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WEDGE PRODUCTS AND COTENSOR COALGEBRAS IN MONOIDAL

CATEGORIES

A. ARDIZZONI

Abstract. The construction of the cotensor coalgebra for an ”abelian monoidal” category M

which is also cocomplete, complete and AB5, was performed in [A. Ardizzoni, C. Menini and D.
Ştefan, Cotensor Coalgebras in Monoidal Categories, Comm. Algebra, to appear]. It was also
proved that this coalgebra satisfies a meaningful universal property which resembles the classical
one. Here the lack of the coradical filtration for a coalgebra E in M is filled by considering

a direct limit D̃ of a filtration consisting of wedge products of a subcoalgebra D of E. The

main aim of this paper is to characterize hereditary coalgebras D̃, where D is a coseparable
coalgebra in M, by means of a cotensor coalgebra: more precisely, we prove that, under suitable

assumptions, D̃ is hereditary if and only if it is formally smooth if and only if it is the cotensor
coalgebra T c

D
(D ∧E D/D) if and only if it is a cotensor coalgebra T c

D
(N), where N is a certain

D-bicomodule in M. Because of our choice, even when we apply our results in the category of
vector spaces, new results are obtained.

Introduction

Let C be a coalgebra over a field K and let M be a C-bicomodule. The cotensor coalgebra
T c
C(M) was introduced by Nichols in [Ni] and it appears as a main step in the classification of

finite dimensional Hopf algebras problem (see, e.g., [AG] and [AS]). In [Ch] the relation between
quiver coalgebras and hereditary coalgebras is investigated. In [JLMS], hereditary coalgebras with
coseparable coradical are characterized by means of a suitable cotensor coalgebra: more precisely,
the authors prove that a coalgebra C with coseparable coradical D is hereditary if and only if it is
formally smooth if and only if it is a cotensor coalgebra T c

D(N), where N is a certainD-bicomodule.
The main aim of this paper is to prove Theorem 3.23 which establishes an analogous result inside the
framework of monoidal categories. This is pursued using the notion of formally smooth coalgebra
for ”abelian monoidal” categories developed in [AMS2] and using the construction of the cotensor
coalgebra for ”abelian monoidal” categories performed in [AMS1] .
The basic point when dealing with coalgebras in monoidal categories is that there is no notion of
coradical. The idea then is to take a subcoalgebraD of a coalgebra C and to consider the coalgebra

D̃ which is the direct limit of the iterated wedge powers of D in E. Then the coalgebra D acts,

in a certain sense, as the coradical of D̃. Thus, because of our choice, even when we apply our
results (e.g. Theorem 3.16) in the category of vector spaces, new results are obtained. It is also
interesting to point out that, working in this wider context, we had to develop some properties of
the wedge product that have an intrinsic interest. Due to the width of our setting, many technical
results were needed. To enable an easier reading, we decided to postpone a number of them in two
appendices that can be found at the end of the paper.

Notations. Let [(X, iX)] be a subobject of an object E in an abelian category M, where
iX = iEX : X →֒ E is a monomorphism and [(X, iX)] is the associated equivalence class. By abuse
of language, we will say that (X, iX) is a subobject of E and we will write (X, iX) = (Y, iY ) to
mean that (Y, iY ) ∈ [(X, iX)]. The same convention applies to cokernels. If (X, iX) is a subobject
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2 A. ARDIZZONI

of E then we will write (E/X, pX) = Coker(iX), where pX = pEX : E → E/X .

Let (X1, i
Y1

X1
) be a subobject of Y1 and let (X2, i

Y2

X2
) be a subobject of Y2. Let x : X1 → X2 and

y : Y1 → Y2 be morphisms such that y ◦ iY1

X1
= iY2

X2
◦x. Then there exists a unique morphism, which

we denote by y/x = y
x : Y1/X1 → Y2/X2, such that y

x ◦ pY1

X1
= pY2

X2
◦ y:

X1

x

��

�

�

i
Y1
X1 // Y1

y

��

p
Y1
X1 // Y1

X1

y
x
��

X2
�

�

i
Y2
X2 // Y2

p
Y2
X2 // Y2

X2

1. Monoidal Categories

1.1. A monoidal category means a category M that is endowed with a functor ⊗ : M×M → M,
an object 1 ∈ M and functorial isomorphisms: aX,Y,Z : (X⊗Y )⊗Z → X⊗(Y ⊗Z), lX : 1⊗X → X
and rX : X ⊗ 1 → X. The functorial morphism a is called the associativity constraint and satisfies
the Pentagon Axiom, that is the following diagram

((U ⊗ V )⊗W )⊗X
αU,V,W⊗X//

αU⊗V,W,X
}}

}}
}}

~~}}
}}

}}

(U ⊗ (V ⊗W ))⊗X

αU,V ⊗W,X

AA
AA

AA

  A
AA

AA
A

(U ⊗ V )⊗ (W ⊗X)

αU,V,W⊗X
PPPPPPPPPP

''PPPPPPPPPP

U ⊗ ((V ⊗W )⊗X)

U⊗αV,W,X
nnnnnnnnn

wwnnnnnnnnn

U ⊗ (V ⊗ (W ⊗X))

is commutative, for every U, V, W, X in M. The morphisms l and r are called the unit constraints
and they are assumed to satisfy the Triangle Axiom, i.e. the following diagram

(V ⊗ 1)⊗W

rV ⊗W
  A

AA
AA

AA
AA

aV,1,W // V ⊗ (1⊗W )

V⊗lW
~~}}

}}
}}

}}
}

V ⊗W

is commutative. The object 1 is called the unit of M. For details on monoidal categories we refer
to [Ka, Chapter XI] and [Maj]. A monoidal category is called strict if the associativity constraint
and unit constraints are the corresponding identity morphisms.

1.2. As it is noticed in [Maj, p. 420], the Pentagon Axiom solves the consistency problem that
appears because there are two ways to go from ((U ⊗ V )⊗W ) ⊗X to U ⊗ (V ⊗ (W ⊗X)). The
coherence theorem, due to S. Mac Lane, solves the similar problem for the tensor product of an
arbitrary number of objects in M. Accordingly with this theorem, we can always omit all brackets
and simply write X1⊗ · · ·⊗Xn for any object obtained from X1, . . . , Xn by using ⊗ and brackets.
Also as a consequence of the coherence theorem, the morphisms a, l, r take care of themselves, so
they can be omitted in any computation involving morphisms in M.
The notions of algebra, module over an algebra, coalgebra and comodule over a coalgebra can be
introduced in the general setting of monoidal categories. For more details, see [AMS2].
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2. Wedge and cotensor products

We quote from [AMS1, 2.4]

Definition 2.1. A monoidal category (M,⊗,1) will be called an abelian monoidal category

if:

(1) M is an abelian category
(2) both the functors X ⊗ (−) : M → M and (−)⊗X : M → M are additive and left exact,

for every object X ∈ M.

2.2. Let E be a coalgebra in an abelian monoidal category M. Let us recall, (see [Mo, page 60]),
the definition of wedge of two subobjects X,Y of E in M :

(X ∧E Y, iEX∧EY ) := Ker[(pX ⊗ pY ) ◦ △E ],

where pX : E → E/X and pY : E → E/Y are the canonical quotient maps. In particular we have
the following exact sequence:

0 // X ∧E Y
iEX∧EY // E

(pX⊗pY )◦△E // E/X ⊗ E/Y.

Consider the following commutative diagrams in M

X1

x

��

�

�

i
E1
X1 // E1

e

��
X2

�

�

i
E2
X2

// E2

Y1

y

��

�

�

i
E1
Y1 // E1

e

��
Y2

�

�

i
E2
Y2

// E2

where e is a coalgebra homomorphism. Then there is a unique morphism x ∧e y : X1 ∧E1
Y1 →

X2 ∧E2
Y2 such that the following diagram

X1 ∧E1
Y1

x∧ey

��

i
E1
X1∧E1

Y1 // E1

e

��
X2 ∧E2

Y2
i
E2
X2∧E2

Y2

// E2

commutes. In fact we have

(pE2

X2
⊗ pE2

Y2
) ◦∆E2

◦ e ◦ iE1

X1∧E1
Y1

= (pE2

X2
⊗ pE2

Y2
) ◦ (e ⊗ e) ◦∆E1

◦ iE1

X1∧E1
Y1

= (
e

x
⊗

e

y
) ◦ (pE1

X1
⊗ pE1

Y1
) ◦∆E1

◦ iE1

X1∧E1
Y1

= 0

so that, since (X2 ∧E2
Y2, i

E2

X2∧E2
Y2
) is the kernel of (pE2

X2
⊗ pE2

Y2
) ◦∆E2

, we conclude.

Lemma 2.3. Consider the following commutative diagrams in M

X1

x

��

�

�

i
E1
X1 // E1

e

��
X2

x′

��

�

�

i
E2
X2

// E2

e′

��
X3

�

�

i
E3
X3

// E3

Y1

y

��

�

�

i
E1
Y1 // E1

e

��
Y2

y′

��

�

�

i
E2
Y2

// E2

e′

��
Y3

�

�

i
E3
Y3

// E3
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where e and e′ are coalgebra homomorphisms. Then we have

(1) (x′ ∧e′ y
′) ◦ (x ∧e y) = (x′x ∧e′e y

′y)

Proof. : straightforward. �

2.4. LetM be an abelian monoidal category and let E be a coalgebra in (M,⊗,1). Given a rightE-
bicomodule (V, ρrV ) and a left E-comodule (W,ρlW ), their cotensor product over E in M is defined
to be the equalizer (V�EW,χ(V,W ) = χE(V,W )) of the couple of morphism (ρrV ⊗W,V ⊗ ρlW ):

0 // V�EW
χE(V,W ) // V ⊗W

ρr
V ⊗W //

V⊗ρl
W

// V ⊗ E ⊗W

Since the tensor functors are left exact, in view of [AMS1, Proposition 1.3], then V�EW is also a
E-bicomodule, namely it is E-sub-bicomodule of V ⊗W , whenever V and W are E-bicomodules.
Furthermore, in this case, the category (EME ,�E , E) is still an abelian monoidal category; the
associative and unit constraints are induced by the ones in M (the proof is dual to [AMS2,
Theorem 1.11]). Therefore, also using �E , one can forget about brackets. Moreover the functors
M�E(−) : EM → M and (−)�EM : ME → M are left exact for any M ∈ M.

We will write � instead of �C , whenever there is no danger of misunderstanding.
One has the following result.

2.5. Let e : E1 → E2 be a coalgebra homomorphism in an abelian monoidal category M. Let
(V1, ρ

E1

V1
) be a right E1-comodule, let (W1,

E1ρW1
) be a left E1-comodule, let (V2, ρ

E2

V2
) be a right

E2-comodule and let (W2,
E2ρW2

) be a left E2-comodule. Let v : V1 → V2 and w : W1 → W2 be
E2-comodule homomorphisms (where V1 and W1 are regarded as E2-comodules via e). Then there
is a unique morphism v�ew : V1�E1

W1 → V2�E2
W2 such that the following diagram

V1�E1
W1

v�ew

��

χE1
(V1,W1) // V1 ⊗W1

v⊗w

��
V2�E2

W2
χE2

(V2,W2)
// V2 ⊗W2

commutes. In fact we have

(ρE2

V2
⊗W2) ◦ (v ⊗ w) ◦ χE1

(V1,W1)

= (v ⊗ E2 ⊗ w) ◦ (ρE2

V1
⊗W1) ◦ χE1

(V1,W1)

= (v ⊗ E2 ⊗ w) ◦ [(V1 ⊗ e)ρE1

V1
⊗W1] ◦ χE1

(V1,W1)

= (v ⊗ e⊗ w) ◦ (ρE1

V1
⊗W1) ◦ χE1

(V1,W1)

= (v ⊗ e⊗ w) ◦ [V1 ⊗
E1ρW1

] ◦ χE1
(V1,W1)

= (v ⊗ E2 ⊗ w) ◦ [V1 ⊗ (e⊗W1) ◦
E1ρW1

] ◦ χE1
(V1,W1)

= (v ⊗ E2 ⊗ w) ◦ (V1 ⊗
E2ρW1

) ◦ χE1
(V1,W1)

= (V2 ⊗
E2ρW2

) ◦ (v ⊗ w) ◦ χE1
(V1,W1)

so that, since (V2�E2
W2, χE2

(V2,W2)) is the equalizer of ρE2

V2
⊗W2 and V2 ⊗

E2ρW2
, we conclude.

