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Detecting the Cold Spot as a Void with the Non-Diagonal Two-Point Function
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Abstract: The anomaly in the Cosmic Microwave Background known as the “Cold Spot” could
be due to the existence of an anomalously large spherical (few hundreds Mpc/h radius) underdense
region, called a “Void” for short. Such a structure would have an impact on the CMB also at high
multipoles ℓ through Lensing. This would then represent a unique signature of a Void. Modeling
such an underdensity with an LTB metric, we show that the Lensing effect leads to a large signal
in the non-diagonal two-point function, centered in the direction of the Cold Spot, such that the
Planck satellite will be able to confirm or rule out the Void explanation for the Cold Spot, for any

Void radius with a Signal-to-Noise ratio of at least O(10).

PACS numbers: 98.80.Cq,98.80.Es, 98.65.Dx, 98.62.Sb

I. INTRODUCTION

One of the Cosmic Microwave Background (CMB) anomalies identified in the WMAP [1] data is the so-

called Cold Spot [2, 3]: a spherical region on an angular scale of about 10◦ that appears to be anomalously

cold and whose probability to come from a flat spectrum of Gaussian primordial fluctuations is estimated

to be about 1% − 2%. While this could still be due to a statistical fluke (or a fortuitous choice of using a

particular basis of weight functions[4]), some authors [5, 6] have put forward the idea that it could be due

to an anomalously large underdense region of some unknown origin - called a “Void” for short - located

on the line-of-sight between us and the Last Scattering Surface (LSS). Subsequent papers [7–9] have shown

that other Voids of O(100) Mpc/h radius seem to be detected, via the correlation between CMB and

galaxy surveys, through the Integrated Sachs-Wolfe (ISW) effect, and that this would be at odds with the

concordance ΛCDM model. Possible inflationary mechanisms which produce these objects involve nucleation

of spherical bubbles [10]. As for the direction of the Cold Spot, a claim for a Void at z ≤ 1 based on NVSS

radio source data [11] has however been subsequently challenged [12–14].

Modeling such an underdensity with a Lemâıtre-Tolman-Bondi (LTB) metric, in two previous papers [15,

16] we explored some observational consequences of the hypothesis that a Void is responsible for the Cold

Spot - see also Ref. [17] for a quite similar analysis. Traveling through a Void, photons are redshifted due

to the fact that the gravitational potential is not exactly constant in time, the so-called Rees-Sciama (RS)

effect [18]. In [15] we computed the RS effect on the CMB two-point (power spectrum) and three-point

(bispectrum) correlation functions, which would be affected at low ℓ. In [16] we showed that, through
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Lensing (namely the deflection that occurs to a CMB photon traveling through a Void), the Void would

affect the CMB power spectrum and bispectrum also at high ℓ. We emphasized that this would constitute

a unique signature of a Void. In particular, we found that: for the power spectrum the effect will be visible

by the Planck satellite for Void radii L & 500 Mpc/h; for the bispectrum, a signal should be detected by

Planck if L & 300 Mpc/h.

In the present paper we extend the analysis of [16] by considering the non-zero correlations in the non-

diagonal two-point function due to the Lensing effect. Note that the kind of observable we consider here is

not invariant under rotations but depends on a preferred axis, chosen as the ẑ axis in the decomposition in

spherical harmonics. In this case, however, we know what this preferred axis is, since it is exactly the one

directed towards the centre of the Cold Spot. We stress again that such an effect is only present if there

actually is a Void on the line of sight, while it would be absent if the Cold Spot were just a statistical fluke

of the primordial large-scale fluctuations. A signal in the CMB non-diagonal two-point function would thus

represent a unique signature of a Void. As we are going to show, the study of such observable will allow the

Planck satellite to rule out or confirm the Void explanation of the Cold Spot. Moreover the Lensing effect

is correlated with the RS effect, which can be seen in some observables, such as the three-point correlation

function [15].

The paper is organized as follows. In section II we briefly review the physical effects of an underdense

region on the CMB. In section III we define a non-diagonal two-point function and compute its Signal-to-

Noise ratio. Finally, we draw our conclusions in section IV.

II. A VOID IN THE LINE OF SIGHT: REES-SCIAMA AND LENSING EFFECTS

Consider an observer looking at the CMB through a spherical Void with comoving radius L and negative

density contrast, parameterized by its value at the centre δ0. The Void is located at comoving distance D

from us, in the direction of the ẑ axis. We assume that it does not intersect the LSS and that we are not

inside it. The angle subtended by the Void is 2θL, with tan θL = L/D.

