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Abstract 31 

Estrogen regulates a plethora of biological processes, under physiological and pathological 32 

conditions, by affecting key pathways involved in the regulation of cell proliferation, fate, survival 33 

and metabolism. The Notch receptors are mediators of communication between adjacent cells and 34 

are key determinants of cell fate during development and in postnatal life. Crosstalk between estrogen 35 

and the Notch pathway intervenes in many processes underlying the development and maintenance 36 

of the cardiovascular system. The identification of molecular mechanisms underlying the interaction 37 

between these types of endocrine and juxtacrine signaling are leading to a deeper understanding of 38 

physiological conditions regulated by these steroid hormones and, potentially, to novel therapeutic 39 

approaches to prevent pathologies linked to reduced levels of estrogen, such as coronary heart disease, 40 

and cardiotoxicity caused by hormone therapy for estrogen-receptor-positive breast cancer. 41 
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1. Introduction 58 

Despite many successes in the treatment of cardiovascular disease, coronary heart disease (CHD) 59 

remains the leading cause of death for both women and men [1]. Pre-menopausal women are 60 

protected against CHD, in comparison to age-matched men [2]. This protection is lost after the loss 61 

of endogenous estrogen production following natural or surgical menopause, suggesting a beneficial 62 

effect of female sex steroid hormones against CHD [3, 4]. Consistently, there is evidence of an 63 

association between endothelial dysfunction, a crucial early event in the onset of atherosclerosis, and 64 

reduced endogenous production of estrogen in women after menopause [5, 6].  65 

Reduced nitric oxide (NO) production, increased endothelium permeability and expression of 66 

proteins required for adhesion of inflammatory cells are hallmarks of endothelial dysfunction [7], and 67 

are biological processes modulated by estrogen. Estrogen promotes endothelial nitric oxide synthase 68 

(eNOS) activation, NO production [8, 9], and limits the expression of proteins involved in monocytes 69 

and neutrophils adhesion to the endothelial monolayer [10, 11], thereby preventing the migration of 70 

leukocytes to the sub-endothelial space and their subsequent production of inflammatory cytokines 71 

[12]. Specifically, in endothelial cells exposed to lipopolysaccharide (LPS) or interferon  (IFN), 72 

17β-estradiol (E2), the predominant and most biologically active form of estrogen, reduces the 73 

expression of vascular cell adhesion molecule-1 (VCAM-1) [13] and of intercellular cell adhesion 74 

molecule-1 (ICAM-1) [14]. In addition, in endothelial cell lines of brain and heart origin, estrogen 75 

strongly increases expression of the tight junction protein claudin 5, thus leading to an improvement 76 

in vascular integrity and barrier function [15] and reduced permeability to native and oxidized low 77 

density lipoproteins (LDLs) [16]. Further, estrogen promotes endothelial cell survival through the 78 

inhibition of apoptosis induced by tumor necrosis factor (TNF)  [17-20], H2O2 [21] or oxidized 79 

LDLs [22]. This is thought to be due to estrogen’s activation of Akt [18] and of mitogen-activated 80 

protein kinases (MAPKs) [19, 20], which increase expression of anti-apoptotic proteins Bcl-2 and 81 

Bcl-XL [22]. Additionally, estrogen is able to modulate oxidative stress in the endothelium through 82 

inhibition of reactive oxygen species (ROS), produced in the mitochondria [23, 24] or in the cell 83 

membrane by NADPH (nicotinamide adenine dinucleotide phosphate oxidase) oxidases (Nox) 84 

enzymes. Estrogen is also involved in the regulation of angiogenesis, a complex process leading to 85 

the formation of new blood vessels, which requires endothelial cells proliferation, migration [25] and 86 

differentiation [26].  87 

The molecular mechanisms by which the steroid receptors regulate all these biological processes, in 88 

the endothelium as well as in other tissues, have been the subject of a many extensive reviews [27-89 
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30], and they will be briefly summarized here. The effects of estrogen are mainly mediated by 90 

estrogen receptors (ERs). The most characterized are ER and ERβ, which are structurally similar 91 

and are localized in most cellular compartments, including the plasma membrane, the cytosol, the 92 

nucleus [31], and in the mitochondria [32]. For each receptor, several splice variants, mutations, post-93 

translational modifications and interactions with others regulatory proteins have been described [33]. 94 

For both ERs, the domain structure consists of the N-terminal domain (NTD), responsible for ligand-95 

independent activation of transcription; the DNA-binding domain (DBD), for sequence-specific 96 

binding to DNA, and the ligand-binding domain (LBD), which is the ligand-dependent activator of 97 

transcription [34]. The two ERs share about 97 % similarity in the DBD, 59 % in the LBD, and only 98 

18 % in NTD [35]. Due to differences in the LBD, each receptor can be targeted by specific 99 

agonist/antagonist molecules [28], thus helping the investigation of differential roles of ER and ERβ 100 

and the development of receptor-specific ligands. The molecules most commonly used to study ERs 101 

functions are: ICI 182.780, a selective estrogen receptor downregulator (SERD); 1,3-bis(4-102 

hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1H-pyrazoledihydrochloride (MPP), 103 

an ER-specific antagonist [36]; 4,4',4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol (PPT), an 104 

ER-specific agonist [36]; 4-[2-phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5-a]-pyrimidin-3-105 

yl]phenol (PHTPP), an ERβ-specific antagonist, and 2,3-bis(4-hydroxy-phenyl)-propionitrile (DPN), 106 

an ERβ-specific agonist [37]. After the binding with natural or synthetic ligands, the activated ER 107 

and ERβ can have a genomic (nuclear) or non-genomic (membrane-associated) action [3]. The 108 

genomic action corresponds to the transcription of specific target genes triggered by ERs. The two 109 

ERs regulate different set of genes in a time-, tissue- and cell-dependent manner [38-40]. These 110 

differences are due to the binding to different regulatory elements and to the recruitment of different 111 

transcription and chromatin remodeling factors, that are expressed in a cell- and tissue-specific 112 

manner [41]. The rapid non-genomic action involves instead, ERs-mediated cytoplasmatic activation 113 

of signaling pathways, such as mitogen-activated protein kinases (MAPKs), extracellular signal–114 

regulated kinases (ERK1/2), and/or phosphoinositide 3-kinase (PI3K)/Akt pathways [33]. More 115 

recently, a G protein-coupled receptor, GPR30, has been identified [42]. GPR30 can localize both in 116 

the plasma membrane [43, 44], in the endoplasmic reticulum and in the mitochondria [45]. GPR30 117 

has been implicated in a non-genomic estrogenic signaling [46], and its role has been studied both in 118 

cancer and cardiovascular context [47].  119 

The above listed biological processes regulated by estrogen are also modulated, in the endothelium, 120 

by the Notch signaling pathway. The Notch pathway is a mediator of juxtacrine communication, 121 
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involved in cell fate determination during embryonic development and postnatally, for continuously 122 

renewing tissues, such as the epidermis and the endothelium [48, 49]. Specifically, Notch is a major 123 

player in the regulation of endothelial cells activation [50], survival [18, 51, 52], proliferation [53], 124 

migration and angiogenesis [54, 55].  125 

The Notch pathway has been extensively studied for its major role in the regulation of stem cells fate 126 

