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Using e* e~ annihilation data of 2.93 fb~! collected at center-of-mass energy /s = 3.773 GeV with the
BESIII detector, we measure the absolute branching fraction of D° — K ~utv, with significantly improved

precision: o

=K uty,

= (3.413 £ 0.0194y £ 0.0354y)%. Combining with our previous measurement of

Bpo_g-¢+y,» the ratio of the two branching fractions is determined to be Bpo_ -+, /Bpog-¢+y, =

0.974 4 0.007 4, £ 0.012, which agrees with the theoretical expectation of lepton flavor universality

within the uncertainty. A study of the ratio of the two branching fractions in different four-momentum transfer
regions is also performed, and no evidence for lepton flavor universality violation is found with current
statistics. Taking inputs from global fit in the standard model and lattice quantum chromodynamics separately,
we determine f% (0)=0.7327+£0.0039, £0.0030 and |V ;| =0.955+0.005, +0.004y +0.024; ocp.

DOI: 10.1103/PhysRevLett.122.011804

In the standard model (SM), lepton flavor universality
(LFU) requires equality of couplings between three families
of leptons and gauge bosons. Semileptonic (SL) decays of
pseudoscalar mesons, well understood in the SM, offer an
excellent opportunity to test LFU and search for new physics
effects. Recently, various LFU tests in SL B decays were
reported at BABAR, Belle, and LHCb. The measured branch-

. . . ¢
ing fraction (BF) ratios RfD/(*) = By_ptrety [ Bpoporgrs,

(¢ =p, ¢) [1-5] and REC =By o, /By g o
[6,7] deviate from SM predictions by 3.90 [8] and
2.1-2.50, respectively. Various models [9-14] were proposed
to explain these tensions. Precision measurements of SL. D
decays provide critical and complementary tests of LFU.
Reference [15] states that observable LFU violations may
existin D — K~#*v, decays. In the SM, Ref. [16] predicts

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

Ruje = BDo_,K-WU#/BDo_,K-em =0.975 £ 0.001. Above
g* = 0.1 GeV?/c* (q is the total four momentum of
£*v,), one expects R, /. close to 1 with negligible uncer-
tainty [17]. This Letter presents an improved measurement of
D° - K~p'v, [18], and LFU test with D° — K¢,
decays in the full kinematic range and various separate g>
intervals.

Moreover, experimental studies of the D° — K~#*v,
dynamics help to determine the ¢ — s quark mixing matrix
element |V | and the hadronic form factors (FFs) fX(0)
[16,19,20]. The D° — K~e*v, dynamics was well studied
by CLEO-c, Belle, BABAR, and BESIII [21-24]. However,
the D° — K~ p*v, dynamics was only investigated by
Belle and FOCUS [21,25], with relatively poor precision.
By analyzing the D° — K~y *v, dynamics, we determine
|V and f%(0) incorporating the inputs from global
fit in the SM [26] and lattice quantum chromodynamics
(LQCD) [27]. These are critical to test quark mixing matrix
unitarity and validate LQCD calculations on FFs. This
analysis is performed using 2.93 fb~! of data taken at
center-of-mass energy /s = 3.773 GeV with the BESIII
detector.
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Details about the design and performance of the BESIII
detector are given in Ref. [28]. The Monte Carlo (MC)
simulated events are generated with a GEANT4-based [29]
detector simulation software package, BOOST. An inclusive
MC sample, which includes the D°D°, D*D~, and non-
DD decays of y(3770), the initial state radiation (ISR)
production of y(3686) and J/y, and the g (¢ = u, d, s)
continuum process, along with Bhabha scattering, u*pu~
and 777~ events, is produced at /s =3.773 GeV to
determine the detection efficiencies and to estimate the
potential backgrounds. The production of the charmonium
states is simulated by the MC generator KKkMC [30]. The
measured decay modes of the charmonium states are
generated using EVTGEN [31] with BFs from the Particle
Data Group (PDG) [26], and the remaining unknown
decay modes are generated by LUNDCHARM [32]. The
D’ = K “u'v, decay is simulated with the modified pole
model [33].

