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ABSTRACT 7 

In this work, a simple and efficient finite element-boundary integral equation coupling method is 8 

adopted for studying the buckling of beams and coatings resting on a three-dimensional elastic half-9 

space. For this purpose, a mixed variational formulation based on the Green function of the 10 

substrate is adopted by assuming as independent fields beam displacements and contact pressures. 11 

Euler-Bernoulli beams with finite width and different combinations of end restraints are considered. 12 

Some numerical tests illustrate the accuracy of the proposed formulation, with particular attention to 13 

the convergence to existing analytical and numerical solutions and to the proposal of new estimates 14 

of beams and coatings buckling wavelength and critical loads for varying length-to-width ratio and 15 

beam-substrate relative stiffness. 16 
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1. INTRODUCTION 20 

The buckling of beams resting on an elastic substrate, soil, or foundation is a research topic that 21 

involves many engineering fields and it was studied in the past by many researchers. In the civil 22 

engineering field, examples of this problem are the buckling of highway or aircraft concrete 23 

pavements. In this context, the pioneering works of Wieghardt (1922) and Prager (1927) are based 24 
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on the assumption that the beam is resting on a continuously distributed set of springs (Winkler, 25 

1867). However, the actual response at the interface between the beam and the substrate is very 26 

difficult to be determined; hence, many foundation models can be found in literature for 27 

approximating the actual foundation behaviour (Selvadurai, 1979a). The first analytical approach 28 

for solving the problem of a beam on a semi-infinite elastic medium was performed by Biot (1937), 29 

who studied the bending of an infinite beam resting either on a two- or three-dimensional elastic 30 

half-space. In the same year, Reissner (1937) studied the stability problem of an infinite beam 31 

resting on a two-dimensional elastic support, whereas some decades later Murthy (1973) adopted 32 

Biot results for comparing the buckling of continuously supported beams on two- and three- 33 

dimensional half-space, showing the effect of a foundation extending beyond the width of the beam. 34 

After the first pioneering works, the problem of a beam on elastic substrate, with particular 35 

attention to its stability, grew motivated by early structural problems of sandwich panels in 36 

airplanes (Allen, 1969). In particular, Gough et al. (1940) extended Biot and Reissner results of a 37 

beam on two-dimensional elastic half-space by considering various conditions of contact between 38 

the infinite beam and the half-plane. Further research activities on sandwich elements continued up 39 

to recent years (Ley et a., 1999; Davies, 2001) and also the buckling of concrete pavements and 40 

welded rails was studied (Kerr, 1974; Kerr, 1978; Kerr, 1984; Lim et al., 2003). 41 

Recently, the stability of a beam on elastic half-space has been taken into consideration for the 42 

analytical and numerical simulation of the buckling of thin films on compliant substrates, and the 43 

research has been driven by developments in electronic industry (Shield et al. 1994; Bowden et al., 44 

1999; Volynskii et al., 2000), with particular reference to stretchable electronic interconnects and 45 

devices (see Jiang et al. (2008) and references cited therein). The case of buckling without 46 

delamination is often called wrinkling (Genzer and Groenewold, 2006). In this field, the adoption of 47 

a beam model, in particular an Euler-Bernoulli one, on an elastic half-space is justified by the 48 

thickness of the support, which is often four order of magnitude larger than the film thickness. 49 

Furthermore, the contact is assumed to be frictionless, namely allowing a horizontal slip between 50 
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the film and the support, since it was demonstrated that the tangential tractions at the interface 51 

between the film and the compliant substrate has a negligible effect on the buckling of the system 52 

(Huang, 2005). 53 

Considering microelectronic devices, the mechanical properties of thin films can be estimated by 54 

observing buckling patterns (Stafford et al., 2004; Wilder et al., 2006), and the buckling wavelength 55 

and amplitude are important for stretchable and flexible electronics. Many mechanical models have 56 

been developed in recent years (Huang and Suo, 2002a; Huang and Suo, 2002b; Stafford et al., 57 

2004; Huang, 2005; Wilder et al., 2006) for understanding the relationship between buckling 58 

profiles and material parameters. Recent advances on buckling of thin films on a bi-layer compliant 59 

substrate of finite thickness can be found in Wang et al. (2020) and references cited therein. 60 

However, most of the existing mechanical models assume plane-strain deformation hypothesis, 61 

which is not always adequate, especially in case of narrow thin films on compliant substrates, as it 62 

has been recently pointed out by Jiang et al. (2008) by determining an analytical solution for the 63 

buckling of an Euler-Bernoulli beam on three-dimensional half-space and comparing analytical 64 

results with experimental data. 65 

It is worth noting that most of the contributions dedicated to buckling of beams on elastic 66 

substrates, both regarding civil or mechanical/electronic engineering, assume the hypothesis of 67 

beams with infinite length; however, in some cases, with particular reference to shallow foundations 68 

in civil engineering, the beam length is finite and at least one order of magnitude larger than beam 69 

width; furthermore, the structural relationship between the foundation beam and the superstructure 70 

may need to be taken into consideration by adopting appropriate boundary conditions at beam ends. 71 

Focusing on the buckling of beams with finite length, in Timoshenko and Gere (1961) a simply 72 

supported beam on Winkler soil was studied. Other boundary conditions, such as beam with fixed 73 

ends and beam with free ends, were studied and compared with the former (Hetenyi, 1946). In the 74 

context of sandwich plates, even if still modelled as beams on Winkler support, the finite length of 75 

the beam allowed Goodier and Hsu (1954) to highlight the presence of nonsinusoidal buckling 76 



4 

modes with displacements localized at the beam ends. Similar local buckling modes have been 77 

recently found by Tullini et al. (2013a) with a beam having free and pinned ends on a two-78 

dimensional elastic medium; furthermore, the corresponding critical loads led to critical stresses 79 

lower than that typically assumed for sandwich panel design and derived from Reissner solution. 80 