Note that if E1 = E2 = E and e = IdE , one has

v�ew = v�Ew.

Lemma 2.6. Let e : E1 → E2 and e′ : E2 → E3 be coalgebra homomorphisms in M. Let

(V1, ρ
E1

V1
) ∈ ME1 , (V2, ρ

E2

V2
) ∈ ME2 , (V3, ρ

E3

V3
) ∈ ME3 ,

(W1,
E1ρW1

) ∈ E1M, (W2,
E2 ρW2

) ∈ E2M, (W3,
E3 ρW3

) ∈ E3M.
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Let v : V1 → V2 and w : W1 → W2 be E2-comodule homomorphisms (where V1 and W1 are regarded
as E2-comodules via e) and let v′ : V2 → V3 and w′ : W2 → W3 be E3-comodule homomorphisms
(where V2 and W2 are regarded as E3-comodules via e′). Then

(2) (v′�e′w
′) ◦ (v�ew) = (v′v�e′ew

′w).

Proof. : straightforward. �

Proposition 2.7. Let M be an abelian monoidal category, let E be a coalgebra in M and let
(V, ρEV ) be a right E-comodule. Then the morphism ρEV : V → V ⊗ E factorizes to a unique
morphism ρEV : V → V�EE such that χ(V,E) ◦ ρEV = ρEV . Moreover ρEV is an isomorphism whose
inverse is given by

(ρEV )
−1 = rV ◦ (V ⊗ εE) ◦ χ(V,E).

An analogous statement holds for a left E-comodule (W,ρlW ).

Proof. Since (V, ρEV ) is a right E-comodule, by universal property of the equalizer, we get the
existence of ρEV . Set sV := rV ◦ (V ⊗ εE) ◦ χ(V,E). We have

sV ◦ ρEV = rV ◦ (V ⊗ εE) ◦ χ(V,E) ◦ ρEV = rV ◦ (V ⊗ εE) ◦ ρ
E
V = rV ◦ r−1

V = IdV .

Moreover we have

χ(V,E) ◦ ρEV ◦ sV = ρEV ◦ sV

= ρEV ◦ rV ◦ (V ⊗ εE) ◦ χ(V,E)

= rV ⊗E ◦ (ρEV ⊗ 1) ◦ (V ⊗ εE) ◦ χ(V,E)

= rV ⊗E ◦ (V ⊗ E ⊗ εE) ◦ (ρ
E
V ⊗ E) ◦ χ(V,E)

= rV ⊗E ◦ (V ⊗ E ⊗ εE) ◦ (V ⊗∆E) ◦ χ(V,E)

= (V ⊗ rE) ◦ [V ⊗ (E ⊗ εE) ◦∆E ] ◦ χ(V,E)

= (V ⊗ rE) ◦ (V ⊗ r−1
E ) ◦ χ(V,E) = χ(V,E).

Since χ(V,E) is a monomorphism, we get ρEV ◦ sV = IdV⊗E . �

Lemma 2.8. Let α : A → E be a monomorphism which is a coalgebra homomorphism in an abelian
monoidal category M. Let (W,EρW ) be a left E-comodule and let AρW : W → A ⊗ W be a
morphism such that

EρW = (α⊗W ) ◦ AρW .

Then (W,AρW ) is a left A-comodule.
Let AρW be the unique morphism such that AρW = χ(A,W ) ◦ AρW . Then AρW : W → A�AW is
a morphism of left E-comodules.

Proof. We have

(α⊗ α⊗W ) ◦ (A⊗ AρW ) ◦ AρW

= [E ⊗ (α⊗W )AρW ] ◦ (α⊗W ) ◦ AρW

=
(
E ⊗ EρW

)
◦ EρW

= (∆E ⊗W ) ◦ EρW

= (∆E ⊗W ) ◦ (α⊗W ) ◦ AρW = (α⊗ α⊗W ) ◦ (∆A ⊗W ) ◦ AρW .

Since α⊗ α⊗W is a monomorphism, we get

(A⊗ AρW ) ◦ AρW =(∆A ⊗W ) ◦ AρW .

Moreover we have

(εA ⊗W ) ◦ AρW = (εE ⊗W ) ◦ (α⊗W ) ◦ AρW = (εE ⊗W ) ◦ EρW = lW .
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Therefore (W,AρW ) is a left A-comodule. Let us prove that AρW is a morphism of left E-comodules.
We have:

(E ⊗ α⊗W ) ◦ [E ⊗ χ(A,W )] ◦ (E ⊗ AρW ) ◦ EρW

= (E ⊗ α⊗W ) ◦ (E ⊗ AρW ) ◦ EρW

= (E ⊗ EρW ) ◦ EρW

= (∆E ⊗W ) ◦ EρW

= (∆E ⊗W ) ◦ (α ⊗W ) ◦ AρW

= (∆E ⊗W ) ◦ (α ⊗W ) ◦ χ(A,W ) ◦ AρW

= (E ⊗ α⊗W ) ◦
(
EρA ⊗W

)
◦ χ(A,W ) ◦A ρW

= (E ⊗ α⊗W ) ◦ [E ⊗ χ(A,W )] ◦
(
EρA�AW

)
◦ AρW

= (E ⊗ α⊗W ) ◦ [E ⊗ χ(A,W )] ◦ EρA�AW ◦ AρW .

Since E ⊗ α⊗W and E ⊗ χ(A,W ) are monomorphisms, we obtain:

(E ⊗ AρW ) ◦ EρW = EρA�AW ◦A ρW ,

i.e. that AρW is a morphism of left E-comodules. �

Remark 2.9. Let E be a coalgebra in an abelian monoidal category M, let X be a right coideal
and let Y be a left coideal of E in M. Then we have

(X ∧E Y, iEX∧EY ) = Ker[(pX ⊗ pY ) ◦ △E ]

= Ker[(pX ⊗ pY ) ◦ χE(E,E) ◦ △E ]

= Ker[χE(E/X,E/Y ) ◦ (pX�EpY ) ◦ △E ] = Ker[(pX�EpY ) ◦ △E ],

where △E : E → E�EE denotes the canonical isomorphism. In particular we have the following
exact sequence:

(3) 0 // X ∧E Y
iEX∧EY // E

(pX�EpY )◦△E// E/X�EE/Y.

Definition 2.10. Let M be an abelian monoidal category. Let iF = iEF : F →֒ E, iBA : A →֒ B
and iB = iEB : B →֒ E be monomorphisms which are coalgebra homomorphisms.
Consider in M the following commutative diagram with exact rows and columns

F ∧E A

iEF∧EA

��

i
F∧EB

F∧EA // F ∧E B

iEF∧EB

��
0

0

��

0 // E

(pF�EpA)◦△E

��

Id // E

(pF�EpB)◦△E

��

// 0

0 // E
F �E

B
A

Id

��

E
F �EiB/A // E

F �E
E
A

E
F �EpB/A // E

F �E
E
B

E
F �E

B
A

In this particular case, we denote the connecting homomorphism by

η(F,B,A) = ηE(F,B,A) : F ∧E B →
E

F
�E

B

A
.
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Note that, by Proposition A.2, the morphism η(F,B,A) is uniquely defined by the following
relation:

(4) (
E

F
�EiB/A) ◦ η(F,B,A) = (pF�EpA) ◦ △E ◦ iEF∧EB.

By the Snake Lemma we get the following exact sequence:
(5)

0 // F ∧E A
i
F∧EB

F∧EA // F ∧E B
η(F,B,A) // E

F �E
B
A

// Coker[(pF�EpA) ◦ △E ].

Observe that, if A = 0, then pA = IdE , so that

(pF�EpA) ◦ △E = (pF�EE) ◦ △E = ρrE/F ◦ pF

is an epimorphism and

F ∧E A = Ker[(pF�EpA) ◦ △E ] = Ker(ρrE/F ◦ pF ) = Ker(pF ) = F,

that is we have the following exact sequence:

(6) 0 // F
i
F∧EB

F // F ∧E B
η(F,B,0) // E

F �EB // 0.

Proposition 2.11. Let M be an abelian monoidal category. Let iF = iEF : F →֒ E, iBA : A →֒ B
and iB = iEB : B →֒ E be monomorphisms which are coalgebra homomorphisms.
Then we have

(7) (
E

F
�E

iF∧EB
B

A
) ◦ η(F,B,A) = (pF ◦ iEF∧EB�Ep

F∧EB
A ) ◦ △F∧EB.

Proof. By (4) we have

(
E

F
�E

iEB
A

) ◦ η(F,B,A) = (pEF�Ep
E
A) ◦ △E ◦ iEF∧EB.

Thus we obtain

(
E

F
�E

iEF∧EB

A
) ◦ (

E

F
�E

iF∧EB
B

A
) ◦ η(F,B,A)

= (
E

F
�E

iEF∧EB

A
◦
iF∧EB
B

A
) ◦ η(F,B,A)

= (
E

F
�E

iEB
A

) ◦ η(F,B,A)

= (pEF�Ep
E
A) ◦ △E ◦ iEF∧EB

= (pEF ◦ iEF∧EB�Ep
E
A ◦ iEF∧EB) ◦ △F∧EB

= (pEF ◦ iEF∧EB�E

iEF∧EB

A
◦ pF∧EB

A ) ◦ △F∧EB

= (
E

F
�E

iEF∧EB

A
) ◦ (pEF ◦ iEF∧EB�Ep

F∧EB
A ) ◦ △F∧EB.

Now, since E
F �E

iEF∧EB

A is a monomorphism, we conclude. �

Proposition 2.12. Let M be an abelian monoidal category. Consider the following commutative
diagrams in M:

A1

a

��

�

�

i
B1
A1 // B1

b

��

�

�

i
E1
B1 // E1

e

��
A2

�

�

i
B2
A2

// B2
�

�

i
E2
B2

// E2

F1

f

��

�

�

i
E1
F1 // E1

e

��
F2

�

�

i
E2
F2

// E2
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where the morphisms are coalgebra homomorphisms. Then the following diagram

F1 ∧E1
B1

f∧eb

��

ηE1(F1,B1,A1) // E1

F1
�E1

B1

A1

e
f �e

b
a

��
F2 ∧E2

B2
ηE2(F2,B2,A2)

// E2

F2
�E2

B2

A2

is commutative.

