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Abstract

It has been recently shown that the quantum Boltzmann equations may be relevant for
the leptogenesis scenario. In particular, they lead to a time-dependent CP asymmetry
which depends upon the previous dynamics of the system. This memory effect in the
CP asymmetry is particularly important in resonant leptogenesis where the asymmetry
is generated by the decays of nearly mass-degenerate right-handed neutrinos. We
study the impact of the non-trivial time evolution of the CP asymmetry in the so-
called Minimal Lepton Flavour Violation framework where the charged-lepton and the
neutrino Yukawa couplings are the only irreducible sources of lepton-flavour symmetry
breaking and resonant leptogenesis is achieved. We show that significant quantitative
differences arise with respect to the case in which the time dependence of the CP
asymmetry is neglected.
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1 Introduction

The observed baryon number asymmetry of the Universe ηB ≡ nB/nγ = (6.3± 0.3)×10−10 [1] can
be explained by the mechanism of thermal leptogenesis [2, 3, 4], the simplest implementation of
this mechanism being realised by adding to the Standard Model (SM) three heavy right-handed
(RH) neutrinos, i.e. in the framework of the seesaw [5]. In thermal leptogenesis the heavy
RH neutrinos are produced by thermal scatterings after inflation and subsequently decay out-
of-equilibrium in a lepton number and CP-violating way, thus satisfying Sakharov’s constraints
[6, 7]. The dynamically generated lepton asymmetry is then converted into a baryon asymmetry
due to (B + L)-violating sphaleron interactions [8].

If RH neutrinos are hierarchical in mass, successful leptogenesis requires that the RH neutrinos
are heavier than about 109 GeV [9]. Hence, the required reheating temperature after inflation
cannot be much lower [3, 10, 11, 12]. In supersymmetric scenarios this may be in conflict with the
upper bound on the reheating temperature necessary to avoid the overproduction of gravitinos
during reheating [13]. In the resonant leptogenesis scenario [14] this tension may be avoided. If
the RH neutrinos are nearly degenerate in mass, self-energy contributions to the CP asymmetries
may be resonantly enhanced, thus making thermal leptogenesis viable at temperatures as low as
the TeV. Resonant leptogenesis seems therefore a natural possibility.

Nearly degenerate RH neutrinos naturally arise in the context of models satisfying the hy-
pothesis of Minimal Flavour Violation (MFV) [15, 16, 17]. In the quark sector, where the MFV
hypothesis has been formulated first, the MFV ansatz states that the two quark Yukawa couplings
are the only irreducible breaking sources of the flavour-symmetry group defined by the gauge-
kinetic Lagrangian [16]. In generic models satisfying this hypothesis, quark Flavour Changing
Neutral Currents (FCNC) are naturally suppressed to a level comparable to experiments and
new degrees of freedom can naturally appear in the TeV range. The extension of the MFV
hypothesis to the lepton sector (MLFV) has been formulated in Ref. [17] (and further studied
in Refs. [18, 19, 20]), where a number of possible scenarios, depending on the field content of
the theory, have been identified. The case more similar to the quark sector and more inter-
esting from the point of view of leptogenesis is the so-called extended field content scenario of
Ref. [17]. Here the lepton field content is extended by three heavy RH neutrinos with degenerate
masses at the tree level. The largest lepton-flavour symmetry group of the gauge-kinetic term is
Gmax = SU(3)`×SU(3)e×O(3)N and, according to the MLFV hypothesis, it is assumed that this
group is broken only by the charged-lepton and neutrino Yukawa couplings λe and λν . In relation
to leptogenesis, the key feature of this scenario is that the degeneracy of the RH neutrinos is lifted
only by corrections induced by the Yukawa couplings, so that we end up with a highly constrained
version of resonant leptogenesis. Within this set up, the viability of leptogenesis has first been
considered in the one-flavour approximation [21] and subsequently in the flavoured case [22, 23].

Resonant leptogenesis in models satisfying the MLFV hypothesis is the subject of the present
paper. Our analysis turns out to be necessary in view of the recent results achieved by studying
the dynamics of thermal leptogenesis by means of quantum Boltzmann equations [24] (for an
earlier study, see Ref. [25]). Quantum Boltzmann equations were obtained starting from the
non-equilibrium quantum field theory based on the Closed Time-Path formulation and have an
obvious interpretation in terms of gain and loss processes. However, they differ from the classical
Boltzmann equations since there appear integrals over the time where theta functions ensure that
the dynamics is causal. In the classical kinetic theory the scattering terms do not include any
integral over the past history of the system which is equivalent to assume that any collision in the
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plasma does not depend upon the previous ones. On the contrary, quantum distributions possess
strong memory effects and the thermalization time obtained from the quantum transport theory
may be substantially longer than the one obtained from the classical kinetic theory. Furthermore,
and more importantly, the CP asymmetry turns out to be a function of time, its value at a
given instant depending upon the previous history of the system. If the time variation of the
CP asymmetry is shorter than the relaxation time of the particles abundances, the solutions
to the quantum and the classical Boltzmann equations are expected to differ only by terms of
the order of the ratio of the time-scale of the CP asymmetry to the relaxation time-scale of the
distribution. In thermal leptogenesis with hierarchical RH neutrinos this is typically the case.
However, in the resonant leptogenesis scenario, RH neutrinos are almost degenerate in mass and
the CP asymmetry from the decay of the i-th RH neutrino Ni is resonantly enhanced by the j-th
neutrino if the mass difference (Mj −Mi) is of the order of the decay rate of the RH neutrinos.
The typical time-scale to build up coherently the time-dependent CP asymmetry is of the order
of (Mj −Mi)−1 [24, 26], which can be larger than the time-scale for the change of the abundance
of the RH neutrinos. This tells us that in the case of resonant leptogenesis significant differences
are expected between the classical and the quantum approach.

In this paper we perform a detailed study of the role of quantum memory effects in the resonant
leptogenesis scenario within the MLFV hypothesis showing that memory effects may substantially
change the prediction for the baryon asymmetry. We consider both the normal hierarchical (NH)
and the inverse hierarchical (IH) cases for light neutrinos and also consider the role played by
flavour in leptogenesis [27, 28, 29, 30].

Our analysis is organized as follows. In Section 2 we provide a brief summary of thermal
leptogenesis, focussing on the impact of the quantum memory effects. Section 3 contains the key
ingredients of the MLFV scenario. In Section 4 we set the stage for the study of the relevance of
non-equilibrium quantum effects in MLFV-leptogenesis. We then proceed discussing the impact
of quantum effects on the two scenarios in which CP violation arises from the RH sector in Section
5, and only from the PMNS matrix in Section 6. We give our conclusions in Section 7.

2 A brief summary of thermal leptogenesis

In order to set the stage for the subsequent analysis about the impact of non-equilibrium quantum
effects in the MLFV framework, here we first briefly recall the general features of the thermal
leptogenesis scenario, and later discuss the restrictions imposed by the hypothesis of Minimal
Flavour Violation.

We consider a model where three right-handed (RH) neutrinos Ni (i = 1, 2, 3) with Majorana
masses M3 ≥ M2 ≥ M1 and Yukawa couplings λν are added to the Standard Model (SM)
Lagrangian. Working in the basis in which the Yukawa couplings for the charged leptons λe are
diagonal, the Lagrangian density is given by

L = LSM +
(

1
2
Mi N

2
i +Ni (λν)iα `α H + ēα (λe)α `α H

c + h.c.
)

, (1)

where `α and eα indicate the lepton doublet and singlet with flavour (α = e, µ, τ) respectively,
and H is the Higgs doublet whose neutral component has a vacuum expectation value equal to
v = 174 GeV. For heavy RH neutrinos (Mi � v), light neutrino masses are obtained via the
see-saw (type I) mechanism [5]

mν = U∗m̂νU
† = λTν M̂

−1
ν λν v

2 , (2)

2



where U is the PMNS mixing matrix (and we adopt the convention of placing a hat over di-
agonal matrices with real and positive elements). In this framework the baryon asymmetry is
generated by weak sphaleron processes converting the non-zero lepton number produced by out-
of-equilibrium decays of the heavy RH neutrinos.