Euler-Bernoulli beams resting on an elastic half-plane were also investigated by Gallagher (1974) 81 

by using a Chebyshev series expansion for representing the beam deflection. 82 

In the present work, the buckling of Euler-Bernoulli beams with finite length resting in bilateral 83 

frictionless contact with an elastic three-dimensional half-space is studied by extending to this field 84 

of analysis the finite element-boundary integral equation (FE-BIE) coupling method introduced in 85 

Tullini and Tralli (2010) for the static analysis of foundation beams with varying boundary 86 

conditions. This method has already proven its effectiveness by comparing numerical results of 87 

static analyses with exiting analytical solutions and other numerical results. In particular, the 88 

computational effort required by proposed method turned out to be significantly smaller than that of 89 

a standard Finite Element Model (FEM). 90 

The FE-BIE coupling method has been originally introduced for the static analysis of both Euler-91 

Bernoulli and Timoshenko beams in frictionless contact with a two-dimensional half-space (Tullini 92 

and Tralli, 2010) and it has been already extended to the corresponding buckling problem (Tullini et 93 

al., 2013a, Tullini et al., 2013b, Baraldi, 2019), and to the case of a fully adhesive contact (Tullini et 94 

al., 2012; Tezzon et al. 2015; Tezzon et al. 2016; Tezzon et al. 2018). Effects of sharp and smooth 95 

beam edges in the buckling of a Timoshenko beam in frictionless and bilateral contact with an 96 

elastic half-plane was analysed in Falope et al. (2020). 97 

Here, attention is given to Euler-Bernoulli beams resting on a three-dimensional transversely 98 

isotropic elastic half-space, having the plane of isotropy parallel to the half-space boundary. The 99 

beam instability in horizontal direction, which may take place with beams having large length-to-100 

width ratio (Kerr, 1974; Kerr, 1978), here is neglected and only vertical displacements are taken 101 

into account. Beam deflections are assumed to vary only along longitudinal direction, hence 102 



5 

uniform displacements along beam transversal direction are assumed. The proposed mixed 103 

variational formulation assumes as independent fields both the surface tractions and the beam 104 

displacements, whereas traditional variational formulations for beams and plates on half-space 105 

assume displacements as unknowns of the problem. The numerical model adopts Hermitian shape 106 

functions for the beam and piecewise constant function for the surface tractions. A set of numerical 107 

tests is performed for evaluating the effectiveness of the model in determining beam buckling loads 108 

and the corresponding modal shapes by varying the mechanical parameters characterizing the beam-109 

substrate system and by considering the effect of beam length-to-width ratio. Several boundary 110 

conditions at beam ends are also taken into consideration. Numerical results are compared with 111 

existing analytical solutions, which are almost always dedicated to beams with infinite length, with 112 

particular attention to critical load values and to buckling wavelength. 113 

2. BASIC RELATIONSHIPS 114 

2.1. Variational formulation 115 

This work considers a slender elastic beam with length L resting in bilateral and frictionless 116 

contact with a transversely isotropic half-space. The beam is referred to a Cartesian coordinate 117 

system (O; x, y, z), where the x–y plane defines the half-space boundary, x is assumed to be 118 

coincident with the centroidal axis of the beam, z is chosen in the downward transverse direction 119 

and it is normal to the plane of isotropy of the half-space. The beam has a symmetric cross-section 120 

shape with respect to the axis z, with height h and width b representing the overall cross-section 121 

dimensions in z and y direction, respectively. Moreover, a flat cross-section base is considered, in 122 

order to define a rectangular contact area between the beam and the half-space with constant width 123 

b and length L, allowing to introduce the dimensionless parameter χ = L/b. The beam is loaded at its 124 

ends by a concentrated compressive force P as shown in Fig. 1, where the simple case of beam 125 

rectangular cross-section is considered. A vertical load p(x) distributed along the beam axis can also 126 

be applied to the beam. Following the assumptions already adopted for the beam on isotropic half-127 
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space subjected to static loads (Baraldi and Tullini, 2018), the beam experiences flexure only in x–z 128 

plane, hence, together with the frictionless and bilateral conditions assumed between beam and 129 

substrate, only a vertical half-space traction r(x, y) is acting upon the beam. The hypothesis of 130 

frictionless contact allows a possible slip along the x-y plane between the beam and the elastic 131 

support. 132 

Focusing first on half-space behaviour, the three-dimensional problem for a homogeneous, linear 133 

elastic and transversely isotropic half-space loaded by a point force normal to its boundary plane 134 

has been studied by many authors, see (Michell, 1900; Liao and Wang, 1998; Kachanov et al., 135 

2003; Ding et al., 2006; Anyaegbunam, 2014; Marmo et al., 2017; Argatov and Mishuris, 2018; 136 

Popov et al. 2019) and references cited therein. In particular, the vertical displacement w of a point 137 

on the half-space boundary due to a generic normal traction r(x, y) is given by 138 

 −π
=

2/
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 142 

 143 

Fig. 1. Compressed beam resting on a half-space. 144 
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is the distance between the points (x, y, 0) and ( yx ˆ,ˆ , 0), and Es is the equivalent elastic modulus of 145 

the half-space along the vertical direction z. Details on such modulus can be found in the recent 146 

contribution by Baraldi and Tullini (2020) and in references cited therein. However, for an isotropic 147 

substrate, the equivalent elastic modulus Es reduces to Esoil/(1- 2
soilν ), where Esoil and νsoil are Young 148 

modulus and Poisson ratio of the isotropic substrate; correspondingly, Eq. (1) reduces to Boussinesq 149 

solution (Kachanov et al., 2003; Johnson, 1985). 150 

Following the considerations done in Baraldi and Tullini (2018), due to the theorem of work and 151 

energy for exterior domains (Gurtin and Sternberg, 1961) and accounting for Eq. (1), the total 152 

potential energy of the half-space is 153 

   − −π
−=Π

2/
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s
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yxyxr
yxyxr

