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Abstract: Autism spectrum disorder (ASD) is a complex neurodevelopmental condition affecting
behavior and communication, presenting with extremely different clinical phenotypes and features.
ASD etiology is composite and multifaceted with several causes and risk factors responsible for
different individual disease pathophysiological processes and clinical phenotypes. From a genetic and
epigenetic side, several candidate genes have been reported as potentially linked to ASD, which can
be detected in about 10–25% of patients. Folate gene polymorphisms have been previously associated
with other psychiatric and neurodegenerative diseases, mainly focused on gene variants in the DHFR
gene (5q14.1; rs70991108, 19bp ins/del), MTHFR gene (1p36.22; rs1801133, C677T and rs1801131,
A1298C), and CBS gene (21q22.3; rs876657421, 844ins68). Of note, their roles have been scarcely
investigated from a sex/gender viewpoint, though ASD is characterized by a strong sex gap in onset-
risk and progression. The aim of the present review is to point out the molecular mechanisms related
to intracellular folate recycling affecting in turn remethylation and transsulfuration pathways having
potential effects on ASD. Brain epigenome during fetal life necessarily reflects the sex-dependent
different imprint of the genome-environment interactions which effects are difficult to decrypt. We
here will focus on the DHFR, MTHFR and CBS gene-triad by dissecting their roles in a sex-oriented
view, primarily to bring new perspectives in ASD epigenetics.

Keywords: brain-epigenome; one-carbon metabolism genes; folate; SNPs; gene variants; epigenetics;
autism spectrum disorder (ASD); sex-gap; gender-gap

1. Introduction

In 1943, Kanner was the first to systematically define autism as an innate inability to
create normal, biologically determined, and emotional contact with others [1]. Currently,
autistic disorder, along with pervasive developmental disorder not otherwise specified
(PDD–NOS), and Asperger syndrome represent the complex set of human neurodevel-
opmental diseases collectively known as autism spectrum disorder (ASD) [2]. Although
potentially diagnosed at any age, autism has an early age of onset with more than 1% of
affected children characterized by a wide range of severity and continuous distribution
of ASD traits in the general population [3]. ASD patients typically experience difficulty
with social communication and interaction, restricted interests, and repetitive behaviors [4].
Indeed, despite the available technological advances and the innovative experimental
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approach of study, there is still not a definite and direct causal relationship or pattern to
completely understand the pathogenesis of this complex disorder [5].

On the other hand, there is evidence for specific features in common with other
diseases such as immune dysregulation and inflammation characterized by higher pro-
inflammatory cytokines (mirror of neuroinflammation), oxidative stress inception and
mitochondrial dysfunction as well as dysfunctions of other organs than the brain (e.g.,
gastrointestinal disorders) [6–8]. Although it is not clear whether to consider them as
disease-causative events, or mere consequence of other etiological processes, they are
under investigation as potential targets for ASD treatment [8–10].

ASD has a strong heritable component making it essentially a genome-based human
disease [11]. It has been reported indeed that monozygotic twins have around a 90%
chance of sharing the disease, while dizygotic twins have only a 5% to 10% risk of co-
morbidity [12]. Besides that, Fragile X Syndrome (FXS) is reported as the most common
X-linked monogenic cause of Intellectual Disability (ID) or ASD, and rare or common gene
variants, as well as particular gene deletions in the mother’s genome, might contribute to
ASD development [13]. Together with recognized gene-linked syndromes, several ASD
patients show chromosomal rearrangements [14], with a crucial time point for damage-
onset identified during embryogenesis at the stage of neural tube closure [15]. Of note,
this event has been hypothesized to have sex-related differences due to the role of specific
genes (i.e., SOX9) in affecting male phenotype development and skeletal growth [16,17].
So far, incomplete penetrance has been observed and no causative specific gene has been
definitely demonstrated to be the primary ASD contributor [13].

GWAS are now bridging the gap in knowledge existing between ASD and other
neurodevelopmental/neuropsychiatric disorders, with the latter being more extensively
investigated. Accordingly, the existence of 12 independent loci significantly associated
with attention-deficit/hyperactivity disorder (ADHD), a neurodevelopmental psychiatric
disorder overlapping ASD, has been reported also highlighting the key role of GWAS
in discovering common gene variants [18,19]. Moreover, additional common risk gene
variants have been identified as significantly associated with ASD, mainly related to
neuronal function and corticogenesis, as well as genetic correlations with other complex
disorders and traits in line with a common etiology of the different pathology [20]. Of note,
different ASD clinical phenotypes are characterized by complex polygenic architectures
and organization [20]. Finally, in the recently published largest ASD exome sequencing
study, 102 risk genes have been associated with brain development and regulation of gene
expression and neuronal communication [19].

In terms of ASD risk factors definition, there is unanimous agreement on the mul-
tifactorial framework of the etiology, suggesting that in most cases autism results from
the interaction of multiple genetic and environmental factors, as often demonstrated for
other complex diseases [21–27]. In this line, the role and interplay between genetics and
environment with effects on epigenetics and epigenomics have become the subject of inten-
sified researches [5,28,29]. Hypotheses have been attempted to explain the environmental
components of ASD, including aspects related to diet and to nutritional epigenetics [30],
economic status, vaccination, general health, environmental pollutants, gut, oral and vagi-
nal microbiomes, the latter indicating potential in utero etiopathology of ASD during
pregnancy [5,31–33]. Overall, despite the several hypotheses, the precise role of genetic
and environmental factors in determining the individual risk and disease phenotype still
needs to be fully clarified.