The key quantities controlling the production of a net lepton number are the CP violating
asymmetries in the Ni decay rates

εiα ≡
Γ(Ni → `αH̄)− Γ(Ni → ¯̀

αH)
Γ(Ni → `αH̄) + Γ(Ni → ¯̀

αH)
. (3)

The inclusion of quantum effects discussed in the introduction (for technical details see Refs. [24,
26]) introduces a time dependence in the CP asymmetry

εiα(z) =
∑
j 6=i

ε(j,i)α m(i,j)(z),

m(i,j)(z) = 2 sin2

(
1
2
Mj −Mi

2H(M1)
z2

)
− Γj
Mj −Mi

sin
(
Mj −Mi

2H(M1)
z2

)
,

ε(j,i)α =
1

8π

Im
[
(λν)iα(λν)†αj(λνλ

†
ν)ij
]

(
λνλ

†
ν

)
ii

(g(j,i)
s + g(j,i)

v ), (4)

g(j,i)
s =

√
xj
xi

1
1− xj

xi

1

1 +
Γ2
j/M

2
i

(1−xj/xi)2

,

g(j,i)
v =

√
xj
xi

(
1− (1 +

xj
xi

) ln
1 + xj/xi
xj/xi

)
,

where Γj ≡
∑

β Γ(Nj → `βH̄) = (λνλ
†
ν)jjMj/(8π) is the total decay rate of the j-th RH neutrino,

H is the Hubble expansion rate, z = M1/T , T denotes the temperature, gs and gv are the self-
energy and the vertex correction functions respectively and xi = (Mi/M1)2 (a short summary of
the Boltzmann equations can be found in the Appendix A). The combination of Yukawa couplings
appearing in Eq. (4) is quite constrained under the hypothesis of MLFV and, as we discuss below,
the requirement of non-vanishing εiα leads to non-trivial constraints on the free parameters of this
framework.

In the quantum Boltzmann approach, the typical time-scale for the variation of the CP asym-
metry is

t =
1

2H(T )
=

z2

2H(M1)
∼ 1
Mj −Mi

=
1

∆Mji
. (5)

As a consequence, quantum effects are expected to be sizable if 1/∆Mji is larger than the time-
scale for changing the abundance, 1/Γi. In other words, the oscillation frequency ∆Mji has to
be sufficiently smaller than Γi, so that the factors m(i,j)(z) do not effectively average to one.
Under these conditions, the amplitude of the “sin” term in m(i,j)(z) is also enhanced, which will
turn out to be a crucial effect. If 1/∆Mji is smaller than the time-scale for changing the particle
abundances, then the CP asymmetry may be averaged over many scatterings [24] and it reduces
to the classical value εiα =

∑
j 6=i ε

(j,i)
α .

The above discussion leads us to formulate a quantitative criterion for the importance of
quantum effects, namely ∆Mji

<∼ Γi. This criterion can be naturally satisfied if RH neutrinos are
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nearly degenerate, as first pointed out in [26] and therefore in models based on MLFV. So the next
task is to identify the parameters controlling the ratio ∆Mji/Γi within the MLFV framework.

3 The MLFV scenario

The MLFV approach with extended field content [17] is based on the assumption that the largest
possible flavour symmetry group of the lepton sector, SU(3)` × SU(3)e × O(3)N , is broken only
by two irreducible sources: the Yukawa couplings λ0

e and λ0
ν transforming as (3̄, 3, 1) and (3̄, 1, 3)

respectively.
In the limit of vanishing Yukawa couplings, the O(3)N symmetry is exact and RH neutrinos

are degenerate at the common scale M0
ν . Switching on the Yukawa interactions λ0

ν and λ0
e, the

mass degeneracy is removed as an effect of those combinations of Yukawa couplings transforming
as (1, 1, 6s) [21]:

Mν = M0
ν

[
1 + c(1) (h0

ν + h0
ν
T ) + c

(2)
1 ((h0

ν)2 + (h0
ν
T )2)

+ c
(2)
2 h0

νh
0
ν
T + c

(2)
3 h0

ν
T
h0
ν + c

(2)
4 (h0

e + h0
e
T ) + ....

]
, (6)

where h0
ν = λ0

νλ
0
ν
†, h0

e = λ0
νλ

0
e
†
λ0
eλ

0
ν
† and one can choose1 λ0

e = m̂e/v. The coefficients c’s are
arbitrary parameters smaller than O(1). If one interprets them as arising from radiative effects,
it is natural to have c(1) ∼ 1/(4π)2 and c

(2)
i ∼ (c(1))2. From the unitary matrix Ū diagonalising

Mν , one obtains M̂ν and λν of Eqs.(1) and (2):

M̂ν = ŪMνŪ
T , λν = Ūλ0

ν . (7)

Notice that, due to the smallness of the c’s, it is natural to expect Ū to be close to the unity
matrix (or possibly a permutation matrix, given the ordering convention M1 ≤M2 ≤M3).

One can see λ0
ν as the neutrino Yukawa coupling associated to degenerate RH neutrinos.

Accordingly, a convenient parameterisation to be exploited in the following is [31]

λ0
ν =

1
v

√
M0
ν H

√
m̂0
ν U

0† , (8)

where m̂0
ν = diag(m0

1,m
0
2,m

0
3), U0 = R23(θ0

23)Γδ0R13(θ0
13)Γ†

δ0
R12(θ0

12)diag(ei
α0
1
2 , ei

α0
2
2 , 1), Γδ0 =

diag(1, 1, eiδ
0
) and H is an orthogonal hermitian matrix

H = eiΦ , Φ =

 0 φ1 φ2

−φ1 0 φ3

−φ2 −φ3 0

 . (9)

Clearly, the smaller the splittings among the RH neutrinos, the closer m̂ν and U are to m̂0
ν and

U0 respectively. Since the approximations m̂ν ≈ m̂0
ν and U ≈ U0 will turn out to be good, in

1The charged lepton and Dirac-neutrino Yukawa couplings themselves receive small corrections induced by λ0
ν,e;

the effect of going in the basis where charged leptons are diagonal is accounted for by a redefinition of the c’s in
Eq.(6).
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all the subsequent discussion we drop the 0-superscript above the parameters of m̂0
ν and U0. For

later convenience, notice also that

h0
ν = λ0

νλ
0
ν
† = Hm̂0

νH
M0
ν

v2
, (10)

h0
e = λ0

νλ
0
e
†
λ0
eλ

0
ν
† = HEH

M0
ν

v2
, E =

√
m̂0
νU

0†
(
m̂e

v

)2

U0
√
m̂0
ν . (11)

4 General Implications of MLFV for thermal leptogenesis

The MLFV scenario described above has six independent CP-violating phases. As shown in
Appendix B they can be characterized in terms of weak-basis invariants that in turn are in direct
correspondence with linearly independent combinations of the asymmetries εiα. The analysis of
weak-basis invariants (see Appendix B for more details) allows us to draw the following general
conclusions on the viability of leptogenesis both in the one-flavour regime (M0

ν > 1012 GeV) as
well as in the flavour regime (M0

ν < 1012 GeV):

• In the one-flavour regime, in order to produce the lepton asymmetry one needs non-zero
second-order RH mass splitting (i.e. c(2)

i 6= 0) and H 6= I, i.e. CP violation (CPV) in the
RH sector [21].

• Flavour effects open at least in principle two new regimes for MLFV-leptogenesis which are
not allowed in the one-flavour limit: (i) the case in which RH mass splitting is induced only
(or mainly) by c(1). This situation requires H 6= I, namely CPV in the RH sector; (ii) the
case in which CPV arises only from PMNS phases [23], namely H = I and Mν is real. In
this case the lepton asymmetry is proportional to c(2)

4 .