E
 (3) 154 

Focusing on beam behaviour, an Euler-Bernoulli beam model is assumed, and restricting the 155 

analysis in the x-z plane, beam vertical displacement can be written as w(x, y, z) = w(x). The total 156 

potential energy of the beam, including second order effects, can be written as 157 

/ 2
2 2

/ 2

1
[ ( ''( )) ( '( )) ] d [( ( ) ( , )d ) ( )] d

2

b

b b
L L b

D w x P w x x p x r x y y w x x
−

Π = − − −   , (4) 158 

where prime denotes differentiation with respect to x and Db = Eb Jb, with Eb being longitudinal 159 

elastic modulus and Jb the second area moment of beam cross-section with respect to the y axis. 160 

It is worth noting that Boussinesq solution (1) holds for a half-space loaded by surface tractions 161 

normal to its boundary, which must be free to deform elsewhere. Consequently, external constraints 162 

can not be applied to the substrate and the only constraints allowed are those imposed by the 163 

superstructure to the foundation beam. Thus, only constraint equations Ri(w, w') = 0 between 164 

displacements or rotations may be assigned along the beam axis. For example, a pinned-pinned 165 

beam requires the equation R1 = w(L/2) − w(−L/2) = 0, which may refer to a rigid frame, whose 166 

beam and columns have flexural rigidity Dc = ∞ and D1 = ∞, respectively, and the columns are 167 

hinged to the foundation beam (Fig. 2a); thus, the structure enforces zero relative displacement at 168 
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the beam ends, but allows independent rotations. Likewise, a beam with sliding ends requires the 169 

following system of equations R1 = w'(L/2) − w'(−L/2) = 0 and R2 = w'(L/2) + w'(−L/2) = 0, which 170 

may refer to a frame with rigid columns (Dc = ∞) and simply supported beam with infinite axial 171 

stiffness and fixed horizontal displacements; thus, the structure prevents rotations at the ends of the 172 

foundation beam but allows independent vertical displacements (Fig. 2b). It is worth noting that the 173 

term ‘sliding’ is here adopted for defining a specific restraint condition for the displacements and 174 

rotations at the beam ends and it is not to be confused with the potential slip that can occur between 175 

the beam and the elastic support allowed by the frictionless contact. The constraint equations can be 176 

included in the total potential energy Π of the beam-substrate system by means of a penalty 177 

approach. Hence, making use of Eqs. (3) and (4), the total potential energy of the beam-substrate 178 

system turns out to be (Reddy, 2006): 179 

2
)],([

2
)(),(),(  ′+Π+Π=Π

i isb wwR
k

rrwrw , (5) 180 

where k is the penalty parameter, whose value should be large enough to satisfy the constraint 181 

equations accurately. 182 

(a)

D1 = ∞

Dc= ∞ Dc = ∞

(b) 183 

Fig. 2. Beam with pinned ends on a half-space, given by a rigid frame with columns hinged to the 184 

foundation beam (a); beam with sliding ends on a half-space, given by a frame with rigid columns 185 

and simply supported beam (b). 186 

Variational formulation analogous to Eq. (5) was obtained in (Kikuchi, 1980; Kikuchi and Oden, 187 

1988; Bielak and Stephan, 1983) for beams resting on a Pasternak soil, in (Tullini and Tralli, 2010; 188 
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Baraldi and Tullini, 2017) for beams and frames resting in bilateral frictionless contact with an 189 

elastic half-plane and in Baraldi and Tullini (2018) for a Timoshenko beam in bilateral frictionless 190 

contact with an elastic isotropic half-space. Moreover, mixed variational principle similar to Eq. (5) 191 

was used in Tullini et al. (2012) to study axially loaded thin structures perfectly bonded to an elastic 192 

substrate and in (Tullini et al., 2013a; Tullini et al., 2013b; Baraldi, 2019) to determine the buckling 193 

loads of beams in frictionless contact with an elastic half-plane and an elastic layer in plane state. 194 

Beams in perfect adhesion with an elastic half-plane are considered in (Tezzon et al., 2015; Tezzon 195 

et al., 2016). Differently with respect the proposed approach, traditional variational formulations are 196 

defined in terms of foundation displacements only (Selvadurai, 1979b; Selvadurai, 1980; 197 

Selvadurai, 1984). 198 

Following the considerations already done in Baraldi and Tullini (2018), it must be pointed out 199 

that the beam model hypothesis implies vertical displacement w varying only along x direction and 200 

uniform vertical displacement along beam width. This hypothesis is satisfied if the beam cross-201 

section is infinitely rigid with respect to the half-space in the y direction, then the distribution of 202 

contact tractions r in such direction is expected to be equal to the one generated by a rigid indenter 203 

with width b in a plane strain problem (Johnson, 1985; Kachanov et al. 2003) and characterized by 204 

singularities close to section ends. However, uniform tractions r along beam width are often taken 205 

into consideration when analytic solutions of infinite beams on elastic half-space are searched 206 

(Jiang et al., 2008, Tarasovs and Andersons, 2008), and the consequent non-uniform beam 207 

displacement along transversal direction is simplified by considering the displacement at beam 208 

centerline or an average value of transversal deflection. The two different approaches were 209 

investigated analytically for first by Biot (1937) for the static analysis of infinite beams and by 210 