Among those genes associated with modification of disease susceptibility, the ones
belonging to the folate homeostasis and methionine-homocysteine recycling are gaining
interest in the context of different neuropsychiatric/neurobehavioral disorders [34,35]. In
the past decades, several studies indicated that low folate levels and vitamin B12 together
with high homocysteine (Hcy) levels were associated with neurodevelopmental disease,
especially cognitive decline in psychogeriatric and psychiatric patients [36]. This condition
may be exacerbated by the presence of specific gene polymorphisms of the folate pathway



Genes 2021, 12, 782 3 of 20

that drive folate isoforms cycling and balance [37]. In this line, a personalized folic acid
supplementation during pregnancy based on the genetic assessment of pregnant women
should be considered [37].

Overall, the gene-triad belonging to the remethylation and transsulfuration path-
ways are dihydrofolate reductase (DHFR), methylenetetrahydrofolate reductase (MTHFR),
and cystathionine-β synthase (CBS) are potential candidates as modifier genes in ASD
susceptibility.

2. One-Carbon Metabolism Pathway

One-carbon metabolism is crucial in epigenetic regulation during embryo develop-
ment and it is an integrated complex system composed of three main pathways: the folate
cycle, the methionine cycle, and the transsulfuration pathway [38]. Folate belongs to the
B-vitamins family (B9); it can be obtained from nutritional sources (e.g., leafy greens, beans,
vegetables, seeds/legumes) or by supplementation in the form of folic acid. Folate is
considered a key factor during neurodevelopment, its deficit associated with neural tube
defects (NTD) have led in the recent past to extensive fortification protocols in several
countries [39]. Dietary folate is absorbed at the intestinal level by the proton-coupled
folate transporter (PCFT) and the reduced folate carrier (RFC), shuttled to the liver via
hepatic portal vein followed by hepatocytes uptake. When secreted in blood circulation,
folate can reach several tissues and undergo cellular uptake by means of three folate recep-
tors (FR) the GPI-anchored cell membrane FRα and FRβ, and the secreted form FRγ [40].
The receptors are differentially expressed in the different tissues, although FRα plays
the main role in cellular uptake [40]. Once in the cells, reduced folate isoforms act as
cofactors in the one-carbon units metabolism [41,42]. Importantly, as they serve as one-
carbon carriers for methyl group transfer to cytosine residues of CpGs promoter regions
in genomic DNA, folate has key roles in DNA synthesis/repair, in purines/pyrimidines
synthesis, aminoacid synthesis as well as in DNA/histone methylation, the latter being
one of the main epigenetic processes able to change/affect gene expression in both healthy
and disease conditions [43–45]. Overall, folate is crucial during neurodevelopment and it
represents an efficient mediator of the crosstalk between genetics and epigenetics [40,46].
Deficiencies or unbalancing of the mutual levels of the different intracellular folate iso-
forms may negatively act during fetal growth and promote pediatric cancers, leukemia,
neurodevelopmental disorders [47–51].

Folate biochemistry has been deeply investigated in the past [43]. Briefly, once in
the cells, folate is converted into its tetrahydrofolate (THF) active form by a two-step
process dependent on NADPH and DHFR. As shown in Figure 1, 5,10-methylene-THF
can be converted to 5-methyl-THF by the MTHFR enzyme and recycled back to THF by
methionine synthase (MS). 5-methyl-THF may transfer its methyl group to cobalamin
(B12) and the resulting methyl-cobalamin can act as a methyl-donor for Hcy to generate
MS-mediated methionine. Finally, the irreversible degradation of Hcy takes place by
the transsulfuration pathway via sulfur transfer from Hcy to cysteine by CBS enzyme,
considered as the only way for cysteine synthesis [52] a potent component of antioxidant
glutathione [53].
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Figure 1. Folate cycle and related genes. DHF: Dihydrofolate; THF: Tetrahydrofolate; SAM: S-
adenosyl methionine; SAH: S-adenosyl Homocysteine; MTHFR: Methylenetetrahydrofolate reduc-
tase; RCF: Reduced folate carrier; DHFR: Dihydrofolate reductase; dUMP: Uridine monophos-
phate; dTMP: Thymidine monophosphate; DMG: Dimethylglycine; MS: Methionine synthase; CBS:
Cystathionine-β-synthase; H-X: Methyl acceptor; H-CH3: Methylated acceptor; TS: Thymidylate syn-
thase; MTHFD1: Methylenetetrahydrofolate dehydrogenase-1 (NADP+ dependent); CSE: Cystathio-
nine γ-lyase; GCS: γ-glutamylcysteine synthetase; GSH: Glutathione; GSSG: Glutathione disulfide.

Males typically show higher Hcy circulating levels compared to females (about 10–15%
higher), though the sex gap is normally reduced by women menopause transition. Folate
deficiency is associated with hyperhomocysteinemia, a recognized risk factor for several
pathological conditions, with a strong inverse relation driven by the number of variant
alleles in the MTHFR gene [43,49]. In a recent study performed in Israel where no national
folic acid fortification programs exist, males, as expected, showed the lowest folate levels
compared to females [54]. The consequence of low folate on Hcy levels was that males had
higher Hcy than females also in presence of normal B12 levels and independently from age
and estrogen effect [54].