Proof. We have:

(
E2

F2
�E2

iE2

B2

A2
) ◦ ηE2(F2, B2, A2) ◦ (f ∧e b)

= (pE2

F2
�E2

pE2

A2
) ◦∆

E2

E2
◦ iE2

F2∧E2
B2

◦ (f ∧e b)

= (pE2

F2
�E2

pE2

A2
) ◦∆

E2

E2
◦ e ◦ iE1

F1∧E1
B1

= (pE2

F2
◦ e�E2

pE2

A2
◦ e) ◦∆

E2

E1
◦ iE1

F1∧E1
B1

= (
e

f
◦ pE1

F1
�E2

e

a
◦ pE1

A1
) ◦∆

E2

E1
◦ iE1

F1∧E1
B1

= (
e

f
�E2

e

a
) ◦ (pE1

F1
�E2

pE1

A1
) ◦∆

E2

E1
◦ iE1

F1∧E1
B1

= (
e

f
�E2

e

a
) ◦ (pE1

F1
�E2

pE1

A1
) ◦ (E1�eE1) ◦∆

E1

E1
◦ iE1

F1∧E1
B1

= (
e

f
�E2

e

a
) ◦ (

E1

F1
�e

E1

A1
) ◦ (pE1

F1
�E1

pE1

A1
) ◦∆

E1

E1
◦ iE1

F1∧E1
B1

= (
e

f
�E2

e

a
) ◦ (

E1

F1
�e

E1

A1
) ◦ (

E1

F1
�E1

iE1

B1

A1
) ◦ ηE1(F1, B1, A1)

= (
e

f
�e

e

a
◦
iE1

B1

A1
) ◦ ηE1(F1, B1, A1)

= (
e

f
�e

iE2

B2

A2
◦
b

a
) ◦ ηE1(F1, B1, A1)

= (
E2

F2
�E2

iE2

B2

A2
) ◦ (

e

f
�e

b

a
) ◦ ηE1(F1, B1, A1).

Since E2

F2
�E2

i
E2
B2

A2
is a monomorphism, we finally obtain:

ηE2(F2, B2, A2) ◦ (f ∧e b) = (
e

f
�e

b

a
) ◦ ηE1(F1, B1, A1).

�

Proposition 2.13. Let M be an abelian monoidal category. Let iF = iEF : F →֒ E, iBA : A →֒ B
and iB = iEB : B →֒ E be monomorphisms which are coalgebra homomorphisms. Then the following
diagram

(8) F ∧B

η(F,B,A)
))TTTTTTTTTTTTTTTTTTT

η(F,B,0) // E
F �EB

E
F �EpB

A

��
E
F �E

B
A
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is commutative. Furthermore, if the morphism E/F�Ep
B
A : EM → M is an epimorphism we get

the following exact sequence:

(9) 0 // F ∧E A
i
F∧EB

F∧EA // F ∧E B
η(F,B,A) // E

F �E
B
A

// 0.

Proof. We apply Proposition 2.12 in the case when

E1 = E2 = E, F1 = F2 = F, B1 = B2 = B, A1 = 0, A2 = A

e = IdE , a = 0, f = IdF , b = IdB.

If the morphism E/F�Ep
B
A is an epimorphism, then η(F,B,A) is an epimorphism as a composition

of epimorphisms. Thus, in view of (5) we obtain (9). �

Lemma 2.14. Let iF : F → E and iB : B → E be monomorphisms which are coalgebra homomor-
phisms in an abelian monoidal category M. Let

(L, p) := Coker(iF∧EB
B ) =

F ∧E B

B
.

Then there is a unique morphism F ρL : L → F ⊗ L such that

EρL = (iF ⊗ L) ◦ F ρL.

Moreover (L, F ρL) is a left F -comodule and F ρL : L → F�FL is a morphism of left E-comodules.

Proof. Tensorize the following exact sequence

0 → F
iF−→ E

pF
−→

E

F
→ 0

by L to get the exact sequence

(10) 0 // F ⊗ L
iF⊗L // E ⊗ L

pF⊗L // E
F ⊗ L.

We have

(E/F ⊗ i
E/B
L ) ◦ (pF ⊗ L) ◦ EρL ◦ p

= (E/F ⊗ i
E/B
L ) ◦ (pF ⊗ L) ◦ (E ⊗ p) ◦ EρF∧EB

= (pF ⊗ i
E/B
L ◦ p) ◦ EρF∧EB

= (pF ⊗ i
E/B
L ◦ p) ◦ [iEF∧EB ⊗ (F ∧E B)] ◦∆F∧EB

=
(
pF ◦ iEF∧EB ⊗ pB ◦ iEF∧EB

)
◦∆F∧EB

= (pF ⊗ pB) ◦∆E ◦ iEF∧EB = 0.

As E/F ⊗ i
E/B
L is a monomorphism and p is an epimorphism, we obtain (pF ⊗L)◦EρL = 0. Since,

by 10, we have

(F ⊗ L, iF ⊗ L) = Ker (pF ⊗ L),

there exists a unique morphisms F ρL : L → F ⊗ L such that EρL = (iF ⊗ L) ◦ F ρL. Moreover,
by Lemma 2.8 (L,F ρL) is a left F -comodule and F ρL : L → F�FL is a morphism of left E-
comodules. �

Lemma 2.15. Let α : F → A be a homomorphism and let iEA : A → E be a monomorphism
which is a coalgebra homomorphism in an abelian monoidal category M. Let (W,A ρW ) be a left
A-comodule. For a morphism F ρW : W → F ⊗W the following statement are equivalent.

(1) AρW = (α⊗W ) ◦ F ρW .
(2) EρW = (iEAα⊗W ) ◦ F ρW , where EρW = (iEA ⊗W ) ◦ AρW .

Proof. (1) ⇒ (2) is trivial.
(2) ⇒ (1) We have that (iEA ⊗W ) ◦AρW = EρW = (iEAα⊗W ) ◦ FρW = (iEA ⊗W ) ◦ (α⊗W ) ◦ FρW .
Since iEA ⊗W is a monomorphism, we have AρW = (α⊗W ) ◦ F ρW . �
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Proposition 2.16. Let α : F → A be a coalgebra homomorphism, let iAB : B → A and iEA :
A → E be monomorphisms which are coalgebra homomorphisms in an abelian monoidal category
M. Assume there is a homomorphism π : A → F such that πα = IdF . Assume that there
exists a morphism F ρA/B : A/B → F ⊗ A/B such that EρA/B = (iEAα ⊗ A/B) ◦ F ρA/B, where
EρA/B = (iEA ⊗A/B) ◦ AρA/B.
Then we have

F ρA/B = (π ⊗A/B) ◦ AρA/B.

Furthermore F ρA/B is uniquely defined by the following relation

F ρA/B ◦ pAB = (π ⊗ pAB) ◦∆A

and we have

(A⊗ pAB) ◦∆A = (απ ⊗ pAB) ◦∆A.

Proof. By Lemma 2.15 one has AρA/B = (α⊗A/B) ◦ F ρA/B, so that we have

F ρA/B = (π ⊗A/B) ◦ (α⊗A/B) ◦ F ρA/B =(π ⊗A/B) ◦ AρA/B.

Furthermore we get:

F ρA/B ◦ pAB = (π ⊗A/B) ◦ AρA/B ◦ pAB = (π ⊗A/B) ◦ (A⊗ pAB) ◦∆A = (π ⊗ pAB) ◦∆A.

Finally we obtain:

(απ ⊗ pAB) ◦∆A = (α⊗A/B) ◦ (π ⊗ pAB) ◦∆A

= (α⊗A/B) ◦ F ρA/B◦p
A
B

= AρA/B ◦ pAB = (A⊗ pAB) ◦∆A.

�

Corollary 2.17. Let iF : F → E and iB : B → E be monomorphisms which are coalgebra
homomorphisms in an abelian monoidal category M. Let

(L, p) := Coker(iF∧EB
B ) =

F ∧E B

B
.

Assume that π : F ∧E B → F is a morphism such that π ◦ iF∧EB
F = IdF . Then the morphism

F ρL : L → F ⊗ L defined in Lemma 2.14 is uniquely defined by the following relation

(11) F ρL ◦ pF∧EB
B = (π ⊗ pF∧EB

B ) ◦∆F∧EB

(which means that pF∧EB
B is a morphism of left F -comodules whenever π is a coalgebra homomor-

phism) and we have:

(12) [(F ∧E B)⊗ pF∧EB
B ] ◦∆F∧EB = (iF∧EB

F π ⊗ pF∧EB
B ) ◦∆F∧EB.

Proof. Since, by Lemma 2.14, one has

EρL = (iF ⊗ L) ◦ F ρL = (iEF∧EB ◦ iF∧EB
F ⊗ L) ◦ F ρL

so that, we can apply Proposition 2.16 in the case when A = F ∧E B,B = B,E = E,F = F, α =
iF∧EB
F , iEA = iEF∧EB. �

2.18. Let α : F → A be a coalgebra homomorphism and let iEA : A → E be a monomorphism which
is a coalgebra homomorphism in an abelian monoidal category M. Let (L, p) = Coker(α). Since
F and A are left E-comodules via iEAα and iEA respectively, so is L. Its left E-comodule structure
is uniquely defined by a morphism EρL : L → E ⊗ L such that

EρL ◦ p = (E ⊗ p) ◦ EρA = (iEA ⊗ p) ◦∆A.

We also point out that, since F and A are left A-comodules via α and IdA respectively, so is L. Its
left A-comodule structure is uniquely defined by a morphism AρL : L → A⊗ L such that

AρL ◦ p = (A⊗ p) ◦ AρA = (A⊗ p) ◦∆A.
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Assume that there exists a morphism

F ρL : L → F ⊗ L

such that EρL = (iEAα ⊗ L) ◦ F ρL (this happens, for example, in the case A = F ∧E F and

α = iF∧EF
F ). Then, by Lemma 2.8, (L,F ρL) is a left F -comodule. Hence one can endow L with a

left A-comodule structure via Aρ′L = (α⊗ L) ◦F ρL. One has

Aρ′L = AρL.

In fact we have

(iEA ⊗ L) ◦ Aρ′L ◦ p = (iEAα⊗ L) ◦ F ρL ◦ p

= EρL ◦ p = (iEA ⊗ p) ◦∆A

= (iEA ⊗ L) ◦ (A⊗ p) ◦∆A = (iEA ⊗ L) ◦ AρL ◦ p.

Since iEA ⊗ L is a monomorphism and p is an epimorphism, we conclude.
Assume there is a homomorphism π : A → F such that πα = IdF . Then we have

(F ⊗ p) ◦ (π ⊗A) ◦∆A ◦ α = (π ⊗ p) ◦ (α⊗ α) ◦∆F = 0.

Since (L, p) = Coker(α), there exists a morphism F ρ′′L : L → F ⊗ L such that

F ρ′′L ◦ p = (π ⊗ p) ◦∆A

(when π is a coalgebra morphism, F ρ′′L defines the left F -comodule structure that L has via π).
By Lemma 2.16, we have that F ρL is uniquely defined by the following relation

F ρL ◦ p = (π ⊗ p) ◦∆A.

Therefore

F ρ′′L = F ρL.

Proposition 2.19. Let α : F → A be a coalgebra homomorphism and let iEA : A → E be a
monomorphism which is a coalgebra homomorphism in an abelian monoidal category M. For any
left F -comodule (W,F ρW ), let

AρW = (α⊗W )F ρW , EρW = (iEAα⊗W )F ρW .

Let f : W1 → W2 be a morphism of left F -comodules. Then

(iEA�F f) ◦
A ρW1

=E ρW2
◦ f.

