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Long non-coding RNAs (lncRNAs) have gained great attention as epigenetic regulators
of gene expression in many tissues. Increasing evidence indicates that lncRNAs,
together with microRNAs (miRNAs), play a pivotal role in osteogenesis. While miRNA
action mechanism relies mainly on miRNA-mRNA interaction, resulting in suppressed
expression, lncRNAs affect mRNA functionality through different activities, including
interaction with miRNAs. Recent advances in RNA sequencing technology have
improved knowledge into the molecular pathways regulated by the interaction of
lncRNAs and miRNAs. This review reports on the recent knowledge of lncRNAs and
miRNAs roles as key regulators of osteogenic differentiation. Specifically, we described
herein the recent discoveries on lncRNA-miRNA crosstalk during the osteogenic
differentiation of mesenchymal stem cells (MSCs) derived from bone marrow (BM),
as well as from different other anatomical regions. The deep understanding of the
connection between miRNAs and lncRNAs during the osteogenic differentiation will
strongly improve knowledge into the molecular mechanisms of bone growth and
development, ultimately leading to discover innovative diagnostic and therapeutic tools
for osteogenic disorders and bone diseases.

Keywords: long non-coding RNA, microRNA, crosstalk, osteogenic differentiation, mesenchymal stem cell,
interplay, miRNA, lncRNA

INTRODUCTION

Non-coding RNAs comprise a class of molecules without or with very low protein-coding
capability. Indeed, most of the human genes are transcribed into RNAs, which are not translated
into a protein (Li and Liu, 2019). In recent years, advances in high-throughput technologies and
inter-and multi-disciplinary approaches have improved our knowledge in the field of non-coding
RNAs and their complex signaling network in human cells. Long non-coding RNAs (lncRNAs) and
microRNAs (miRNAs) are the two major families of non-protein coding transcripts that regulate a
number of molecular mechanisms (Xue et al., 2017), including gene expression.

Gene expression regulation is involved in the control of different fundamental cellular processes
(Rotondo et al., 2018b; Corazza et al., 2020; Oton-Gonzalez et al., 2021), including differentiation
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and proliferation (Ferronato et al., 2011; Rotondo et al., 2015,
2016, 2018a, 2020). Both lncRNAs and miRNAs have gained
attention because of their activities as essential epigenetic
regulators of gene expression in many tissues (Rotondo et al.,
2013), including bone (Zhang X. et al., 2019). lncRNAs regulate
gene expression through different mechanisms, acting both at
transcriptional and post-transcriptional level (Fernandes et al.,
2019). miRNAs regulate gene expression mainly by binding the
mRNA target, inducing its degradation or translation inhibition
(Oliveto et al., 2017).

Notably, lncRNAs and miRNAs exert their biological
functions by forming a huge and complex regulatory network
of mutual interactions leading to gene expression control. By
this crosstalk, lncRNA and miRNA modulate cell differentiation,
including the osteogenesis of mesenchymal stem cells (MSCs)
(Wang L. et al., 2019; Sikora et al., 2020).

MSCs are promising competent biomedical candidates in the
management of several bone disorders, as their use-availability
(Iaquinta et al., 2019a; Mazzoni et al., 2020a). Indeed, MSCs
own several important biological properties, such as the capacity
to secrete molecules that can induce tissue regeneration, self-
renewal and proliferation, as well as multipotentiality, anti-
inflammatory and immunomodulatory effects (Pearson et al.,
2015; Batta et al., 2016; Iaquinta et al., 2019a; Globig et al.,
2020; Mazzoni et al., 2020b). Isolated for the first time from
the bone marrow (BM) (Bianco et al., 2008), MSCs have been
subsequently harvested from many different anatomical regions,
such as adipose tissue (ASCs) (Mahmoudifar and Doran, 2015;
Mazzoni et al., 2020a), umbilical cord (UC-MSCs) (Galderisi
and Giordano, 2014), dental pulp tissues (DPSCs) (Ferro et al.,
2014), and others (Fei et al., 2013; Ferro et al., 2014; Gong et al.,
2014; Fierabracci et al., 2015). MSC osteogenic differentiation
represents a key event in both natural bone healing, as well as
in bone tissue engineering approaches (Barbanti Brodano et al.,
2012; Manfrini et al., 2015; Barbanti Bròdano et al., 2017; Iaquinta
et al., 2019a,b; Sprio et al., 2020; Mazzoni et al., 2021).

The aim of this review is to highlight the post-transcriptional
interplay between lncRNAs and miRNAs as regulator of gene
expression during the osteogenic differentiation of MSCs. Indeed,
knowledge concerning functions of lncRNAs and miRNAs is
rapidly growing by means of progress in new bioinformatics tools
as well as experimental approaches (Grillone et al., 2020). Herein,
we report data from in vitro/in vivo studies, which investigated
the interaction between lncRNAs and miRNAs in osteogenic
differentiation.

The studies included in this review were identified by a
literature search in PubMed’s collection of articles that are related
to lncRNA-miRNA network in osteogenesis. The combined
search terms were “lncRNA” and “miRNA” and “osteogenesis”
and “stem cells.”

lncRNA AND miRNA FUNCTIONS

lncRNAs are a class of transcripts of over 200 nucleotides (nt)
in length with absence or limited protein-coding potential (Chi
et al., 2019). Discovered for the first time in mouse, lncRNAs

can be localized in the nucleus, nucleolus and/or cytoplasm
(Losko et al., 2016; Fernandes et al., 2019). In the mammalian
genome, transcripts derived from lncRNAs are higher than those
from protein-coding sequences representing 4–9% and 1% of
the genome, respectively (Peng et al., 2018a). The biogenesis of
lncRNAs is cell-type specific and their transcription can occur
in different genomic regions, such as enhancers, promoters, and
intergenic regions by the RNA-polymerase II enzyme (Dahariya
et al., 2019). Subsequently, pre-mature lncRNAs are capped at the
5′-end with methyl-guanosine, polyadenylated at the 3′-end and
generally expressed as alternatively spliced variants (Losko et al.,
2016; Figure 1). The lncRNAs possess multiple activities based
on different action mechanisms which include: (i) chromatin
remodeling, (ii) blocking the promoter region of specific genes,
(iii) regulation of transcription factors; (iv) forming double-
stranded RNA complexes with mRNA or miRNAs, finally leading
to gene expression regulation at both transcriptional and post-
transcriptional levels.