Potential explanations may be due to sex-related differences in the prevalence and ef-
fects of polymorphic gene variants [55]. Accordingly, anomalous transsulfuration pathway
and dysregulated folate or Hcy metabolism may lead to aberrant redox homeostasis and
neurodegeneration, and in turn, increased ASD susceptibility [56–58]. Several studies have
indeed reported a correlation between high Hcy and low folate, vitamin B6, and B12 levels
with ASD and severity [58,59]. Of note, gastrointestinal disorders experienced by ASD chil-
dren may be also due to insufficient intake of B-family vitamins responsible for increased
circulating Hcy [60]. As a proof of concept of the proposed link, folate supplementation
would result in improved clinical symptoms in ASD patients [61], in reducing Hcy levels,
and in glutathione metabolism optimization [62,63].

Changes in levels of metabolites belonging to the methionine and folate cycle can
be considered epigenetic predictive biomarkers for ASD as well as potential therapeutic
targets though correlations with ASD etiology/severity still need to be defined [64,65].
Overall, in a future perspective, mother-child genomes and epigenetics interactions might
become new targets for innovative therapeutic interventions.

2.1. MTHFR Gene and Functions

MTHFR gene is located on chromosome 1 (1p36.22), it comprises 12 exons and encodes
for a protein product of 697aa [66]. Within the folate cycle, the MTHFR enzyme catalyzes
the synthesis of the active folate isoform (i.e., 5-methyl-THF) efficiently involved in DNA
synthesis and methylation processes [43,51]. MTHFR gene defects and variants have been
associated with an array of complex neurological conditions [67,68].
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The main investigated and clinically effective MTHFR single nucleotide polymor-
phisms (SNP) are the C677T transition (rs1801133) and the A1298C transversion (rs1801131).
There is an estimate that more than 60% of the general population carries one of the two
polymorphic alleles, and at least 10% of them carries both the alleles being homozygotes
(677TT or 1298CC) and/or compound heterozygotes rarely in cis (CT/AC) more frequently
in trans (CT/CA) in consideration of the strong linkage disequilibrium [69].

MTHFR C677T variant is due to a cytosine change in thymine at position 677 of exon
4 leading to the replacement of an alanine by a valine (A223V) resulting in a thermolabile
enzyme with reduced enzyme activity which is particularly marked in folate deficient
conditions [49,69]. There exists a strong direct correlation between folate availability and
Hcy levels by distinct MTHFR genotypes both in normal and case patients [43,49]. For
instance, the homozygous C677T (TT) condition is associated with increased Hcy and
lower folate levels [31]. Accordingly, maternal folate status, mainly driven by interactions
between specific genetic backgrounds and diet, is of particular relevance during pregnancy
since it may favor ASD susceptibility [70,71].

MTHFR A1298C variant is due to an adenine change in a cytosine at position 1298
of exon 7 leading to the replacement of glutamic acid by an alanine (E429A) resulting in
an enzyme with reduced activity more detrimental in the homozygous 1298CC condition
though at a lesser extent than the C677T [72,73]. The association of A1298C with NTD and
mental illness seems almost controversial [67]. One possible explanation for such diverse
findings is that the risk for NTD might depend on the combined gene polymorphisms
and/or additional genes and variants also influenced by nutritional factors [69,74].

Combined heterozygosity of the two MTHFR variants leads to lower MTHFR enzyme
activity than the two single heterozygosity separately and causes high Hcy and low folate
levels to an extent comparable to 677TT homozygotes [75]. MTHFR 677T/1298C cis-
haplotype is a rare condition and it has been more frequently observed among spontaneous
abortions than in healthy neonates suggesting strong unfavorable effects [76,77].

A previous meta-analysis reported a weak correlation between MTHFR C677T poly-
morphism, depression, and anxiety in children and adults by studying 1,119 cases of
schizophrenia and 1,308 controls reporting that 677TT genotype had the greatest risk
of schizophrenia (OR = 1.48; CI 95%, 1.18–1.86), compared to subjects with CC and CT
genotype combined [78]. In the same study by comparing the CT genotype with CC
homozygotes no significant risk association was found (OR = 1.04; CI 95%, 0.87–1.25) [78].

The finding that sex and age differently influence folate and Hcy levels and in turn
cell specific methylation status ascribes to MTHFR genotypes a potential role on various
psychiatric disorders [79]. Similarly, sex hormones show targeted effects on psychiatric
disorders with a protective role of estrogen on neurodevelopment and social maturation in
schizophrenia while testosterone increases male vulnerability due to its unfavorable effect
on neurotransmitters regulation [79,80].

The role of MTHFR in ASD has been less investigated compared with other mental
illnesses, such as schizophrenia and depression, though several reports highlighted a po-
tential role of C677T and A1298C variants in ASD risk establishment (Table 1). Interestingly,
MTHFR polymorphisms and folate status might be involved in the early phase of ASD
establishment during pregnancy, as reported in both preclinical setting [80] and clinical
studies (Table 1). Of interest, studies on mother-child dyads strongly support the crucial
role of the crosstalk between mother/child gene landscapes and circumstantial conditions
such as perinatal intake of folate supplement in different ethnicities. In particular, in the
CHARGE study, a correlation between mother/child genotypes of one-carbon metabolism
genes and periconceptional vitamins intake has been reported in ASD [81]. The authors
highlight higher frequencies of 677TT homozygosis in ASD children than in healthy con-
trols, and the mothers of ASD children carrying TT-genotype less likely had prenatal
vitamins intake [71,81].