We first study the Yukawa-induced RH mass splitting. The largest correction term is naturally
expected to be the one associated to c(1) in Eq. (6), so that many considerations about the RH
neutrino spectrum and the frequency of the oscillations in m(i,j) can already be drawn. This
program is straightforward in the limit of small φi, which from the numerical analysis will turn
out to be the relevant one in order to achieve viable leptogenesis. In this regime one can then
expand the relevant matrices in series of φi. In particular, one has from Eq.(8)

λ0
ν =

√
M0
ν

v

 e−i
α1
2
√
m1c12 −e−i

α1
2
√
m1c23s12 e−i

α1
2
√
m1s12s23

e−i
α2
2
√
m2s12 e−i

α2
2
√
m2c12c23 −e−i

α2
2
√
m2c12s23√

m3s13e
iδ √

m3s23
√
m3c23

+O(φi), (12)

where the 0-superscript is understood for mi and the parameters of U0. In addition

h0
ν =

M0
ν

v2

 m1 iφ1(m1 +m2) iφ2(m1 +m3)
−iφ1(m1 +m2) m2 iφ3(m2 +m3)
−iφ2(m1 +m3) −iφ3(m2 +m3) m3

+O(φiφj) (13)

and

h0
ν + h0

ν
T =

M0
ν

v2
×
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×

 2m1 φ2φ3(m1 +m2 + 2m3) −φ1φ3(m1 + 2m2 +m3)
φ2φ3(m1 +m2 + 2m3) 2m2 φ1φ2(2m1 +m2 +m3)
−φ1φ3(m1 + 2m2 +m3) φ1φ2(2m1 +m2 +m3) 2m3


+O(φ3

i ). (14)

The leading correction for RH neutrino masses is simply linked to the light neutrino mass spectrum

Mν = M0
ν

[
1 + 2c(1)M

0
ν m̂

0
ν

v2
(1 +O(φiφj))

]
. (15)

Let us consider NH and IH for light neutrinos in turn. From the form of Mν it turns out that in
first approximation,

ŪNH ≈ I , Ū IH ≈

 0 0 1
1 0 0
0 1 0

 = Ĩ . (16)

Aiming at a compact notation, we introduce the matrix m = diag(ml,mi,mh), where ml < mi <
mh (light, intermediate, heavy); clearly, for NH l = 1, i = 2, h = 3 while for IH l = 3, i = 1, h = 2.
Then, defining ∆mji = mj −mi one has from Eq.(15):

Mi ≈M0
ν

(
1 + 2c(1) M

0
νmi

v2

)
, ∆Mji ≈ 2c(1)∆mji

(
M0
ν

v

)2

, (17)

So we have identified the parameters that control the frequency of the oscillating m(i,j), see Eq.(4).
Moreover, the RH neutrino widths and the amplitude Aji of the sin-term in m(i,j) can then be
expressed as

Γj ≈
mj

8π

(
M0
ν

v

)2

, Aji ≡
Γj

∆Mji
≈ 1

16π c(1)

mj

∆mji
. (18)

We are now in a position to study the condition for the importance of quantum effects in the
CP asymmetries, namely ∆Mji < Γi. Using the expressions above, in the MLFV framework this
condition can be cast into

16π c(1) ∆mji

mi
< 1 , (19)

implying that the difference between the classical and quantum approach will increase as c(1)

becomes smaller and/or the pair mj-mi becomes degenerate. In the next sections we will study
numerically and analytically the dependence of the baryon asymmetry on c(1) and the lightest
neutrino mass ml, controlling the degeneracy of the light neutrino spectrum.

Both in the classical and quantum case, in order for ε(j,i)α to be non vanishing, it is crucial to
have non diagonal entries in hν = λνλ

†
ν = Ūh0

νŪ
†. Since Ū is a small rotation, one has hν ∼ h0

ν .
From Eq.(13) it turns out that the simplest situation in which hν is non-diagonal occurs when at
least one among the φi is non vanishing, namely H 6= 1. On the other hand, in the case H = 1,
small real non diagonal elements for hν have to be generated as an effect of Ū ; in this case the CP
violation needed for a non-zero asymmetry arises from the PMNS phases in (λν)iα. These two
situations are going to be discussed separately in the next sections.

Before turning to analyse the differences between the quantum and classical approaches fo-
cussing on these two relevant cases, we show the expressions for the washout parameters. For
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both NH and IH, the washout parameters Kα =
∑

iKiα and Ki =
∑

αKiα (see appendix A for
more details) are given by:

Ke = (m1c
2
12 +m2s

2
12 +m3s

2
13)/m∗ , (20)

Kµ = (m1c
2
23s

2
12 +m2c

2
12c

2
23 +m3s

2
23)/m∗ , (21)

Kτ = (m1s
2
12s

2
23 +m2c

2
12s

2
23 +m3c

2
23)/m∗ , (22)

Ki = mi/m∗ (i = 1, 2, 3) . (23)

It is clear that none of the Kα (α = e, µ, τ) can be small: the weak-washout regime cannot
be obtained in the framework of MLFV. However, let us emphasise that for NH the potentially
smallest washout parameter is Ke. On the contrary, for IH all the Kα are comparable and
relatively large (in particular, for small m3 one has the relation Ke ∼ m1/m∗ ∼ 2Kµ,τ ).

In what follows, we shall focus our attention on the full flavoured regime2, M0
ν . 109 GeV,

and we shall illustrate the impact of quantum effects in the two cases in which CP asymmetries
arise either from the RH (H 6= I) sector or from the PMNS phases (H = I).

5 CP Violation from H 6= I

We first analyse the situation c(1) � c
(2)
i and H 6= I, in which the lepton asymmetries are propor-

tional to the angles φi. For NH, let us focus on the asymmetries associated to the least washed-out
flavour, that is the e-flavour. Introducing the notation F (j,i) = 1/(8π)(g(j,i)

s + g
(j,i)
v )m(i,j) and by

working at first order in φi, we find:

ε1e =
√
m2

m1

m1 +m2

m̃
c12s12φ1F

(2,1) cos
(
α2 − α1

2

)
+
√
m3

m1

m1 +m3

m̃
c12s13φ2F

(3,1) cos
(

2δ + α1

2

)
,

ε2e = −
√
m1

m2

m1 +m2

m̃
c12s12φ1F

(1,2) cos
(
α2 − α1

2

)
+
√
m3

m2

m2 +m3

m̃
s12s13φ3F

(3,2) cos
(

2δ + α2

2

)
,

ε3e = −
√
m1

m3

m1 +m3

m̃
c12s13φ2F

(1,3) cos
(

2δ + α1

2

)
−
√
m2

m3

m2 +m3

m̃
s12s13φ3F

(2,3) cos
(

2δ + α2

2

)
,

(24)

where m̃ = v2/M0
ν . For zero CPV in PMNS the εiα are maximised. Notice that for some values

of the PMNS phases, one can suppress ηB; however, if all φi 6= 0, there is no choice of PMNS
phases that allows all three ε to vanish3.

5.1 Dependences on c(1) and ml

In order to explore numerically the dependence on c(1), we set c(2)
i = 0 and choose M0

ν = 109

GeV. Then, we switch on in turn each φi = 10−4, setting to zero the two others. Because of the
smallness of the φi, we will have m̂ν ≈ m̂0

ν and U ≈ U0; for definiteness, we select the parameters
of U0 to be: θ23 = π/4, θ12 = 35◦, θ13 = 10−3, δ = α1 = α2 = 0.