[56], and since it is highly activated in many cancers types, it is still intensively investigated as a 127 

potential therapeutic target for cancer therapy [49, 57]. There is now growing evidence of a major 128 

role played by Notch in the context of vascular homeostasis [7] and crosstalk between Notch and 129 

estrogen signaling has been observed in endothelial cells [18, 58-60]. This discovery follows previous 130 

studies showing the estrogen-mediated modulation of the Notch signaling pathway in breast cancer 131 

cells [58, 61] and hippocampal neurons [62-64]. 132 

This article aims to review the existing literature on the crosstalk between Notch and estrogen in the 133 

vascular system and the role of this interplay in the protection mediated by estrogen against CHD. 134 

We will then discuss how this crosstalk could affect existing or novel therapeutic approaches 135 

involving estrogen- and Notch-mediated signaling, such as hormone replacement therapy (HRT), for 136 

the reduction of CHD risk in post-menopausal women, or anti-estrogen or anti-Notch agents for 137 

cancer therapy. 138 

 139 

2. The core Notch pathway 140 

The Notch pathway, originally discovered in Drosophila [65], is highly conserved through the 141 

evolution of Metazoan. In mammalian cells are present Notch receptors (Notch 1-4) and their ligands 142 

(Delta-like-1, 3, 4 and Jagged-1 -2), both located on the surface of cells. Notch precursor is processed 143 

into two polypeptide chains, which interact to form the functional receptor made of an extracellular 144 

(NEC) and a transmembrane subunit (NTM). Binding of ligand triggers the dissociation of NEC and 145 

the extracellular cleavage of NTM by A Disintegrin And Metalloproteases 10 and 17 (ADAM10 and 146 

ADAM17), followed by an intramembranous cleavage by -secretase complex, a multi-subunits 147 

membrane protease. The resulting cleaved and active form of Notch (NICD) then migrates into the 148 

nucleus. NICD modulates the transcription by binding the CSL (CBF1, Suppressor of Hairless, Lag-149 

1), also known as recombinant signal binding protein for immunoglobulin kJ region (RBP-Jk) 150 

transcription factor, displacing co-repressors, such as SMRT (silencing mediator for retinoid and 151 

thyroid receptor)/N-CoR (nuclear receptor co-repressor), SHARP (SMRT/HDAC-1-associated 152 
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repressor protein)/MINT/SPEN and KyoT2, and recruiting transcription co-activators, such as 153 

histone acetyltransferases CBP/p300 or PCAF/GCN5 through the binding with MAML (mastermind-154 

like) protein [49]. Notch promotes the transcription of the Hes (Hairy and Enhancer of Split) and Hey 155 

(Hairy and Enhancer of Split with YRPW) families of genes [66], which are negative regulators of 156 

transcription and of genes involved in cell cycle [67], apoptosis [68] and regulation of stemness [69]. 157 

During the past years, data have been accumulating on a non-canonical, cytoplasmic Notch signaling 158 

modulating cell proliferation and metabolism [70]. The non-canonical Notch signaling is CSL-159 

independent, and it is based on the interaction with Wnt/-catenin, mTORC2 (mammalian target of 160 

rapamycin complex 2)/Akt and IKK/ pathways in the cytoplasm [71]. Non-canonical Notch 161 

signaling is also associated with mitochondria, where it has been shown that Notch/PINK1 (PTEN-162 

induced kinase 1) interaction modulates mitochondrial function and activates mTORC2/Akt pathway, 163 

thus promoting cell survival [70, 72, 73] (Fig. 1). Notch signaling can also be activated by so-called 164 

non-canonical ligands, such as F3/contactin [74], DLK1/2 (Delta-like 1/2), and EGFL7 (epidermal 165 

growth factor-like domain 7), which lack a DSL (Delta, Serrate and LAG-2) domain, necessary for 166 

the interaction with Notch receptors in the classic Notch ligands [75]. The non-canonical ligands 167 

seem to antagonize the Notch signaling by competing with DSL ligands for Notch binding [75, 76]. 168 

 169 

 170 

 171 
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   172 

FIGURE 1. Schematic representation of the Notch signaling pathways: canonical and non-canonical. 173 

The Notch receptor is obtained after proteolytic cleavage of the newly synthesized precursor by furin-like 174 

convertase at site 1 (S1) in the Golgi apparatus. Notch receptor activation occurs after binding to a ligand 175 

present on adjacent cells, which induces a cleavage at site S2 mediated by ADAM family proteases followed 176 

by a cleavage at S3 and S4 within the transmembrane domain mediated by the -secretase complex. The Notch 177 

intracellular domain (NICD) translocates into the nucleus, where it interacts with the transcription factor, RBP-178 

Jk (CSL) and the transcriptional co-activators MAML to initiate transcription of downstream target genes. In 179 

the absence of NICD, RBP-Jk (CSL) may associate with co-repressor (Co-R) proteins to repress transcription 180 

of target genes. The non-canonical Notch signaling is independent of CSL and it is also associated with 181 

mitochondria. E2 regulates the Notch signaling pathway modulating: the -secretase complex activity, the 182 

expression of Notch receptors and ligands, and Notch target genes. CSL indicates CBF-1/RBP-Jk/Suppressor 183 

of hairless/Lag-1; Co-R, co-repressor; Co-A, co-activator; MAML, mastermind-like; ADAM, a disintegrin 184 

and metalloprotease; GSI, -secretase inhibitor; PINK1, PTEN-induced kinase 1; NICD, Notch intracellular 185 

domain; NEC, Notch extracellular; E2, 17-estradiol.  186 

Post-translational modifications, including phosphorylation, glycosylation, acetylation and 187 

ubiquitination regulate Notch activity [77]. Furthermore, Wnt signaling [78], Sonic Hedgehog 188 

signaling [79], the cytokine transforming growth factor β (TGFβ) [80], hypoxia-inducible factor-1 189 

(HIF-1) [81] and microRNA (miRNAs) [82] have an effect on Notch activity (a more detailed 190 

discussion of these interactions is provided in a recent review [77]). A genome-scale study in 191 

Drosophila melanogaster has shown the existence of a complex network of genes that can affect 192 

Notch activity [48]. Similarly, Notch modulates key pathways involved in the regulation of cell 193 