Murthy (1973) for the corresponding stability analysis. 211 

 212 
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2.2 Discrete model 213 

A simple discretization of the beam-substrate system can be created by subdividing the beam 214 

into FEs of equal length lxi = L/nx, where nx is the number of subdivisions in x direction. The contact 215 

surface underneath the beam may be divided in x direction with the same number of subdivisions 216 

assumed for the beam, whereas in y direction, i.e. across the beam width, the number of 217 

subdivisions ny can be assumed larger than one in order to correctly modelling the non-uniform 218 

pressures generated by uniform displacements. In particular, for correctly describing reactions at 219 

contact surface edges with a small number of surface subdivisions, it is common to use power 220 

graded meshes (Erwin and Stephan, 1992; Graham and McLean, 2006), which are characterized by 221 

a grading exponent β ≥ 1 that allows to obtain small subdivisions close to surface edges. The same 222 

type of power graded discretization can be also adopted in x direction close to beam ends, in order 223 

to obtain small subdivisions at the corners of the foundation. However, the convergence tests 224 

already done by authors with the static case (Tullini et al., 2013a) showed that this type of mesh 225 

refinement does not influence significantly the accuracy of numerical results, hence, it will not be 226 

adopted in this work. Then, a piecewise constant discretization of contact surface tractions is 227 

adopted by assuming constant shape functions, whereas classical Hermitian polynomials are 228 

assumed as beam shape functions (Reddy, 2006). 229 

The stationarity condition of the total potential energy Π(w, r) written in discrete form provides 230 

the following system: 231 
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where the vector q collects beam nodal displacements, r denotes the vector of the constant soil 233 

reactions, F is the vector of the external loads, Db/L
3

b
K% is the elastic stiffness matrix of the beam, 234 

P/L gK% is the geometric (or incremental) stiffness matrix (Reddy, 2006; Tullini et al., 2013a), and 235 
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the elements of the matrices H%  and G% are reported in Baraldi and Tullini (2018). Details of penalty 236 

approaches adopted for modifying beam stiffness matrix 
b

K%  are reported in Appendix. The system 237 

in Eq. (6) yields the following solution 238 

qHGr T1 ~~ −= sE , (7) 239 

3
3

soil[ ( ) ]
b g

b

L
L

D
− λ + α =K K K q F% % % , (8) 240 

where soilK%  is the stiffness matrix of the soil or three-dimensional half-space 241 

1 T
soil

−=K HG H%% % % , (9) 242 

the axial load multiplier is λ = PL
2/Db, and αL is the well-known (Biot, 1937; Vesic, 1961; 243 

Selvadurai, 1979a; Baraldi and Tullini, 2018) parameter characterizing the soil-foundation system: 244 

3

3

b

s

D

LbE
L =α . (10) 245 

The adopted mixed finite element is particularly simple and effective, as shown in Baraldi and 246 

Tullini (2018) for the static case, where the numerical properties of the proposed FE model are also 247 

discussed. With regard to the determination of critical load Pcr, a homogeneous system associated to 248 

Eq. (8) must be considered and the buckling loads are given by the roots λcr of the equation 249 

det[ soil
3 ~

)(
~~

KKK Lgb α+λ− ] = 0, which can be suitably reduced to a standard eigenvalue problem. 250 

Introducing the definition of Euler critical load: 251 

2

2

Ecr,
L

D
P bπ= , (11) 252 

the dimensionless buckling loads turn out to be given by Pcr/Pcr,E = λcr/π2. 253 

3. NUMERICAL TESTS 254 

The buckling of Euler-Bernoulli beams with finite length is investigated by assuming three 255 

different boundary conditions at beam ends, following the same approach adopted for the beam on 256 
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elastic half-plane (Tullini et al., 2013a). However, a preliminary convergence test is performed by 257 

determining the first three critical loads of a beam with free ends assuming two αL and χ values, for 258 

increasing beam subdivisions and by considering several contact surface discretization types along 259 

beam width. Then, assuming a beam with aspect ratio χ = 10, critical loads and modal shapes are 260 

determined for increasing αL. Finally, several considerations are done varying parameter χ. 261 

 262 

3.1. Convergence test 263 

The first three critical loads of a compressed beam with free ends on half-space are determined 264 

by considering four different geometrical and mechanical conditions represented by the parameters 265 

αL equal to 5 and 25 and χ equal to 10 and 100. Numerical reference solutions cr, ,
ref

f iP , with i = 1, 2, 266 

3, are determined by assuming nx = 211 and a ny = 7 with a power-graded discretization with β = 3 267 

(Tab. 1); then, the influence of the approximation of contact tractions along beam width is evaluated 268 

by considering the simple case with ny = 1, namely a constant traction along beam width, and the 269 

more accurate case with a power-graded subdivision with ny = 3 and β = 3. Fig. 3 shows the relative 270 

differences cr, , cr, , cr, , cr, ,( ) /ref ref

f i f i f i f iP P P Pδ = −  obtained with the two proposed discretization types for 271 

increasing nx. Differences turn out to have the same behaviour of those determined for the static 272 

case in terms of maximum vertical displacement and contact traction, since they tend to nonzero 273 

values instead of tending to zero. In general, the critical loads obtained with ny = 3 are quite close to 274 

reference solutions and differences generally tend to be less than 1% for nx > 27 with αL = 5 and nx 275 

> 28 with αL = 25; in particular, with αL = 25, differences obtained for 1st and 2nd critical loads, 276 

which are coincident, start to converge for nx > 27, with values close to 0.4% with χ = 10 and 0.2% 277 

with χ = 100, highlighting that long beams on stiff half-space are less influenced by the subdivision 278 

refinement along x direction. The critical loads obtained with ny = 1 turn out to be less accurate with 279 

respect to reference solutions and differences are never less than 1% in the four cases considered. 280 

Convergence tests show that αL parameter slightly influence the accuracy of the results, with a 281 
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better convergence obtained with αL = 25, whereas the differences obtained with χ = 100 are 282 

slightly smaller than those obtained with χ = 10, highlighting the necessity of a more accurate 283 

contact surface discretization in case of a short beam or a beam with a small length-to-width ratio. 284 