For ml = 10−3 eV (thick red line) and ml = 10−1 eV (thin blue line), the upper plots of Figs. 1
and 2 show the ratio of the asymmetry computed including quantum effects (ηqu

B ) to the classical
2For M0

ν > 109 GeV the results do not change significantly.
3Indeed, the term proportional to {φ1, φ2, φ3} vanishes when {α2 − α1, 2δ + α1, 2δ + α2} = π + mod(2π),

respectively. The latter two conditions imply α2 − α1 = 0 + mod(2π), in conflict with the first condition.
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Figure 1: Dependence on c(1), in normal hierarchy. Thick red and thin blue lines correspond
to m1 = 10−3 eV and m1 = 10−1 eV, respectively. Top: The absolute value of the ratio of the
baryon asymmetry with quantum effects (ηqu

B ) and without quantum effects (ηcl
B). Bottom: The

absolute values of ηqu
B (solid lines) and ηcl

B (dashed lines).
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asymmetry (ηcl
B), for NH and IH respectively. The corresponding lower plots show the absolute

value of ηB with (solid line) and without (dashed line) quantum effects. In the classical case,
the resonant point is usually reached for c(1) ∼ 0.01, the only exception being IH with φ1 6= 0
where it is reached for c(1) = O(1). Let us recall that the natural range for radiatively-induced
c(1) is around 1/(4π)2 = 6× 10−3. As can be seen, quantum effects induce an enhancement of ηB
at small values of c(1). Such an enhancement is caused mainly by the second (sin) term of the
function m(i,j). For both NH and IH quantum effects seem to be important for c(1) . 10−3, the
only exception being the case of nearly degenerate light neutrinos with φ1 as the main source of
CPV in leptogenesis. In the latter case, values of c(1) up to 10−2 could do the job.

The figures also show that with degenerate light neutrinos quantum effects are larger, as
expected, but ηB is more suppressed. Since the baryon asymmetry scales linearly with φi one
would need these phases to be larger than about 10−4 to reproduce the observed value of the
baryon asymmetry. The dependence on ml is shown in more detail by the plots of Figs. 3 and 4
for NH and IH respectively, selecting two representative values of c(1): c(1) = 6×10−3 (radiatively
induced) and c(1) = 2× 10−5. Notice that the inclusion of the terms proportional to c(2)

1 , setting
for instance c(2)

1 = (c(1))2 in Eq.(6), does not change the above results.

5.2 Analytical estimates

In this subsection we will derive a simple analytical estimate for the ratio

R ≡
|ηqu
B |
|ηcl
B|

∣∣∣∣
c(1)→0

=
|
∑

α(Y∆α)qu|
|
∑

α(Y∆α)cl|

∣∣∣∣
c(1)→0

, (25)

and check that it is in agreement with the numerical findings.
The dominant contribution to the asymmetry will come from the least washed-out flavour β,

e.g. the one with the smallest Kβ. Therefore, as a first approximation we take:

R '
|(Y∆β

)qu|
|(Y∆β

)cl|

∣∣∣∣
c(1)→0

. (26)

In general, Y∆β
receives three contributions from the out-of-equilibrium decays of the three Ni’s.

Each of these terms is proportional to the CP asymmetry εiβ, which contains (λνλ
†
ν)ijm(i,j), with

j 6= i. The expression (13) for λνλ
†
ν tells us that if e.g. only φ1 6= 0, the only non-zero off-diagonal

entries are those with (i, j) = (1, 2) and (2, 1).
In the limit c(1) → 0, the mass splittings ∆Mji become small (compared to the scale M0

ν ),
and so the arguments of the periodic functions in m(i,j) are also small, in the range of z where
the lepton asymmetry is generated. The sin2 term in m(i,j) is completely negligible; instead, the
sin term has in front an amplitude proportional to 1/∆Mji. Therefore, the dependence on c(1)

cancels in this limit and the resulting quantity is

m(i,j)(z) ' − Γj
2H(M1)

z2 ' −1
2
Kjz

2 . (27)

This disappearance of c(1) explains the plateaux observed in the upper plots of Figs. 1 and 2 in
the limit of very small c(1).
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Let us consider the case where only φi 6= 0. Looking at the expression (13), we only have
two non-zero asymmetries, say εjβ and εkβ, but we choose the one containing the least wash-
out parameter Kj , since it corresponds to the most out-of-equilibrium RH neutrino whose decay
produces the largest asymmetry; so we just take εjβ(z) ' −ε̄jβKjz

2/2, where ε̄jβ is the CP
asymmetry without the memory factor.

Our choices for the lightest neutrino masses (ml = 10−3 eV, 10−1 eV) make all of the Ki’s
greater than or of order 1. In such a case, it is a good approximation to take dYNj/dz ' dY eq

Nj
/dz =

−z2K1(z)/4g∗ (here and in the following K1,K2 are the modified Bessel functions of the first and
second kind, respectively). Then, an approximate solution to the Boltzmann equations (Eqs. (61)
and (62) in Appendix A) is found using the steepest descent method:

(Y∆β
)cl ' − 1

4g∗

∫ ∞
0

dz ε̄jβz2K1(z)e−
Kβ |Aββ |

4

R∞
z dz′z′3K1(z′) (28)

' −
¯εjβ
g∗

1
Kβ|Aββ |z̄1

, (29)

where z̄1 satisfies the condition: Kβ |Aββ |
4 z̄3

1K1(z̄1) + 3
z̄1
− K2(z̄1)
K1(z̄1) ' 0. A good analytical approxi-

mation for z̄1, valid for Kβ & 1, is z̄1 ' 3.47 [log(Kβ)]0.64.
Taking into account the quantum correction factor (27) gives:

(Y∆β
)qu ' − 1

4g∗

∫ ∞
0

dz εjβ(z)z2K1(z)e−
Kβ |Aββ |

4

R∞
z dz′z′3K1(z′) (30)

'
ε̄jβ
8g∗

Kj

∫ ∞
0

dz z4K1(z)e−
Kβ |Aββ |

4

R∞
z dz′z′3K1(z′) (31)

'
ε̄jβ
2g∗

Kj

Kβ|Aββ |
z̄2 . (32)

where z̄2 satisfies the condition: Kβ |Aββ |
4 z̄3

2K1(z̄2) + 4
z̄2
− K2(z̄2)
K1(z̄2) ' 0. Since one expects z̄1,2 > 1,

they satisfy almost the same condition; thus it is reasonable to take: z̄1 ' z̄2 ≡ z̄. The expressions
(29) and (32) lead to the simple estimate:

R(φi 6= 0) ' 1
2
Kj z̄

2 ∼ 10Kj [log(Kβ|Aββ |)]1.28 , (33)

where we neglected O(1) factors, since we are only interested in getting the order of magnitude
of the importance of the quantum effects over the classical approximation. If we had taken lower
values of ml, thus giving Kj = min(Ki) < 1, the analytical estimate would have proceeded in a
different way. Though, R receives a leading contribution still proportional to Kj as in (33), plus
corrections going like 1

z2eq

Kβ
Kj

, where zeq is defined as the “time” at which the number density of

Nj reaches the equilibrium one: YNj (zeq) = Y eq
Nj

(zeq). For the reference values we considered, this
additional term is ∼ 10−2Kβ/Kj . As described later, such a correction might be important in
the limit of very small Kj , i.e. very small ml, since the leading term is suppressed in that limit.

Let us now apply the analytical result (33) to the specific cases analysed numerically in the
previous subsection.

Normal Hierarchy. With the parameters chosen for the numerical analysis, the least washed-
out flavour is β = e, while the Ki’s are in the order K1 < K2 < K3. Thus, the previous arguments
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lead to

R(φ1 6= 0) ' R(φ2 6= 0) ∼ 10K1 [log(Ke|Aee|)]1.28 , R(φ3 6= 0) ∼ 10K2 [log(Ke|Aee|)]1.28 . (34)

In the case m0
1 = 10−3 eV, one has K1 ' 0.9,K2 ' 8.4 and Ke ' 3.4, giving

R(φ1 6= 0) ' R(φ2 6= 0) ∼ O(10) , R(φ3 6= 0) ∼ O(102) . (35)

In the case m0
1 = 10−1 eV, one has K1 ' 93.5,K2 ' 93.8 and Ke ' 93.6, giving

R(φ1 6= 0) ' R(φ2 6= 0) ' R(φ3 6= 0) ∼ O(104) . (36)

Such estimates are in good agreement with the numerical values for ηqu
B /η

cl
B in the c(1) → 0 limit,

shown in the upper plots of Fig. 1.