Cyto
plasm

Notch target 
genes

N
IC

D

ADAM 
S2 cleavage

N
IC

D�-secretase
cleavage

S3-S4 cleavage

Golgi
Apparatus Nucleus

Co-R

CSL CSL

MAML

N
ICD

N
EC

LIG
A

N
D

N
IC

N
EC

NICD

N
IC

D

PINK1

M
itochondrion

NICD

Endoplasmic 
reticulum

E2

E2
E2

E2

Furin
-like 

co
nvertase 

S1 cleavage



8 

 

survival and proliferation, including NF-kB (nuclear factor-kappa-light-chain-enhancer of activated 194 

B-cell) [83] and ErbB2 (receptor tyrosine-protein kinase erbB-2) [84, 85].  195 

During the last twenty years, evidence has been accumulating of a regulation of Notch by steroid 196 

hormones. Crosstalk between estrogen and Notch have been investigated in ER-positive breast cancer 197 

cell lines, MCF7 and T47-A18 [58, 61] and hippocampal neurons [62-64]. Specifically, in breast 198 

cancer cells, Rizzo et al. have shown that E2 inhibits the processing of Notch1, as indicated by 199 

unchanged levels of Notch1 mRNA, reduced levels of active Notch1 and Notch target genes, and by 200 

the accumulation of the inactive form of Notch1 on the cell membrane [61]. At least in part, this effect 201 

of E2 seems to be due to inhibition of Notch1 cleavage by γ-secretase complex [61]. In contrast with 202 

these results, Soares et al. reported that, in MCF7 cells, E2 induced Jagged1 and Notch1 genes and 203 

Notch transcriptional activity [58]. In breast cancer cells the crosstalk between estrogen and Notch is 204 

bidirectional since Notch1 is able to activate the transcription of ER-target genes in the presence or 205 

absence of E2 [86]. In hippocampal slice cultures, E2 reduces the levels of the active form of Notch1 206 

[62-64] with mechanisms not thoroughly investigated that could involve, as suggested by the authors, 207 

inhibition of γ-secretase, as reported for breast cancer cell lines [61, 62] (Fig.1). In human uterine 208 

fibroblasts, progesterone, together with chorionic gonadotropin, induces expression of Notch1 and 209 

up-regulates its activity [87], whereas, in the male reproductive system, Notch signaling (testis, 210 

cremaster muscle and Wolffian duct) is regulated by testosterone [88-90]. Notch signaling is 211 

subjected to regulation by testosterone in prostate [91], in which androgen receptor downregulates 212 

the expression of Notch1 and Jagged1, while upregulating Sel1L, a negative regulator of Notch [92] 213 

As a result of this multitude of interactions, the effects of Notch signaling are exquisitely dose-, time- 214 

and cell context-dependent and the output of activation/inhibition of this pathway difficult to predict. 215 

 216 

3. Estrogen-mediated regulation of endothelial Notch  217 

The vascular endothelium expresses three isoforms of Notch receptors: Notch 1, 2, 4 [52, 93], and 218 

four ligands: Delta-like 1, 4 (Dll1, Dll4) and Jagged1, 2 (Jag1, Jag2) [94, 95]. Similarly, to other 219 

tissues, Notch activity in the endothelium is regulated by interaction with other proteins, such as 220 

VEGF [96], inflammatory cytokines, such as TNF [18, 97, 98] and interleukin 1 (IL-1) [99, 100], 221 

-catenin [101], KRIT1 [102], and bone morphogenic protein receptor 2 (BMPR2) [53].  222 

In the endothelium, Notch plays a major role in the regulation of angiogenesis [54]. Furthermore, 223 

Notch prevents endothelial cells dysfunction induced by inflammation, dyslipidaemia [7, 103, 104], 224 
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and disturbed blood shear stress [105]. An in vivo study by Schober et al. has reported that 225 

microRNA-126-5p, which is required for the repair of the endothelium damaged by lipids, activates 226 

Notch1, through the downregulation of Delta-like 1 homolog (DLK1), a Notch1 inhibitor [106]. 227 

Consistently, Briot et al. have demonstrated, in vitro and in vivo, that endothelial Notch1 is repressed 228 

by inflammatory lipids and pro-inflammatory cytokines, and this reduction increases the expression 229 

of inflammatory molecules and binding of monocytes [99]. More recently, studies conducted by us 230 

in human umbilical vein endothelial cells (HUVECs) have shown that Notch1 protects against TNF-231 

induced endothelial cells apoptosis [18]. The atheroprotective role of Notch1 has been confirmed by 232 

Mack et al. that demonstrated that Notch1 integrates responses to laminar shear stress, thus regulating 233 

junctional integrity, cell elongation, and suppression of proliferation in the endothelium [107]. 234 

Furthermore, Polacheck and colleagues reported that the non-canonical Notch1 signaling activated 235 

by shear stress plays a crucial role in maintaining endothelial barrier function [108]. However, there 236 

are in vitro and in vivo studies showing that Notch1 causes endothelial dysfunction [100, 109-111]. 237 

These contradictory findings could be due to: a) the use of different animal models of atherosclerosis 238 

[112]; b) different origin of endothelial cells used for the in vitro studies (aortic or umbilical); c) 239 

different modality of endothelium damage (TNF or IL-1, high glucose, disturbed shear stress); d) 240 

the focus of each study being on only one of the two modalities of Notch signaling (canonical or non-241 

canonical); e) results obtained with overexpression or endogenous Notch1. 242 

We [60] and others [58, 59] have shown that treatment with E2 activates Notch signaling in HUVECs. 243 

Our laboratory provided evidence that E2 treatment increased the levels of the active form of Notch1 244 

and Notch4 proteins, even though no changes in the expression levels of the genes for these receptors 245 

or their ligands were observed, suggesting an effect of E2 on Notch mRNA translation or on the 246 

processing of the protein. Treatment with the selective estrogen receptor downregulator (SERD), ICI 247 

182.780, inhibited the activation of Notch1, suggesting a role for ERs in this context. In our study, 248 

only a small induction of Notch target gene Hey2 was observed following E2 treatment, suggesting 249 

either an involvement of non-canonical Notch signaling or that other target genes could be affected 250 

by E2 [60]. In contrast with these results, Soares et al. had previously reported an increase in 251 

expression levels of Notch1 and Jagged1 mRNA and the induction of RBP-Jk transcriptional activity 252 

in E2-treated HUVECs [58]. Sobrino et al. also reported induction of Notch signaling by E2 in 253 

HUVECs, as indicated by increased levels of mRNA for Notch4, Furin, Jagged2 and radical Fringe 254 