At /s =3.773 GeV, the w(3770) resonance decays
predominately into D°D° or D* D~ meson pairs. If a D°
meson is fully reconstructed by D° — K*z~, K*z~2° or
K*n~ 7 #*, a D° meson must exist in the recoiling system
of the reconstructed D° [called the single-tag (ST) D°]. In
the presence of the ST D° we select and study D° —
K _/ﬁvﬂ decay [called the double-tag (DT) events]. The BF
of the SL decay is given by

BDU—>K’I4+L/# = NDT/(NtSO’It‘ X €SL)7 (1)

where N§ and Npr are the ST and DT yields, 5 =
epr/€esr is the efficiency of reconstructing D — K ‘,uﬂ/”
in the presence of the ST D° and egr and epp are the
efficiencies of selecting ST and DT events.

All charged tracks must originate from the interaction
point with a distance of closest approach less than 1 cm in
the transverse plane and less than 10 cm along the z axis.
Their polar angles () are required to satisfy | cos 8] < 0.93.
Charged particle identification (PID) is performed by
combining the time-of-flight information and the specific
ionization energy loss measured in the main drift chamber.
The information of the electromagnetic calorimeter (EMC)
is also included to identify muon candidates. Combined
confidence levels for electron, muon, pion and kaon
hypotheses (CL,, CL,, CL,, and CLg) are calculated
individually. Kaon (pion) and muon candidates must satisfy
CLg(r) > CLy k) and CL, > 0.001, CL,, and CL, respec-
tively. In addition, the deposited energy in the EMC of the
muon is required to be within (0.02,0.29) GeV. The 7°
meson is reconstructed via z° — yy decay. The energy
deposited in the EMC of each photon is required to be
greater than 0.025 GeV in the barrel (| cos 8] < 0.80) region
or 0.050 GeV in the end cap (0.86 < |cosd| < 0.92)
region, and the shower time has to be within 700 ns of
the event start time. The 7z° candidates with both photons
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FIG. 1. Fits to [(a)—(c)] the My distributions for the three ST
modes, and (d) the U, distribution for D° — K “u'y, candi-
dates. Dots with error bars are data, solid curves show the fit
results, dashed curves show the fitted non-peaking background
shapes, the dash-dotted curve in (d) is the peaking background
shape of D° — K~z 7" and the red arrows in (a)—(c) give the
Mpgc windows.

from the end cap are rejected because of poor resolution.
The yy combination with an invariant mass (M,,) in the
range (0.115,0.150) GeV/c? is regarded as a z° candidate,
and a kinematic fit by constraining the M,, to the 70
nominal mass [26] is performed to improve the mass
resolution. For D° — K*z~, the backgrounds from cosmic
ray events, radiative Bhabha scattering and dimuon events
are suppressed with the same requirements as used
in Ref. [34].

The ST D° mesons are identified by the energy differ-
ence AE = Epo — Ey,n and the beam-constrained mass
Mgc = \/E2,,., — |Ppo|*, where Epeyp, is the beam energy,
and Epo and p o are the total energy and momentum of the
ST D in the ete™ rest frame. If there are multiple
combinations in an event, the combination with the
smallest |AE| is chosen for each tag mode and for D°
and D. For one event, there may be up to six ST D
candidates selected. To determine the ST yield, we fit the
My distributions of the accepted candidates after imposing
mode dependent AE requirements. The signal is described
by the MC-simulated shape convolved with a double-
Gaussian function accounting for the resolution difference
between data and MC simulation, and the background is
modeled by an ARGUS function [35]. Fit results are shown
in Figs. 1(a)-1(c). The corresponding AE and My require-
ments, ST yields and efficiencies for various ST modes
are summarized in Table I. The total ST yield is N§ =
2341408 £ 2056.