Inverse Hierarchy. In this case the least washed-out flavour is β = µ, while the Ki’s are in
the order K3 < K1 < K2. Repeating the same analysis as before, one finds

R(φ1 6= 0) ∼ 10K1 [log(Kµ|Aµµ|)]1.28 , R(φ2 6= 0) ' R(φ3 6= 0) ∼ 10K3 [log(Kµ|Aµµ|)]1.28 .
(37)

In the case m0
3 = 10−3 eV, one has K1 ' 46,K3 ' 0.9 and Kµ ' 24, giving

R(φ1 6= 0) ∼ O(103) , R(φ2 6= 0) ' R(φ3 6= 0) ∼ O(102) . (38)

In the case m0
3 = 10−1 eV, one has K1 ' 104,K2 ' 93 and Kµ ' 102, giving

R(φ1 6= 0) ' R(φ2 6= 0) ' R(φ3 6= 0) ∼ O(104) . (39)

Again, these orders of magnitudes agree very well with the c(1) → 0 limit found by numerical
integration, as one can see from the upper plots of Fig. 2.

As anticipated before, the same analytical approximation (33) qualitatively explains also part
of the dependence on ml, for very small c(1) (the thin blue line in the upper plots of Figs. 3 and 4).
Indeed, by considering the various Kα and Ki as functions of the light neutrino masses, as given
by Eqs. (20)-(23), one can recover the decreasing behaviour of R as ml becomes small. In some
cases, though, the main term in R given by (33) turns out to be proportional to ml itself. They
are the cases φ1, φ2 6= 0 for NH and φ2, φ3 6= 0 for IH. In such situations, when ml is too small
(compared to m∗ ' 10−3 eV) the leading contribution to R is suppressed and the next-to-leading
term proportional to 1/Kj starts being important. This describes the change of behaviour which
can be seen in the upper plots of Figs. 3 and 4, in the cases we mentioned above.

The fact that such a change in R occurs at different values of ml for NH and IH can be seen as
follows. For NH, the next-to-leading order term contains Ke/K1, as functions of the light neutrino
masses; since s13 is tiny, the main contribution will come from the term with m2/m1 = mi/ml. On
the contrary, for IH the largest term in the ratio Kµ/K3 is the one with m1/m3 = mh/ml, which
is generally an order of magnitude greater than mi/ml for NH. Therefore, the next-to-leading
term starts being relevant, in IH, at a larger value of ml than in NH.

In this Section we have considered the effect of the splitting induced by c(1) - namely φi as
sources of CPV. We have found that what is important for quantum effects to be sizable is not the
magnitude of the washout parameters K, which is independent of c(1) in the MLFV framework.
Rather, what is crucial is the frequency and the amplitude of the sin oscillating term, which have
to be respectively small and large. This requires small c(1) and/or strong degeneracy among the
light neutrinos mj and mi for the quantum effects to be sizeable. In the next Section we will
analyse the case in which H = I.
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6 CP violation from light neutrino mixing (H = I).

MLFV-leptogenesis is viable in the limit H = I only in the “flavoured” regime, provided that
the heavy neutrino mass matrix receives a radiative splitting proportional to the charged-lepton
Yukawa couplings (δMν = c

(2)
4 M0

ν (he + hTe )). Here we derive the analytic dependence of the
asymmetries εiα on the parameters of the model.

The CP asymmetries read

εiα =
∑
j 6=i

F (j,i)
Im
(

(λν)iα (λ†ν)αj (λνλ
†
ν)ij
)

|λνλ†ν |ii
, (40)

where, following the notation of Section 3, λν = Ūλ0
ν and ŪMνŪ

T = M̂ν . In the limit Ū → 1,
where λ→ λ0

ν (see Eq. (8)), it is easy to verify that the εiα vanish. The key ingredient in obtaining
a non-zero result is to have non-diagonal entries in hν ≡ λνλ

†
ν and correspondingly a non trivial

Ū matrix. In order to estimate the off-diagonal entries of hν and Ū we perform a perturbative
expansion of Mν assuming c(2)

i � c(1):

Mν = M0
ν

{
I + 2c(1) h0

ν + (2c(2)
1 + c

(2)
2 + c

(2)
3 ) (h0

ν)2 + c
(2)
4 (he + hTe ) + · · ·

}
, (41)

= M + ∆ . (42)

Here M is a real diagonal matrix, with eigenvalues Mi = M0
ν [1 + 2c(1)mi/m̃ + (2c(2)

1 + c
(2)
2 +

c
(2)
3 )(mi/m̃)2], and ∆ is a real symmetric matrix given by

∆ =


c

(2)
4 M0

ν (he + hTe ) NH ,

c
(2)
4 M0

ν Ĩ (he + hTe ) ĨT IH ,

(43)

with the Ĩ defined in Eq. (16). Mν is diagonalised perturbatively by the real orthogonal matrix
Ū = I + T (T T = −T ), with

Tij =
∆ij

Mi −Mj
. (44)

To first order in c
(2)
4 /c(1) the explicit epression for λνλ

†
ν = Ūh0

νŪ
† is then

(λνλ†ν)i 6=j =
∆ij (mj −mi)
m̃(Mi −Mj)

= −c
(2)
4

c(1)
×


Re(he)ij NH ,

Re(Ĩ he ĨT )ij IH .

(45)

Using the above result in the expression of εiα (along with (λ0
ν)iα(λ0

ν)†αj), one obtains for NH:

εNHiα = −c
(2)
4

c(1)

∑
β=e,µ,τ

(mβ

v

)2 ∑
j 6=i

{
F (j,i) mj

m̃
Re
(
U∗βiUβj

)
Im (U∗αiUαj)

}
, (46)

while for IH:

εIHiα = −c
(2)
4

c(1)

∑
β=e,µ,τ

(mβ

v

)2 ∑
j 6=i

∑
m,n

{
F (j,i) mn

m̃
ĨimĨjnRe

(
U∗βmUβn

)
Im (U∗αmUαn)

}
. (47)
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In the above expressions the dominant term arises when β = τ in the sum over charged lepton
flavours. Keeping only β = τ and defining

Φ(α)
ij ≡ Re (U∗τiUτj) Im (U∗αiUαj) , (48)

the asymmetries read:

εNH1α = −c
(2)
4

c(1)

(mτ

v

)2 [
F (2,1)m2

m̃
Φ(α)

12 + F (3,1)m3

m̃
Φ(α)

13

]
(49)

εNH2α = +
c

(2)
4

c(1)

(mτ

v

)2 [
F (1,2)m1

m̃
Φ(α)

12 − F
(3,2)m3

m̃
Φ(α)

23

]
(50)

εNH3α = +
c

(2)
4

c(1)

(mτ

v

)2 [
F (1,3)m1

m̃
Φ(α)

13 + F (2,3)m2

m̃
Φ(α)

23

]
. (51)

The IH case is obtained by a straightforward permutation of indices in the mj and Φα
ij factors.

We are now in a position to identify the dependence of the baryon asymmetry on the low-energy
CP violating phases, contained in the factors Φ(α)

ij . In the case of NH, only Φ(e)
ij are relevant, as

the e flavour is the least washed-out one:

Φ(e)
12 =

1
2
s2

12c
2
12s

2
23c

2
13 sin(α1 − α2) +O(s2

13), (52)

Φ(e)
13 = s12c12s23c23c

2
13 s13 cos

(α1

2

)
sin
(α1

2
+ δ
)

+O(s2
13), (53)

Φ(e)
23 = s12c12s23c23c

2
13 s13 cos

(α2

2

)
sin
(α2

2
+ δ
)

+O(s2
13) . (54)

For IH, all flavours are roughly equally washed out, so one needs also Φ(µ,τ)
ij . Expanding to first

non-trivial order in s13 we find:

Φ(µ)
12 = −1

2
s2

12c
2
12s

2
23c

2
23 sin(α1 − α2) , (55)

Φ(µ)
13 =

1
2
s2

12s
2
23c

2
23c

2
13 sinα1 , (56)

Φ(µ)
23 =

1
2
c2

12s
2
23c

2
23c

2
13 sinα2 , (57)

Φ(τ)
12 = −1

2
s2

12c
2
12s

4
23 sin(α1 − α2) , (58)

Φ(τ)
13 = −1

2
s2

12s
2
23c

2
23c

2
13 sinα1 , (59)

Φ(τ)
23 = −1

2
c2

12s
2
23c

2
23c

2
13 sinα2 . (60)

The above expressions explain well the two main qualitative features of this scenario:

• In order to have a lepton asymmetry which does not vanish in the limit s13 → 0 it is
necessary to have non-vanishing Majorana phases.