(glycosyltransferase that modulates Notch) detected by microarray analyses [59]. Despite clear 255 

evidence of activation of Notch signaling in HUVECs by E2, there are discrepancies in the molecular 256 
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details of this activation, likely due to different technical approaches, such as the source of HUVECs, 257 

different cell culture conditions, cells passage number and/or the technique employed for the 258 

molecular studies (semiquantitative RT-PCR, qRT-PCR, microarrays). The molecular mechanisms 259 

by which E2 regulates Notch in the endothelium need further studies (Fig. 2). Based on current 260 

knowledge about pathways regulated both by Notch and E2, in the following paragraphs we will 261 

discuss potential mechanisms by which E2, bound to either ERα and ERβ, could affect the Notch 262 

signaling. 263 

 264 

FIGURE 2. Possible molecular mechanisms involved in the crosstalk between estrogen and Notch in the 265 

endothelium. (A) Green arrows indicate mechanisms of E2-mediated regulation of Notch signaling reported 266 

in literature: E2 is able to induce the expression of Notch receptors, Notch ligands [58, 59], radical fringe and 267 

furin [59]. Dashed blue arrows indicate potential mechanisms of interaction: a) E2/ER could modulate 268 

proteins involved in Notch1 processing, such as ADAM or -secretase complex; b) E2/ER could inhibit the 269 

synthesis of Numb, which degrades Notch1; c) E2/ER could induce GSK3, which stabilizes Notch1; d) 270 

E2/ER could promote the access of Notch1 to -secretase-rich membrane lipid rafts; e) in the presence of E2, 271 

caveolin-1 binds ER, activating p38 kinase, which is involved in Notch1 activation; f) E2/ER could induce 272 

the phosphorylation of JNK, which stabilizes presenilin, a subunit of -secretase complex. E2, 17-estradiol; 273 

ER, estrogen receptor ; GSK3, glycogen synthase kinase 3; N1ICD, Notch1 intracellular domain; NEC, Notch 274 

extracellular; Cav-1, caveolina-1; JNK, c-jun NH2-terminal kinase; P, phosphorylation; , -secretase.  275 

 276 

4. Crosstalk between Notch and estrogen: effects on angiogenesis  277 

Angiogenesis occurs during development and in adult life, for physiological processes, such as 278 

endometrial regeneration during the menstrual cycle, corpus luteum formation in the ovary [113] and 279 

wound healing [114], and under pathological conditions, such as cancer [115] and ischemic disease 280 
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[116, 117]. It has been reported that angiogenesis may influence the clinical outcome in patients with  281 

heart failure (HF) [118, 119] and, consistently, we found that HUVECs treated with sera from 282 

advanced HF patients show increased sprouting angiogenesis associated to reduced Notch4 and 283 

Jagged1 [120]. 284 

E2 promotes proliferation, migration, tubular structure formation, and VEGF secretion in cardiac 285 

microvascular endothelial cells [25], and induces angiogenesis in ischemic heart by enhancing the 286 

capillary density [121]. Among the molecular mechanisms and biological processes regulated by E2 287 

during angiogenesis there is the induction of VEGF [122], the major angiogenic factor, which, in 288 

turn, stimulates eNOS and NO production [123] and endothelial cell proliferation and migration 289 

[124]. Furthermore, estrogen induces the expression of basic fibroblast growth factor (bFGF), 290 

vascular adhesion molecules and integrins, which have an important role in mediating endothelial 291 

cell attachment, migration and growth [125, 126].  292 

The Dll4/Notch1 axis controls angiogenesis by regulating the formation of endothelial “tip” cells, 293 

which determines the number of new sprouts: specifically, Dll4/Notch1 inhibition promotes the 294 

formation of “tip” cells, whereas its activation leads to “stalk” cells, needed for the elongation of the 295 

newly formed vessel [55, 94]. Based on these observations, it would be expected that inhibition of 296 

Dll4/Notch1 could be used to increase new vessels formation. Instead, existing studies show that the 297 

effects of Notch inhibition on angiogenesis is context dependent. In tumors, endothelial Dll4/Notch1 298 

axis inhibition, obtained by using anti-Dll4 antibody, causes the formation of a high number of new 299 

vessels that are not perfused or functional [127]. Under inflammatory conditions, TNFα induces 300 

Jagged1 and reduces Dll4 [18, 98], and sprouting angiogenesis is stimulated by the switch from Dll4- 301 

to Jagged1–Notch1 activation. This is thought to be due to the fact that Jagged1 is a less potent 302 

activator of Notch1, which therefore leads to reduced Notch1 activation and increased sprouting [98]. 303 

We have shown that E2-induced activation of endothelial Notch1 has an effect on angiogenesis: 304 

specifically, E2 inhibits the strong induction of endothelial tubes formation, a measure of sprouting 305 

angiogenesis, caused by Notch inhibition with DAPT [N-(N- [3,5-difluoro-phenacetyl]-l-alanyl)-S-306 

phenylglycine t-butyl ester], an inhibitor of the -secretase [60] (Fig. 3A). These results indicate that 307 

the effect of E2 on Notch activity could be physiologically relevant when Notch is inhibited. 308 

Endothelial Notch inhibition occurs under inflammatory conditions [98] and after myocardial 309 

infarction (MI), in which ischemia/reperfusion (H/R) heart damage blocks endothelial tube formation 310 

[128].  311 



12 

 

 312 

FIGURE 3. E2-mediated positive effects against endothelial Notch1 reduction. (A) DAPT inhibits the 313 

activation of Notch1 and induces sprouting angiogenesis. E2 counteracts DAPT-induced sprouting. (B) TNFα 314 

treatment reduces the active form of Notch1, determining an increase of endothelial cells apoptosis. E2 315 

counteracts TNF-induced reduction of active Notch1 and reduces the number of apoptotic cells through ER. 316 

NEC, Notch extracellular; NICD, Notch intracellular domain; E2, 17-estradiol. 317 

 318 

5. Crosstalk between Notch and estrogen: effects on endothelial apoptosis and atherosclerosis 319 

CHD is caused by atherosclerosis, a chronic progressive inflammatory disease of the arterial wall that 320 

begins with formation of fatty streak in the intima, below the endothelium. Thus, endothelium 321 

integrity is crucial to prevent lipid infiltration and CHD. Inflammation disrupts endothelium integrity 322 

also by causing endothelial cells apoptosis, a marker of endothelial dysfunction associated to the 323 

progression of CHD [129-131]. Inflammation mediator TNF dysregulates endothelial Notch by 324 

down-regulating Notch4 and up-regulating Notch2 receptors mRNA expression [97] and Notch4 325 

knockdown [132] and Notch2–mediated down-regulation of survivin [52] have been reported to cause 326 

HUVECs apoptosis. In addition, we demonstrated that, in HUVECs, TNF treatment reduces the 327 

levels of the active form of Notch1 [18]. In contrast with Briot et al. observations in human aortic 328 

endothelial cells [99], we did not observe that TNF inhibited the transcription of Notch1, suggesting 329 

instead that, in HUVECs, TNF inhibits the activation of the Notch1 receptor. Alternatively, since 330 