The observer receives from the LSS the primordial CMB photons, whose fluctuations we assume to be

adiabatic, nearly-scale invariant and Gaussian. We also assume that the location of the Void in the sky is

not correlated with the primordial temperature fluctuations, which is true, for example, if such a structure

comes from a different process, such as nucleation of bubbles. For simplicity we disregard here the effect of

a cosmological constant, already considered in [16].

As in [15, 16], we model the Void’s inhomogeneous region via a spherically symmetric LTB metric, matched

to a Friedmann-Lemâıtre-Robertson-Walker (FLRW) flat model. From the matching conditions, it follows

that our density profile is ”compensated”, i.e. the underdense central region is surrounded by a thinner

overdense shell. Photons traveling outside the LTB region will not be lensed.

The observer detects one particular realization of the primordial Gaussian perturbations on the LSS plus

the secondary effects due to this anomalous structure: the RS redshift effect1 [15] and the Lensing effect on

the photon direction [16]. The observed temperature fluctuation is then a sum of three components:

∆T (n̂)

T
=

∆T (n̂)

T

(P )

+
∆T (n̂)

T

(RS)

+
∆T (n̂)

T

(L)

, (1)

where (P) stands for primordial, (RS) for Rees-Sciama and (L) for Lensing. Each fluctuation is defined as
∆T (n̂)

T

(i)
≡ T (i)(n̂)−T̄ (i)

T where i = P,RS, L and the bar represents the angular average over the sky and

1 As far as we know, the name ”Rees-Sciama effect” is generically used when the redshift of a photon is due to the non-linear

evolution of the gravitational potential, as opposed to the name ”Integrated Sachs-Wolfe effect” which is usually employed

to refer to the evolution of the potentials already at the linear level, as happens in the presence of a cosmological constant.



3

T =
∑

i T̄
(i) = 2.73K.

A detailed explanation of how to compute the shape for ∆T (RS)/T can be found in [15]. The RS tem-

perature fluctuation is effectively described by two parameters: its amplitude at the centre of the Void,

A = ∆T (ẑ)(RS)/T , and its angular extension, i.e. the diameter of the cold region, σ. Clearly, σ is slightly

smaller than 2θL, the angle subtended by the full LTB region. We fix the numerical values of A and σ

phenomenologically, relying on the values given by [19]: for the temperature at the centre we use the range

T = −(190±80)µK, which means A = (7±3)×10−5; for the angular size σ of the cold region, we choose the

particular but representative values 6◦, 10◦ and 18◦, which correspond respectively to θL = 7◦, 11◦, 20.5◦.

We recall from [15] that we can express δ0 as:

|δ0| ≈
√

2A

1− LH0

2 tan θL

(LH0)
−3/2 . (2)

It is easy to switch from the dependence on L to the one on the redshift at the centre of the Void, z, because

of the following relation (obtained assuming approximately straight lines for photon trajectories):

1− LH0

2 tan θL
=

1√
1 + z

. (3)

In fig. 1 we show the dependence of L and δ0 on the redshift z, for the values of σ relevant for the Cold

Spot.
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FIG. 1: Plots of L and δ0 as a function of the redshift z, for σ = 6◦, 10◦, 18◦. The shaded regions are obtained by
varying A in the range (7± 3)× 10−5.

The temperature fluctuation due to Lensing, ∆T (L)/T , is usually computed in a gradient expansion [20, 21]

and it is given as in [16] once the so-called Lensing potential is known. This is an integral along the line-of-

sight related to the gravitational potential Φ as follows:

∇⊥Θ = −2

∫ τO

τLSS

dτ
τLSS − τ

τLSS
∇⊥Φ , (4)

where τO and τLSS denote respectively the conformal time at the observer and at the LSS; ∇⊥ stands for a

gradient in the direction transverse to the line of sight. In [16] we showed that the Lensing potential Θ can

be written as Θ(θ) = Θ0p(θ), where p(θ) is a profile (see [16] for its approximated expression) and Θ0 is the

amplitude at the centre:

Θ0 ≈ 1

1.4
|δ0| (LH0)

3 1

DH0
=

(

A LH0 tan
2 θL

1− LH0

2 tan θL

)1/2

, (5)

where the last equality follows by using eq.(2).
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We show the dependence of Θ0 on z in fig. 2. Notice that when the Void is in the position closest to us,

Θ0 reaches its minimum allowed value, which is about 3× 10−4. Clearly, we find this minimum because we

are imposing A to be in the range suggested by present Cold Spot observations, A = (7± 3)× 10−5: had we

imposed a smaller value of A, we would have obtained a smaller minimum value for Θ0.