Proof. We have

EρW2
◦ f = (iEAα⊗W2) ◦

F ρW2
◦ f = (iEAα⊗W2) ◦ (F ⊗ f) ◦ F ρW1

= (iEA ⊗ f) ◦ AρW1
,

so that

χF (E,W2) ◦
EρW2

◦ f

= EρW2
◦ f

= (iEA ⊗ f) ◦ AρW1
= (iEA ⊗ f) ◦ χF (A,W1) ◦

AρW1
= χF (E,W2) ◦ (i

E
A�F f) ◦

AρW1
.

Since χF (E,W2) is a monomorphism, we conclude. �
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3. Main results

We now recall some definitions and results established in [AMS1].

3.1. Let X be an object in an abelian monoidal category (M,⊗,1). Set

X⊗0 = 1, X⊗1 = X and X⊗n = X⊗n−1 ⊗X, for every n > 1

and for every morphism f : X → Y in M, set

f⊗0 = Id1, f⊗1 = f and f⊗n = f⊗n−1 ⊗ f, for every n > 1.

Let (C,∆C , εC) be a coalgebra in M and for every n ∈ N, define the nth iterated comultiplication
of C, ∆n

C : C → C⊗n+1, by

∆0
C = IdC , ∆1

C = ∆C and ∆n
C =

(
∆⊗n−1

C ⊗ C
)
∆C , for every n > 1.

Let δ : D → E be a monomorphism which is a homomorphism of coalgebras in M. Denote by (L, p)
the cokernel of δ in M. Regard D as a E-bicomodule via δ and observe that L is a E-bicomodule
and p is a morphism of bicomodules. Let

(D∧
n
E , δn) := ker(p⊗n∆n−1

E )

for any n ∈ N \ {0}. Note that (D∧
1
E , δ1) = (D, δ) and (D∧

2
E , δ2) = D ∧E D.

In order to simplify the notations we set (D∧
0
E , δ0) = (0, 0).

Now, sinceM has left exact tensor functors and since p⊗n∆n−1
E is a morphism of E-bicomodules (as

a composition of morphisms of E-bicomodules), we get that D∧
n
E is a coalgebra and δn : D∧

n
E → E

is a coalgebra homomorphism for any n > 0 and hence for any n ∈ N.

Proposition 3.2. [AMS1, Proposition 1.10]Let δ : D → E be a monomorphism which is a mor-
phism of coalgebras in an abelian monoidal category M. Then for any i ≤ j in N there is a (unique)

morphism ξji : D∧
i
E → D∧

j
E such that

(13) δjξ
j
i = δi.

Moreover ξji is a coalgebra homomorphism and ((D∧
i
E )i∈N, (ξ

j
i )i,j∈N) is a direct system in M whose

direct limit, if it exists, carries a natural coalgebra structure that makes it the direct limit of

((D∧
i
E )i∈N, (ξ

j
i )i,j∈N) as a direct system of coalgebras.

Notation 3.3. Let δ : D → E be a morphism of coalgebras in an abelian monoidal category M

cocomplete and with left exact tensor functors . By Proposition 3.2 ((D∧
i
E )i∈N, (ξ

j
i )i,j∈N) is a direct

system in M whose direct limit carries a natural coalgebra structure that makes it the direct limit

of ((D∧
i
E )i∈N, (ξ

j
i )i,j∈N) as a direct system of coalgebras.

From now on we set: (D̃E , (ξi)i∈N) = lim−→(D∧
i
E )i∈N, where ξi : D

∧
i
E → D̃E denotes the structural

morphism of the direct limit. We simply write D̃ if there is no danger of confusion. We note

that, since D̃ is a direct limit of coalgebras, the canonical (coalgebra) homomorphisms (δi : D
∧

i
E →

E)i∈N, which are compatible by (13), factorize to a unique coalgebra homomorphism δ̃ : D̃ → E

such that δ̃ξi = δi for any i ∈ N.

3.4. Let (C,∆, ε) be a coalgebra in a cocomplete abelian monoidal categoryM and let (M,ρrM , ρlM )
be a C– bicomodule. Set

M�0 = C,M�1 = M and M�n = M�n−1
�M for any n > 1

and define (Cn(M))n∈N by

C0(M) = 0, C1(M) = C and Cn(M) = Cn−1(M)⊕M�n−1 for any n > 1.

Let σi+1
i : Ci(M) → Ci+1(M) be the canonical inclusion and for any j > i, define:

σj
i = σj

j−1σ
j−1
j−2 · · ·σ

i+2
i+1σ

i+1
i : Ci(M) → Cj(M).



Wedge Products and Cotensor Coalgebras in Monoidal Categories 13

Then ((Ci(M))i∈N, (σ
j
i )i,j∈N) is a direct system in M. We set

T c
C(M) =

⊕
n∈N

M�n = C ⊕M ⊕M�2 ⊕M�3 ⊕ · · ·

and we denote by σi : C
i(M) → T c

C(M) the canonical inclusion.

Throughout let

πm
n : Cn(M) → Cm(M) (m ≤ n), πn : T c

C(M) → Cn(M),

pmn : Cn(M) → M�m (m < n), pn : T c
C(M) → M�n,

be the canonical projections and let

σn
m : Cm(M) → Cn(M) (m ≤ n), σn : Cn(M) → T c

C(M),

inm : M�m → Cn(M) (m < n), im : M�m → T c
C(M),

be the canonical injection for any m,n ∈ N.
For technical reasons we set πm

n = 0, σn
m = 0 for any n < m and pmn = 0, inm = 0 for any n ≤ m.

Then, we have the following relations:

pnσk = pnk , pnik = δn,kIdM�k , πnik = ink .

Moreover, we have:

πm
n σn

k = σm
k , if k ≤ m ≤ n, and πm

n σn
k = πm

k , if m ≤ k ≤ n,
pmn πn

k = pmk , if m < n ≤ k, and σm
n ink = imk , if k < n ≤ m,

pmn σn
k = pmk , if m < k ≤ n, and πm

n ink = imk , if k < m ≤ n,
pmn πn = pm, if m < n, and σni

n
m = im, if m < n,

πnσk = σn
k , if k ≤ n, and πnσk = πn

k , if n ≤ k,
pmn inm = IdM�m , if m < n.

In the other cases, these compositions are zero.

Let (C,∆, ε) be a coalgebra in a cocomplete abelian monoidal category M with left exact tensor
functors and let (M,ρrM , ρlM ) be a C-bicomodule. Then (T c

C(M), (σn)n∈N) = lim−→Ci(M).

Theorem 3.5. [AMS1, Theorem 2.9]Let (C,∆, ε) be a coalgebra in a cocomplete abelian monoidal
category M and let (M,ρrM , ρlM ) be a C-bicomodule. (T c

C(M), (σi)i∈N) carries a natural coalgebra

structure that makes it the direct limit of ((Ci(M))i∈N, (σ
j
i )i,j∈N) as a direct system of coalgebras.

Theorem 3.6. [AMS1, Theorem 2.13] Let (C,∆, ε) be a coalgebra in a cocomplete abelian monoidal
category M and let (M,ρrM , ρlM ) be a C-bicomodule. Let δ : D → E be a monomorphism which

is a morphism of coalgebras such that the canonical morphism δ̃ : D̃ → E of Notation 3.3 is

a monomorphism. Let fC : D̃ → C be a coalgebra homomorphism and let fM : D̃ → M be a

morphism of C-bicomodules such that fMξ1 = 0, where D̃ is a C-bicomodule via fC . Then there is

a unique morphism f : D̃ → T c
C(M) such that

fξn = σnfn, for any n ∈ N,

where

(14) fn =
∑n

t=0
int f

�t
M ∆

t−1

D̃ ξn

and ∆
n

D̃ : D̃ → D̃�n+1 is the nth iteration of ∆D̃ (∆
−1

D̃ = fC ,∆
0

D̃ = IdD̃,∆
1

D̃ = ∆D̃ : D̃ → D̃�D̃).
Moreover:

1) f is a coalgebra homomorphism;
2) p0f = fC and p1f = fM , where pn : T c

C(M) → M�n denotes the canonical projection.

Furthermore, any coalgebra homomorphism f : D̃ → T c
C(M) that fulfils 2) satisfies the following

relation:

(15) pkf = f�k
M ∆

k−1

D̃ for any k ∈ N.



14 A. ARDIZZONI

Theorem 3.7. [AMS1, Theorem 2.15] Let (C,∆, ε) be a coalgebra in a cocomplete and complete
abelian monoidal category M satisfying AB5. Let (M,ρrM , ρlM ) be a C-bicomodule. Let δ : D → E

be a monomorphism which is a homomorphism of coalgebras. Let fC : D̃ → C be a coalgebra

homomorphism and let fM : D̃ → M be a morphism of C-bicomodules such that fMξ1 = 0, where

D̃ is a bicomodule via fC . Then there is a unique coalgebra homomorphism f : D̃ → T c
C(M) such

that p0f = fC and p1f = fM , where pn : T c
C(M) → M�n denotes the canonical projection.

T c
C(M)

p0

��

p1 // M

C D̃

fM

OO

f

gg

fC

oo D
ξ1

oo

0

ffMMMMMMMMMMMMMM

3.8. Let M be an abelian category and let H be a class of monomorphisms in M. We recall
that an object I in M is called injective rel λ, where λ : X → Y is a monomorphism in H, if
M(λ, I) : M(Y, I) → M(X, I) is surjective. I is called H-injective if it is injective rel λ for every
λ in H. The closure of H is the class C(H) containing all monomorphisms λ in M such that every
H-injective object is also injective rel λ. The class H is called closed if H is C(H). A closed class
H is called injective if for any object M in M there is an monomorphism λ : M → I in H such
that I is H-injective.

3.9. We fix a coalgebra C in a monoidal category M. Let U : CMC → M be the forgetful functor.
Then

(16) I := {f ∈ CMC | U(f) cosplits in M}.

is an injective class of monomorphisms.
Now, for any C-bicomodule M ∈ CMC , we define the Hochschild cohomology of C with coefficients
in M by:

H
•(M,C) = Ext

•
I(M,C),

where Ext
•
I(M,−) are the relative left derived functors of CMC(M,−). The notion of Hochschild

cohomology for algebras and coalgebras in monoidal categories has been deeply investigated in
[AMS2]. Here we quote some results that will be needed afterwards.

Theorem 3.10. [AMS2, Theorem 4.22] Let (D,∆, ε) be a coalgebra in an abelian monoidal cate-
gory M. Then the following conditions are equivalent:

(a) D is formally smooth (i.e. H2 (M,D) = 0, for any M ∈ DMD.).

(b) The canonical morphism ξ1 : D → D̃E has a coalgebra homomorphism retraction, whenever:

• E is a coalgebra endowed with a coalgebra homomorphism δ : D → E;
• δ is a monomorphism;

• D̃E exists;
• for any r ∈ N, the canonical injection ξr+1

r : Dr → Dr+1 cosplits in M.

Theorem 3.11. [AMS1, Theorem 4.15] Let (C,∆, ε) be a formally smooth coalgebra in a cocom-
plete and complete abelian monoidal category M satisfying AB5, with left and right exact tensor
functors. Assume that denumerable coproducts commute with ⊗. Let (M,ρrM , ρlM ) be a I-injective
C-bicomodule. Then the cotensor coalgebra T c

C(M) is formally smooth.

From now on we will use the following notation

Dn := D∧En, for every n ∈ N.