lncRNAs participate in diverse biological processes, such as
chromatin regulation and gene expression. In embryonic stem
cells (Kouskoff et al., 2005), lncRNAs function as regulator of
cell cycle, maintain the pluripotency, and also may be involved
in the renewal and differentiation by interfering with molecular
pathways during organogenesis (Aich and Chakraborty, 2020).
Moreover, some studies highlighted different roles for lncRNAs
in the regulation of bone formation from MSCs (Tye et al., 2018).

miRNAs are small RNA molecules of about 21–23 nt in
length. They account for 1–5% (Macfarlane and Murphy, 2010)
of the human genome and modulate approx. 30–60% of protein-
coding genes (Muljo et al., 2010). In the genome, miRNA coding
genes are frequently located within intergenic and intron regions
(Olena and Patton, 2010) and are grouped in clusters where
a single primary transcript generates multiple miRNA genes
(Chang et al., 2015).

The generation of human miRNAs includes a two-step
process that results in short RNA duplexes derived from
long endogenous transcripts. The cleavages are performed by
two ribonuclease III named Drosha and Dicer (Dexheimer
and Cochella, 2020). The Drosha processes the pri-miRNA
and generates the pre-miRNA, while the Dicer generates the
miRNA duplex (Macfarlane and Murphy, 2010). From this
duplex, one strand, called miRNA guide strand, is selected and
assembled into the RNA-induced silencing complex (RISC).
The activated RISC complex binds target mRNAs through
base complementarity between the miRNA guide strand and
the mRNA 3′UTR sequences (Dexheimer and Cochella, 2020;
Figure 2). miRNAs regulate gene expression mainly by binding
the mRNA target, inducing its degradation or translation
inhibition depending on the degree of complementarity between
the miRNA and the mRNA 3′-UTR; complete complementarity
induces mRNA degradation, whereas partial complementarity
inhibits mRNA translation. Gene coding regions, gene promoters
or 5′-UTR may also represent binding sites for miRNAs
(Oliveto et al., 2017). Most miRNAs are present inside the
cells (Balatti et al., 2011). However, low levels of miRNAs
are also found in extracellular environments, such as serum,
plasma, blood, tears, urine, sperm, saliva, breast milk, and
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FIGURE 1 | Long non-coding RNAs (lncRNAs) classification on the basis of localization. lncRNAs transcription mainly occurs in intronic regions. Enhancer and
promoter regions can also undergo lncRNAs transcription. Based on the genomic position, lncRNAs can be divided into five categories, such as sense, antisense,
bidirectional, intronic, and intergenic lncRNAs. Following biosynthesis, lncRNAs form a complex which includes a number interacting proteins to eventually sponge
miRNA targets.

cerebrospinal fluid (Cai and Cullen, 2007; Hunter et al.,
2008; Gallo et al., 2012; Moldovan et al., 2013; Rotondo
et al., 2013; Bononi et al., 2016; Corral-Vazquez et al., 2017;
Huang et al., 2018). Furthermore, miRNAs are also being
studied as biomarkers of pathophysiological conditions (Bononi
et al., 2016; Hoey et al., 2019) and as targets for innovative
therapeutic approaches in precision medicine (Matin et al.,
2016; Mazzoni et al., 2020b). Osteogenic differentiation can be
regulated by several miRNAs both positively and negatively.
In this context, miRNAs can act targeting either negative
or positive regulatory genes and transcription factors (TFs)
(Wang J. et al., 2019).

It is now established that lncRNAs and miRNAs activities are
strictly interconnected in a complex manner. This regulatory
network comprises two main aspects. One is the regulation
of lncRNAs by miRNAs, while the other is the regulation of
miRNAs by lncRNAs (Han et al., 2020; Sun et al., 2020). The
first aspect provides the degradation of lncRNAs by miRNAs
in an RISC/argonaute-dependent manner. In this case, miRNA

binds to the target lncRNA 3′UTR, leading to the degradation of
mRNA or blockade of the ribosomal machinery, both of which
result in the negative regulation of gene expression (Sacco and
Masotti, 2012). The second aspect, i.e., the regulation of miRNAs
by lncRNAs, comprises different mechanisms. One mechanism
provides the positive regulation of miRNAs by lncRNAs, where
different miRNAs are splicing-dependent generated from the
same lncRNA, which therefore acts as miRNAs precursor (Yoon
et al., 2014; Zhou et al., 2021). In addition, lncRNAs can
positively regulate the miRNA expression (Zhang et al., 2013),
by forming chromatin remodeling complexes with enzymes
involved in the histone acetylation and DNA methylation (Zhao
et al., 2020). Furthermore, lncRNAs can interact as scaffolds,
aiding the association of proteins with genomic DNA and
promoting gene expression, including miRNA (Zhao et al.,
2020). Finally, increasing evidence indicates that lncRNAs can
negatively regulate miRNAs by competing with mRNA to bind
miRNA-binding sites, leading to the regulation of miRNA target
genes. In other words, lncRNAs work as competing endogenous
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FIGURE 2 | Biogenesis of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs). lncRNAs and miRNAs are both transcribed by RNA polymerases II (Pol II).
Transcribed lncRNAs directly bind mRNAs and/or miRNAs targets. Differently from lncRNAs, miRNAs undergo a series of processes to become mature. The primary
miRNA precursor, i.e., pri-microRNA, is processed in pre-microRNA through the cutting activity of Drosha and DGCR8 enzymes. Then, pre-microRNA is transported
into the cytoplasm by Exportin-5 where it is processed by Dicer and TRBP enzymes, forming microRNA duplex. The single strand of microRNA duplex is then
complexed with RISC to act as formed mature microRNA by targeting mRNAs.