Given a temperature anisotropy ∆T (i)(n̂)/T (with i = P,RS, L) and the Lensing profile Θ(n̂), their

spherical harmonic decompositions, are respectively:

a
(i)
ℓm ≡

∫

dn̂
∆T (i)(n̂)

T
Y ∗
ℓm(n̂) , bℓm ≡

∫

dn̂ Θ(n̂) Y ∗
ℓm(n̂) . (6)

Since the profile is axially symmetric and since we have chosen the ẑ axis to point towards the centre of the

Void, the only non-vanishing bℓm are those with m = 0 and which, in addition, are real.

Given the bℓ0 coefficients in (6), we may compute the first order a
(L1)
ℓm coefficients for the Lensing temper-

ature profile ∆T (L1)/T , as in [16],

a
(L1)
ℓm =

∑

ℓ′,ℓ′′

G−mm0
ℓ ℓ′ℓ′′

ℓ′(ℓ′ + 1)− ℓ(ℓ+ 1) + ℓ′′(ℓ′′ + 1)

2
a
(P )∗
ℓ′−mbℓ′′0 , (7)

where we have introduced the Gaunt integrals, given in terms of the Wigner 3-j symbols [22] as follows:

Gm1m2m3

ℓ1 ℓ2 ℓ3
≡
√

(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)

4π

(

ℓ1 ℓ2 ℓ3
0 0 0

)(

ℓ1 ℓ2 ℓ3
m1 m2 m3

)

. (8)

III. NON-DIAGONAL TWO-POINT FUNCTIONS

For a primordial Gaussian signal the two-point correlation functions are given by:

〈a(P )
ℓ1m1

a
(P ) ∗
ℓ2m2

〉 = δℓ1ℓ2δm1m2〈C
(P )
ℓ1

〉 , (9)

where the 〈C(P )
ℓ 〉 are predicted by some mechanism (e.g. inflation) that can generate primordial Gaussian

fluctuations.

Given the expression in eq.(7), the first order contribution to the two-point correlation function due to

the primordial and Lensing temperature fluctuations is:

〈a(P )
ℓ1m1

a
(L1)∗
ℓ2m2

〉 =
∑

ℓ′,ℓ′′

G−m2m20
ℓ2 ℓ′ ℓ′′

ℓ′(ℓ′ + 1)− ℓ2(ℓ2 + 1) + ℓ′′(ℓ′′ + 1)

2
(−1)m2〈a(P )

ℓ1m1
a
(P )∗
ℓ′m2

〉bℓ′′0

= δm1m2(−1)m2〈C(P )
ℓ1

〉
∑

ℓ′′

G−m2m20
ℓ2 ℓ1 ℓ′′

ℓ1(ℓ1 + 1)− ℓ2(ℓ2 + 1) + ℓ′′(ℓ′′ + 1)

2
bℓ′′0 . (10)

Note that this contribution is diagonal in the m index. If one considers the diagonal in the ℓ index, ℓ1 = ℓ2,

this is a correction to the power spectrum. However, we have already shown in [16] that - due to a property

of the Gaunt integrals - such diagonal contribution vanishes. In general there is also a contribution due to the

coupling between the RS and Lensing temperature fluctuations, potentially inducing a non-vanishing effect

on the diagonal. However, we have assumed that the presence of a Void in the direction of the Cold Spot is

not correlated with the fluctuations of the LSS. Therefore such an effect is absent under our assumptions.

In any case, even assuming a correlation, this would represent a subdominant contribution which does not

change our results in an appreciable way.

Here we show that the non-diagonal terms are non-zero and measurable: in fact eq.(10) leads to a corre-

lation between different ℓ’s. The correlations are small, but they are present also at high ℓ’s. In fact any ℓ1
and ℓ2 will be correlated as long as |ℓ1 − ℓ2| . ∆l, where ∆l is a number between 25 and 50, depending on
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the chosen value for σ (respectively 6◦ < σ < 18◦). This is because the Gaunt integral in eq.(10) is non-zero

if |ℓ2 − ℓ1| < ℓ′′ while the coefficients bℓ′′0 are non-zero for ℓ′′ . ∆l.