Lemma 3.12. Let δ : D → E be a monomorphism which is a morphism of coalgebras in an abelian
monoidal category M and assume that for any r ∈ N, the canonical injection ξr+1

r : Dr → Dr+1

cosplits in M i.e. there exists λr
r+1 : Dr+1 → Dr such that λr

r+1◦ ξr+1
r = IdDr . Then, for any

r ∈ N, the canonical injection ξr : Dr → D̃ cosplits in M.
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Proof. For every i ∈ N let us define λi : D
i → Dr by setting





λi = λr
r+1 ◦ · · · ◦ λ

i−1
i , if i > r

λr = IdDr

λi = ξri if i < r.

Let us prove that (λi : D
i → Dr)i∈N is a compatible family of morphisms in M i.e. that λi+1 ◦

ξi+1
i = λi.
If i+ 1 < r, we have

λi+1 ◦ ξ
i+1
i = ξri+1 ◦ ξ

i+1
i = ξri = λi.

If i+ 1 = r, we have

λi+1 ◦ ξ
i+1
i = IdDr ◦ ξi+1

i = ξri = λi.

If i+ 1 > r, we have

λi+1 ◦ ξ
i+1
i = λr

r+1 ◦ · · · ◦ λ
i−1
i ◦ λi

i+1 ◦ ξ
i+1
i = λr

r+1 ◦ · · · ◦ λ
i−1
i = λi.

Now, since (λi : D
i → Dr)i∈N is a compatible family of morphisms in M there exists a morphism

λ : D̃ → Dr such that

λ ◦ ξi = λi, for every i ∈ N.

In particular λ ◦ ξr = λr = IdDr . �

Theorem 3.13. Let (D,∆, ε) be a coalgebra in a cocomplete abelian monoidal category M and
let (M,ρrM , ρlM ) be a D-bicomodule. Let δ : D → E be a monomorphism which is a morphism of
coalgebras in M. Let M := E/D�ED ≃ D2/D. Assume that

i) D is a formally smooth coalgebra in M.
ii) M is I-injective where I := {f ∈ DMD | f cosplits in M}.
iii) For any r ∈ N, the canonical injection ξr+1

r : Dr → Dr+1 cosplits in M.

Then there is a coalgebra homomorphism fD : D̃ → D such that

fD ◦ ξ1 = IdD

and a D-bicomodule homomorphism fM : D̃ → M such that

fM ◦ ξ2 = η(D,D, 0).

Moreover there is a unique morphism f : D̃ → T c
D(M) such that

(17) fξn = σnfn, for any n ∈ N,

where

fn =
∑n

t=0
int f

�Dt
M ∆

t−1

D̃ ξn.

Also:
1) f is a coalgebra homomorphism;
2) p0f = fD and p1f = fM , where pn : T c

D(M) → M�n denotes the canonical projection.

Furthermore, any coalgebra homomorphism f : D̃ → T c
D(M) that fulfils 2) satisfies the following

relation:

(18) pkf = f�k
M ∆

k−1

D̃ for any k ∈ N.

T c
D(M)

p0

��

p1 // M

D D̃

fM

OO

f

gg

fD

oo D
ξ1

oo

0

ffMMMMMMMMMMMMMM
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Proof. By Theorem 3.10, the morphism ξ1 : D → D̃ has a retraction fD : D̃ → D which is a

coalgebra homomorphism: fD ◦ ξ1 = IdD. Thus D̃ becomes a D-bicomodule via fD. Now we point
out that ξ2 ∈ I. In fact by Lemma 3.12 ξ2 cosplits in M. Moreover, D2 is a D-bicomodule via
fD and ξ2 a morphism of D-bicomodules. As explained in (2.18) (M, η(D,D, 0)) = Coker(ξ21) is a
D-bicomodule and η(D,D, 0) is a morphism of D-bicomodules. Since ξ2 ∈ I and M is I-injective,

there exists a D-bicomodule homomorphism fM : D̃ → M such that

fM ◦ ξ2 = η(D,D, 0).

Finally fM ◦ ξ1 = fM ◦ ξ2 ◦ ξ21 = η(D,D, 0) ◦ ξ21 = 0, so that, by Theorem 3.6, there exists a

coalgebra homomorphism f : D̃ → T c
D(M) which fulfills the required conditions. �
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Definition 3.14. Keep the hypothesis and notations of Theorem 3.13. Then we have:

f�Dn
M ◦ △

n−1

D̃ ◦ ξn
(18)
= pn ◦ f ◦ ξn

(17)
= pn ◦ σn ◦ fn = pnn ◦ fn = 0.

Therefore, given any k ≥ 0, we have

f�Dn
M ◦ △

n−1

D̃ ◦ ξn+k ◦ ξn+k
n = f�Dn

M ◦ △
n−1

D̃ ◦ ξn = 0.

Since [E/Dn
�ED

k, η(Dn, Dk, 0)] = Coker(ξn+k
n ), there exists a unique morphism

Φ(Dn, Dk, 0) : E/Dn
�ED

k → (E/D�ED)�Dn

such that

(19) Φ(Dn, Dk, 0) ◦ η(Dn, Dk, 0) = f�Dn
M ◦ △

n−1

D̃ ◦ ξn+k.

Note that, since η(Dn, Dk, 0), f�Dn
M ◦ △

n−1

D̃ ◦ ξn+k and ξn+k
n are morphisms of D-bicomodules, so

is Φ(Dn, Dk, 0).
Moreover observe that

Φ(D,D, 0) ◦ η(D,D, 0) = f�D1
M ◦ △

0

D̃ ◦ ξ2 = fM ◦ ξ2 = η(D,D, 0).

Since η(D,D, 0) is an epimorphism we get

(20) Φ(D,D, 0) = IdE/D�ED.

The proof of the following theorem requires some technicalities that, for an easier reeding, were
included in Appendix B.

Theorem 3.15. Let M be a cocomplete abelian monoidal category. Keep the hypothesis and no-
tations of Theorem 3.13. Then Φ(Dn, D, 0) is a monomorphism for any n ∈ N. Moreover, if we
assume that the morphism E/Dn

�Ep
E
D is an epimorphism for every n ∈ N, we get that Φ(Dn, D, 0)

is an isomorphism for any n ∈ N.

Proof. By Theorem B.8, we have (44):

Φ(Dn, D, 0) = [Φ(Dn−1, D, 0)�D(E/D�ED)] ◦ [E/Dn−1
�E

DρE/D�ED] ◦ (γn�ED).

We point out that, by Proposition 2.7, the morphism DρE/D�ED :E/D�ED → D�D(E/D�ED)
is always an isomorphism.
As explained in Definition B.6 the morphism γn : E/Dn → E/Dn−1

�EE/D defined by relation

γn ◦ pEDn = (pEDn−1�Ep
E
D) ◦ △E .

is always a monomorphism. By Proposition B.9, (pEDn−1�Ep
E
D) ◦△E is an epimorphism whenever

E/Dn−1
�Ep

E
D is an epimorphism. In this case γn is an epimorphism too and hence it is an

isomorphism. Since Φ(D,D, 0) = IdE/D�ED, by induction, we conclude. �

Theorem 3.16. Let (D,∆, ε) be a coalgebra in a cocomplete abelian monoidal category M satisfying
AB5. Let δ : D → E be a monomorphism which is a morphism of coalgebras in M.
Let M := E/D�ED ≃ D2/D. Assume that

1) D is a formally smooth coalgebra in M.
2) M is I-injective where I := {f ∈ DMD | f cosplits in M}.
3) For any r ∈ N, the canonical injection ξr+1

r : Dr → Dr+1 cosplits in M.
Let

f : D̃ → T c
D(M)

be the unique morphism, constructed in Theorem 3.13, such that

fξn = σnfn, for any n ∈ N,

where

fn =
∑n

t=0
int f

�Dt
M ∆

t−1

D̃ ξn.

Then f is a monomorphism in M. Moreover, if we assume that
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4) the morphism E/Dn
�Ep

E
D is an epimorphism for every n ∈ N,

then f is an isomorphism and, with the further assumptions that
5) M is complete with right exact tensor functors;
6) denumerable coproducts commute with ⊗;

then D̃ is a formally smooth coalgebra in M.

Proof. Since M fulfills AB5 condition, it is enough to prove that fn is a monomorphism (resp.
isomorphism) for any n ≥ 0. We proceed by induction on n ≥ 0.

For n = 0, since i00 = 0, we have fn = f0 = i00f
�D0
M ∆

−1

D̃ ξ0 = 0. As f0 : D0 = 0 → C0(M) = 0,
we get that f0 is an isomorphism.

For n = 1 we have fn = f1 = i10f
�D0
M ∆

−1

D̃ ξ1 + i11f
�D1
M ∆

0

D̃ξ1 = i10f
�D0
M ∆

−1

D̃ ξ1 = i10fDξ1 =
i10 ◦ IdD = i10 = IdD, as i11 = 0. Thus f1 is an isomorphism.
Let n > 1. Assume that fn−1 is a monomorphism (resp. isomorphism) and let us prove that fn is
a monomorphism (resp. isomorphism) too.
We have

Φ(Dn−1, D, 0)◦η(Dn−1, D, 0)
(19)
= f�Dn−1

M ◦∆
n−2

D̃ ◦ξn
(18)
= pn−1◦f◦ξn

(17)
= pn−1◦σn◦fn = pn−1

n ◦fn,

so that the following diagram

0 // Dn−1

fn−1

��

ξnn−1 // Dn

fn

��

η(Dn−1,D,0) // E
Dn�ED

Φ(Dn−1,D,0)

��

// 0

0 // Cn−1(M)
σn
n−1 // Cn(M)

pn−1
n // M�Dn−1 // 0

commutes and hence Φ(Dn−1, D, 0) = fn
fn−1

.

By Theorem 3.15, the morphism Φ(Dn−1, D, 0) is a monomorphism (resp. an isomorphism if we
assume also that the morphism E/Dn

�Ep
E
D is an epimorphism for every n ∈ N). Hence, by

applying 5-Lemma to the diagram above, we get that fn is a monomorphism (resp. isomorphism)
too.
We conclude by observing that, if 5) and 6) hold true, by Theorem 3.11, we get that T c

D(M) is
formally smooth. �

Let E be a coalgebra in M and set

IE =
{
f ∈ ME | f cosplits in M

}
,

EI =
{
f ∈E M | f cosplits in M

}
,

so that

I =EI ∩ IE

Lemma 3.17. Let M be an abelian monoidal category, let N be an IE-injective right E-comodule
and let iML : L → M be a morphism in EI. Then N�Ep

M
L is an epimorphism.

Proof. Since the tensor products are left exact, the sequence

0 → N�EL
N�EiML→ N�EM

N�EpM
L→ N�EM/L

is exact. We have to prove that N�Ep
M
L is an epimorphism. Since iML ∈E I, the sequence

0 → L
iML→ M

pM
L→ M/L → 0

splits in M and hence the sequence

0 → N ⊗ L
N⊗iML→ N ⊗M

N⊗pM
L→ N ⊗M/L → 0

is exact so that the morphism

(N ⊗ E)�Ep
M
L : (N ⊗ E)�EM → (N ⊗ E)�EM/L
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is an epimorphism since (N ⊗ E)�Ep
M
L

∼= N⊗pML . Now, asN is an IE -injective right E-comodule,
the monomorphism

ρN : N → N ⊗ E

which belongs to IE , has a retraction βN ∈ ME and we have
(
N�Ep

M
L

)
(βN�EM) = βN�Ep

M
L = (βN�EM/L)

[
(N ⊗ E)�Ep

M
L

]
.