RNAs (ceRNAs) by acting as sponge for miRNAs and abolish
miRNA inhibitory action to the target mRNAs (López-Urrutia
et al., 2019; Figure 3).

MSCs SIGNALING PATHWAYS IN
OSTEOGENIC DIFFERENTIATION

MSCs differentiation into osteoblast lineage is a complicated
network of key molecular/cellular actors, which lead to bone
formation and remodeling (Thiagarajan et al., 2017). From a
molecular point of view, MSC differentiation is mediated by
several signaling pathways (Bhaskar et al., 2014). The two pivotal
pathways are the Transforming Growth Factor-beta (TGF-
β)/bone morphogenic protein (BMP) and the Wingless/Int-
1(Wnt)/β-catenin pathways, which are strictly interconnected in
a complex interplay (Liu J. et al., 2019; Figure 4). Although

regulated by different factors, these two cascades converge on
Runt-related transcription factor-2 (RUNX-2), which is the
master transcription factor of the osteogenesis (James, 2013;
Mevel et al., 2019). TGF-β is a cytokine belonging to the
transforming growth factor superfamily (Poniatowski et al.,
2015), whose production is mediated by white blood cells (Vallion
et al., 2015). BMPs are a group of growth factors/cytokines,
which have originally discovered for their ability to prompt
bone/cartilage formations in vivo (Katagiri and Watabe, 2016).
Over 20 BMP proteins have been identified so far. Specifically,
BMP2, 4, 5, 6, 7, and 9 play a role in the osteogenic
differentiation (Yang et al., 2014; Martini et al., 2020). TGF-
β/BMP activate two different signal transduction pathways, that
are Sma and Mad related proteins (SMAD)-dependent and
-independent. Both signaling pathways convergently lead to
osteogenic differentiation. During the SMAD-dependent cascade,
different SMAD proteins are activated by phosphorylation.
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FIGURE 3 | The crosstalk between long non-coding RNAs (lncRNAs) and microRNAs (miRNAs). lncRNAs and miRNAs are both transcribed from a non-coding
region of the genome, meanwhile mRNAs are transcribed. lncRNAs compete with mRNAs to bind miRNA targets, by acting as sponge of miRNAs and thus
abolishing the miRNA’s inhibitory action. miRNA–mRNA binding inhibits protein expression, whereas lncRNA–miRNA binding allows protein translation.

Receptor-phosphorylated/activated SMADs (R-SMADs) proteins
includes SMAD2 and SMAD3 via TGF-β signaling and SMAD1,
SMAD5 and SMAD8 via BMP pathway (Hata and Chen, 2016;
Figure 4). R-SMADs from TGF-β/BMP pathways interact with
SMAD4, that translocate into the nucleus complexed with
SMAD2/3, thereby activating the expression of osteogenic genes,
such as RUNX2 (Moghaddam and Neshati, 2019). On the
other hand, TGF-β signaling pathway hampers the osteoblast
differentiation by recruiting the histone deacetylases 4 and
5 (HDAC4/5) which inhibit the RUNX2 transcription (Kang
et al., 2005; Thambyrajah et al., 2018). In Non-Smad-dependent
cascade, TGF-β/BMP signaling pathways lead to the activation
of the osteogenic TFs Osterix (OSX), Distal-less Homeobox 5
(DLX5) and RUNX2 (Chen et al., 2012; Komori, 2020), through
the activation of the MAPK signaling cascade (Chen et al.,
2012). Additional downstream genes involved in the osteogenic
differentiation include osteopontin (OPN), osteocalcin (OCN),
osteonectin (ON), and collagen type 1 (COL1) (Huang et al.,
2007; Jonason et al., 2009). The Wnt/β-catenin signaling
pathway plays a key role in MSCs proliferation, self-renewal
and differentiation into osteoblast lineage, as it induces the
expression of overlapping target genes that act synergistically
(Mohammed et al., 2016). The Wnts consist in a large family
of nineteen glycoproteins involved in a number of different
biological processes, including osteogenic differentiation (Yang
et al., 2016). β-catenin is a dual-function protein involved in
cell adhesion and gene transcription (Valenta et al., 2012). MSCs
osteogenic differentiation via Wnt/β-catenin dependent cascade
leads to the expression of target genes involved in osteogenesis

including RUNX2 (Hamidouche et al., 2008; Aulicino et al., 2020;
Figure 4).

TGF-β/BMP and Wnt/β-catenin signaling pathways have been
shown to be connected (Rahman et al., 2015). Indeed, they can
influence each other in a positive feedback loop, which allow the
osteoblast differentiation in vitro and, therefore, a proper bone
formation/remodeling in vivo (Dituri et al., 2019). Additional
signaling pathways, such as the Parathyroid Hormone-related
Peptide, NOTCH, Hedgehog, and Fibroblast Growth Factor have
been found to be connected in a complex molecular network
with TGF-β/BMP and Wnt/β-catenin signaling pathways upon
osteogenesis (Chen et al., 2012; Rahman et al., 2015).