TNF inhibits Dll4 expression while inducing Jagged1 [18, 98], the altered Jagged1/Dll4 ratio could 331 

determine the observed reduction of active Notch1 in TNF-treated HUVECs. However, an effect of 332 
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TNF on the stability of the active form of Notch1 cannot be ruled out. We found that E2 counteracted 333 

the TNF-mediated inhibition of active Notch1 without affecting Jagged1 and Dll4 levels, indicating 334 

that the E2 does not increase the active form of Notch1 by the ligands modulation [18]. Further studies 335 

are required to identify the molecular mechanisms by which E2 interferes with TNF-induced Notch1 336 

inhibition.  337 

Estrogen counteracts TNF-induced endothelial cells apoptosis [17] only in the presence of active 338 

Notch1 [18] since, as shown by us, E2 did not reduce apoptosis when Notch1 was inhibited 339 

pharmacologically, by DAPT treatment, or genetically, by short interfering RNA (siRNA) (Fig. 3B). 340 

Further, the E2-mediated pro-survival effect was dependent on Akt activation, which was less 341 

pronounced when the active form of Notch1 was down-modulated [18]. The Notch pathway is well 342 

known for the enhancement of NF-kB activity [133], the latter being activated by LPS 343 

(lipopolysaccharide) and TNF [134]. Therefore, it is possible that E2 might interfere with 344 

endothelial cells apoptosis by facilitating Notch1 cleavage, thus activating the NF-kB pathway. 345 

Further studies are needed to confirm the role of NF-kB in E2- Notch1-mediated protection against 346 

apoptosis induced by TNF.  347 

Atherosclerosis, and consequent CHD, is often associated with cardiometabolic syndrome (CS), a 348 

condition mainly characterized by insulin resistance, impaired glucose tolerance, dyslipidemia, 349 

hypertension, central adiposity and inflammation [135]. There is a large body of evidence showing 350 

an association between low levels of estrogen and CS, with molecular mechanism still undefined (for 351 

an exhaustive discussion of the role of E2 in cardiometabolism the reader is directed to [136]). 352 

Therefore, in addition to preventing endothelial dysfunction, E2 protects against CHD by modulating 353 

those biological processes underlying CS such as i) food intake and energy expenditure by the 354 

hypothalamus [137]; ii) the release of inflammation mediators by macrophages [138, 139]; iii) the 355 

balance between white and brown fat adipocytes, involved in fat storage or its oxidation for heat 356 

generation, respectively [140]; iv) the regulation of glucose metabolism and homeostasis [137]. 357 

Furthermore, E2 can influence the progression of CHD by regulating cardiomyocyte survival [141], 358 

proliferation of vascular smooth muscle cells (VSMCs) in blood vessels walls [142], phenotype of 359 

cardiac fibroblasts [143], and stem cells, such as endothelial progenitor cells (EPCs) and cardiac stem 360 

cells [144, 145].  361 

Similarly to E2, there is evidence linking Notch to CS. Notch1 controls glucose metabolism by 362 

regulating insulin secretion [146] and by inhibiting the adipose expression of genes associated with 363 
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insulin sensitivity, such as adiponectin, GLUT4, C/EBP and IRS-1 [147]. Furthermore, Notch 364 

inhibition has been shown to limit excessive FoxO1-driven hepatic glucose production [148] and 365 

results in browning of white adipose tissue [147, 149, 150] also by metabolic upregulation of 366 

mitochondrial oxidative phosphorylation and ROS [151]. Consistent with all these studies, inhibition 367 

of Notch signaling has been shown to reduce metabolic disorders and progression of atherosclerosis 368 

in mice [152, 153]. More studies are needed to establish whether Notch could be also targeted to 369 

inhibit pathological cardiac remodeling [154].  370 

Based on the evidence of estrogen- and testosterone-mediated Notch regulation in many cell types, it 371 

would be of interest to establish whether the levels of these hormones could influence the onset and 372 

progression of CS and CHD by regulating the Notch signaling. For example, it has been reported that 373 

males, when compared with female mice, following exposure to high fat diet show higher levels of 374 

inflammatory markers in the hypothalamus only in the presence of ER [155]. It is tempting to 375 

speculate that this could be due to ER-mediated reduction of Notch signaling associated to a reduced 376 

inflammatory response. Similarly, ER-mediated reduction of Notch signaling in adipocytes may 377 

promote browning of white adipose tissue [149].  378 

 379 

6. Distinct roles of ERα and ERβ in estrogen-mediated protection of the cardiovascular system  380 

The cardiovascular effects of estrogen are mainly mediated by the activation of ER and ER [3]. 381 

Both ERs are expressed in VSMCs, vascular endothelial cells, and cardiomyocytes [156]. Studies 382 

using mice that lack functional ER and ER have shown that both ERs are necessary for estrogen-383 

mediated protection against cardiovascular injury [157], but, to date, the individual contribution of 384 

the ERs to atherosclerosis and its progression remains poorly understood. E2-mediated prevention of 385 

fatty streaks at the early stages of atherosclerosis requires ER [158, 159]. The key role of ER in 386 

the E2-mediated atheroprotective action has been shown also in mice deficient in both the low-density 387 

lipoprotein receptor (LDLR) and ER, in which E2 was not able to exert its protective action [160]. 388 

The different contribution of estrogen-mediated activation of genomic and/or non-genomic ER 389 

signaling to vascular protection is now being elucidated [161]. The estrogen-mediated activation of 390 

non-genomic (membrane) ER signaling plays an important role in the protection against neointimal 391 

hyperplasia, a process that frequently occurs after the treatment of symptomatic atherosclerosis [142]. 392 

The non-genomic ER signaling also mediates NO release and re-endothelialization [162]. It has also 393 

been shown that membrane ER activation in endothelium reduces cardiac ischemic/reperfusion 394 
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(I/R) injury in mice [163]. However, the atheroprotective effects of E2 seems to be also ER-395 

independent. The genistein, an isoflavone with a 20-fold higher binding affinity to ER than to ER, 396 

inhibits atherosclerosis development in low-density lipoprotein receptor (LDLR) KO mice [164]. 397 

Furthermore, Villablanca et al. reported the involvement of ER, but not ER, in E2-mediated 398 

protection against atherosclerosis development [165], and selective ER activation by an agonist (8-399 

VE2) reduced atherosclerotic lesions in apolipoprotein E deficient (apoE KO) mice and it was 400 

associated with favorable modulation of vascular inflammation, as indicated by reduced serum levels 401 

of IL-1 and TNF [166]. Furthermore, endothelial ER expression reduces ischemia/reperfusion-402 

mediated oxidative burst and vascular injury [167], and treatment with an ER-selective agonist 403 

induces the release by macrophages of heat shock protein 27 (HSP27) [168], a protein that plays a 404 

protective role in atherosclerosis [169]. 405 

We found that, in ER-silenced HUVECs, E2 was unable to increase the levels of active Notch1, 406 

both in the presence or absence of TNF, and unable to counteract TNF-induced apoptosis [18]. 407 