• In the limit α1 = α2 = 0 the lepton asymmetry is proportional to s13 sin δ but the overall
scale is substantially smaller than in the generic case with non-vanishing Majorana phases.
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Figure 5: Left: ηB vs. (α1 − α2)/2 varying m1 ≤ 10−2 eV, s13 ≤ 0.1, and 0 < δ < 180◦ in the
NH scenario. Right: ηB vs. δ for α1 = α2 = 0, setting m1 = 10−3 eV and s13 = 0.03 in the NH
scenario. In both plots c(2)

4 = 10−2, c(1) = 10−1, Mν = 109 GeV, and red (blue) points correspond
to the inclusion (exclusion) of quantum effects.
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Figure 6: Dependence on m1, in normal hierarchy and H = 1. Thick red and thin blue lines
correspond to c(1) = 6 × 10−3 and c(1) = 2 × 10−5, respectively; the other RH mass splitting
coefficients are taken to be: c(2)

1,2,3 = 0 and c(2)
4 = 0.1c(1). The PMNS phases and s13 are chosen to

be α1 = 36◦, α2 = 60◦, δ = 0, s13 = 10−3 and α1 = α2 = 0, δ = π/4, s13 = 0.1. Top: The absolute
value of the ratio of the baryon asymmetry with quantum effects (ηqu

B ) and without quantum
effects (ηcl

B). Bottom: The absolute values of ηqu
B (solid lines) and ηcl

B (dashed lines).

Qualitatively, these two observations agree with the conclusions obtained in Ref. [23] by means
of a numerical study.4 They are also qualitatively confirmed by our numerical evaluation of the

4 A precise numerical comparison with Ref. [23] is not possible given the different assumptions about the structure

of the c
(i)
j .
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Figure 7: Dependence on m3, in inverse hierarchy. Thick red and thin blue lines correspond
to c(1) = 6 × 10−3 and c(1) = 2 × 10−5, respectively; the other RH mass splitting coefficients
are taken to be: c

(2)
1,2,3 = 0 and c

(2)
4 = 0.1c(1). The PMNS phases and s13 are chosen to be

α1 = 36◦, α2 = 60◦, δ = 0, s13 = 10−3 and α1 = α2 = 0, δ = π/4, s13 = 0.1. Top: The absolute
value of the ratio of the baryon asymmetry with quantum effects (ηqu

B ) and without quantum
effects (ηcl

B). Bottom: The absolute values of ηqu
B (solid lines) and ηcl

B (dashed lines).

baryon asymmetry taking into account quantum effects, as shown in Fig. 5.
It should be stressed that the above observations are only the main qualitative features and

do not describe in detail all the allowed possibilities. In particular, the complete numerical study
shows that the ηB ∝ s13 sin δ behaviour in the α1 = α2 = 0 limit, derived from a linear expansion
in s13 and in the approximation Ke � Kµ,τ , is a good approximation only for s13 � 0.1 and
small m1. For large s13 and large m1 values the O(s2

13) terms generate a sizable correction to
the formally leading s13 sin δ term. As a result, the asymmetry assumes a form of the type
ηB ∝ sin δ(1 + b cos δ), with b = O(1).

As far as the size of the baryon asymmetry is concerned, if the Majorana phases are large
one can easily reach values of ηB which are consistent with the experimental observations (see
Fig. 5 left). This is not possible if the Majorana phases are set to zero, at least in the single-Higgs
scenario considered so far. In this case ηB turns out to be smaller than the experimental value by
at least one order of magnitude. However, the overall normalization of ηB changes if we consider
a two-Higgs doublet scenario (such as the Higgs sector of the MSSM), where the charged-lepton
Yukawa couplings are enhanced by tanβ = 〈HU 〉/〈HD〉 > 1. In this case ηB ∝ tan2 β and the
overall normalization can easily reach the experimental value even if the Majorana phases are set
to zero. The MLFV framework with H = I, vanishing Majorana phases and large tanβ, provides
a concrete scenario where the observed baryon asymmetry is directly linked to the measurable
CP violating phase of the low-energy neutrino mass matrix.

We conclude that the impact of quantum effects in the H = I case is qualitatively very similar
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to the H 6= I scenario: memory effects become sizable for small splitting (in particular small
c(1)) and in the limit of light degenerate neutrinos. An illustration of the impact of these effects
is provided by the the plots in Fig. 6–7. As can be noted, the effects can be quite dramatic,
especially for IH. However, it should also be stressed that the largest relative impact is obtained
in regions of the parameter space where ηB is well below the experimental value.

7 Conclusions

In this paper we have studied resonant leptogenesis in the MLFV framework where it is assumed
that the charged-lepton and the neutrino Yukawa couplings are the only irreducible sources of
lepton-flavour symmetry breaking. In such a framework, the heavy RH neutrinos are highly de-
generate in mass and their decays in the early Universe may give rise to the observed baryon
asymmetry through the mechanism of resonant leptogenesis. Previous studies on the viability
of leptogenesis in the MLFV framework [21, 22, 23] have been based on the assumption that
classical Boltzmann equations suffice to analyse the dynamical generation of the baryon asymme-
try. However, it has been recently shown [24, 26] that quantum Boltzmann equations are a more
appropriate tool to study such a dynamics when the heavy RH neutrinos are degenerate in mass.
Indeed, the quantum Boltzmann equations obtained starting from the non-equilibrium quantum
field theory reveal that the CP asymmetry is a time-dependent oscillatory function which reduces
to the value obtained in the classical approach only if the oscillation time is much larger than the
interaction time. In resonant leptogensis this is not the case.

We have shown both analytically and numerically that neglecting the time dependence of the
CP asymmetry may underestimate the baryon asymmetry by several orders of magnitude when
a strong degeneracy among heavy RH neutrinos and small mass splittings in the light neutrino
sectors are present. This is true both when the CP phases come from the RH sector (phases in
the matrix H) and when they come entirely from the left-handed sector (H = I) and may be
identified with the low energy PMNS phases.
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A Conventions for Boltzmann equations

In the early Universe the quantum numbers conserved by sphaleron interactions are the ∆α =
B/3− Lα. The pair of Boltzmann equations describing the generation of the baryon asymmetry
are

dYNi
dz

= −Di

(
YNi − Y

eq
Ni

)
, (61)
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dY∆α

dz
= −

∑
i

εiαDi

(
YNi − Y

eq
Ni

)
−Wα|Aαα|Y∆α , (62)

where at equilibrium the Ni number density normalised to the entropy density of the universe is
Y eq
Ni

= z2
iK2(zi)/(4g∗), where zi = z

√
xi, g∗ = 106.75 and K2(zi) is a modified Bessel function of

the second kind. The washout parameters are generically defined by

Kiα ≡
Γ(Ni → `αH̄)
H(T = Mi)

, (63)

and we also make use of the quantities: Kα =
∑

iKiα and Ki =
∑

αKiα. In terms of the
parameters of the model, Kiα = |(λν)iα|2v2/(Mim∗) with m∗ ≈ 10−3 eV. The decay and washout
terms appearing in the Boltzmann equations are

Di = Ki xi z
K1(zi)
K2(zi)

, Wα =
∑
i

1
4
Kiα
√
xi K1(zi) z3

i , (64)

while the matrix A is given by5

A = −diag(151/179, 344/537, 344/537), for M1 . 109GeV. (65)

For 109GeV . M1 . 1012GeV and M1 & 1012 GeV, the two-flavour and the one-flavour regimes
should be applied, respectively [29].