CROSSTALK BETWEEN lncRNA AND
miRNA IN OSTEOGENIC
DIFFERENTIATION OF MSC

In recent years, the crosstalk between lncRNAs and miRNAs
has emerged as a novel mechanism in the regulation of
different cell molecular processes. lncRNAs can act as molecular
decoys by sequestering miRNAs, and therefore inhibit miRNA
negative interaction with the target genes (Wang L. et al.,
2019). lncRNA/miRNA interaction allows correct function of
the musculoskeletal system, controlling bone homeostasis and
bone regeneration, as well as the osteogenic differentiation
of stem cells (Sikora et al., 2020). Several lncRNAs have
been involved in the osteogenic differentiation of MSCs.
Relevant interactions between lncRNAs and miRNAs during
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FIGURE 4 | Long non-coding RNA (lncRNAs) and microRNAs (miRNAs) involved in osteogenic pathways in Bone Marrow Mesenchymal Stem Cells (BMSCs).
Transforming growth factor-beta (TGF-β), bone morphogenic protein (BMP), and the Wingless/Int-1(Wnt)/β-catenin cascades are the pivotal pathways leading to
BMSCs osteogenic differentiation. The binding between TGF-β and BMP with respective receptors activate SMAD-dependent and SMAD-dependent cascades. In
TGF-β SMAD-dependent signaling, SMAD2/3 (R-SMAD) is phosphorylated upon ligan-receptor binding. Phosphorylated R-SMAD interacts with SMAD4 and
translocate into the nucleus where, together with CBP and P300 co-activators, induce RUNX2 expression. In the cell nucleus R-SMAD without SMAD4 interacts with
HDAC4/5 blocking RUNX2 expression. Unphosphorylated R-SMAD are degraded by ubiquitination. TGF-β SMAD-dependent pathways is positively regulated by
lncH19-miR-675 and lncH19-miR-675, whereas it is negatively regulated by lncHOTAIR-miR-17-5p. In BMP SMAD-dependent cascade R-SMAD comprise
SMAD1/5/8. SMAD6/7 and Smurf1/2 are negative regulators of this pathway. LncKCNQ1OT1-miR-214, lncKCNQ1OT1-miR-320a, lncLOC103691336-miR138-5p,
lncNEAT1-miR-29b-3p trigger BMSCs differentiation. SMAD-independent signaling pathway induces DLX5, RUNX2 and OSX phosphorylation, which is favored by
lncH19-miR-188, lncHULC-miR-195, lncMALAT1-miR-143, lncMALAT1-miR-34c axes. Wnt/β-catenin induces BMSCs osteogenic differentiation by β-catenin
translocation into the nucleus and following expression of target genes. lncH19-miR-141, lncLINC00707-miR-370-3p, lncLINC00707-miR-145, lncHULC-miR-195,
lncFAM83H-AS1-miR-541-3p, lncLINC-ROR- miR-138 and miR-145 positively regulate Wnt/β-catenin signaling pathway. lncXIXT-miRNA-30a-5p,
lncDGCR5-miR-30d-5p directly positively regulate RUNX2, whereas lncMEG3-miR-133a-3p hamper RUNX2 expression.

the osteogenic differentiation of MSCs are reported below.
Since most of the published literature relies on lncRNA/miRNA
crosstalk in BMSC osteogenic differentiation, one section was
specifically dedicated to these stem cells. One further section
was reported for elucidating lncRNA/miRNA interaction in
osteogenic differentiation of MSCs derived from different
sources, such as embryo, adipose tissue, periodontal ligaments,
and induced pluripotent stem cells.

lncRNAs/miRNAs CROSSTALK IN
OSTEOGENIC DIFFERENTIATION OF
BONE MARROW MESENCHYMAL STEM
CELLS

lncRNAs and miRNAs play an important role in regulating
osteogenic differentiation of hBMSCs. Crosstalk between lncRNA

and miRNA has been identified in different osteogenic pathways
such as TGF-β/BMP-SMAD-dependent and -independent
and Wnt/β-catenin signaling (Huang et al., 2015; Gong
et al., 2018; Jiang et al., 2018). Specifically, the lncRNAs
H19 (lncH19), KCNQ1OT1, nuclear-enriched transcript 1
(NEAT1), metastasis-associated lung adenocarcinoma transcript
1 (MALAT1), lncRNA LINC00707, lncRNA HULC, lncRNAs
HOTAIR, maternally expressed gene 3 (lncRNA MEG3), XIXT
and DGCR5 have been shown to play a crucial role as ceRNAs in
promoting osteogenic differentiation of hBMSCs (Table 1).

The lncH19 is one of the most conserved non-coding
transcripts that presents a significant role in promoting
osteogenic differentiation (Li et al., 2020). LncH19 is largely
expressed in the first stages of embryo development (Rotondo
et al., 2013), while it is silenced in the majority cell types
during adulthood. lncH19 activity as ceRNA has been reported
in SMAD-dependent and Wnt/β-catenin signaling. A pro-
osteogenic effect of lncH19 was shown in SMAD-dependent
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TABLE 1 | lncRNAs and their miRNA targets and competing mRNAs involved in MSCs osteogenic differentiation.

lncRNA miRNA target Competing
mRNA

Impact on osteogenesis Examinated cell type References

lncH19 miR-141 SPAG9 Positive SCAPs Li Z. et al., 2017

lncH19 miR-138 PTK2 Positive BMSCs Wu J. et al., 2018

lncH19 miR-22 and miR-141 β-catenin Positive EMSCs Gong et al., 2018

lncH19 miR-22 and miR-141 β-catenin Positive hMSCs BMSCs Liang et al., 2016

lncH19 miR-17, miR-27b, miR34a,
miR-106b, miR-107, miR-125a,
miR-449a, and miR-449b