The mechanisms by which E2, through ER, increases Notch1 levels need further investigation. It 408 

appears plausible that E2/ER, could function as a transcription factor for proteins involved in Notch1 409 

processing [170]. Another possibility is that E2/ER inhibits the synthesis of Numb, or related 410 

proteins, involved in active Notch1 degradation [171], or induces glycogen synthase kinase 3 (GSK3) 411 

[172], which stabilizes active Notch1 [173]: further work is needed to test these hypotheses. A non-412 

genomic effect of estrogen could also be involved in E2/ER-induced Notch1 activation. Specifically, 413 

since E2 modifies the membrane lipids profile [174] and modulates caveolae formation [175] which 414 

play a role in the assembly [176] and activity of -secretase [177], the possibility that E2/ER 415 

promotes the access of Notch1 to -secretase–rich membrane rafts should be explored. Furthermore, 416 

ER dissociates from caveolin-1 in the presence of E2, whereas ER increases association with 417 

caveolin-1, thus activating p38 kinase [178], which is known to be involved in Notch activation [179]. 418 

It is also possible that, as shown in ER-positive breast cancer cells [180], in the endothelium E2 419 

binding ER, in particular ER, could induce phosphorylation of c-jun NH2-terminal kinase (JNK), 420 

which it has been shown to stabilize presenilin, a subunit of the -secretase complex [53]. Possible 421 

molecular mechanisms involved in the crosstalk between estrogen and Notch in the endothelium are 422 

summarized in Figure 2. 423 

It would be of interest then to determine if ER and ER act in opposite ways in the regulation of 424 

Notch activation: the opposite effect of ER and ER on Notch would explain findings of E2-425 
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mediated activation of Notch1 in endothelial cells (mainly expressing ER) [18, 60] and inhibition in 426 

breast cancer cells MCF7 (only expressing ER) [61]. 427 

 428 

7. Crosstalk between Notch and estrogen: relevance for hormone replacement therapy 429 

strategies 430 

The evidence that estrogen has cardiovascular positive effects provided the basis for the use of 431 

hormone replacement therapy (HRT) to prevent cardiovascular disease in post-menopausal women. 432 

Nevertheless, the relationship between HRT and the prevention of cardiovascular disease, in 433 

particular CHD, remains controversial. Multiple analyses of prospective cohort studies, in the 1980s, 434 

indicated that HRT was associated with a lower risk of CHD in post-menopausal women [181]. In 435 

1990s, three large prospective clinical trials, the Women’s Health Initiative (WHI), the Heart and 436 

Estrogen/progestin Replacement Study (HERS) and the Women’s International Study of long 437 

Duration Oestrogen after Menopause (WISDOM) studied the role of hormone treatment with horse 438 

hormone mixtures (conjugate equine estrogens, CEEs) alone or with progestin or androgens and 439 

medroxyprogesterone (MPA), in cardiovascular disease in post-menopausal women. The results of 440 

these clinical trials showed that the formulation of HRT used was not able to prevent cardiovascular 441 

disease, such as stroke, thromboembolic events, and CHD [182-184], and it increased the risk of 442 

breast cancer [183]. These results determined a rapid decrease in the use of HRT worldwide. 443 

Afterwards, further analyses of the study population suggested that the harmful or null HRT-mediated 444 

effects seen in the previous observational studies could be due to the fact that the enrolled women 445 

initiated HRT years after menopause (timing hypothesis) [185]. Several clinical studies have shown 446 

the plausibility of the timing hypothesis. A Cochrane meta-analysis shows that women that started 447 

HRT less than 10 years after the menopause had lower CHD risk, compared to placebo or no treatment 448 

[186]. A randomized controlled trial, KEEPS (Kronos Early Estrogen Prevention Study), 449 

administrated oral or transdermal estrogen, both with cyclic progesterone treatment, to women within 450 

6-36 months after menopause, and evaluated the progression of atherosclerosis by measuring changes 451 

in carotid artery intima-media thickness (CIMT) and in markers of cardiovascular disease (CVD) 452 

risk. The study concluded that early HRT did not influence the progression of atherosclerosis, but 453 

improved some markers of CVD risk, such as blood pressure and lipid levels, thus supporting the 454 

timing hypothesis [187]. The Danish Osteoporosis Prevention Study showed that women receiving 455 

HRT triphasic estradiol and norethisterone acetate (women with uterus) or estradiol (women without 456 
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uterus) for 10 years, beginning shortly after menopause, have a reduced risk of heart failure and 457 

myocardial infarction, without increase in risk of cancer, venous thromboembolism, or stroke [188]. 458 

The Early versus Late Intervention Trial with Estradiol (ELITE) study confirmed that HRT was 459 

associated with less progression of subclinical atherosclerosis, measured as carotid-artery intima-460 

media thickness (CIMT), when hormone therapy was initiated within 6 years, but not 10 years or 461 

more after menopause [189]. A possible explanation of the timing hypothesis is that in the early stages 462 

of the atherosclerotic process, estrogen plays a beneficial effect on the endothelium, delaying plaque 463 

formation. Conversely, in the later stages of the atherosclerotic process, estrogen causes plaque 464 

erosion or rupture, responsible for thrombosis and acute coronary events [190]. A study showing that 465 

E2 interferes with plaques formation in an atherosclerosis mouse model expressing only ER [165] 466 

and our study showing that E2 bound to ER reduces HUVECs apoptosis, an early marker of 467 

endothelial dysfunction leading to atherosclerosis [18], are both in agreement with the timing 468 

hypothesis. The strongest support to the concept of a limited window for E2-mediated protection 469 

against atherosclerosis comes from the work of Glisic et al., which studied the association of 470 

endogenous estradiol with carotid plaque composition, as well as with risk of stroke, in post-471 

menopausal women with carotid atherosclerosis. They found that endogenous estradiol levels lead to 472 

plaque instability, by increasing lipid content and intraplaque hemorrhage, which can increase the 473 

risk of stroke in women with sub-clinical atherosclerosis [191]. Based on all these results, HRT 474 

should be used with caution among post-menopausal women, especially if they have been already 475 

diagnosed with atherosclerosis. 476 

Preclinical and clinical studies have also shown that other than timing, the HRT effects may also vary 477 

based on formulation, dosage and route of administration [192]. Another critical point for the lack of 478 

efficacy, or switch from protective to harmful HRT vascular effect, could be the reduction of ERs 479 

expression due to aging and atherosclerosis [193]. An in vitro study shows that long-term exposure 480 

to E2 up-regulates ER expression in endothelial cells, and down-regulates ER [194], which plays 481 

an important role in preventing endothelium dysfunction [18, 167, 195]. Consistently, the expression 482 

of ER is reduced in aging mice and it appears that SIRT1(Sirtuin 1)-mediated ER suppression in 483 

the endothelium contributes to vascular aging [196]. Continued efforts to develop an effective HRT 484 

have generated interest in the development of novel selective estrogen receptor modulators (SERMs) 485 