Finally,

YB =
12
37

∑
α

Y∆α(z →∞) , (66)

to be compared with the measured value YB = (8.7± 0.3)× 10−11 or with the baryon asymmetry
normalized with respect to the photon number density (instead of the entropy density) ηB =
(6.3± 0.3)× 10−10.

B Analysis of CP violating weak-basis invariants

The independent CP-violating phases of the model can be characterised in terms of weak-basis
invariants, i.e. quantities that are insensitive to changes of basis or re-phasing of the lepton fields.
The MLFV scenario under investigation has six independent CPV invariants coming from the
Yukawa sector.

The simplest necessary conditions for CP invariance can be cast in the following weak-basis
invariant form [32]

B1 ≡ Im Tr
[
hν (M †νMν)M∗ν h

∗
νMν

]
= 0 , (67)

B2 ≡ Im Tr
[
hν (M †νMν)2M∗ν h

∗
νMν

]
= 0 , (68)

B3 ≡ Im Tr
[
hν (M †νMν)2M∗ν h

∗
νMν(M †νMν)

]
= 0 , (69)

5We used the approximation in which A is a diagonal matrix. For the full expression see refs. [27, 28, 29].
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where hν = λνλ
†
ν and Mν denotes a generic heavy neutrino mass term. The invariants B1,2,3 are

independent and survive in the limit λe → 0. One can construct three other independent invariants
that explicitly 6 involve λe by simply replacing one hν entry in B1,2,3 with he ≡ λνλ†eλeλ†ν :

B̃1 ≡ Im Tr
[
hν (M †νMν)M∗ν h

∗
eMν

]
= 0 , (70)

B̃2 ≡ Im Tr
[
hν (M †νMν)2M∗ν h

∗
eMν

]
= 0 , (71)

B̃3 ≡ Im Tr
[
hν (M †νMν)2M∗ν h

∗
eMν(M †νMν)

]
= 0 . (72)

Note that B1,2,3 and B̃1,2,3 are in direct correspondence with (linearly independent combi-
nations of) the CP asymmetries ε(j,i)α relevant for flavoured leptogenesis. In particular, B1,2,3

correspond to the combinations relevant for the 1-flavour regime. This can be seen by working in
the weak-basis where Mν and λe are diagonal. In this basis, for example, B1 and B̃1 read:

B1 =
∑
i<j

MiMj(M2
j −M2

i )
∑

α=e,µ,τ

Im
[
(λν)iα (λ†ν)αj (λνλ†ν)ij

]
B̃1 =

∑
i<j

MiMj(M2
j −M2

i )
∑

α=e,µ,τ

m2
α

v2
Im
[
(λν)iα (λ†ν)αj (λνλ†ν)ij

]
. (73)

If Mν is proportional to the identity, the hermiticity of hν,e and the cyclic property of the
trace operation imply that the Bi, B̃i vanish identically. The next step is to break the degeneracy
of the heavy neutrinos in a way consistent with the MLFV hypothesis. Selecting for convenience
the 0-superscript basis, let us now investigate under which conditions on Mν of Eq.(6) and λ0

ν of
Eq.(8) the Bi, B̃i are non-vanishing.

• If we confine ourselves to terms quadratic in the Yukawa couplings, i.e. proportional to c(1),
then we have that:

– Bi = 0 because of the hermiticity of h0
ν and properties of the trace operator. This

implies that in the unflavoured regime the CP asymmetries vanish;

– B̃i 6= 0 as long as H 6= I. Since B̃i ∝ c(1)Im Tr
[
(h0
ν)ah∗e

]
= 0 (a is some integer) and

the restriction H = I implies that h0
ν is real, it turns out that leptogenesis is possible

in the flavoured regime only if H 6= I.

• If we include those terms in MR that are quartic in the Yukawa couplings, i.e. proportional
to c(2)

1,2,3,4, then:

– Bi 6= 0 if any of the c(2)
i 6= 0, as long as H 6= I. If H = I then not only h0

ν is real,
but also Mν and therefore B1,2,3 = 0. So one concludes that with H = I unflavoured
leptogenesis is not viable;

– B̃i 6= 0 if any of the c(2)
i 6= 0. In this case, even setting H = I leads to non-zero B̃i as

long as c(2)
4 6= 0. So one concludes that leptogenesis with H = I is potentially viable

only in the flavoured regime with c
(2)
4 6= 0.

6 Of course λe can also appear implicitly through the contributions to Mν allowed by MLFV.
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In conclusion, flavour effects open at least in principle two new regimes for MLFV-leptogenesis
which are not allowed in the 1-flavour limit: (i) the case in which RH mass splitting is induced
only (or mainly) by c(1). This situation requires H 6= I, namely CPV in the RH sector; (ii) the
case in which CPV arises only from PMNS phases, namely H = I and Mν is real.

References

[1] D. N. Spergel et al. [WMAP Collaboration], arXiv:astro-ph/0603449.

[2] M. Fukugita and T. Yanagida, Phys. Lett. B 174, 45 (1986).

[3] G. F. Giudice, A. Notari, M. Raidal, A. Riotto and A. Strumia, Nucl. Phys. B 685, 89 (2004)
[arXiv:hep-ph/0310123]; W. Buchmuller, P. Di Bari and M. Plumacher, Annals Phys. 315
(2005) 305 [arXiv:hep-ph/0401240].

[4] A partial list: W. Buchmuller, P. Di Bari and M. Plumacher, Nucl. Phys. B 643 (2002)
367 [arXiv:hep-ph/0205349]; J. R. Ellis, M. Raidal and T. Yanagida, Phys. Lett. B 546
(2002) 228 [arXiv:hep-ph/0206300]; G. C. Branco, R. Gonzalez Felipe, F. R. Joaquim and
M. N. Rebelo, Nucl. Phys. B 640 (2002) 202 [arXiv:hep-ph/0202030]; G. C. Branco, R. Gon-
zalez Felipe, F. R. Joaquim, I. Masina, M. N. Rebelo and C. A. Savoy, Phys. Rev. D 67,
073025 (2003) [arXiv:hep-ph/0211001]; R. N. Mohapatra, S. Nasri and H. B. Yu, Phys.
Lett. B 615 (2005) 231 [arXiv:hep-ph/0502026]; A. Broncano, M. B. Gavela and E. Jenkins,
Nucl. Phys. B 672 (2003) 163 [arXiv:hep-ph/0307058]; A. Pilaftsis, Phys. Rev. D 56 (1997)
5431 [arXiv:hep-ph/9707235]; E. Nezri and J. Orloff, JHEP 0304 (2003) 020 [arXiv:hep-
ph/0004227]; S. Davidson and A. Ibarra, Nucl. Phys. B 648, 345 (2003) [arXiv:hep-
ph/0206304]; S. Davidson, JHEP 0303 (2003) 037 [arXiv:hep-ph/0302075]; S. T. Petcov,
W. Rodejohann, T. Shindou and Y. Takanishi, Nucl. Phys. B 739 (2006) 208 [arXiv:hep-
ph/0510404].

[5] P. Minkowski, Phys. Lett. B 67 (1977) 421; M. Gell-Mann, P. Ramond and R. Slansky, Pro-
ceedings of the Supergravity Stony Brook Workshop, New York 1979, eds. P. Van Nieuwen-
huizen and D. Freedman; T. Yanagida, Proceedinds of the Workshop on Unified Theories and
Baryon Number in the Universe, Tsukuba, Japan 1979, ed.s A. Sawada and A. Sugamoto;
R. N. Mohapatra, G. Senjanovic, Phys.Rev.Lett. 44 (1980)912.

[6] A.D. Sakharov. JETP Lett. 5 (1967) 24.

[7] For a review, see A. Riotto and M. Trodden, Ann. Rev. Nucl. Part. Sci. 49, 35 (1999).