Although C677T transition was more frequently reported as potentially involved in
ASD risk establishment, synergic effects also emerged between the two MTHFR SNPs
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(Table 1) and the reported results are encouraging, though the precise role of C677T and
A1298C in ASD is still almost controversial [82]. Of note, a clinical application of genetic
testing in autism has been recently attempted in a two-year-old boy at high risk of autism
in which MTHFR genetic screening allowed an early therapeutic folate supplementation as
a conventional therapeutic regimen. This approach led to a significant clinical recovery,
supporting an effective pharmacogenetics approach in such a complex disease [83].

Table 1. Selected Studies on MTHFR, DHFR and CBS Genes Reporting Significant Associations with ASD.

Gene Key Findings Genotype/Allele Ref

MTHFR

• Increased frequency of MTHFR C677T in ASD
• Unexpected high frequency of the normal MTHFR
1298AA genotype in ASD
• Combined MTHFR 677CT/1298AC haplotype more
prevalent in ASD

677 CT/TT
1298 AA [84]

MTHFR

• Circulating methionine and SAM/SAH ratio are
significantly decreased in ASD
• Circulating cysteine, GSH, and GSH/GSSG ratio are
significantly decreased in ASD
• Disease association with MTHFR C677T and A1298C

677 CT+TT
1298/677 AC/CT combined

with RFC 80GA
[85]

DHFR

• DHFR 19bp ins/del is a risk factor for ASD
independently from and in association with folate
polymorphisms
• DHFR 19bp ins/del combined with MTHFR C677T
and A1298C

19bp del
19bp del+677T+1298C [86]

MTHFR
• MTHFR C677T emerges as primary ASD risk factor
• MTHFR A1298C emerges as additive risk factor for
ASD in combination to C677T

677 T
677 T + 1298C [72]

MTHFR

• High frequency of MTHFR 677 T-allele and
TT-genotype, 677/1298 T/A and TT/AA haplotypes in
ASD
• Preferential parental transmission of 677 T- and 1298
A-allele or 677/1298 T/A haplotypes in affected
offspring

677 T
1298 AA [87]

MTHFRCBS

• Periconceptional vitamins intake reduces the risk of
having ASD children in genetically susceptible
mothers/children dyad
• Higher ASD risk in mother MTHFR 677TT, CBS
rs234715 GT+TT with child COMT 472 AA genotypes
• Higher ASD risk in mothers also carrying other
one-carbon metabolism gene variants

677 TT combined with other
one-carbon gene variants,
both in mother and child

[81]

MTHFR • Lower ASD risk associated to folic acid supplement
strongest in MTHFR C677T carriers (mothers/children) 677 CT+TT [88]

MTHFR

• High frequency of MTHFR 677TT in ASD children
• Over-activity significantly associated to MTHFR
677TT genotype (Stratification by Autism Diagnostic
Interview)

677 TT [89]

MTHFR

• Meta-analysis: eight case-control studies included
• Higher ASD risk to MTHFR C677T polymorphism
(all comparison models)
• Lower ASD risk to MTHFR A1298C polymorphism
(recessive model)
• ASD association to MTHFR C677T polymorphism
(only in countries without food fortification)

677 CT+TT
1298 CC [71]
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Table 1. Cont.

Gene Key Findings Genotype/Allele Ref

MTHFR

• Associations to ASD with MTHFR A1298C
• Higher ASD risk to MTHFR 677CT/1298AC
combined genotype
• No significant associations in females

1298 AC+CC
677/1298 CT/AC [90]

MTHFR

• Meta-analysis: thirteen studies included (9 on
Caucasians, 4 on Asians)
• Significant association between ASD and MTHFR
C677T polymorphism

677 CT+TT
677 TT
677 T

[91]

MTHFR

• Higher MTHFR A1298C frequency in ASD (AC:
41.9%; CC: 35.5%)
• Higher MTHFR C677T frequency in ASD (CT: 48.4%;
TT 12.9%)
• Heterozygosity was equally detected (46.2%) among
patients with severe autism

677 CT+TT
677 T

1298 AC+CC
1298 C

[92]

CBS

• Higher CBS C699T frequencies distributions (TT and
CT+TT) in ASD patients
• Lower CBS C699T frequency associated with sleep
and GIT disorders
• No significant association between CBS genotypes
and severity of ASD

699 CT+TT
699 TT [93]

MTHFR

• Meta-analysis: 25 case-control studies on MTHFR
(C677T, 18 studies) (A1298C, 7 studies)
• Higher MTHFR C677T frequency in ASD
• No overall association between MTHFR A1298C and
ASD risk
MTHFR A1298C significantly associated only in
Caucasians

677 CT+TT
677 TT
677 T

1298 CC
1298 C

[94]

MTHFR

• Meta-analysis: 15 studies
• Higher ASD risk to MTHFR C677T polymorphism
(all comparison models)
• No association between MTHFR A1298C and ASD
(all comparison models)

677 CT+TT
677 TT
677 T

677/1298 T/C

[95]

DHFR
• Positive association (not adjusted) between cord
total folate and UMFA also after DHFR genotype
stratification (limited to Black children)

19bp del/del [96]

Overall, it becomes clear that there is the need for additional genetics and epige-
netics studies preferentially focused on the mother/child dyad genome comparison also
considering the low number of ASD females included in the studies.