Candidates for D° — K~p*v, must contain two oppo-
sitely charged tracks which are identified as a kaon and a
muon, respectively. The muon must have the same charge
as the kaon on the ST side. To suppress the peaking
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TABLE 1.
Uncertainties are statistical only.

AE and Mpc requirements, ST yields Ngt, ST efficiencies egr and signal efficiencies eg for different ST modes.

ST mode AE (MeV) MBC (GeV/CZ) NST EST (%) EsL, (%)

Ktz~ (-29,27) (1.858,1.874) 538865 + 785 65.37 £0.09 57.74 £0.09
Ktnn® (—69,38) (1.858,1.874) 1080050 + 1532 34.67 +£0.04 61.23 +0.09
Ktnaxt (-31,28) (1.858,1.874) 722493 £ 1126 38.20 + 0.06 56.42 £0.09

backgrounds from D° — K~z"(z°), the K~u* invariant
mass (M g-,+) is required to be less than 1.56 GeV/ c?, and
the maximum energy of any photon that is not used in the
ST selection (Egr,,) must be less than 0.25 GeV.

The kinematic quantity U i = Epigs — |Pmiss| 18 calcu-
lated for each event, where E and P are the energy
and momentum of the missing particle, which can be
calculated by Epngs = Epeam — Ex- — E,+ and Py =
Ppo — Px- — P,+ in the e e™ center-of-mass frame, where
Eg-(,+) and D- (u+) are the energy and momentum of the
kaon (muon) candidates. To improve the U, resolution,
the D energy is constrained to the beam energy and

Ppo = —Ppoy/ Epeam — Miy» Where Py is the unit vector in

the momentum direction of the ST D° and mjo is the D°
nominal mass [26].

The SL decay yield is obtained from an unbinned fit to
the U, distribution of the accepted events of data, as
shown in Fig. 1(d). In the fit, the signal, the peaking
background of D® — K~z*z" decay and other back-
grounds are described by the corresponding MC-simulated
shapes. The former two are convolved with the same
Gaussian function to account for the resolution difference
between data and MC simulation. All parameters are left
free. The fitted signal yield is Npr = 47100 £ 259.

The efficiencies of finding D° — K “utv, for different
ST modes are summarized in Table I. They are weighted
by the ST yields and give the average -efficiency
esr, = (58.93 +0.07)%. To verify the reliability of the
efficiency, typical distributions of the SL decay, e.g.,
momenta and cos@ of K~ and u™, are checked and good
consistency between data and MC simulation has been
found (see Fig. 1 of Ref. [36]).

By inserting Npr, €51 and N} into Eq. (1), one obtains

Bpo gy, = (3413 £ 0.019, £ 0.035,,,)%.

The systematic uncertainties in the BF measurement are
described as follows. The uncertainty in N} is taken as
0.5% by examining the changes of the fitted yields by
varying the fit range, the signal shape, and the endpoint of
the ARGUS function. The efficiencies of muon and kaon
tracking (PID) are studied with ete™ — yu™u~ events and
DT hadronic events, respectively. The uncertainties of
tracking and PID efficiencies each are assigned as 0.3%
per kaon or muon. The differences of the momentum and

cos @ distributions between D° — K “u"v, and the control
samples have been considered. The uncertainty of the
Eiray requirement is estimated to be 0.1% by analyzing
the DT hadronic events. The uncertainty in the Mg-,+
requirement is estimated with the alternative M-+
requirements of 1.51 or 1.61 GeV/c?, and the larger
change on the BF 0.4% is taken as the systematic
uncertainty. The uncertainty of the U, fit is estimated
to be 0.5% by applying different fit ranges, and signal and
background shapes. The uncertainty of the limited MC size
is 0.1%. The uncertainty in the MC model is estimated to be
0.1%, which is the difference between our nominal DT
efficiency and that determined by reweighting the ¢?
distribution of the signal MC events to data with the
obtained FF parameters (see below). The total uncertainty
is 1.02%, which is obtained by adding these uncertainties in
quadrature.