[8] V.A. Kuzmin, V.A. Rubakov, and M.E. Shaposhnikov. Phys. Lett., B155:36, 1985.

[9] S. Davidson and A. Ibarra, Phys. Lett. B 535, 25 (2002).

[10] A. Abada, S. Davidson, F. X. Josse-Michaux, M. Losada and A. Riotto, JCAP 0604, 004
(2006).

[11] S. Antusch and A. M. Teixeira, JCAP 0702, 024 (2007).

[12] F. R. Joaquim, I. Masina and A. Riotto, arXiv:hep-ph/0701270.

[13] For a recent review, see T. Moroi, AIP Conf. Proc. 805, 37 (2006).

20

http://arxiv.org/abs/astro-ph/0603449
http://arxiv.org/abs/hep-ph/0310123
http://arxiv.org/abs/hep-ph/0401240
http://arxiv.org/abs/hep-ph/0205349
http://arxiv.org/abs/hep-ph/0206300
http://arxiv.org/abs/hep-ph/0202030
http://arxiv.org/abs/hep-ph/0211001
http://arxiv.org/abs/hep-ph/0502026
http://arxiv.org/abs/hep-ph/0307058
http://arxiv.org/abs/hep-ph/9707235
http://arxiv.org/abs/hep-ph/0004227
http://arxiv.org/abs/hep-ph/0004227
http://arxiv.org/abs/hep-ph/0206304
http://arxiv.org/abs/hep-ph/0206304
http://arxiv.org/abs/hep-ph/0302075
http://arxiv.org/abs/hep-ph/0510404
http://arxiv.org/abs/hep-ph/0510404
http://arxiv.org/abs/hep-ph/0701270


[14] M. Flanz, E. A. Paschos and U. Sarkar, Phys. Lett. B 345 (1995) 248 [Erratum-ibid.
B 382 (1996) 447] [arXiv:hep-ph/9411366]; L. Covi and E. Roulet, Phys. Lett. B 399,
113 (1997) [arXiv:hep-ph/9611425]; A. Pilaftsis, Phys. Rev. D 56, 5431 (1997) [arXiv:hep-
ph/9707235]; T. Hambye, Nucl. Phys. B 633, 171 (2002) [arXiv:hep-ph/0111089]; A. Pilaftsis
and T. E. J. Underwood, Nucl. Phys. B 692, 303 (2004) [arXiv:hep-ph/0309342]; A. Pilaftsis
and T. E. J. Underwood, Phys. Rev. D 72, 113001 (2005) [arXiv:hep-ph/0506107].

[15] R. S. Chivukula and H. Georgi, Phys. Lett. B 188 (1987) 99; L. J. Hall and L. Randall,
Phys. Rev. Lett. 65 (1990) 2939.

[16] G. D’Ambrosio, G. F. Giudice, G. Isidori and A. Strumia, Nucl. Phys. B 645 (2002) 155
[arXiv:hep-ph/0207036].

[17] V. Cirigliano, B. Grinstein, G. Isidori and M. B. Wise, Nucl. Phys. B 728 (2005) 121
[arXiv:hep-ph/0507001].

[18] V. Cirigliano and B. Grinstein, Nucl. Phys. B 752 (2006) 18 [arXiv:hep-ph/0601111].

[19] B. Grinstein, V. Cirigliano, G. Isidori and M. B. Wise, Nucl. Phys. B 763 (2007) 35
[arXiv:hep-ph/0608123].

[20] S. Davidson and F. Palorini, Phys. Lett. B 642 (2006) 72.

[21] V. Cirigliano, G. Isidori and V. Porretti, Nucl. Phys. B 763 (2007) 228 [arXiv:hep-
ph/0607068].

[22] G. C. Branco, A. J. Buras, S. Jager, S. Uhlig and A. Weiler, JHEP 0709 (2007) 004
[arXiv:hep-ph/0609067].

[23] S. Uhlig, arXiv:hep-ph/0612262.

[24] A. De Simone and A. Riotto, JCAP 0708 (2007) 002 [arXiv:hep-ph/0703175].

[25] W. Buchmuller and S. Fredenhagen, Phys. Lett. B 483, 217 (2000) [arXiv:hep-ph/0004145].

[26] A. De Simone and A. Riotto, JCAP 0708 (2007) 013 [arXiv:0705.2183 [hep-ph].

[27] R. Barbieri, P. Creminelli, A. Strumia and N. Tetradis, Nucl. Phys. B 575 (2000) 61; T. En-
doh, T. Morozumi and Z. h. Xiong, Prog. Theor. Phys. 111 (2004) 123;

[28] A. Abada, S. Davidson, F. X. Josse-Michaux, M. Losada and A. Riotto, JCAP 0604, 004
(2006); E. Nardi, Y. Nir, E. Roulet and J. Racker, JHEP 0601, 164 (2006).

[29] A. Abada, S. Davidson, A. Ibarra, F. X. Josse-Michaux, M. Losada and A. Riotto, JHEP
0609, 010 (2006).

[30] S. Blanchet and P. Di Bari, JCAP 0703, 018 (2007); S. Antusch, S. F. King and A. Riotto,
JCAP 0611, 011 (2006); S. Pascoli, S. T. Petcov and A. Riotto, . Rev. D 75, 083511 (2007);
G. C. Branco, R. Gonzalez Felipe and F. R. Joaquim, Phys. Lett. B 645 (2007) 432; S. Pascoli,
S. T. Petcov and A. Riotto; . Rev. D 75, 083511 (2007); G. Engelhard, Y. Grossman, E. Nardi
and Y. Nir, hep-ph/0612187; S. Blanchet, P. Di Bari and G. G. Raffelt, JCAP 0703, 012
(2007); S. Pascoli, S. T. Petcov and A. Riotto, Nucl. Phys. B 774, 1 (2007); A. De Simone
and A. Riotto, JCAP 0702 (2007) 005; T. Shindou and T. Yamashita, JHEP 0709, 043
(2007); F. X. Josse-Michaux and A. Abada, arXiv:hep-ph/0703084.

21

http://arxiv.org/abs/hep-ph/9411366
http://arxiv.org/abs/hep-ph/9611425
http://arxiv.org/abs/hep-ph/9707235
http://arxiv.org/abs/hep-ph/9707235
http://arxiv.org/abs/hep-ph/0111089
http://arxiv.org/abs/hep-ph/0309342
http://arxiv.org/abs/hep-ph/0506107
http://arxiv.org/abs/hep-ph/0207036
http://arxiv.org/abs/hep-ph/0507001
http://arxiv.org/abs/hep-ph/0601111
http://arxiv.org/abs/hep-ph/0608123
http://arxiv.org/abs/hep-ph/0607068
http://arxiv.org/abs/hep-ph/0607068
http://arxiv.org/abs/hep-ph/0609067
http://arxiv.org/abs/hep-ph/0612262
http://arxiv.org/abs/hep-ph/0703175
http://arxiv.org/abs/hep-ph/0004145
http://arxiv.org/abs/0705.2183
http://arxiv.org/abs/hep-ph/0612187
http://arxiv.org/abs/hep-ph/0703084


[31] J. A. Casas and A. Ibarra, Nucl. Phys. B 618 (2001) 171 [arXiv:hep-ph/0103065].

[32] G. C. Branco, T. Morozumi, B. M. Nobre and M. N. Rebelo, Nucl. Phys. B 617, 475 (2001)
[arXiv:hep-ph/0107164].

22

http://arxiv.org/abs/hep-ph/0103065
http://arxiv.org/abs/hep-ph/0107164

	Introduction
	A brief summary of thermal leptogenesis
	The MLFV scenario
	General Implications of MLFV for thermal leptogenesis
	CP Violation from H =I
	Dependences on c(1) and ml
	Analytical estimates

	CP violation from light neutrino mixing (H=I).
	Conclusions
	Conventions for Boltzmann equations
	Analysis of CP violating weak-basis invariants