Notch pathway
genes

Positive iMAD Liao et al., 2017

lncH19 miR-188 LCoR Positive mice BMSCs Wang et al., 2018

lncMALAT1 miR-34c SATB2 Positive mice BMSCs Yang et al., 2019

lncMALAT1 miR-30 RUNX2 Positive hASCs Yi et al., 2019

lncMALAT1 miR-143 OSX Positive hBMSCs Gao et al., 2018

lncMALAT1 miR-124 RUNX2 Positive C3H10T1/2 Zhang et al., 2020

lncPCAT1 miR-145-5p TLR4 Positive hASCs Yu L. et al., 2018

lncPCAT1 miR-106a-5p BMP2 Positive PDLSCs Jia et al., 2019a

lncMEG3 miR-27a-3p IGF1 Positive PDLSCs Liu Y. et al., 2019

lncMEG3 miR-140-5p RUNX2; OCN Positive hASCs Li Z. et al., 2017

lncMEG3 miR-133a-3p SLC39A1 Negative BMSCs from PMOP Wang et al., 2017

lncKCNQ1OT1 miR-214 BMP2 Positive BMSCs Wang C.-G. et al., 2019

lncKCNQ1OT1 miR-320a SMAD5 Positive BMSCs Wang et al., 2020

lncKCNQ1OT1 miR-138 RUNX2 Positive TSCs Yu Y. et al., 2018

lncHOTAIR miR-17-5p SMAD7 Negative BMSCs Wei et al., 2017

lncLINC00707 miR-370-3p WNT2B Positive BMSCs Jia et al., 2019b

lncLINC00707 miR-145 LRP5 Positive BMSCs Cai et al., 2020

lncLINC02349 miR-25-3p SMAD5 Positive UC-MCSs Cao et al., 2020

lncLINC02349 miR-33b-5p WNT10B Positive UC-MCSs Cao et al., 2020

lncLINC-ROR miR-138; miR-145 ZEB2 Positive BMSCs Feng et al., 2018

lncHULC miR-195 WNT and MAPK
pathways genes

Positive BMSCs Jiang et al., 2018

lncFAM83H-AS1 miR-541-3p WNT3A Positive BMSCs Wu et al., 2020

lncLOC103691336 miR-138-5p BMPR2 Positive BMSCs Li D. et al., 2019

lncNEAT1 miR-29b-3p BMP1 Positive BMSCs Zhang Y. et al., 2019

lncRNA Rmst miR-106, miR-125a, miR-449a;
miR-449b

Notch pathway
genes

Positive iMAD Zhang Z. et al., 2019

lncANCR/DANCR miRNA-758 NOTCH2 Negative PDLSCs Peng et al., 2018b

lncTUG1 miR-204-5p RUNX2 Positive MSMSCs Yu C. et al., 2018

lncXIXT miRNA-30a-5p RUNX2 Positive hBMSCs Zhang H.-L. et al., 2019

lncTCONS_00041960 miR-204-5p; miR-125a-3p RUNX2 Positive Rat BMSC Shang et al., 2018

lncDGCR5 miR-30d-5p RUNX2 Positive BMSCs Wu Z.-H. et al., 2018

lncNTF3-5 miR-93-3p RUNX2 Positive MSMSC Peng et al., 2018c

lncMODR miR-454 RUNX2 Positive MSMSC Weng et al., 2017

lncRNA-FER1L4 miR-874-3p VEGFA Positive PDLSCs Huang et al., 2020

lncRNA-POIR miR-182 FoxO1 Positive PDLSCs Wang et al., 2016

pathway via TGF- β1/Smad3/HDAC signaling in in vitro
experiments. Moreover, additional data indicated that lncH19
induced bone formation in vivo (Huang et al., 2015). In particular,
in Wnt/β-catenin signaling pathway, lncH19 sponged miR-
22 and miR-141 inducing the upregulation of ALP, RUNX2,
BMP and OCN and thus osteogenesis, whilst miR-22 and miR-
141 hamper the osteogenesis binding the 3′-UTR and CDS
regions of β-catenin (Liang et al., 2016). Further, lncH19 is
also a positive regulator in tension-induced BMSC osteogenesis.
In this context, lncH19 acts as a ceRNA of miR-138 for

up-regulating the downstream focal adhesion kinase (FAK),
which is a key factor in the mechano-transduction pathway of
the osteogenic differentiation (Manfrini et al., 2013; Mazzoni
et al., 2017; Wu J. et al., 2018). Finally, the ability of lncH19
to mediate the balance between osteogenic and adipogenic
differentiation has been shown via miR-188 sponging. Once
expressed, miR-188 negatively regulates the transcriptional
corepressor ligand-dependent corepressor (LCoR), resulting in
suppression of osteogenic differentiation and induction of
adipogenic differentiation in murine BMSCs. Counter wise,
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lncH19 expression hampered the inhibitory effect of miR-188 on
LCoR, leading to the osteogenesis (Wang et al., 2018).

Activation of the lncRNAs KCNQ1OT1, LOC103691336,
NEAT1 and MALAT1 promoted osteogenic differentiation
of BMSCs sponging miRNAs involved in BMP signaling
pathway. The KCNQ1OT1 is an imprinted antisense lncRNA
that can interact with different miRNAs (Wang C.-G. et al.,
2019; Wang et al., 2020). On one hand, KCNQ1OT1, sponging
miR-214 resulted in BMP2 expression during osteogenic
differentiation (Wang C.-G. et al., 2019). Consistently,
miR-214 silencing increased expression of the osteogenic
genes SMAD1/5/8, RUNX2 and OSX, while KCNQ1OT1
inhibition completely inverted this expression pattern (Wang
C.-G. et al., 2019). Also, KCNQ1OT1 sponging miR-320a,
which targets SMAD5, resulted in SMAD5 expression during
osteogenic differentiation of BMSCs, leading to the increased
expression of a number of genes involved in osteogenesis,
such as OCN, OPN, RUNX2 and ALP (Wang et al., 2020).
LOC103691336 activated BMP cascade by sponging miR-
138-5p in rat BMSCs, which led to the expression of BMPR2
(Li D. et al., 2019). Similarly, NEAT1 activated BMP cascade
by sponging miR-29b-3p, resulting in BMP1 expression
(Zhang Y. et al., 2019).

Differently from lncRNAs listed above, by sponging miRNAs,
the lncRNAs HOTAIR and maternally expressed gene 3 (MEG3)
negatively regulate the osteogenic differentiation of BMSCs.
The biological functions of HOTAIR have been identified in
human bone diseases (Wei et al., 2017). HOTAIR levels were
found to be higher in samples of non-traumatic osteonecrosis
of femoral head (ONFH) compared with osteoarthritis, and
negatively correlated to miR-17-5p. Indeed, in BMP2-induced
BMSC osteoblastic differentiation, HOTAIR reduced the
expression of the osteogenic markers RUNX2, COL1A1, and
ALP by binding miR-17-5p, which is a negative regulator
of SMAD7 expression (Wei et al., 2017). Wang et al. (2017)
reported that MEG3 inhibited the osteogenesis in hBMSCs
positively regulating miR-133a-3p, which targets SLC39A1
gene encoding zinc transporter 1 (ZIP1) (Wang et al., 2017).
However, both MEG3 and miR-133a-3p were increased
in hBMSCs during postmenopausal osteoporosis, whereas
markedly decreased in the differentiation of hBMSCs into
osteoblasts. Therefore, the role MEG3 in osteogenesis remains
to be clarified.