Now βN�EM/L is an epimorphism since it has a section ρN�EM/L, and (N ⊗ E)�Ep
M
L is an

epimorphism so that we deduce that N�Ep
M
L is an epimorphism. �

Lemma 3.18. Let (D,∆, ε) be a coalgebra in a cocomplete abelian monoidal category M satisfying
AB5. Let δ : D → E be a monomorphism which is a morphism of coalgebras in M. Then

D∧En = D∧
D̃
n

for every n ∈ N.

Proof. We proceed by induction on n ≥ 1 being the cases n = 0, 1 trivial. Assume that D∧En =
D∧

D̃
n. Note that

ker
[(

pD̃D∧En ⊗ pD̃D

)
∆D̃

]
= D∧En ∧D̃ D = D∧

D̃
n ∧D̃ D = D∧

D̃
n+1.

Let us prove that (
D∧En+1, ξn+1

)
= ker

[(
pD̃D∧En ⊗ pD̃D

)
∆D̃

]
.

Let f : X → D̃ be a morphism such that
(
pD̃D∧En ⊗ pD̃D

)
◦∆D̃ ◦ f = 0.

We have to prove that there exists a unique morphism f : X → D∧En+1 such that

ξn+1 ◦ f = f.

We have
(
pED∧En ⊗ pED

)
◦∆E ◦ δ̃ ◦ f =

(
pED∧En ⊗ pED

)
◦
(
δ̃ ⊗ δ̃

)
◦∆D̃ ◦ f

=

(
δ̃

D∧En
⊗

δ̃

D

)
◦
(
pD̃D∧En ⊗ pD̃D

)
◦∆D̃ ◦ f = 0.

Since (
D∧En+1, δn+1

)
= ker

[(
pED∧En ⊗ pED

)
◦∆E

]
,

by the universal property of the kernel, there exists a unique morphism f : X → D∧En+1 such
that

δn+1 ◦ f = δ̃ ◦ f.

Since δn+1 = δ̃ ◦ ξn+1 and since, by AB5, δ̃ is a monomorphism, we conclude. �

Definitions 3.19. Let C be a coalgebra in an abelian monoidal category M. We say that a
quotient M/L of a right C-comodule M is a IC -quotient of M, whenever the canonical injection
L → M is in IC that is the sequence

0 → L → M →
M

L
→ 0

is IC -exact.
A coalgebra C is called (right) hereditary whenever every IC -quotient of an IC -injective comodule
is IC -injective.

Definition 3.20. A coalgebra C is called coseparable whenever H
1 (M,C) = 0 for every M ∈

CMC .

The following theorem was proved for the abelian monoidal category of vector spaces in [JLMS].
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Theorem 3.21. Let D be a coalgebra in a cocomplete abelian monoidal category M satisfying AB5.
Let δ : D → E be a monomorphism which is a morphism of coalgebras in M. Assume that

1) D is a coseparable coalgebra in M.
2) For any r ∈ N, the canonical injection ξr+1

r : D∧Er → D∧Er+1 cosplits in M (e.g. M is a
semisimple category).

3) D̃ is a right hereditary coalgebra in M.
Let

f : D̃ → T c
D(

D ∧E D

D
)

be the unique morphism, constructed in Theorem 3.13.
Then f is an isomorphism in M. Moreover, if we assume that

4) M is complete with right exact tensor functors;
5) denumerable coproducts commute with ⊗;

then D̃ is a formally smooth coalgebra in M.

Proof. First of all let us point out that, by Lemma 3.18 one has

D∧En = D∧
D̃
n.

Set Dn = D∧En = D∧
D̃
n.

We apply Theorem 3.16 to the case D = D,E = D̃, δ = ξ1. In fact, since D is coseparable,
it is in particular a formally smooth coalgebra in M [AMS2, Corollary 4.18]. Moreover every
D-bicomodule and in particular D2/D is I-injective [AMS2, Theorem 4.4]. It remains to prove
that the morphism

D̃

Dn
�D̃pD̃D :

D̃

Dn
�D̃D̃ →

D̃

Dn
�D̃

D̃

D

is an epimorphism. Since, by Lemma 3.12, the canonical injection ξn : Dn → D̃ cosplits in M for

every n ∈ N, we get that D̃
Dn is an ID̃-quotient of D̃. Since, by assumption, D̃ is a right hereditary,

then D̃
Dn is ID̃-injective for every n ∈ N. Now, iD̃D = ξ1 : D → D̃ has a retraction fD : D̃ → D in

M and hence iD̃D ∈D̃ I. By Lemma 3.17, we conclude. �

Theorem 3.22. Let (C,∆, ε) be a formally smooth coalgebra in an abelian monoidal category M.
Then C is a right hereditary coalgebra.

Proof. Let M ∈ MC and (℧1C, π) = Coker (∆). Let us consider the following exact sequence in
CMC :

0 → C
∆
→ C ⊗ C

π
→ ℧1C → 0.

Clearly rC (C ⊗ ε) ∈ CM is a retraction of ∆ so that the sequence above splits in CM and hence

0 → M�CC
M�C∆
−→ M�CC ⊗ C

M�Cπ
−→ M�C℧1C → 0

is an exact sequence in MC . Since M�CC ∼= M, we get the exact sequence

0 // M
ρr
M // M ⊗ C

(M�Cπ)[ρC
M⊗C] // M�C℧1C // 0

in MC . Since C is formally smooth, by [AMS2, Corollary 4.21 ], ℧1C is I-injective, so that , by
[Ar, Theorem 2.3], there is a morphism of C-bicomodules j : ℧1C → C ⊗X ⊗ C that cosplits in
CMC . Thus

M�Cj : M�C℧1C → M�CC ⊗X ⊗ C ∼= M ⊗X ⊗ C

is a morphism in MC that cosplits in MC . Therefore, by [Ar, Theorem 2.3], M�C℧1C is IC -
injective and hence the previous sequence is an IC -injective resolution of length 1. Since this is
true for every M ∈ MC , we conclude that ExtnIC(M,N) = 0, for every M,N ∈ MC , n ≥ 2 i.e.
that C is a right hereditary coalgebra. �
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Theorem 3.23. Let D be a coalgebra in a cocomplete and complete abelian monoidal category M
satisfying AB5.
Let δ : D → E be a monomorphism which is a morphism of coalgebras in M.
Assume that

1) D is a coseparable coalgebra in M.
2) For every r ∈ N, the canonical injection ξr+1

r : D∧Er → D∧Er+1 cosplits in M (e.g. M is
a semisimple category).

3) M has right exact tensor functors.
4) Denumerable coproducts commute with ⊗.

Then the following assertions are equivalent.

(i) D̃ is a formally smooth coalgebra.

(ii) D̃ is a right hereditary coalgebra.

(ii’) D̃ is a left hereditary coalgebra.

(iii) D̃ ≃ T c
D(D∧ED

D ) as coalgebras.

(iv) D̃ ≃ T c
D(N) as coalgebras, for some D-bicomodule N .

Proof. (i) ⇒ (ii) follows by Theorem 3.22.
(ii) ⇒ (iii) follows by Theorem 3.21.
(iii) ⇒ (iv) is trivial.
(iv) ⇒ (i). Since D is coseparable, it is in particular formally smooth as a coalgebra in M [AMS2,
Corollary 4.18]. Moreover every D-bicomodule and in particular N is I-injective (see [AMS2,
Theorem 4.4]). We conclude by applying Theorem 3.11. �

Corollary 3.24. [JLMS] Let K be a vector space. Let E be a K-coalgebra with coseparable
coradical D. Then the following assertions are equivalent.
(i) E is a formally smooth coalgebra.
(ii) E is a right hereditary coalgebra.
(ii’) E is a left hereditary coalgebra.
(iii) E ≃ T c

D(D∧ED
D ) as coalgebras.

(iv) E ≃ T c
D(N) as coalgebras, for some D-bicomodule N .

Proof. Since D is the coradical of E is well known that E = D̃ (see e.g. [Sw, Corollary 9.0.4,
page 185]). The conclusion follows by Theorem 3.23 applied in the case when M is the category
of vector spaces over K. We point out that, since, in this case, M is a semisimple category, the
notions of formally smooth and right hereditary coalgebras reduce to the classical ones. �

Examples 3.25. We now provide a number of examples of abelian monoidal categories for which
our results apply. These categories are all Grothendieck categories and hence cocomplete and
complete abelian categories satisfying AB5.

Let B be a bialgebra over a field K.

• The category BM = (BM,⊗K ,K), of all left modules over B. The tensor V ⊗W of two left
B-modules is an object in BM via the diagonal action; the unit is K regarded as a left B-module
via εB.

• The category BMB = (BMB ,⊗K ,K), of all two-sided modules over B. The tensor V ⊗W of
two B-bimodules carries, on both sides, the diagonal action; the unit isK regarded as a B-bimodule
via εB.

• The category B
M = (BM,⊗K ,K), of all left comodules over B. The tensor product V ⊗W

of two left B-comodules is an object in B
M via the diagonal coaction; the unit is K regarded as a

left B-comodule via the map k 7→ 1B ⊗ k.

• The category B
M

B = (BMB,⊗K ,K) of all two-sided comodules over B. The tensor V ⊗W
of two B-bicomodules carries, on both sides, the diagonal coaction; the unit is K regarded as a
B-bicomodule via the maps k 7→ 1B ⊗ k and k 7→ k ⊗ 1B.
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• Let H be a Hopf algebra over a field K with bijective antipode.
The category H

HYD = (HHYD,⊗K ,K) of left Yetter-Drinfeld modules over H . Recall that an object
V in H

HYD is a left H-module and a left H-comodule satisfying, for any h ∈ H, v ∈ V , the
compatibility condition:

∑
(h(1)v)<−1>h(2) ⊗ (h(1)v)<0> =

∑
h(1)v<−1> ⊗ h(2)v<0>

where ∆H (h) =
∑

h(1) ⊗ h(2) and ρ (v) =
∑

v<−1> ⊗ v<0> denote the comultiplication of H and
the left H-comodule structure of V respectively (we used Sweedler notation).

The tensor product V ⊗W of two Yetter-Drinfeld modules is an object in H
HYD via the diagonal

action and the codiagonal coaction; the unit in H
HYD is K regarded as a left H-comodule via the

map x 7→ 1H ⊗ x and as a left H-module via the counit εH .

• The category QM = (QM,⊗K ,K), of all left modules over a quasi-bialgebra Q over a field K
(see [Ka, Definition XV.1.1, page 368]).

Appendix A. The Snake Lemma

We collect here some technical results that are used in the paper. Some of them might be found
in the literature, nevertheless we decided to include them here for the reader’s sake.

First of all, we need to recall some results related to the so called ”Snake Lemma”. Thus let M
be an abelian category and consider in M the following commutative diagram with exact rows

P

k3
′

��

α3
2

′

// Ker(f3)

k3

��
A1

f1

��

α2
1 // A2

f2

��

α3
2 // A3

f3

��

// 0

0 // B1

c1

��

β2
1 // B2

β3
2 // B3

Coker(f1)

where P = P (α3
2, k3) denotes the pullback of (α3

2, k3). We have

β3
2f2k3

′ = f3α
3
2k3

′
= f3k3α

3
2
′
= 0.

Since (B1, β
2
1) = ker(β3

2), there exists a unique morphism ω : P → B1 such that

(21) β2
1ω = f2k

′
3.

Let α2
1 = ib be the canonical factorization of α2

1 as the composition of a monomorphism i :
Im(α2

1) → A2 and an epimorphism b : A1 → Im(α2
1). As α

3
2ib = α3

2α
2
1 = 0 and b is an epimorphism,

we get α3
2 ◦ i = 0 = k3 ◦ 0. By the universal property of P, there exists a unique morphism

ξ : Im(α2
1) → P such that

(22) k′3ξ = i and α3
2
′
ξ = 0.