Although the two-point function above is not invariant under rotations, it makes sense to consider its

statistical average when decomposing the aℓm’s along the ẑ axis directed towards the centre of the Cold

Spot. In order to be quantitative, we construct an estimator for the Signal-to-Noise ratio in the following

way. We define the quantities

Fℓ1ℓ2m ≡ 1

2

(

a∗ℓ1m aℓ2m + aℓ1m a∗ℓ2m
)

, (11)

whose average is given by

〈Fℓ1ℓ2m〉 = 〈a(P )
ℓ1m

∗
a
(L1)
ℓ2m

〉+ 〈a(L1)
ℓ1m

∗
a
(P )
ℓ2m

〉 , (12)

where in the last expression we neglected the quadratic contribution due to pure lensing. Due to the Gaunt

integral property G−m m 0
ℓ1 ℓ2 ℓ′′ = G−m m 0

ℓ2 ℓ1 ℓ′′ , we have

〈Fℓ1ℓ2m〉 = (−1)m
∑

ℓ′′

G−m m 0
ℓ 1ℓ 2ℓ′′

(

C
(P )
ℓ1

ℓ1(ℓ1 + 1)− ℓ2(ℓ2 + 1) + ℓ′′(ℓ′′ + 1)

2
+

+ C
(P )
ℓ2

ℓ2(ℓ2 + 1)− ℓ1(ℓ1 + 1) + ℓ′′(ℓ′′ + 1)

2

)

bℓ′′0 . (13)

Since the variance of 〈a∗ℓ1m aℓ2m〉 is σ2
F = 1

2C
(P )
ℓ1

C
(P )
ℓ2

(1 + δm0), we can define a Signal-to-Noise ratio as:

(

S

N

)2

=
∑

ℓ1≤ℓ2,ℓ2≤ℓmax,0≤m≤ℓ1

〈Fℓ1ℓ2m〉2
σ2
F

=
∑

ℓ1≤ℓ2,ℓ2≤ℓmax,−ℓ1≤m≤ℓ1

〈Fℓ1ℓ2m〉2

C
(P )
ℓ1

C
(P )
ℓ2

, (14)

which is a function of ℓmax. Note that, since Fℓ1ℓ2m = Fℓ1ℓ2−m, in the first expression we summed only over

0 ≤ m ≤ ℓ1; however, in the last expression we have conveniently rewritten the sum over all −ℓ1 ≤ m ≤ ℓ1.

For each of the three Void sizes shown in the left panel of fig. 2, we calculate the Signal-to-Noise ratio as a

function of ℓmax taking the corresponding minimal value of Θ0 (namely the weakest Lensing signal obtained

when the Void is closest possible to the observer). These three curves actually overlap. The curve shown in

the right panel of fig. 2 is then the minimum Signal-to-Noise ratio expected interpreting the Cold Spot as a

Void. The plot can be easily adapted to larger values of Θ0, since the signal is just linearly proportional to

Θ0, which can be read from the left panel of fig.2. The result is that an experiment going up to ℓmax ∼ 1000,

such as Planck (which should go further to about 2000), should detect a signal for any Void size, with a
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FIG. 2: Left: Plot of Θ0 as a function of the redshift z. The curves corresponds, as indicated, to σ = 6◦, 10◦, 18◦.
Right: Non-diagonal Signal-to-Noise ratio as a function of the multipole ℓ, obtained by choosing the minimal value
for Θ0 for any Void size (that is Θ0 = (3, 5, 8) × 10−4 for σ = (6◦, 10◦, 18◦) respectively) We recall that the ratio is
linearly proportional to Θ0. In both plots, the shaded regions are obtained by varying A in the range (7± 3)× 10−5.
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Signal-to-Noise ratio larger than about 10. In the WMAP data, which go up to ℓ ∼ 700, it could be already

possible to find some signal, but it is not clear if the experimental noise and the systematics will allow to

see it for the entire parameter space, since the Signal-to-Noise ratio is lower.

IV. CONCLUSIONS

Motivated by the so-called Cold Spot in the WMAP data, we have shown in this paper how to confirm

the hypothesis that the Spot is due to an anomalously large Void along the line of sight.

In previous works we have analyzed rotationally invariant correlation functions, which lead to a detectable

signal only in a fraction of the Void parameter space, because of special cancellations. Here we have defined

instead a 2-point function along the ẑ-axis, aligned towards the centre of the Spot, which is non-diagonal in

ℓ space and does not suffer cancellations, leading to a much larger effect.

We have shown that, for the whole Void parameter space, the Planck satellite should detect a clean signal

associated to such non-diagonal 2-point function, with a Signal-to-Noise ratio above 10.
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