The BFs of D° - K u*v, and D° - K*y~p, are
measured separately. The results are Bpo_, Kuty, =
(3.433 £0.0264, +0.039,)%  and B[_)O—ﬂ(*y’[/# =
(3.392 + 0.027 o = 0.034Syst)%. The BF asymmetry is
determined to be A = [(Bpo_k-y+y, = Bpookuz,)/
(BDO—’K_M+V,4 + BDo_,KW-D#)} = (0.6 £ 0.64, £ 0.84y5) %,
and no asymmetry in the BFs of D® — K~y v, and D° —
K*pu~p, decays is found. All the systematic uncertainties
except for those in the EZT,, requirement and MC model
are studied separately and are not canceled out in the BF
asymmetry calculation.

The D° — K~y v, dynamics is studied by dividing the
SL candidate events into various ¢ intervals. The measured
partial decay rate (PDR) in the ith ¢? interval, AL, is
determined by

ATh, = / (dT)dq)dq? = Nivy (xp0 x N2). (2)

where N f)m is the SL decay signal yield produced in the ith
g* interval, 7,y is the D° lifetime and N is the ST yield.
The signal yield produced in the ith ¢* interval in data is
calculated by

Nimervals

Né)ro = Z

(s_l)ijNobs’ (3)
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FIG.2. (a)Fit to the PDRs, (b) projection to fX (g?
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bars are data. Solid curves are the fit, the projection or the R/, expected with the parameters in Ref. [17] where the uncertainty is

negligible due to strong correlations in hadronic FFs.

where the observed DT yield in the jth ¢? interval N’ Cbs 1
obtained from the similar fit to the corresponding Umlss
distribution of data (see Fig. 2 of Ref. [36]). ¢ is the
efficiency matrix (Table I of Ref. [36]), which is obtained
by analyzing the signal MC events and is given by

€ij = Z(I/Ntso%) x [(N;éc X NST)/(Néen X &g7) 5 (4)
%

where N, is the DT yield generated in the jth ¢? interval
and reconstructed in the ith g? interval, Néen is the total
signal yield generated in the jth ¢* interval, and the index k
denotes the kth ST mode. The measured PDRs are shown in
Fig. 2(a) and details can be found in Table II of Ref. [36].

The FF is parametrized as the series expansion para-
meterization [37] (SEP), which has been shown to be
consistent with constraints from QCD [22,24,38]. The
2-parameter SEP is chosen and is given by

1 FE(0)P(0)@(0, 1)
P(1)®(t,ty) 14 ri(29)z(0, 1)

X {1+ ri(1)[z(t.1)]}- (5)

Here, P(1) = z(t,m3

fin) =

.) and @ is given by

i\ 174

o(1.0) = g (o) VTV
X (VI =T+ = 1) (Vi =1+ 1 —1)?
x (1, —1)34, (6)

where z(1.10) = [(\/Ty =1— /. =10) / (VI =T+ /Ty =To)].
ty = (mp £mg)? tg=1t.(1—+/1—1t_/t,), mp and my
are the masses of D and K particles, mp: is the pole mass
of the vector FF accounting for the strong interaction
between D and K mesons and usually taken as the mass
of the lowest lying ¢§ vector meson D7 [26], and yy can be
obtained from dispersion relations using perturbative
QCD [39].

The PDRs are fitted by assuming the ratio fX (¢%)/ /X (¢?)
to be independent of ¢, and minimizing the y> con-
structed as

N intervals
2 i
X = § (Armsr -
ij=1

ATL,)CrH (AThg — ATy),  (7)

where Al“gxp is the expected PDR in the ith ¢® interval given
by [40,41]