2.2. DHFR Gene and Functions

The DHFR gene is located on chromosome 5 (5q14.1); it comprises 6 exons and encodes
for a protein product of 187 aa [97,98]. It functionally catalyzes the conversion of DHF
into THF and folic acid into DHF and THF [99]. DHF and THF are the two key folate
isoforms involved in the folate cycle and Hcy metabolism as well as in de novo synthe-
sis of a variety of essential metabolites including amino acids, lipids, pyrimidines, and
purines [68]. A different DHFR enzyme activity is decisive for the relative ratio between
optimal DNA methylation and faithful DNA replication [43]. One of the main functional
polymorphisms within DHFR gene is a 19-base pair insertion/deletion (19bp ins/del)
(rs70991108) in the promoter/first intron of the gene [68,100], associated with a limited
ability of the enzyme to convert THF into 5,10-methylene THF [68]. Alongside DHFR also
holds additional important non-folate-related roles in converting dihydrobiopterin (BH2)
to tetrahydrobiopterin (BH4) which is the co-factor for dopamine and serotonin enzymatic
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production [101]. Thus, downregulation of DHFR enzymatic activity leads to decreased
BH4 levels and to an imbalanced BH4/BH2 ratio that is essential for NO-synthesis, inhibi-
tion of superoxide release from endothelial NO-synthase and other functions including
tyrosine hydroxylase (involved in the production of l-dopa), tryptophan hydroxylase and
phenylalanine hydroxylase [101–103].

DHFR 19bp ins/del has been independently associated, alone or in combination with
other folate related gene variants, with a significant risk for ASD, possibly by interactions
between folate and the glutamatergic nervous system (Table 1) [86]. Folate isoforms
conjugate indeed with glutamate residues, facilitating the excitatory properties of glutamate.
For this reason, a dysregulated Hcy remethylation may affect the glutamatergic signaling
since it acts as an endogenous agonist of a subgroup of excitatory glutamatergic receptors
involved in the synaptic transmission. Therefore, dysregulated folate and glutamate
homeostasis can be considered combined key factors in the occurrence of ASD. Accordingly,
the Autism Genome Project Consortium published in the past a study on autism risk loci.
The Consortium considered the glutamate-related genes as promising candidates in ASD
since glutamate pathway has a key role in neuronal plasticity and development suggesting
that ASD could be considered a glutamatergic system disorder [104].

Of note, the use of DHFR inhibitors in oncologic children points out great concerns due
to potential long-term side effects. In detail, the folate antagonist methotrexate, by lowering
THF availability and in turn pyrimidine and purines production as well as RNA and DNA
synthesis, has been associated with decreased volume of subcortical structures, cognitive
impairment and increased prevalence of autistic-like symptoms among methotrexate
treated children [105,106].

It has been also reported that folic acid supplements might saturate DHFR enzyme in
the liver of humans, and then slow down the conversion of folic acid to THF taking up to 12
h for a single 5mg dose of folic acid in selected individuals carrying susceptible haplotypes,
suggesting caution regarding over-supplementation [107,108]. Concern has been expressed
particularly about unmetabolized folic acid (UMFA) that may be detrimental in the pres-
ence of specific haplotypes, particularly in pregnant women carrying selected folate gene
variants [109]. In fact, during pregnancy, unbalanced folate isoforms distribution may drive
and favor aberrant epigenetic mechanisms on the offspring, and nonetheless, maternal
folate supplementation efficiently reduces congenital malformations as NTD or cleft palate,
indiscriminate fortification may cause severe pediatric pathological conditions [109,110]. A
suboptimal conversion of folic acid into active folate, as in presence of particular DHFR
and MTHFR gene variants, reduces UMFA-threshold particularly during critical conditions
such as pregnancy, exacerbating negative side effects and concerns, suggesting a a safe
supplementation assessed by pharmacogenetics investigations [108,111].

In the context of ASD, DHFR 19bp ins/del has been suggested as an inherited modi-
fying factor during pregnancy, mainly due to an unusual DHFR activity associated with
unmetabolized pteroylmonoglutamate (i.e., therapeutic folate) during the embryogenesis
process by accumulation in the central nervous system [109]. Accordingly, a positive
correlation has been found between MTHFR C677T and DHFR 19bp ins/del in ASD indi-
viduals [86] evoking changes in the brain epigenome. The authors concluded that although
folate status and/or associated genes might not be the direct cause of ASD, environment
(i.e., nutrients)-gene interactions by affecting other gene products might modify ASD risk
mainly due to a comprehensive effect of folate machinery on the whole genome [86].

Finally, a recent multicentric study is aiming at determining if reducing folic acid
supplementation during late gestation might also reduce maternal UMFA, considered a risk
for ASD as well childhood allergy and metabolic diseases [112]. Other studies investigated
the potential association between high folate levels in maternal blood and ASD focusing on
whether different kinds of folate in cord blood could have specific associations with ASD,
reporting that higher UMFA concentrations in cord blood but not 5-methyl-THF or total
folate were associated with increased risk of ASD in black children [31,96].
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Overall, though considering the potential risk associated with specific DHFR and
MTHFR haplotypes, and in the light of the recent associations found by the research
group in the Genetic-Epigenetic-Mother-Child-Dyad-Study (GEMCDS) that discovered
unexpected opposite effects on the onset age of pediatric leukemia according to specific
haplotypes carried by the mother or the child [51], further investigations are strongly
warranted. Then, before assigning or refusing a definite association, often controversial
in the literature, both mother and child dyad genomes must be taken into account [96] to
properly readdress a targeted periconceptional use of supplementation.