However, the order of magnitude of differences obtained with ny = 1 is still acceptable for 285 

performing the upcoming numerical tests, since differences are generally less than 5% with nx > 27. 286 

In the following numerical test, the buckling loads are determined by assuming nx = 27 and ny = 3 287 

with a power-graded discretization with β = 3. 288 

It is worth noting that the critical loads determined by assuming constant tractions along beam 289 

width turn out to be smaller than those obtained both with a less and more accurate contact surface 290 

discretization along beam width. This aspect is in agreement with the results obtained by Murthy 291 

(1973) for the stability of beams with infinite length, since critical loads obtained with uniform 292 

reactions across beam width and assuming beam deflections along its longitudinal axis turned out to 293 

be smaller than critical loads obtained with a reaction profile across beam width same as that of a 294 

rigid stamp. 295 

αL = 5 αL = 25 
2

cr, , ,E/[ ( ) ]ref

f i crP P Lα  
χ = 10 χ = 100 χ = 10 χ = 100 

1 0.1312 0.3088 0.1040 0.1809 

2 0.1731 0.3262 0.1040 0.1809 

3 0.4050 0.6785 0.1641 0.3130 

Tab. 1. Reference critical loads for a compressed beam with free ends on elastic half-space, 296 

obtained with nx = 211 and a power-graded subdivision along y direction with ny = 7 and β = 3. 297 

 298 
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(a)   (c) 299 

(b)   (d) 300 

Fig. 3. Relative differences for the first three critical loads versus the overall number of 301 

subdivisions along beam length for a compressed beam with free ends with αL = 5 (a, c) and 25 (b, 302 

d), with χ = 10 (a, b) and χ = 100 (c, d). Results obtained with ny = 1 (dashed lines) and ny = 3 303 

(continuous lines), assuming results in Tab. 1 as reference. 304 

 305 

3.2. Beam of finite length with sliding ends 306 

The buckling of a beam with sliding ends on elastic half-space, with χ = 10, is considered (Fig. 307 

2b). The constraint equations to be used in Eq. (5) are R1 = w'(L/2) − w'(−L/2) = 0 and R2 = w'(L/2) 308 

+ w'(−L/2) = 0. Details of stiffness matrices of the elements at beam ends, together with 
b

K%  for the 309 

entire beam are reported in Appendix. Assuming a penalty parameter k = 109 li Db/L
3 that ensures a 310 

stable numerical solution of Eq. (8), Fig. 4a shows dimensionless critical loads Pcr,s/Pcr,E varying 311 

with αL. The numerical results show a behaviour analogous to the same beam type on an elastic 312 

half-plane, since critical loads increase for increasing αL and present crossing points and curve 313 
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veering. It is worth noting that, for αL equal to zero, critical loads are equal to the values 314 

Pcr,m(0)/Pcr,E = m
2, with m = 1, 2, 3…, typical of a beam with pinned or sliding ends without a 315 

supporting medium. Fig. 4b shows the ratio Pcr,s/[Pcr,E (αL)2] versus the parameter αL. For 316 

increasing αL, the ratios corresponding to the first eigenvalue do not converge to a stable value, 317 

whereas in case of a beam on elastic half-plane such convergence was evident and the 318 

corresponding critical load was equal to that of a beam with infinite length (Tullini et al., 2013a). 319 

However, for αL equal to 50, the first two critical loads are close to 320 

Pcr,s,1 = Pcr,s,2 = 0.143 Pcr,E (αL)2. (12) 321 

This result will be further investigated in the final part of the manuscript by evaluating the influence 322 

of χ on critical load values and by evaluating their relationship with respect to the critical loads of a 323 

beam on elastic half-plane. 324 

Fig. 5 shows first and second mode shapes of the beam with sliding ends for two αL values. 325 

Mode shapes are analogous to those of a beam with sliding ends on elastic half-plane, since they are 326 

sinusoidal and characterized by an increasing number of half-waves for increasing αL. 327 

(a)  (b) 328 

Fig. 4. Dimensionless critical loads Pcr,s versus αL for a beam with sliding ends on elastic half-329 

space. 330 
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(a)  (b) 331 

Fig. 5. First (continuous line) and second (dashed line) mode shapes for a beam with sliding ends 332 

and αL equal to 5 (a) and 25 (b). 333 

 334 

3.3. Beam of finite length with pinned ends 335 

The buckling of a beam with pinned ends on elastic half-space is considered (Fig. 2a). The 336 

constraint equation to be applied to Eq. (5) is R1 = w(L/2) − w(−L/2) = 0, details for obtaining the 337 

stiffness matrix of the beam are given in Appendix. Assuming a penalty parameter k = 106 Db/L
3, 338 

Fig. 6a shows dimensionless critical loads Pcr,p/Pcr,E are versus αL. For αL equal to zero, critical 339 

loads converge to the values already highlighted in the previous subsection Pcr,m(0)/Pcr,E = m2, with 340 

m = 1, 2, 3…, typical of a beam with pinned ends without any other support. Critical loads increase 341 

for increasing αL and present crossing points and curve veering, however the first critical load 342 

appears to be quite far from other results, whereas second critical load is quite close to the third and 343 

fourth ones, differently with respect to the beam with pinned ends on elastic half-plane. 344 
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(a)  (b) 345 

Fig. 6. Dimensionless critical loads Pcr,p versus αL for a beam with pinned ends on half-space. 346 

 347 

Considering Fig. 6b showing the ratio Pcr,p/[Pcr,E (αL)2] versus the parameter αL, numerical 348 

results do not show a convergence to stable values, however, for αL equal to 50, the first critical 349 

load is equal to: 350 

2
cr, ,1 cr,E0.095 (α )pP P L= , (13) 351 

whereas the second critical load is equal to: 352 

2
cr, ,2 cr,E0.136 (α )pP P L= , (14) 353 

which is slightly smaller but quite close to Eq. (12). Such a value is reached by the third and fourth 354 

critical loads for increasing αL: 355 

Pcr,p,3 = Pcr,p,4 = 0.143 Pcr,E (αL)2. (15) 356 

Furthermore, Pcr,p,2 is 95% of Pcr,s,1, this ratio is larger than the corresponding one obtained for the 357 

beam on elastic half-plane, which is 0.106 / 0.121 = 88% (Tullini et al., 2013a). 358 