An additional study reported on an inverse correlation
between the expression of MEG3 and miR-125b in MSCs
cultured on the polymer poly(L-lactic acid); MEG3 and miR-
125b have been found to be progressively upregulated and
downregulated, respectively, throughout different culture time
points. The same study also identified computationally four
target sites for miR-125 binding within MEG3 gene, thus
suggesting that this lncRNA might be under miR-125-mediated
negative regulation (Izadpanahi et al., 2018). It has been
reported that miRNAs can directly bind to the double stranded
genomic DNA (dsDNA) by forming miRNA–dsRNA triple
helices, thereby regulating the expression of genes (Paugh
et al., 2016). However, to the best of our knowledge, the
miRNA–dsRNA-mediated modulation of lncRNAs by miRNAs

has not been described so far. In summary, since the
lack of data, whether miRNAs might regulate osteogenic
differentiation of MSCs by modulating lncRNAs remains to be
assessed.

The Wnt/β-catenin cascade is positively regulated by the
lncRNA LINC00707 during the osteogenic differentiation of
BMSCs. By sponging miR-370-3p or miR-145, LINC00707
up-regulated WNT2B or LRP5 expression, respectively, which
are two important players of Wnt/β-catenin pathway during
osteogenic differentiation (Jia et al., 2019b; Cai et al., 2020).
Furthermore, the pro-osteogenic effect of LINC00707 has been
assessed also in vivo. Indeed, LINC00707 overexpression or
silencing in BMSCs loaded on scaffolds and subcutaneously
injected in mice, led to bone formation or impaired
osteogenesis, respectively (Jia et al., 2019b). Similarly, the
lncRNAs FAM83H-AS1 and Linc-ROR positively regulate the
Wnt/β-catenin pathway by binding the negative regulators of
osteogenesis miR-541-3p, and miR-138/miR-145, respectively.
These lncRNA/miRNA interactions, resulted in inducing the
expression of pro-osteoinductive proteins WNT3A and ZEB2
(Feng et al., 2018; Wu et al., 2020). Further, Wnt/β-catenin
and p38MAPK pathway have been found to be enhanced
by the lncRNA HULC upon sponging miRNA-195, which
promoted proliferation and osteogenic differentiation of BMSCs
(Jiang et al., 2018).

Irrespective of the osteogenic pathways, the lncRNAs XIXT
and DGCR5 have been found to positively regulate BMSC
osteogenic differentiation by directly acting on miRNAs targeting
RUNX2, the master osteogenic transcription factor (Draper et al.,
2016; Wu Z.-H. et al., 2018; Zhang H.-L. et al., 2019). XIXT
and DGCR5 can trigger osteogenesis by sponging the miRNA-
30a-5p and miR-30d-5p, respectively. Furthermore, the lncRNA
TCONS_00041960, found downregulated in a microarray
analysis of rat glucocorticoid-treated BMSCs, induced the
expression of the osteogenic genes RUNX2 and GILZ by sponging
miR-204-5p and miR-125a-3p, leading to enhanced osteogenesis
(Shang et al., 2018). Finally, MALAT1, also known as nuclear-
enriched transcript 2 (NEAT2), is a lncRNA emerging as
modulator of osteogenesis in stem cells. In hBMSCs, MALAT1
is able to regulate OSX expression by sponging miR-143 leading
to the osteogenic differentiation (Gao et al., 2018).

Recently, mouse models have been also used to investigate
in vivo the role of the lncRNAs in osteogenic differentiation
and their crosstalk with miRNAs. MALAT1 enhances osteoblast
activity in osteoporotic animals inhibiting miR-34c, therefore
promoting the expression of special AT-rich sequence-binding
protein 2 (SATB2), a DNA-binding protein implicated
in osteoblastic differentiation and skeletal development
(Yang et al., 2019).

Few works studied the positive regulatory role of lncRNAs
as miRNAs precursors during the osteogenic differentiation
of MSCs. In particular, although it is known that lncH19
is a key positive regulator of osteogenesis by sponging a
number of different miRNAs, this lncRNA can also exert
a dual role in osteogenesis by generating three different
miRNAs, i.e., miR-675, miR-675-5p and miR-675-3p. The first
induces osteogenic differentiation in hBMSCs inhibiting (i)
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phosphorylation of SMAD3 by binding the TGF-β1 mRNA,
and (ii) HDAC4/5 mRNA expression levels (Huang et al.,
2015). Contrariwise, both miR-675-5p and miR-675-3p
counteract osteoblast differentiation by targeting β-catenin
transcript in hMSCs (Liang et al., 2016; Ma et al., 2020;
Zhou et al., 2021).

Additional lncRNAs which may act as miRNAs precursors
have been hypothesized (Song et al., 2015). An in silico
analysis using high-throughput RNA sequencing data from MSCs
identified the lncRNAs TCONS_00046478, TCONS_00027225,
and TCONS_00007697 as precursors of miRNAs believed
to be pro-osteogenic, i.e., miR-689, miR-544, and miR-640,
respectively. However, functional studies need to be performed in
order to identify the targets of these miRNAs and therefore their
role in osteogenic differentiation (Song et al., 2015).

CROSSTALK BETWEEN lncRNAs AND
miRNAs IN OSTEOGENIC
DIFFERENTIATION OF MESENCHYMAL
STEM CELLS FROM OTHER SOURCES

lncRNAs and miRNAs crosstalk has been shown to play a
role also in the osteogenic differentiation of various stem cell
types including those from ectomesenchyme, apical papilla,
immortalized mouse adipose-derived mesenchymal stem cells
(iMADs), adipose tissue, periodontal ligaments, maxillary sinus,
umbilical vein cord and mouse embryo.

