scale control variate approach of Section
3.1.1. For brevity, we report the results only for ε = 5 × 10−4. To illustrate the models behavior, in
Figure 4.4, we show the expectation for the temperature and the density obtained with the Boltzmann
model and the ones obtained with the two different choices of the relaxation frequencies for the BGK
model. In Figure 4.5, we report the L2 norms of the errors for the expected value of the temperature and
the density as a function of time. We plot the error for the standard MC method, for the single MSCV
methods with the two different collision frequencies and the multiple MSCV2 method. The number of
samples used is ME = 1000 on the top, ME = 5000 in the middle and ME = 10000 on the bottom. The
effective gain obtained with the MSCV2 ca be easily observed.

4.2.2. Test 3. Sudden heating problem with uncertain boundary condition. In the last
test case, the initial condition is a constant state in space given by

f0(x, v) =
1

2πT 0
e
−

v2

2T 0 , T 0 = 1, x ∈ [0, 1]. (4.4)

At time t = 0, the temperature at the left wall suddenly changes and it starts to heat the gas. We assume
diffusive equilibrium boundary conditions and uncertainty on the wall temperature:

Tw(z) = 2(T 0 + sz), s = 0.2, (4.5)
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Figure 4.5. Test 2. Sod test with uncertainty in the initial data. L2 norm of the error for the standard MC method,
the MSCV method and the multiple control variate MSCV2 method for the expectation of the temperature (left) and for
the density (right). The number of samples used for Boltzmann equation is M = 10. Top: ME = 103 points. Middle:
ME = 5× 103 points. Bottom: ME = 105 points.
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and z uniform in [0, 1]. The velocity space is truncated as before with vmin = vmax = 8, the time
discretization and the time step are the same of the previous test. We perform again three different
computations corresponding to ε = 10−2, ε = 10−3 and ε = 2× 10−4. The final time is fixed to Tf = 0.8.

In Figure 4.6, the L2 norms of the errors for the expected value of the temperature and the density
are given as a function of time. The error curves refer to the standard MC method, the MSCV approach
when the BGK control variate is employed and the hierarchical multiple MSCVH2 method with BGK
and compressible Euler models as control variates. The number of samples for the Boltzmann model is
M = 10, for the BGK model is ME1 = 100 while for the compressible Euler is ME2 = 105. We see again
that the hierarchical approach improves the computed values of the expectations in all regimes. The gain
is stronger for the density and tends to increase for smaller values of the Knudsen number.

We finally discuss the numerical results of the two multi-scale control variate approach of Section
3.1.1 for the sudden heating problem. Again, for brevity, we report the results only for ε = 5× 10−4. In
Figure 4.7, we show the expectation for the temperature on the left and the density on the right obtained
with the Boltzmann model and the two different BGK models. In Figure 4.8, we report the L2 norms
of the errors for the expected value of the temperature and for the density as a function of time. In the
images, it is shown the error for the standard MC method, for the MSCV methods with the two different
collision frequencies and the two multi-scale control variate MSCV2 method. The number of samples
used is ME = 1000 on the top, ME = 5000 in the middle and ME = 10000 on the bottom. As shown,
even for this test case, the MSCV2 method is able to improve the accuracy of the estimate provided that
the control variate model solutions are evaluated with enough samples. Of course, more precise estimates
of the relaxation rates in the BGK models would lead to even stronger improvements.

5. Conclusions. We introduced a novel class of multiple control variate methods based on a multi-
scale strategy for uncertainty quantification of kinetic equations and related problems. The approach
generalizes the multi-scale control variate methodology recently introduced in [7] to the case of multiple
control variates. We discussed two different techniques, accordingly to the assumption that the multiple
control variates possess a hierarchical multi-scale structure or not. We give theoretical and numerical
evidence that these methods can improve the statistical estimates obtained with a single control variate
in terms of ratio between accuracy and computational cost. Numerical comparison with other statistical
estimators in the case of two control variates are reported for the Boltzmann equation. Finally, we point
out that the present results, applied in a multi-level Monte Carlo setting, would naturally lead to optimal
multi-level control variates. The latter application represents an interesting direction of research that
will be explored in the nearby future.
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ME = 103 points. Middle: ME = 5× 103 points. Bottom: ME = 105 points.
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