It is straightforward to check that (Im(α2
1), ξ) = ker(α3

2
′
). We point out that, since α3

2 is an

epimorphism, also α3
2
′
is an epimorphism and hence (ker(f3), α

3
2
′
) = Coker(ξ).

Now, we have:

β2
1ωξb = f2k

′
3ξb = f2ib = f2α

2
1 = β2

1f1.

Since β2
1 is a monomorphism, we deduce that

ωξb = f1
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and hence c1ωξb = c1f1 = 0. As b is an epimorphism, we conclude that c1ωξ = 0. By the universal
property of Coker(ξ), there exists a unique morphism ω : ker(f3) → Coker(f1) such that

(23) ωα3
2
′
= c1ω.

The morphism ω is usually called connecting homomorphism.
In fact it is easy to prove the existence of morphisms k21 , k

3
2 , c

2
1, c

3
2 such that the following diagram

commutes

Ker(f1)

k1

��

k2
1 // Ker(f2)

k2

��

k3
2 // Ker(f3)

k3

��
A1

f1

��

α2
1 // A2

f2

��

α3
2 // A3

f3

��

// 0

0 // B1

c1

��

β2
1 // B2

c2

��

β3
2 // B3

c3

��
Coker(f1)

c21 // Coker(f2)
c32 // Coker(f3)

and one has the following well known result.

Theorem A.1 (Snake Lemma). The following sequence is exact:

(24) Ker(f1)
k2
1 // Ker(f2)

k3
2 // Ker(f3)

ω // Coker(f1)
c21 // Coker(f2)

c32 // Coker(f3)

Proof. It is easy to check that the proof of [Mac, Lemma 5, page 206] works also in this more
general setting (where α2

1 is not assumed to be a monomorphism and β3
2 is not necessarily an

epimorphism). �

Proposition A.2. Let M be an abelian category and consider in M the following commutative
diagram with exact rows

P

k3
′

��

α3
2

′

// Ker(f3)

k3

��
0

0

��

0 // A2

f2

��

α3
2 // A3

f3

��

// 0

0 // B1

IdB1

��

β2
1 // B2

β3
2 // B3

B1

where P = P (α3
2, k3) denotes the pullback of (α3

2, k3).
Then the connecting homomorphism ω is uniquely defined by the following relation:

(25) β2
1ω = f2(α

3
2)

−1k3.

Proof. By (23) we have ωα3
2
′
= c1ω = ω. Therefore we have

β2
1ωα

3
2
′
= β2

1ω
(21)
= f2k

′
3 = f2(α

3
2)

−1α3
2k

′
3 = f2(α

3
2)

−1k3α
3
2
′
.

Since α3
2
′
is an epimorphism, we conclude. Note that, as β2

1 is a monomorphism, we have that ω
is the unique morphism satisfying the required relation. �
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Appendix B. Technical results to prove Theorem 3.15

Proposition B.1. Let M be a cocomplete abelian monoidal category. Then, with the hypothesis
and notations of Theorem 3.13, the following relations hold true:

DρE/D�ED ◦ η(D,D, 0) = [D�Dη(D,D, 0)] ◦ DρD2 = [fDξ2�Dη(D,D, 0)] ◦ △D2 .(26)

[ξ21fDξ2�Dη(D,D, 0)] ◦ △D2 = [D2
�Dη(D,D, 0)] ◦ △D2(27)

(E/D�Eξ
n
1 ) ◦ η(D,D, 0) = η(D,Dn, 0) ◦ ξn+1

2(28)

[ξ21�D(E/D�ED)] ◦ DρE/D�ED ◦ η(D,D, 0) = [D2
�Dη(D,D, 0)] ◦ △D2(29)

[ξ21�D(E/D�Eξ
n
1 )] ◦

DρE/D�ED ◦ η(D,D, 0) = [D2
�Dη(D,Dn, 0) ◦ ξn+1

2 ] ◦ △D2(30)

η(Dn−1, D2, D) = [E/Dn−1
�Eη(D,D, 0)] ◦ η(Dn−1, D2, 0)(31)

(E/Dn−1
�Eξ

n+1
2 ) ◦ η(Dn−1, D2, 0) = (pDn−1 ◦ δn+1�ED

n+1) ◦ △Dn+1(32)

Proof. 1) By (11) applied to the case

F = B = D, E = E and π = fDξ2

we get

L =
D ∧E D

D
and DρD∧ED

D

◦ pD
2

D = (fD ⊗ pD
2

D ) ◦∆D∧ED

from which, by identifying (D
2

D , pD
2

D ) with (E/D�ED, η(D,D, 0), we obtain

DρE/D�ED ◦ η(D,D, 0) = [D ⊗ η(D,D, 0)] ◦ DρD2

which means that η(D,D, 0) : D2 → E/D�ED is a morphism of left D-comodules. Thus we can
apply Proposition 2.19 in the case

W1 = D2,W2 = E/D�ED, f = η(D,D, 0), A = F = E = D,α = iEA = IdD,

in order to obtain
DρE/D�ED ◦ η(D,D, 0) = [D�Dη(D,D, 0)] ◦ DρD2

Note that, in view of 2.16 applied to the case

F = D,A = D2, B = 0, α = ξ21 , π = fDξ2,

we have DρD2 = [fDξ2 ⊗D2] ◦ △D2 so that DρD2 = [fDξ2�DD2] ◦ △D2 and hence we get (26).

2) By (12), applied to the case

F = B = D, E = E, π = fDξ2,

we get (
D2 ⊗ pD

2

D

)
◦∆D2 = (ξ21fDξ2 ⊗ pD

2

D ) ◦∆D2

from which, by identifying (D
2

D , pD
2

D ) with (E/D�ED, η(D,D, 0), we obtain

[ξ21fDξ2 ⊗ η(D,D, 0)] ◦ △D2 = [D2 ⊗ η(D,D, 0)] ◦ △D2

Therefore, since η(D,D, 0) : D2 → E/D�ED is a morphism of left D-comodules, one has

χD(D2, E/D�ED) ◦ [ξ21fDξ2�Dη(D,D, 0)] ◦ △D2

= [ξ21fDξ2 ⊗ η(D,D, 0)] ◦ χD(D2, D2) ◦ △D2

= [ξ21fDξ2 ⊗ η(D,D, 0)] ◦ △D2

= [D2 ⊗ η(D,D, 0)] ◦ △D2

= [D2 ⊗ η(D,D, 0)] ◦ χD(D2, D2) ◦ △D2

= χD(D2, E/D�ED) ◦ [D2
�Dη(D,D, 0)] ◦ △D2 .
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Since χD(D2, E/D�ED) is a monomorphism we obtain (27).
3) By applying Proposition 2.12 in the case

E1 = E2 = E,F1 = F2 = B1 = D,B2 = Dn, A1 = A2 = 0, e = IdE , f = IdD, b = ξn1 , a = 0,

we obtain(28).
4) We have

[ξ21�D(E/D�ED)] ◦ DρE/D�ED ◦ η(D,D, 0)

(26)
= [ξ21�D(E/D�ED)] ◦ [fDξ2�Dη(D,D, 0)] ◦ △D2

= [ξ21fDξ2�Dη(D,D, 0)] ◦ △D2

(27)
= [D2

�Dη(D,D, 0)] ◦ △D2 .

Hence we get (29).
5) We have

[ξ21�D(E/D�Eξ
n
1 )] ◦

DρE/D�ED ◦ η(D,D, 0)

= [D2
�D(E/D�Eξ

n
1 )] ◦ [ξ

2
1�D(E/D�ED)] ◦ DρE/D�ED ◦ η(D,D, 0)

(29)
= [D2

�D(E/D�Eξ
n
1 )] ◦ [D

2
�Dη(D,D, 0)] ◦ △D2

= [D2
�D(E/D�Eξ

n
1 ) ◦ η(D,D, 0)] ◦ △D2

(28)
= [D2

�Dη(D,Dn, 0) ◦ ξn+1
2 ] ◦ △D2

Hence we obtain (30).
6) By applying Proposition 2.13 in the case

E = E,F = Dn−1, B = D2, A = D,

we obtain 31:

η(Dn−1, D2, D) = [E/Dn−1
�Eη(D,D, 0)] ◦ η(Dn−1, D2, 0)

7) By applying (7) in the case

E = E,F = Dn−1, B = D2, A = 0, iF∧EB
B = ξn+1

2 , iEF∧EB = δn+1, p
F∧EB
A = IdDn+1,

we obtain 32.
�

Proposition B.2. Let M be an abelian monoidal category. Then we have:

(33) [(E/Dn−1
�Eξ

2

1)�D(E/D�Eξ
n

1 )] ◦ ϕ(D
n−1, D2, D) = [η(Dn−1, D2, 0)�Dη(D,Dn, 0)] ◦ △

Dn+1 ,

where

(34) ϕ(Dn−1, D2, D) := (E/Dn−1
�E

DρE/D�ED) ◦ η(Dn−1, D2, D).
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Proof. We have:

(E/Dn−1
�Eξ

n+1
2 �DE/D�ED

n) ◦ [(E/Dn−1
�Eξ

2
1)�D(E/D�Eξ

n
1 )] ◦ ϕ(D

n−1, D2, D)

= (E/Dn−1
�Eξ

n+1
2 �DE/D�ED

n) ◦ [(E/Dn−1
�Eξ

2
1)�D(E/D�Eξ

n
1 )] ◦

◦(E/Dn−1
�E

DρE/D�ED) ◦ η(Dn−1, D2, D)

(31)
= (E/Dn−1

�Eξ
n+1
2 �DE/D�ED

n) ◦ [E/Dn−1
�E(ξ

2
1�DE/D�Eξ

n
1 )

DρE/D�ED] ◦

◦[E/Dn−1
�Eη(D,D, 0)] ◦ η(Dn−1, D2, 0)

= (E/Dn−1
�Eξ

n+1
2 �DE/D�ED

n) ◦ [E/Dn−1
�E(ξ

2
1�DE/D�Eξ

n
1 )

DρE/D�EDη(D,D, 0)] ◦

◦η(Dn−1, D2, 0)

(30)
= (E/Dn−1

�Eξ
n+1
2 �DE/D�ED

n) ◦ [E/Dn−1
�E[D

2
�Dη(D,Dn, 0) ◦ ξn+1

2 ] ◦ △D2 ] ◦ η(Dn−1, D2, 0)

= [E/Dn−1
�E [ξ

n+1
2 �Dη(D,Dn, 0) ◦ ξn+1

2 ] ◦ △D2 ] ◦ η(Dn−1, D2, 0)

since ξn+1
2 is a coalgebra homomorphism, we get

= [E/Dn−1
�E [D

n+1
�Dη(D,Dn, 0)] ◦ △Dn+1 ◦ ξn+1

2 ] ◦ η(Dn−1, D2, 0)

= [E/Dn−1
�E [D

n+1
�Dη(D,Dn, 0)] ◦ △Dn+1 ] ◦ (E/Dn−1

�Eξ
n+1
2 ) ◦ η(Dn−1, D2, 0)

(32)
= [E/Dn−1

�E [D
n+1

�Dη(D,Dn, 0)] ◦ △Dn+1 ] ◦ (pDn−1 ◦ δn+1�ED
n+1) ◦ △Dn+1

= [pDn−1 ◦ δn+1�E [D
n+1

�Dη(D,Dn, 0)]] ◦ (Dn+1
�E△Dn+1) ◦ △Dn+1

= [pDn−1 ◦ δn+1�ED
n+1

�Dη(D,Dn, 0)] ◦ (△Dn+1�ED
n+1) ◦ △Dn+1

= [(pDn−1 ◦ δn+1�ED
n+1) ◦ △Dn+1�Dη(D,Dn, 0)] ◦ △Dn+1

(32)
= [(E/Dn−1

�Eξ
n+1
2 ) ◦ η(Dn−1, D2, 0)�Dη(D,Dn, 0)] ◦ △Dn+1

= (E/Dn−1
�Eξ

n+1
2 �DE/D�ED

n) ◦ [η(Dn−1, D2, 0)�Dη(D,Dn, 0)] ◦ △Dn+1 .