As shown in hBMSCs, in rat ectomesenchymal stem
cells (EMSCs), lncH19 induced osteogenic differentiation via
Wnt/β-catenin signaling pathway by binding the miR-22 and
miR-141, leading to up-regulation of ALP, RUNX2, BMP and
OCN (Liang et al., 2016; Gong et al., 2018).

Unlike hBMSC, in stem cells from apical papilla (SCAPs)
lncH19 positively induced osteo/odontogenic differentiation
through SMAD-independent signaling (Li Z. et al., 2019).
Specifically, lncH19 competitively bound to miR-141 and
prevented sperm-associated antigen9 (SPAG9) from miRNA-
mediated degradation in SCAPs, thus increasing phosphorylated
levels of p38 and JNK and inducing the expression of several
osteogenic markers such as OCN, OSX, RUNX2, and ALP (Li
Z. et al., 2019). In iMADs, during BMP9-induced osteogenic
differentiation lncH19 functions as an important mediator
of BMP9 signaling by modulating Notch signaling-targeting
miRNAs, such as miR-17, miR-27b, miR34a, miR-106b, miR-
107, miR-125a, miR-449a, and miR-449b (Liao et al., 2017).
Notably, the impact of lncH19 on bone formation has also been
demonstrated in vivo via mice transplantations of SCAP and
iMAD cells co-transfected with this lncRNA (Liao et al., 2017;
Li Z. et al., 2019).

An interplay between the lncRNA Rmst (lncRmst) and four
miRNAs, miR-106, miR-125a, miR-449a, and miR-449b, has
been shown in BMP9-induced iMADs osteogenic differentiation.
These four miRNAs specifically target mRNAs of Notch receptors
and/or ligands preventing Notch signaling activation and thus
MSCs osteogenic differentiation. In addition, in vivo data

confirmed the positive effect of lncRmst on osteogenesis. Indeed,
lncRmst knockdown in iMADs subcutaneously injected in nude
mice decreased BMP9-induced bone formation (Zhang Z. et al.,
2019). Overall, these results indicate that the lncRNA-miRNA-
Notch regulatory axis may play an important role in mediating
BMP9-induced osteogenic differentiation of MSCs.

In human adipose stem cells (hASCs), MALAT1 and the
prostate cancer-associated ncRNA transcript-1 (lncPCAT1) are
able to positively regulate RUNX2 expression and the Toll-like
receptor (TLR) signaling pathway by sponging miR-30 and miR-
145-5p, respectively, leading to the osteogenic differentiation (Yu
L. et al., 2018; Yi et al., 2019). Finally, sponging or not miR-140-
5p, the lncMEG3 could regulate the balance between osteogenic
and adipogenic differentiation of hASCs (Li Z. et al., 2017).
Indeed, MEG3 up-regulation inhibited miR-140-5p leading to
osteogenesis via RUNX2 and OCN expression, whereas MEG3
down-regulation led to adipogenesis. The implantation of hASCs
with silenced MEG3 in nude mice confirmed the pro-osteogenic
effect of this lncRNA in vivo (Li Z. et al., 2017).

In periodontal ligament stem cells (PDLSCs), largely
studied especially for periodontal regeneration, the lncRNAs
PCAT1 and MEG3 positively regulated osteogenesis sponging
miRNAs. Specifically, in vitro results indicated that PCAT1
up-regulates BMP2, which is a direct target of miR-106a-5p
and its transcription factor E2F5 expression sponging miR-
106a-5p. In vivo, the transplantation of scaffolds loaded with
PDLSC cells overexpressing/silencing lncPCAT1 in nude mice
increased/reduced osteogenesis, respectively (Jia et al., 2019a).
In the same cells, upon miR-27a-3p sponging, MEG3 promoted
osteogenic differentiation activating IGF1-induced PI3k/Akt
signaling pathway, which was hampered in periodontitis (Liu Y.
et al., 2019). On the contrary, the anti-differentiation non-coding
RNA (ANCR) negatively controlled osteogenesis in PDLSCs
sponging miR-758, which is a negative regulator of NOTCH2
expression. In conclusion, lncRNA-ANCR/miR-758/Notch2-
Wnt/β-catenin signaling pathway was suggested to be involved
in the process of regulating osteogenic differentiation of PDLSCs
(Peng et al., 2018b). An additional study carried out in PDLSCs
reported that lncRNA Fer-1-like family member 4 (FER1L4)
promotes osteogenic differentiation by binding miR-874-3p,
which targets vascular endothelial growth factor A (VEGFA). The
pro-osteogenic effect of lncRNA FER1L4 has been shown in mice
transplanted with PDLSCs overexpressing the FER1L4 (Huang
et al., 2020). A microarray analysis of PDLSCs from periodontitis
patients, reported the dysregulation of the lncRNA-POIR. It
has been reported that in vitro and in vivo, lncRNA-POIR
positively regulates PDLSCs osteogenic differentiation and
prompts bone formation, respectively. Specifically, in PDLSC
cells lncRNA-POIR exerts its pro-osteogenic potential by
sponging miR-182, which targets Forkhead box protein O1
(FoxO1) involved in the Wnt/β-catenin signaling cascade
(Wang et al., 2016).

In maxillary sinus stem cells (MSMSCs), the lncRNAs
TUG1, lncNTF3-5 and MODR positively regulated osteogenic
differentiation sponging miRNAs targeting RUNX2, such as miR-
204-5p, miR-93-3p, and miR-454, respectively (Weng et al.,
2017; Peng et al., 2018c; Yu C. et al., 2018). Moreover, the
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positive regulation of lnc-NTF3–5 in osteogenesis has been
demonstrated in mice through subcutaneous implantation of
MSMSCs co-transfected with lncNTF3-5 and its target miR-93-
3p (Peng et al., 2018c).