2.3. CBS Gene and Functions

CBS gene is located on chromosome 21 (21q22.3), it comprises a total of 23 exons
and codes for a protein product of 551 aa [113]. The gene contains alternative exons 1
(exons la-le) and other exons defined by multiple alternatively spliced transcripts encoding
the CBS protein [113]. The 5′UTR contains one of five alternatively used exons and one
constantly present exon, while 3′UTR is encoded by exons 16 and 17 [113]. The protein is
organized as a homotetramer of 63 kDa subunits and each subunit binds two substrates (i.e.,
homocysteine and serine) [114] to catalyze the irreversible metabolization of Hcy to cysteine.
It requires vitamin B6 as an essential cofactor [115] and by means of the transsulfuration
pathway [116,117] irreversibly removes Hcy from the methionine cycle lowering, in turn,
Hcy from circulation [117]. Different from Hcy, cysteine can be taken from the diet, if
cysteine supply is high, the oxidative/desulfuration pathways may result unbalanced.
Briefly, high Hcy causes redox imbalance and oxidative stress with free radical release,
while cysteine being an antioxidant strongly contrasts oxidative damage also affecting
DNA, lipids, and proteins highlighting a role of the ASD/imprinting/epigenetic/disorders
axis [118,119].

Of note, cysteine is fundamental for protein production and for glutathione generation,
the potent mediator with antioxidant and detoxifying effects against xenobiotics [115].
Very high circulating Hcy levels are risk factors for different pathological situations and
levels above 50–100 µmol/L are considered an intermediate-severe condition [59]. An intra-
individual variability, due to the presence of the main gene variants described above, is often
described and individual genetics is globally involved in the final Hcy blood concentration.

Functional defects of the CBS enzyme cause classical homocystinuria, and associa-
tions have been demonstrated between altered methionine/homocysteine metabolism and
cognitive or behavioral diseases, ASD included [120]. CBS gene defects are associated
with reduction of normal vascular functions, increased systemic oxidative stress, brain
atrophy, and worsening of the neurological impairment in various central nervous sys-
tem disorders, in primis autism, epilepsy, Parkinson’s disease, Alzheimer’s disease, and
dementia [101,120,121]. In a study on ASD children aimed at identifying biomarkers of
increased oxidative stress and impaired methylation score, lower blood levels of methion-
ine, SAM, Hcy, cystathionine, cysteine, and total glutathione and higher blood levels of
SAH, adenosine, and oxidized glutathione have been found potentially associated with
behavioral disturbances [120]. Authors observed that anomalies in the metabolic profile,
particularly in the transsulfuration pathway, could be responsible for higher susceptibility
to environmental and/or to cellular oxidative stress and impaired methylation capability,
responsible for the clinical phenotype [120]. As stated above, a decreased CBS activity,
controlled by methionine and SAM, will increase the cysteine requirement, leading to a
decrease in total glutathione concentrations, suggesting that ASD patients are more suscep-
tible and less protected against oxidative stress, also in an epigenetic perspective [118–120].
Uncontrolled and unbalanced oxidative stress, also exacerbated by increased local tissue
iron deposits, is a crucial factor in determining tissue damage and cognitive decline, and as
recently found it is strictly directed by genetic interactions of iron homeostasis genes and
APOE haplotypes [23,122,123].

More than one-hundred different mutations, prevalently clustered in exon 3, 8, and
10, have been reported in the CBS gene as causative of complex diseases [101,113]. In a
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study on schizophrenia, it has been reported an association between the common CBS
polymorphism of 68-bp insertion (844ins68) with increased disease risk [124]. Other studies
demonstrated an association of CBS polymorphisms with ASD children [93] as the C699T
variant (rs234706) in which 699TT-homozygotes and CT-heterozygotes were significantly
more represented among ASD cases compared to healthy controls with the polymorphism
playing also a role in sleep and gastrointestinal disorders [93]. Interestingly, the frequency
of the T-allele had a significant association with the high score of the Childhood Autism
Rating Scale (CARS) and with other clinical data related to ASD participants [93].

Finally, a recent study on premature infants with encephalopathy occurring in the
setting of hypoxia-ischemia, suggested that neonatal brain injury and long-term damage
was due to CBS upregulation, highlighting this pathway as a potential molecular target to
counteract encephalopathy in premature infants also taking into account that up to 50% of
these children showed ASD [125].

3. One-Carbon Metabolism in Autism and in Other Neurological Diseases: Brain
Sex-Related Insights

In many complex diseases, neurological conditions included, sex differences are
associated with prevalence, course of the disease and outcome [126,127]. Among behavioral
abnormalities, epidemiological studies consistently reported higher ASD prevalence in
males compared with females (male: female ratio about 4:1), also considering the different
role of abnormalities detected in the mother or father of ASD children [16,126,128,129].
Moreover, ASD females show a less severe disease phenotype highlighting sex differences
also in a genetic view [130].

GWAS are demonstrating that including balanced sexes in the recruitment and anal-
yses and stratifying data by sex strongly improved the comprehension and the ability to
transfer experimental data in the clinical practice [131]. In a wide prospective study of
newly diagnosed preschool ASD children, it was observed that the sex of the affected child
with ASD was the only significant predictor of differential trajectories of symptoms over
time [132]. Boys had more stable, severe symptoms over time, whereas girls exhibited less
severe symptoms and improvement over time [132] in accordance with the evidence that
some girls no longer showed cognitive and language problems at follow-up [132].