Fig. 7 shows first and second mode shapes for several αL values. For αL = 5 (Fig. 7a), first and 359 

second mode shapes are sinusoidal, whereas for αL = 10 (Fig. 7b), first and second mode shapes can 360 

not be described by sinusoidal functions, similarly to the case of a beam with pinned ends on elastic 361 

half-plane. For αL = 25 (Fig. 7c), the first mode shape is characterized by large deflections at beam 362 

ends, but the second mode shape is sinusoidal. Increasing αL (Fig. 7d), the first mode shape has the 363 
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same behaviour found for the beam with pinned ends on elastic half-plane, characterized by large 364 

deflections at beam ends and negligible displacements near beam midpoint, whereas the second 365 

mode shape is characterized by large deflections at beam ends and sinusoidal deflections not 366 

negligible along its length. This behaviour may justify the corresponding critical load (Eq. 14), 367 

which is quite close to the third and fourth critical loads and to Eq. (12), which are typical of 368 

sinusoidal mode shapes. 369 

(a)   (b) 370 

(c)   (d) 371 

Fig. 7. First (continuous line) and second (dashed line) mode shapes for a beam with pinned ends 372 

on half-space and αL equal to 5 (a), 10 (b), 25 (c) and 50 (d). 373 

 374 

3.4. Beam of finite length with free ends 375 

The buckling of a beam with free ends on elastic half-space is finally considered. In Fig. 8a, the 376 

dimensionless critical loads Pcr,f/Pcr,E are plotted versus αL, whereas Fig. 8b shows the ratio 377 

Pcr,f/[Pcr,E (αL)2] versus the parameter αL. Critical loads increase for increasing αL and present 378 
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crossing points and curve veering. First and second critical loads, which are separated with respect 379 

to other results, present some crossing points and both converge to the value given in Eq. 13 for αL 380 

= 50, whereas the third and fourth eigenvalues converge to Eq. 12. 381 

(a)  (b) 382 

Fig. 8. Dimensionless critical loads Pcr,f versus αL for a beam with free ends on half-space. 383 

 384 

Fig. 9 shows first and second mode shapes for increasing αL. Analogously to the case of the 385 

beam with free ends on elastic half-plane, for αL = 1 (Fig. 9a) the first mode shape represents a 386 

rigid body rotation and the corresponding critical load tends to zero, whereas the second mode 387 

shape is sinusoidal. For αL = 5 (Fig. 9b), after the first intersection point between first and second 388 

critical load curves, the fist mode shape is sinusoidal, but the second one is antisymmetric and 389 

characterized by large displacements at beam ends. Increasing αL (Figs. 9c and 9d), both mode 390 

shapes are characterized by large displacements at beam ends and negligible deformations close to 391 

beam midpoint. The symmetric mode shapes presented in Figs. 9a-d turn out to be coincident with 392 

the first mode shape obtained for the beam with pinned ends. 393 

 394 
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(a)   (b) 395 

(c)   (d) 396 

Fig. 9. First (continuous line) and second (dashed line) mode shapes for a beam with free ends 397 

and αL equal to 1 (a), 5 (b), 10 (c) and 25 (d). 398 

4. INFLUENCE OF BEAM WIDTH ON OVERALL BEAM BUCKLING 399 

In the previous section it was observed that, for large αL values, the first buckling load Pcr,p,1 of 400 

the beam with pinned ends turns out to be coincident with the first and second critical loads of a 401 

beam with free ends, i.e. Pcr,p,1 = Pcr,f,1 = Pcr,f,2, whereas the third and fourth buckling loads Pcr,f,3 = 402 

Pcr,f,4, and Pcr,p,3 = Pcr,p,4 are coincident with the first two buckling loads Pcr,s,1 = Pcr,s,2 of a beam 403 

with sliding ends. Nevertheless, the numerical tests performed in the previous section are 404 

characterized by beam length-to-width ratio χ = 10, but the critical load values presented in Eqs. 405 

(12), (13) and (14), obtained with beams on a stiff soil having αL = 50, strictly depend on χ. 406 

Focusing on the behavior of a beam with pinned ends with αL = 50 and varying χ, further values of 407 

Pcr,p,1 (= Pcr,f,1 = Pcr,f,2), Pcr,p,2, and Pcr,p,3 (= Pcr,p,4 = Pcr,f,3 = Pcr,f,4 = Pcr,s,1 = Pcr,s,2) are collected in 408 

Tab.2. 409 
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Dimensionless critical loads increase for increasing χ; moreover, the second dimensionless 410 

critical load tends to be more and more close to the third one increasing χ. For example, for χ = 1 411 

the ratio between Pcr,p,2 and P cr,p,3 is close to 0.9, whereas for χ = 100 the same ratio is close to 0.98. 412 

Fig. 10 shows the first three dimensionless critical loads of a beam on half-space, namely Pcr,p,1 413 

(plus symbols), Pcr,p,2 (circles), and Pcr,p,3 (crosses) for increasing αL/χ = αb by considering several 414 

αL and χ combinations. 415 

χ = L/b 

 

2D 

Tullini 

et al., 

2013a 

0.1 1 2 3 4 5 10 50 100 

           

Pcr,p,1/[Pcr,E (αL)2] 0.083 0.083 0.084 0.086 0.087 0.088 0.089 0.095 0.124 0.147 

Pcr,p,2/[Pcr,E (αL)2] 0.106 0.107 0.112 0.115 0.119 0.122 0.125 0.136 0.194 0.240 