Umbilical cord-derived mesenchymal stem cells (hUC-MSCs)
have been employed to study lncRNA LINC02349 effect on
osteogenesis. During the osteogenesis of hUC-MSCs, lncRNA
LINC02349, highly expressed during cell differentiation, affected
WNT/β-catenin and BMP pathway up-regulating SMAD5
and WNT10B via inhibition of miR-25-3p and miR-33b-5p
activities, respectively (Cao et al., 2020). The overexpression
of LINC02349 in hUC-MSCs loaded on collagen scaffolds and
subcutaneously implanted into nude mice, confirmed the positive
effect of this lncRNA on osteogenic differentiation in vivo
(Cao et al., 2020).

In mouse embryos derived C3H10T1/2 cells, MALAT1
promoted the osteogenic differentiation by sponging miR-124.
Consistently, the expression of MALAT1 corresponded with
a lower expression of miR-124 and an increased expression
of pro-osteogenic genes such as RUNX2, OPN, and OCN
(Zhang et al., 2020).

The role of the lncKCNQ1OT1 in the osteogenic
differentiation of tendon stem cells (TSCs) has been investigated
in a tendon injury mouse model. The study revealed that
KCNQ1OT1 sponged miR-138 allowing RUNX2 expression and
thus osteogenic differentiation of TSCs (Yu Y. et al., 2018).

CONCLUSION

The discovery of the interplay between lncRNAs and miRNAs
has improved knowledge into the gene expression regulation
involved in bone development, bone homeostasis and bone
regeneration. The lncRNAs activity as ceRNAs to suppress
miRNA inhibitory effect is currently the main molecular
mechanism investigated in osteogenic differentiation. Overall,
the studies mentioned in this review clearly demonstrate
that lncRNAs are essential modulators of the differentiative
processes and finely coordinate the osteogenic differentiation of
MSCs through crosstalk with miRNAs. Moreover, lncRNAs and
miRNAs interplays may exert positive or negative effect on MSCs
osteogenic differentiation.

As the biogenesis and expression of lncRNAs are cell-type
specific, they may be ideal markers and therapeutic targets
(Grillone et al., 2020). In this view, stem cells from bone
marrow display useful biological properties for use in clinical
practice and tissue regeneration. Natural bone healing and
repair is essentially based on the activities of MSCs, mainly
BMSCs. Further, MSCs are currently considered as valid
biological sources for use in bone tissue regeneration by tissue
engineering approaches. Therefore, deeply knowledge of the
mechanisms which govern BMSCs differentiation is of pivotal
relevance. Currently, different lncRNA/miRNA axes have been
found positive regulator of osteogenesis in BMSCs, such as
lncH19/miR-675, lncH19/miR-22-miR-141, lncH19/miR-138,
lncH19/miR-188, KCNQ1OT1/miR-214, KCNQ1OT1/miR-
320a, LOC103691336/miR-138-5p, NEAT1/miR-29b-3p,
MALA-T1/miR-143, lncRNA LINC00707/miR-370-3p, LINC0

0707/miR-145, FAM83H-AS1/miR-541-3p, Linc-ROR/miR-
138-miR-145, HULC/miRNA-195, XIXT/miRNA-30a-5p,
DGCR5/miR-30d-5p, TCONS_00041960/miR-204-5p, TCONS_
00041960/miR-125a-3p (Huang et al., 2015; Liang et al., 2016;
Wang et al., 2017, 2018, 2020; Wei et al., 2017; Feng et al., 2018;
Gao et al., 2018; Jiang et al., 2018; Shang et al., 2018; Wu J.
et al., 2018; Wu Z.-H. et al., 2018; Jia et al., 2019a; Li D. et al.,
2019; Wang C.-G. et al., 2019; Zhang H.-L. et al., 2019; Zhang
Y. et al., 2019; Cai et al., 2020; Wu et al., 2020). By contrast,
HOTAIR/miR-17-5p and MEG3/miR-133a-3p have been found
to be negative regulators of BMSCs osteogenesis (Wang et al.,
2017; Wei et al., 2017).

MSCs can be easily collected from other different anatomical
regions, such as adipose tissue and apical papilla of the
tooth, and also be valid biological sources for therapeutic
application in orthopedic and endodontic clinical practice of
bone tissue regeneration (Kolaparthy et al., 2015). Although
the osteogenic/odontogenic differentiation of ASCs and SCAPs
has been proven in several studies, only few reported on
the crosstalk between lncRNAs and miRNAs during the
osteogenesis of these MSCs.

In addition to the direct post-transcriptional regulation of
miRNAs by lncRNAs, these two molecules can form a complex
regulatory network of mutual interaction for controlling
gene expression, which covers different mechanisms and
a variety of molecular factors. However, the role of these
additional mechanism on the osteogenic differentiation of
MSCs has been poorly investigated so far. The understanding
of these mechanisms upon osteogenic differentiation of
MSCs will increase our knowledge of this biological process
thereby leading to improved medical treatments of bone
related diseases.

In conclusion, in this review we have described the
current knowledge on the interplay between lncRNAs and
miRNAs during the osteogenic differentiation of MSCs. Most
of the works mentioned above have been conducted in
BMSCs, thus further studies on MSCs collected from other
anatomical districts are encouraged. Notably, some in vivo
studies begin to confirm the biological role of lncRNAs
molecular functions. Certainly, we can foresee a wider influence
of lncRNAs on cell differentiation, because of the different
molecular activities of lncRNAs, which largely remain to be
clarified yet (Statello et al., 2020). We believe that recent
discoveries on lncRNAs/miRNAs crosstalk upon osteogenic
differentiation described herein will improve knowledge into
the molecular mechanisms of bone remodeling and bone-
related disorders, as well as will prompt the development of
novel preclinical and clinical studies, ultimately leading to novel
therapeutic approaches in the treatment of osteogenic disorders
and bone diseases.
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