Vcs2 =
e — il ‘ Bl (a2 ( )
2
x{ ol il? + ol o+ .+ 2mp )
Ll |2+1m2m%)—m%<ReL'f<q2>]
3 FO 47¢ mp f(qz)
1 2 ff(qz) 2} )
- dq”, (8)
T I K ()

and Cj;
measured PDRs among ¢ intervals. In Eq. (8), G is the
Fermi coupling constant, m, is the mass of the lepton, |pg|
and Ey are the momentum and energy of the kaon in the D
rest frame, Wy = (m3, + m% —m2)/(2mp) is the maxi-
mum energy of the kaon in the D rest frame, and
Fo=Wy—Eg +m%/(2mp) = ¢*/(2mp). The statistical
covariance matrix (Table III of Ref. [36]) is constructed as

= ( ON%) D _eueuloN)P (9)
a

The systematic covariance matrix (Table IV of Ref. [36]) is
obtained by summing all the covariance matrices for each
source of systematic uncertainty. In general, it has the form

syst - . .
= C™ 4 ;™ is the covariance matrix of the

qyst
G

8(AT g )3(Alhsr ). (10)

where §(AT ;) is the systematic uncertainty of the PDR in
the ith ¢ interval. The systematic uncertainties in Nt 70
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and Eg,, requirement are considered to be fully correlated
across ¢ intervals while others are studied separately in
each g? interval with the same method used in the BF
measurement.

Figures 2(a) and 2(b) show the fit to the PDRs of D? —
K~y v, and the projection to /X (¢%). The goodness of fit is
x>/NDOF = 15.0/15, where NDOF is the number of
degrees of freedom. From the fit, we obtain the product
of fX(0)|Vs| = 0.7133 £ 0.0038, & 0.00304y, the first
order coefficient r| = —1.90 & 0.21, + 0.07, and the
FF ratio fX/fX = —0.6 & 0.8, & 0.2y The nominal fit
parameters are taken from the results obtained by fitting
with the combined statistical and systematic covariance
matrix, and the statistical uncertainties of the fit parameters
are taken from the fit with only the statistical covariance
matrix. For each parameter, the systematic uncertainty is
obtained by calculating the quadratic difference of uncer-
tainties between these two fits.

Combining Bpo_ -,+, With our previous measurement
Bpo_g-ety, = (3.505 & (f.014Stat +0.033,5)% [24] gives
Ryje = 0974 £ 0.007 4, £ 0.012, which agrees with
the theoretical calculations with LQCD [16,17] and an
SM quark model [42]. Additionally, we determine R/, in
each ¢ interval, as shown in Fig. 2(c), where the error bars
include both statistical and the uncanceled systematic
uncertainties. In the R/, calculation, the uncertainties in
N, 70 as well as the tracking and PID efficiencies of the
kaon cancel. Below ¢* = 0.1 GeV?/c*, R, is signifi-
cantly lower than 1 due to smaller phase space for D° —
K~ p*v, with nonzero muon mass that cannot be neglected.
Above 0.1 GeV?/c*, R,/ is close to 1. They are consistent
with the SM prediction, and no deviation larger than 2o is
observed.

In summary, by analyzing 2.93 fb~! of data collected at
/s = 3.773 GeV with the BESIII detector, we present an
improved measurement of the absolute BF of the SL decay
D’ — K~ p*v,. Our result is consistent with the PDG
value [26] and improves its precision by a factor of
three. Combining the previous BESIII measurements of
D’ — K~e*v,, we calculate R, , ratios in the full ¢* range
and various ¢ intervals. No significant evidence of LFU
violation is found with current statistics and systematic
uncertainties. By fitting the PDRs of this decay, we obtain
FK(0)|V | =0.7133+0.00384, +0.0029;. Using |V ]|
given by global fit in the SM [26] yields fX(0) =
0.7327 £ 0.0039, & 0.0030,y, while using the 7%(0)
calculated in LQCD [27] results in |V.|=0.955+
0.005 &= 0.004y £ 0.024; ocp. These results are con-
sistent with our measurements using D°Y) — Ke'ty,
[24,43,44] and DY — p*v, [45] within uncertainties and
are important to test the LQCD calculation of fX(0)
[17,27,46] and quark mixing matrix unitarity with better
accuracy.
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