Pcr,p,3/[Pcr,E (αL)2] 0.121 0.122 0.124 0.126 0.128 0.130 0.133 0.143 0.199 0.244 

Tab. 2 – Dimensionless critical loads of a beam on half-space with αL = 50 varying χ. 416 

 417 

 418 

Fig. 10. First three dimensionless critical loads of a beam on half-space versus αL/χ.  419 
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It is worth noting that for small χ values, αL/χ increases and the beam has a very short length 420 

with respect to its width. However, buckling modes along beam width are not allowed by the 421 

proposed model, since deformations along beam width are neglected; hence, the case of a beam 422 

having a large width with respect to its length numerically converges to a plane strain condition. In 423 

fact, for χ tending to zero or αb tending to infinite, dimensionless critical loads Pcr,p,i for i = 1, 2 3, 424 

turn out to converge to the corresponding ones obtained for the beam on elastic half-plane 425 

(continuous lines in Fig. 10) (Tullini et al., 2013a): 426 

2
Ecr,

2D
,1cr, )α(083.0 LPP p = , (16) 427 

2
Ecr,

2D
,2cr, )α(106.0 LPP p = , (17) 428 

2
Ecr,

2342
Ecr,

2D
,1cr,

2D
,3cr, )α()2(3)α(121.0 LPLPPP sp π=== . (18) 429 

Nonetheless, in the plane strain state, the parameter αL contains the ratio Eb/(1− 2
bν ), where νb is the 430 

Poisson ratio of the beam, instead of the beam modulus Eb, as in a plane stress state. 431 

Eq. (18) allows evaluation of the critical strain in a form frequently used in the design of 432 

structural sandwich panels (Allen, 1969; Ley et al., 1999; Davies, 2001) and in flexible and 433 

stretchable electronics (Huang, 2005; Genzer and Groenewold, 2006; Jiang et al., 2008): 434 

3/22D
,1cr,2D

cr,  52.0 







==

b

s

b

s

s
E

E

hbE

P
e . (19) 435 

In order to fit numerical results and obtaining approximated functions for the first three 436 

dimensionless critical loads of a beam on elastic half-space, the following expressions are proposed 437 

and added with dashed lines to Fig. 10: 438 

2 0.35
cr, ,1 cr,E/ [ (α ) ] 0.083coth[0.80(α ) ]pP P L b= , (20) 439 

2 0.35
cr, ,2 cr,E/ [ (α ) ] 0.106coth[0.60(α ) ]pP P L b= , (21) 440 

2 0.35
cr, ,3 cr,E/[ (α ) ] 0.121coth[0.70(α ) ]pP P L b= . (22) 441 
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For increasing αb the proposed approximated expressions converge to the numerical results of a 442 

beam on elastic half-plane and are characterized by determination factor R2 close to 1, in particular 443 

for all αb values with Eq. (22) and for αb < 10 with Eqs. (20) and (21). 444 

Numerical results in Fig. 10 also show that Pcr,p,2 and Pcr,p,3 turn out to be coincident for 445 

decreasing αb or increasing χ. This aspect is justified by the mode shapes corresponding to Pcr,p,2 446 

obtained with large αL values, already shown with dashed lines in Figs. 7c and 7d, and 447 

characterized by sinusoidal deflections with large amplitude close to beam ends. Analogous 448 

sinusoidal displacements are shown in Fig. 11 for αL = 50 and increasing χ, hence decreasing αb. 449 

Large beam deflections are located close to beam ends in all the cases considered, but beam 450 

displacements along beam length increase and tend to become sinusoidal for increasing χ. In 451 

particular, Figs. 11e and 11f show that beam deflections are sinusoidal with different amplitude 452 

along beam length and wavelength appears to be uniform. These modal shapes are quite similar to 453 

those of a beam with sliding ends (Fig. 5b) and the corresponding wavelengths are investigated in 454 

the next sub-section. 455 

It is worth noting that the buckling behaviour of a beam with pinned ends on half-space turns out 456 

to be quite similar to that of the same beam on Winkler substrate (Hetenyi, 1946), which is 457 

characterized by the second critical load converging to the same value of the third and fourth ones, 458 

with a sinusoidal modal shape over the entire beam length. 459 
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(a) (b) 460 

(c) (d) 461 

(e) (f) 462 

Fig. 11. Second mode shape for a beam with pinned ends, αL = 50 and increasing χ. 463 

 464 

4.1 Influence of beam width on buckling wavelength 465 

As stated into the introduction, the determination of buckling wavelength and amplitude of thin 466 

films on elastic substrates is important for stretchable and flexible electronics. Hence, the proposed 467 

numerical model is adopted for determining the critical buckling wavelength Λcr corresponding to 468 
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Pcr,s,1 for varying αL and χ. In order to avoid the local effect of the sliding ends, Λcr is evaluated 469 

numerically as the average wavelength of the sinusoidal modal shape for / 4 / 4L x L− ≤ ≤  (Fig. 12). 470 

 (a)  (b) 471 

Fig. 12. Determination of buckling wavelength corresponding to the minimum critical load for 472 

/ 4 / 4L x L− ≤ ≤ , for two αL and χ cases. 473 

 474 

Results are collected in Fig. 13a with cross symbols for several χ values. The buckling 475 

wavelength Λcr for each length-to-width ratio χ turns out to decrease for increasing αL and it 476 

decreases for increasing χ, as it can be noted in Fig. 12. However, for decreasing χ, Λcr values turn 477 

out to be close to those of a beam on elastic half-plane cr,2DΛ  (dashed line in Fig. 13a). It is worth 478 

noting that 5/3
cr,2D 9.97 / 2 /Λ = α = π α ; such expression can be derived analytically from Reissner 479 