An increased sex gap was also present when considering prevalence among very
young patients [16]. The male-to-female ratio was 1.16:1.0 when using an at-risk sample of
infants ranging from 22 to 39 months [133,134]. Moreover, research also highlighted that
the reported ratio was affected by the level of cognitive ability and the greater the attention
defects the less the difference between male/female ratios was apparent [133]. Finally,
infants aged 70–75 months had an overall male-to-female ratio of 2.61:1.0, and again when
testing only those with an IQ below 50 the male-to-female ratio fell to 1.31:1.0 [133,134].
Therefore, it would also be important to examine symptom differences between sexes, also
considering the specific developmental level [135].

Furthermore, autistic male and female patients have divergent peculiar symptoms
with males displaying heightened aggressiveness and repetitive behavior, while females
experiencing greater anxiety and depression [136]. There is also a discrepancy when
diagnosing a male child with autism compared to a female child, due to the differences
in the symptom picture, which still has in part a male-centered component in the official
criteria to diagnose and globally this contributes to a preferentially earlier diagnosis in
male children [137,138].

Since there exists a clear difference in autism between sexes, this points out to differ-
ences in the biological pathways underlying ASD development in the two sexes [134,136].
From a molecular perspective, defects in folate metabolism can be targeted to achieve a sex
specific prevention program, as well as treatment and therapy [12]. As a paradigm of this
approach, in a different clinical context it has been shown that MTHFR C677T polymor-
phism had different methylation effects stratified by sex in patients with schizophrenia with
female patients showing a tendency towards lower rates of global methylation [139]. The
combination of sex and other variables correlated with global methylation revealed that
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sex and MTHFR genotype strongly interacted, ascribing to 677 TT-homozygous females
the lowest overall methylation rates compared to males [139].

Interestingly, preclinical sex-oriented researches demonstrated correlations between
MTFHR polymorphic status and observed behaviors in mice [140]. In particular, newborn
mice with MTHFR 677TT genotype when exposed to antiepileptic drugs were positively as-
sociated with higher altered social behaviors differently expressed among female and male
mice [140]. This behavioral outcome was correlated with different cortical potency of reel-
ing level, and with altered proportions of key proteins involved in the excitation/inhibition
synapses in the brain of female mice [140].

Information and experimental data on sex differences between human brain develop-
ments according to the brain epigenome are very limited. Since some of such differences
are evident in the brain before birth, they should happen during pregnancy in which sex
imprinting actions can be mainly ascribed to the mother and less to the developing fetus.
After birth, the genome, epigenome, and gender of the newborn take place, mutually
interacting in determining the ultimate brain epigenome (Figure 2).

Figure 2. Brain epigenome imprinting. Schematic representation of genetics and epigenetics in-
teractions occurring from conception to individual adult life. On the left, paternal and maternal
hemigenome DNA demethylation processes occurring during fertilization (blue and pink lines re-
spectively). In the middle, de novo global genome methylation at the blastocyst phase is shown as
a dark dashed line. On the right, dashed red arrows indicate cross-interactions between different
epigenetics factors (e.g., sex and gender).

4. The Role of Epigenetics and Genetics: The Paradigm of the Folate Cycle

Epigenetics may provide a different view to the mechanisms and insights of the patho-
physiological processes in complex diseases such as developmental diseases, potentially
leading to the identification of innovative therapeutic targets and strategies [141]. In a
few words, epigenetics can be resumed as modifications of heritable phenotype varia-
tions with no alterations of the DNA sequence, and epigenome dysregulations have been
recognized as hallmarks in several diseases. In mammalians, epigenetic modifications
influence transgenerational inheritance by DNA methylation and histone modifications
(i.e., methylation, acetylation, phosphorylation, sumoylation, and histone gene variants)
together with small and long non-coding RNAs (i.e., micro-RNA) [19,142]. Epigenetics
emerges as a dynamic and reversible process occurring in multiple rounds with a key
role of modifications during the first phases of embryonic development when parental ge-
netic/epigenetic marks can be inherited by the offspring as recently reviewed [142]. Strong
sex differences already start at the zygote stage by the completely different methylation
process occurring within the mother and father hemigenomes: at an early zygote status
for the paternal hemigenome, characterized by an active enzymatic dependent methyla-
tion erasure before DNA replication, and by a slower rate of spontaneous methylation
erasure for the maternal hemigenome during the following cell divisions (Figure 2). This
complex process is measurable by assessing the relative ratio of 5-methyl-cytosine and
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5-hydroxy-methyl-cytosine (5mC/5hmC) the latter being the first oxidative product in the
active demethylation of 5mC [143,144].

Basically, in the brain, a de novo DNA methylation driven by DNA methyltransferases
(DNMTs) is necessary for learning and memory activities and the methylation degree
is linked to specific neural activity [145]. Interestingly, brain DNA contains 5hmC and
whole genome bisulfite sequencing (WGBS) has shown elevated percentages of non-CpG
methylated residues revealing that the most common base substitution is an adenine (i.e.,
mCA). Global methylome reorganization occurs during fetal/early-childhood develop-
ment, and during this period highly conserved non-CpG methylation (i.e., mCH) becomes
the prevalent form of methylation in the human brain genome [146]. This modification
prevails during postnatal development of the brain concomitantly with synaptogenesis and
circumstantial personal experiences altogether strongly contributing to define cell identity
with possible alterations during perinatal estradiol exposition.