[197]. SERMS are able to bind to both ER and ER with high affinity, and they have tissue-specific 486 

agonist, mimicking estrogen effect, or antagonist action. Tamoxifen is a SERM with predominant 487 

estrogen antagonist effect in the breast, and estrogen agonist activity in the bone [198] and uterus, in 488 
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which prolonged treatment increases the risk for endometrial cancer [199]. Clinical observations have 489 

shown that treatment with tamoxifen reduces the risk of CHD [200] and improves lipid profile, with 490 

reduction in total serum cholesterol and LDL-C (low-density lipoprotein cholesterol) [201, 202]. 491 

Raloxifene is a second generation SERM, and it is prescribed for prevention and treatment of 492 

osteoporosis in post-menopausal women, being agonist in bone tissue [203]. Raloxifene, like 493 

tamoxifen, has an ER antagonist action in breast, but without increasing the risk of endometrial cancer 494 

[204]. Furthermore, raloxifene has actions similar to estrogen on the cardiovascular system, in terms 495 

of improvement of endothelial function by the induction of vasodilation [205] and through NO 496 

synthesis in endothelial cells [206]. The evidence of the raloxifene-mediated cardioprotective effects 497 

has generated the basis for the Raloxifene Use for The Heart (RUTH) study, which however has 498 

observed a reduced risk of invasive breast cancer, but no effects on prevention of CHD [207]. Thus, 499 

more knowledge on the characteristics of the SERMs and the biological roles of ER and ER in 500 

different tissues are needed for the specific treatment of various diseases, including CHD. Currently 501 

investigated SERMs target both of the ERs, but, as discussed in previous paragraphs, targeting just 502 

one subtype may lead to a more efficacious therapy with lower risk of side effects [34]. Our in vitro 503 

study shows that E2 protects against endothelial damage by binding ER, and not ER, suggesting 504 

that specifically targeting this ER isoform may result therapeutic options to interfere with endothelial 505 

dysfunction, and consequent atherosclerosis, in post-menopausal women. Natural compounds that 506 

bind preferentially ER such as isoflavones protein present in soy, including S-equol, genistein, 507 

daidzein, and liquiritigenin, have been identified [208-210]. Isoflavone soy protein supplementation 508 

seems to reduce subclinical atherosclerosis in women at low-risk for cardiovascular disease, within 5 509 

years of the onset of menopause [209]. More recently it has been shown that treatment with DPN, an 510 

ER-agonist, decreased cardiac fibrosis, restored angiogenesis, and significantly improved cardiac 511 

hemodynamic parameters in a mouse model of heart failure [211]. An ER-specific ligand could then 512 

be developed to protect against CHD, without concerns of increasing the risk of breast cancer, since 513 

it has been shown that ER, oppositely to ER, has an anti-proliferative action on breast cancer cells 514 

[210, 212]. Noteworthy, the combination of tamoxifen and ER agonist seems to enhance anti-515 

estrogen-mediated growth-inhibitory effects in human breast cancer cell lines [213]. In the last ten 516 

years, several studies on ER agonist and their potential use for the treatment of some post-517 

menopausal symptoms, such as memory/cognitive decline and cerebral ischemia incidents/impact 518 

have been published [214-216]. Further investigations are required to assess the efficacy of these 519 

molecules in preventing CHD in post-menopausal women.  520 
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Based on our findings of E2 mediated activation of Notch1, which is necessary and sufficient for 521 

endothelial cells survival, it may be important consider that in women with an impaired Notch1 522 

signaling, HRT could result unable to prevent endothelial dysfunction. Impairment of endothelial 523 

Notch signaling has been reported in dyslipidemic subjects [99], heart failure patients [120], and it 524 

could be also a side effect of natural [217, 218] and synthetic anti-cancer drugs [219], directed against 525 

the Notch pathway. 526 

 527 

8. Crosstalk between Notch and estrogen: cardiotoxicity of anticancer treatment 528 

Endocrine therapy is commonly used for the treatment of women with ER/progesterone receptor 529 

(PR)-positive breast cancer. In early stage of hormone-receptor-positive breast cancer, the current 530 

clinical practice guidelines recommend the use of SERMs, such as tamoxifen or aromatase inhibitors 531 

(AIs), such as anastrozole and exemestane, for post-menopausal women, both able to reduce cancer 532 

recurrence and improve survival [220]. Whereas tamoxifen active metabolites 4-hydroxytamoxifen 533 

and N-desmethyl-4-hydroxytamoxifen interfere with the estrogen signaling by competing with 534 

estrogen binding to receptor, AIs block endogenous estrogen production by inhibiting the conversion 535 

of androgens to estradiol [221]. These agents are effective but intrinsic or ex novo resistance to both 536 

these agents do occur [222]. The identification of the changes underlying the resistance to apoptosis 537 

that occur in breast cancer that become unresponsive to anti-estrogen should help to overcome cancer 538 

progression and recurrence [223-225].  539 

Our finding, showing that E2 enhances the active form of Notch1, which protects the endothelium 540 

against TNF-induced apoptosis [18], suggests that estrogen deprivation, as in case of women on 541 

endocrine therapy, could lead to a reduction of the endothelial Notch1, thus predisposing to 542 

endothelial dysfunction. Consistently, Seruga et al. have shown that women with early breast cancer, 543 

who received AIs, have an increased hazard for CHD [226]. In accordance with this observation, in 544 

a cross-sectional study examining endothelial function among post-menopausal women with breast 545 

cancer on AIs treatment, there was a trend toward the increase in various biomarkers of hemostasis 546 

(plasminogen activator inhibitor-1, tissue-type plasminogen activator) and endothelial damage 547 

(VCAM-1), reduction in large and small artery elasticity and significant decrement in vascular tone 548 

compared with healthy post-menopausal women [227]. This effect seems to be caused by AIs but not 549 

tamoxifen, as reported by an observational study showing that women aged >55 years, diagnosed 550 
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with stage I-III breast cancer on AIs, have a higher risk of myocardial infarction compared with 551 

women treated with tamoxifen [228]. Additionally, a meta-analysis of randomized controlled trials 552 

has highlighted an increased risk of cardiovascular events in AIs-treated relative to tamoxifen-treated 553 

patients, and this result seems to be related to cardioprotective effects of tamoxifen rather than the 554 

harmful effects of AIs on the endothelium [229]. The molecular mechanism underlying the protective 555 

effect of tamoxifen against CHD has not yet been investigated, but based on our in vitro results, we 556 

can speculate that tamoxifen, by binding ER, could protect the vasculature endothelium by 557 

activating Notch1. Similarly, the low cardioprotective effect of raloxifene, compared to tamoxifen 558 

could be explained by its inability to increase endothelial Notch1. 559 

Activation of the Notch pathway has been reported in every subtype of breast cancer [49, 230], 560 

including ER-positive breast cancer [231], and high level of Jagged1 have been shown to be indicators 561 

of poor prognosis [232] and progression to metastasis [233] in breast cancer patients. In ER-positive 562 