Since E/Dn−1
�Eξ

n+1
2 �DE/D�ED

n is a monomorphism, we get:

[(E/Dn−1
�Eξ

2
1)�D(E/D�Eξ

n
1 )] ◦ ϕ(D

n−1, D2, D) = [η(Dn−1, D2, 0)�Dη(D,Dn, 0)] ◦ △Dn+1 .

�

Lemma B.3. For any s ≥ k ≥ 0, we have

(35) Φ(Dn, Ds, 0) ◦ (E/Dn
�Eξ

s
k) = Φ(Dn, Dk, 0).

Proof. We apply Proposition 2.12 in the case

E1 = E2 = E,F1 = F2 = Dn, B1 = Dk, B2 = Ds, A1 = A2 = 0, e = IdE , f = IdDn , b = ξsk, a = 0.

in order to obtain:

(E/Dn
�Eξ

s
k) ◦ η(D

n, Dk, 0) = η(Dn, Ds, 0) ◦ ξn+s
n+k

Therefore we get

Φ(Dn, Ds, 0) ◦ (E/Dn
�Eξ

s
k) ◦ η(D

n, Dk, 0)

= Φ(Dn, Ds, 0) ◦ η(Dn, Ds, 0) ◦ ξn+s
n+k

= f�Dn
M ◦ △

n−1

D̃ ◦ ξn+s ◦ ξ
n+s
n+k

= f�Dn
M ◦ △

n−1

D̃ ◦ ξn+k = Φ(Dn, Dk, 0) ◦ η(Dn, Dk, 0)

Since η(Dn, Dk, 0) is an epimorphism, we conclude. �

Proposition B.4. Let M be a cocomplete abelian monoidal category. Then, with the hypothesis
and notations of Theorem 3.13, we have:

(36) [Φ(Dn−1, D, 0)�D(E/D�ED)] ◦ ϕ(Dn−1, D2, D) = f�Dn
M ◦ △

n−1

D̃ ◦ ξn+1.
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Proof. By (19) we get

Φ(Dn−1, D2, 0) ◦ η(Dn−1, D2, 0) = f�Dn−1
M ◦ △

n−2

D̃ ◦ ξn+1.(37)

Φ(D,Dn, 0) ◦ η(D,Dn, 0) = f�D1
M ◦ △

0

D̃ ◦ ξ1+n = fM ◦ ξn+1.(38)

By (35) we obtain

Φ(Dn−1, D2, 0) ◦ (E/Dn−1
�Eξ

2
1) = Φ(Dn−1, D, 0).(39)

Φ(D,Dn, 0) ◦ (E/D�Eξ
n
1 ) = Φ(D,D, 0).(40)

Finally we compute:

f�Dn
M ◦ △

n−1

D̃ ◦ ξn+1

= [f�Dn−1
M �DfM ] ◦ (△

n−2

D̃ �DD̃) ◦ △D̃ ◦ ξn+1

= [f�Dn−1
M ◦ △

n−2

D̃ �DfM ] ◦ △D̃ ◦ ξn+1

= [f�Dn−1
M ◦ △

n−2

D̃ ◦ ξn+1�DfM ◦ ξn+1] ◦ △Dn+1

(37),(38)
= [Φ(Dn−1, D2, 0)η(Dn−1, D2, 0)�DΦ(D,Dn, 0)η(D,Dn, 0)] ◦ △Dn+1

= [Φ(Dn−1, D2, 0)�DΦ(D,Dn, 0)] ◦ [η(Dn−1, D2, 0)�Dη(D,Dn, 0)] ◦ △Dn+1

(33)
= [Φ(Dn−1, D2, 0)�DΦ(D,Dn, 0)] ◦ [(E/Dn−1

�Eξ
2
1)�D(E/D�Eξ

n
1 )] ◦ ϕ(D

n−1, D2, D)

= [Φ(Dn−1, D2, 0)(E/Dn−1
�Eξ

2
1)�DΦ(D,Dn, 0)(E/D�Eξ

n
1 )] ◦ ϕ(D

n−1, D2, D)

(39),(40)
= [Φ(Dn−1, D, 0)�DΦ(D,D, 0)] ◦ ϕ(Dn−1, D2, D)

(20)
= [Φ(Dn−1, D, 0)�D(E/D�ED)] ◦ ϕ(Dn−1, D2, D).

�

Lemma B.5. Let δ : D → E be a monomorphism which is a coalgebra homomorphism in an abelian
monoidal category M. Then we have

(Dm+n, δm+n) = ker[(pEDm�Ep
E
Dn) ◦ △E ].

Proof. By Remark 2.9, we have the following exact sequence:

0 // Dm ∧E Dn = Dm+n
iEDm∧EDn=δm+n

// E
(pE

Dm�EpE
Dn )◦△E // E

Dm�E
E
Dn .

Then we conclude. �

Definition B.6. By Lemma B.5, we have

(Dn, δn) = ker[(pEDn−1�Ep
E
D) ◦ △E ]

so that

(E/Dn, pEDn) = Coker(δn) = Coker[Ker((pEDn−1�Ep
E
D) ◦ △E)] = Im[(pEDn−1�Ep

E
D) ◦ △E ].

Thus there exists a unique morphism γn : E/Dn → E/Dn−1
�EE/D such that

(41) γn ◦ pEDn = (pEDn−1�Ep
E
D) ◦ △E .

Obviously γn is a monomorphism and is a morphism of E-bicomodules.

Lemma B.7. Let M be an abelian monoidal category. We have

(42) (γn�ED) ◦ η(Dn, D, 0) = η(Dn−1, D2, D).
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Proof. We apply (7) in the case

E = E,F = Dn, B = D,A = 0, iF∧EB
B = ξn+1

1 , iEF∧EB = δn+1, p
F∧EB
A = IdDn+1 .

in order to obtain:

(43) (E/Dn
�Eξ

n+1
1 ) ◦ η(Dn, D, 0) = (pEDn ◦ δn+1�ED

n+1) ◦ △Dn+1 .

Therefore we have

(E/Dn−1
�EE/D�Eξ

n+1
1 ) ◦ (γn�ED) ◦ η(Dn, D, 0)

= (γn�ED
n+1) ◦ (E/Dn

�Eξ
n+1
1 ) ◦ η(Dn, D, 0)

(43)
= (γn�ED

n+1) ◦ (pEDn ◦ δn+1�ED
n+1) ◦ △Dn+1

= (γn ◦ pEDn ◦ δn+1�ED
n+1) ◦ △Dn+1

(41)
= [(pEDn−1�Ep

E
D) ◦ △E ◦ δn+1�ED

n+1] ◦ △Dn+1

= [(pEDn−1 ◦ δn+1�Ep
E
D ◦ δn+1) ◦ △Dn+1�ED

n+1] ◦ △Dn+1

= (pEDn−1 ◦ δn+1�Ep
E
D ◦ δn+1�ED

n+1) ◦ (△Dn+1�ED
n+1) ◦ △Dn+1

= (pEDn−1 ◦ δn+1�Ep
E
D ◦ δn+1�ED

n+1) ◦ (Dn+1
�E△Dn+1) ◦ △Dn+1

= [E/Dn−1
�E(p

E
D ◦ δn+1�ED

n+1)△Dn+1 ] ◦ (pEDn−1 ◦ δn+1�ED
n+1) ◦ △Dn+1

(32)
= [E/Dn−1

�E(p
E
D ◦ δn+1�ED

n+1)△Dn+1 ] ◦ (E/Dn−1
�Eξ

n+1
2 ) ◦ η(Dn−1, D2, 0)

= [E/Dn−1
�E(p

E
D ◦ δn+1�ED

n+1)△Dn+1ξn+1
2 ] ◦ η(Dn−1, D2, 0)

= [E/Dn−1
�E(p

E
D ◦ δn+1ξ

n+1
2 �Eξ

n+1
2 )△D2 ]η(Dn−1, D2, 0)

= (E/Dn−1
�EE/D�Eξ

n+1
2 ) ◦ [E/Dn−1

�E(p
E
D ◦ δ2�ED

2)△D2 ]η(Dn−1, D2, 0)

(43)
= (E/Dn−1

�EE/D�Eξ
n+1
2 ) ◦ [E/Dn−1

�E(E/D�Eξ
2
1) ◦ η(D,D, 0)]η(Dn−1, D2, 0)

= (E/Dn−1
�EE/D�Eξ

n+1
2 ◦ ξ21) ◦ [E/Dn−1

�Eη(D,D, 0)]η(Dn−1, D2, 0)

= (E/Dn−1
�EE/D�Eξ

n+1
1 ) ◦ [E/Dn−1

�Eη(D,D, 0)]η(Dn−1, D2, 0)

(31)
= (E/Dn−1

�EE/D�Eξ
n+1
1 ) ◦ η(Dn−1, D2, D).

Since E/Dn−1
�EE/D�Eξ

n+1
1 is a monomorphism, we conclude. �

Theorem B.8. Let M be a cocomplete abelian monoidal category. Then, with the hypothesis and
notations of Theorem 3.13, we have:

(44) Φ(Dn, D, 0) = [Φ(Dn−1, D, 0)�D(E/D�ED)] ◦ [E/Dn−1
�E

DρE/D�ED] ◦ (γn�ED).

Proof. We have

[Φ(Dn−1, D, 0)�D(E/D�ED)] ◦ [E/Dn−1
�E

DρE/D�ED] ◦ (γn�ED) ◦ η(Dn, D, 0)

(42)
= [Φ(Dn−1, D, 0)�D(E/D�ED)] ◦ [E/Dn−1

�E
DρE/D�ED] ◦ η(Dn−1, D2, D)

(34)
= [Φ(Dn−1, D, 0)�D(E/D�ED)] ◦ ϕ(Dn−1, D2, D)

(36)
= f�Dn

M ◦ △
n−1

D̃ ◦ ξn+1

(19)
= Φ(Dn, D, 0) ◦ η(Dn, D, 0).

Since η(Dn, D, 0) is an epimorphism, we conclude. �

Proposition B.9. Let E be a coalgebra in an abelian monoidal category M, let X be a right coideal
and let Y be a left coideal of E in M. Assume that the morphism E/X�EpY is an epimorphism.
Then we have that the following sequence is exact in M:

0 // X ∧E Y
iEX∧EY // E

(pX�EpY )◦△E // E
X�E

E
Y

// 0
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Proof. We have:

(E/X�EpY ) ◦ ρ
r
E/X ◦ pX = (E/X�EpY ) ◦ (pX�EE) ◦∆E = (pX�EpY ) ◦∆E ,

so that (pX�EpY ) ◦ ∆E is an epimorphism as a composition of epimorphisms. The conclusion
follows by (3). �
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