Since epigenetic modifications control how and to what extent genes must be ex-
pressed, and respond to the environment stimuli, any disturbance of the normal interplay
between environmental factors and epigenetic reprogramming may result in the occur-
rence of specific disease conditions. This mechanism has been suggested for autism
initiation/progression including the onset-age. In a recent study, 84 rare epigenetic vari-
ations (epivariations) have been identified in autism compared to healthy controls [147],
with a trend of epivariations to cluster in affected autistic patients compared to unaffected
brothers/sisters within the autism families [147]. Many genetic and epigenetic factors
potentially involved in ASD, as well as the crosstalk between major gut microbiota metabo-
lites in autistic children and epigenetic changes, have also been recently discussed and
reviewed [148,149]. Interestingly, by investigating the different aberrant DNA methylation
degrees, an important sex-related difference between autistic children and sex-matched
non-autistic siblings has been found [150]. In particular, the authors reported that some
sex-specific methylation patterns (linked to mitochondrial dysfunction and metabolic
disorders) may provide a degree of protection against autism in females, highlighting
sex-specific epigenetic traits that require dedicated investigations [150]. Of note, sex-based
epigenetic differences (i.e., methylation rate) on key genes, such as the oxytocin receptor
gene OXTR, have also been recently reported [151]. However, the mechanisms underlying
these epigenetic changes are still unclear and strongly heterogeneous. The suggested criti-
cal processes are related to changes in levels of transcription of key genes during specific
crucial phases of central nervous system development, also affected by genetic and/or
environmental dynamics.

Since it has been demonstrated that several environmental factors including progeni-
tor’s diet and lifestyle can influence the inherited epigenetics trait [142,152,153], the folate
and folate cycle may represent a paradigmatic example of the inception of epigenetics in
response to environmental variances. As mentioned above, crucial epigenetic reprogram-
ming occurs during the first stages of embryo development, starting from the fertilization
step with potential effects till the stage of morula/blastocyst when the reconstituted diploid
genome begins the remethylation program [154]. Accordingly, maternal/paternal folate
status due to both genetically inherited predispositions and/or folate intake might dif-
ferentially affect the global embryonic DNA methylation program [51,155]. Of note, in a
preclinical model of autism it has been recently demonstrated that epigenetic dysregulation
(i.e., hypomethylation) of key genes (brain-derived neurotrophic factor gene BDNF and
glial fibrillary acidic protein GFAP gene) involved in the induced autistic-like behaviors in
a neonatal isolation model, can be reversed by folic acid administration [156]. Interestingly,
the treatment effects were mediated by the epigenetic regulation of BDNF and GFAP by
restoring the hypomethylated status of the two gene promoters and by antioxidant effects,
opening stimulating translational applications.

Histone methylation processes by histone methyltransferases (HMTs) are a crucial
part of the maternal influence effects on offspring. This may result via the epigenetic
code regulation of chromatin status (including chromatic reorganization), affecting in turn
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gene expression [152]. HMT activities depend on intracellular SAM levels and HMT gene
variants, connecting mother-child metabolism and cell nutrient availability [19,157]. Fo-
late deficiency and one-carbon metabolism genes also result in altered epigenetic histone
modifications and during pregnancy, they have been correlated with increased risk of
neurocognitive and/or neurobehavioral deficits such as ASD and attention deficit hyperac-
tivity disorders [158]. Finally, modified histones are secreted in the uterine environment
and may influence embryo brain development by transgenerational epigenetic histone
modifications [159].

5. Conclusions and Future Perspectives in ASD

Although the key role of folate isoforms balance/dysregulation in some complex
pathological conditions has been demonstrated, more efforts and dedicated studies are
needed to conclusively identify the most critical factors involved in ASD establishment.
In particular, there is the mandatory need to elucidate the precise mechanisms by which
sex-specific factors can modulate disease onset, severity and the different disease pheno-
types at presentation, as well as how they can help and guide the choice of useful or unsafe
dedicated treatments. To face these challenges, the synergy between advanced technologies
and experimental/clinical investigations including pharmacogenetics/genomics/OMICS
approaches [160–163] and personalized medicine [164] will allow a progression in the
pathophysiological understanding of complex neurodevelopmental/neurological diseases.
Earlier identification of informative molecular and biological biomarkers and an appro-
priate therapeutic strategy definition are the unique effective strategy to follow (Figure
3). Accordingly, the sex gap in ASD prevalence reported to be about 4:1 (males-to-females
respectively) appears to be more realistically close to 3:1 due to a potential diagnostic
gender bias that does not efficiently include ASD girls, that are therefore at high risk of not
receiving a proper and early diagnosis [165].

Figure 3. Folate OMICS-environment interactions on brain epigenomics. Snapshot of key risk
factors for ASD development and key transgenerational pathophysiological features to be faced in a
sex/gender approach.

In conclusion, due to an unavoidable mutual influence between the psychologi-
cal/social gender and the biological sex in human life, and that they both interact on
the brain development by genetics and epigenetics actions, we cannot easily separate the
effect of sex or gender on the brain epigenome establishment. Then we must begin to
consider sex and gender combined together any time a difference appears in the clinical
phenotype between women and men [166].
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