breast cancer cells, E2 inhibits the Notch pathway with an ER-dependent mechanism, and, 563 

conversely, estrogen deprivation causes reactivation of Notch, thus causing Notch-mediated breast 564 

cancer cells proliferation and survival [61]. The crosstalk between Notch and ER in breast cancer is 565 

bidirectional, as demonstrated by a study showing that Notch1 is able to activate ER-dependent 566 

transcription, even in the absence of E2 [86]. These studies suggest the following hypotheses: i) the 567 

efficacy of anti-estrogen therapy, which would activate the pro-survival Notch, could be increased by 568 

inhibiting Notch signaling, and ii) constitutive activation of Notch could contribute to resistance to 569 

treatment with anti-estrogen. These two hypotheses are supported by studies in animal model of 570 

breast cancer [61, 234, 235] and by molecular analyses of tamoxifen–treated cell cultures established 571 

from biopsies of breast cancer [236], and of biopsies of breast cancer patients following anti-estrogen 572 

treatment [237]. A pilot phase 1 study conducted in early stage hormone responsive breast cancer 573 

patients to investigate Notch inhibitor (MK-0752) in combination with tamoxifen or letrozole showed 574 

that the treatment was safe and inhibited the expression of markers of apoptosis or cell cycle 575 

progression and metastasis in tumor biopsies [238]. Currently, Notch inhibitor LY3023414 is being 576 

investigated in combination with several anticancer agents, including fulvestrant and letrozole, in 577 

patients with advanced cancer, and in combination with abemaciclib (a CDK4/6 inhibitor) and 578 

letrozole, in patients with endometrial cancer. Additionally, a phase 2 study testing the combination 579 

of Sulindac, an inhibitor of Notch1 activation [239] and tamoxifen in patients with desmoid tumor is 580 

ongoing. A phase 1b study in post-menopausal ER+/PR+ stage I or II breast cancer testing Notch 581 

inhibitor RO4929097 in combination with letrozole was terminated because the drug become 582 
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unavailable. As far as clinical trials to test Notch inhibitors without anti-estrogens, three phase 1 583 

studies on safety and tolerability of Notch inhibitor BMS906024 as single agent or in combination in 584 

advanced tumor and leukemias have been completed. One phase 2 study is ongoing to test AL101, a 585 

pan-Notch inhibitor in patients with adenoid cystic carcinoma bearing activating Notch mutations. 586 

Notch inhibitor RO4929097 has been tested as single agent or in combination in advanced tumor and 587 

leukemia in ten phase 2 studies that have been completed. More details on these trials can be found 588 

at www.clinicaltrials.gov. 589 

When considering Notch inhibitors as novel therapeutic agents for cancer, it is important to consider 590 

the possible cardiotoxicity associated with endothelial Notch inhibition, which could cause 591 

endothelial dysfunction [18, 99, 107, 108] and defective expansion of the cardiac vasculature and 592 

impairment of fatty acid transport to cardiomyocytes [240]. Notch inhibition in the endothelium 593 

would also cause VSMCs loss, thus affecting vascular integrity, as shown in mice with global 594 

Akt2KO and endothelial-specific Akt1 deletion in hearts [241]. Given the major role of Notch in the 595 

estrogen-mediated protection of the vascular wall, the combined treatment with AIs and Notch 596 

inhibitors could have even more deleterious effects on the vascular system, in comparison to the 597 

effects of each agent alone. The effects of AIs and Notch inhibitors in breast cancer cells and in the 598 

vasculature are summarized in Figure 4.  599 

 600 

FIGURE 4. Estrogen inhibition has opposite effects on Notch signaling in breast cancer cells (BCs) and 601 

in the vasculature. In breast cancer cells, estrogen deprivation causes Notch1 activation, resulting in increased 602 

cancer cells proliferation and survival. Therefore the combined treatment with Notch1 inhibitors would be 603 
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necessary for decreased proliferation and increased apoptosis of cancer cells. In contrast, in endothelial cells 604 

(ECs), estrogen deprivation determines the reduction of Notch1 activation, which causes endothelial apoptosis. 605 

The reduction of endothelial Notch determines an inhibition of the Notch pathway in the adjacent vascular 606 

smooth muscle cells (VSMCs), which undergo apoptosis. The use of Notch inhibitors may exacerbate these 607 

vascular effects.  608 

9. Conclusions and future perspectives  609 

Estrogen regulates a wide set of cellular functions under physiological and pathological conditions, 610 

including cancer and cardiovascular disease. The role of estrogen in promoting cancer onset and 611 

growth in estrogen-responsive tissues (i.e. epithelium of mammary gland) has been elucidated and 612 

anti-estrogen is a “success story” in our quest for cancer drugs, since women with ER-positive breast 613 

cancer treated with tamoxifen for 5 years have a reduced risk of recurrence and of related mortality 614 

[242]. On the contrary, the molecular pathways underlying the protective effects of estrogen in the 615 

cardiovascular system, demonstrated by many studies, are still elusive, and we are still not able to use 616 

estrogen to prevent the onset and/or the progression of diseases, such as CHD that, in Europe and 617 

developed countries, kills seven times more than breast cancer [243]. 618 

Evidence has been accumulating of crosstalk between estrogen and the Notch pathway, a major 619 

determinant of cell fate. In fact, it has been shown that E2 inhibits the Notch pathway in breast cancer 620 

cells and neurons, while activating it in endothelial cells. Furthermore, Notch acts as a regulator of 621 

E2 receptor transcriptional activity in breast cancer cells. The data obtained so far may represent only 622 

the tip of the iceberg of the complex regulation of Notch by steroid hormones. First, there are many 623 

other cell types that respond to steroid hormones with an active Notch signaling, in which this 624 

crosstalk has not been investigated yet and, second, we are still beginning to understand the molecular 625 

details underlying this regulation. The molecular mechanism by which E2 modulates Notch are still 626 

unknown and it needs to be established why E2 inhibits the Notch pathway in breast cancer cells and 627 

neurons while activating it in endothelial cells. Additionally, the role of each ER in the context of 628 

Notch regulation needs to be established. Endothelial cells express equal or higher levels of ER in 629 

comparison to ER [195, 244, 245], whereas breast cancer cells express mainly ER [60, 246]. As 630 

already discussed in this review, it is possible that that the two receptors have opposite activities on 631 

Notch processing, with ER and ER activating and inhibiting Notch1, respectively.  632 

The identification of specific SERMs able to either activate or inhibit Notch could have tremendous 633 

impact on the development of a novel HRT: based on existing data, it is possible to speculate that a 634 

SERM able to selectively bind ER may exert a positive action on the endothelium without activating 635 
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ER and providing a proliferation stimulus in breast cells. Similarly, an ER-specific SERM, by 636 

activating Notch1 only in the endothelium, could be used to limit the cardiotoxicity observed in breast 637 

cancer patients treated with anti-estrogen. 638 
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