(1937) formulation, it was highlighted in Volynskii et al. (2000) and it was already obtained 480 

numerically by authors for a beam with sliding ends on elastic half-plane (Tullini et al., 2013a). 481 

It can be also noted that ratios Λcr/Λcr,2D, obtained with different αL and χ combinations with the 482 

same ratio αL/χ, turn out to be very close to each other, and the same ratios can be obtained by 483 

measuring the wavelength of the third and fourth modal shapes of a beam with pinned ends. Hence, 484 

in order to obtain an approximated expression for Λcr, it is useful to introduce a function f (αL/χ) = f 485 

(αb), representing the ratio between the buckling wavelength of a beam on elastic half-space and the 486 

buckling wavelength of a beam on elastic half-plane: 487 
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cr cr,2D ( / )f LΛ = Λ α χ  (23) 488 

Ratios cr cr,2D/Λ Λ  obtained numerically with the proposed model are shown in Fig. 13b versus αb 489 

with cross symbols. It can be observed that the buckling wavelength values obtained with αb larger 490 

than 103 converge to those of a beam on elastic half-plane, since the corresponding ratios 491 

cr cr,2D/Λ Λ converge to 1. 492 

A good approximation of the wavelength of beams on elastic substrate is given by the following 493 

expression: 494 

0.25
cr cr,2D tanh[0.88( ) ]bΛ = Λ α , (24) 495 

where the function 0.25( , ) ( ) tanh[0.88( ) ]f L f b bα χ = α = α  is added with a red continuous line to 496 

Fig. 13b versus αb. Eq. (24) turns out to be similar, but not coincident, with that of a beam with 497 

infinite length on half-space proposed by Jiang et al. (2008), which is in better agreement with their 498 

experimental results (circles with error bar in Fig. 13b). The approximated expression for Λcr is 499 

characterized by a coefficient of determination R2 close to 1 for almost all αL and χ combinations, 500 

with the smallest R2 = 0.77 obtained with a beam having χ = 100 and varying αL from 50 to 1000. It 501 

is worth noting that the convergence of Eq. (24), for increasing αb, to the analytical solution typical 502 

of the plane state case, allows to consider such equation as a generalized approximated expression 503 

for the critical wavelength of beams on an elastic continuum. It is worth noting that Euler-Bernoulli 504 

beam model holds for sufficiently high values of the critical half-wavelength, for example, 505 

Λcr/2 > 10 h. Thus, making use of Eq. (24), the inequality αh < f(αb)/2 holds. For beam with 506 

αh > f(αb)/2, the transverse shear deformation of the beam may become important and needs to be 507 

considered. For the experimental data reported by Jiang et al. (2008), a Euler-Bernoulli beam model 508 

may be adopted. 509 
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Finally, the buckling wavelength values of the modal shapes corresponding to Pcr,p,2 (Fig. 11), 510 

determined with the approach highlighted in Fig. 12 and compared with Λcr,2D, are shown in Fig. 14 511 

for relatively small αb values, being in good agreement with Eq. (24) and justifying the 512 

convergence of Pcr,p,2 to Pcr,s,1 for decreasing αb. 513 

 514 

(a)  (b) 515 

Fig. 13. Buckling wavelength of beams with sliding ends on elastic half-space versus αL and 516 

varying χ (a); with respect to the wavelength of a beam on elastic half-plane versus αL/χ (b). 517 

 518 

 519 

Fig. 14. Buckling wavelength corresponding to Pcr,p,2 with respect to the wavelength of a beam 520 

on elastic half-plane versus αL/χ. 521 



28 

CONCLUSIONS 522 

A simple and effective FE-BIE coupling method for beams on three-dimensional half-space, 523 

already investigated by authors by performing static analyses (Baraldi and Tullini, 2018), was here 524 

applied to buckling problems of slender beams and coatings having finite width and length, in 525 

bilateral and frictionless contact with an elastic half-space. Several beam end constraints were taken 526 

into consideration for simulating free coatings or different superstructures connected to a foundation 527 

beam. The proposed coupled FE-BIE model turned out to be fast and effective in evaluating beam 528 

buckling loads and the corresponding modal shape characteristics. 529 

Considering a fixed beam length-to-width ratio χ equal to 10, the buckling behaviour of a beam 530 

on elastic half-space turned out to be similar to that of a beam on elastic half-plane. On one hand, 531 

the proposed numerical tests showed a convergence, for low values of αL, to the critical loads of 532 

beams without an elastic support. On the other hand, for increasing beam slenderness and/or 533 

substrate stiffness, a variation of the critical loads proportional to (αL)2 was found, but 534 

dimensionless minimum critical loads were slightly larger than the corresponding ones typical of a 535 

beam on elastic half-plane (Tullini et al., 2013a). Furthermore, the beam with sliding ends showed a 536 

behaviour characterized by sinusoidal modal shapes over its length, which is typical of a beam with 537 

infinite length. The first and second dimensionless critical loads of the beam with pinned ends 538 

turned out to be slightly smaller than that obtained with the beam with sliding ends and the 539 

corresponding modal shapes were characterized by large amplitudes close to beam ends, whereas 540 

the third critical load converged to that of the beam with sliding ends, with sinusoidal modal shapes. 541 

Focusing on the influence of beam width on beam buckling loads, a relationship between the 542 

dimensionless critical loads and the beam length-to-width ratio was also found and a new 543 

dimensionless parameter αL/χ = αb was introduced for accounting to beam slenderness, width and 544 

half-space stiffness into a unique parameter. For increasing αb, the first three dimensionless critical 545 

loads of a beam with pinned ends turned out to converge to the corresponding numerical solutions 546 

of a beam on elastic half-plane already obtained by Tullini et al. (2013a), where the third 547 
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dimensionless critical load is also in agreement with Reissner solution for the buckling of a beam 548 

with infinite length (Biot, 1937), which is often adopted for describing the buckling of thin coatings 549 

in plane strain conditions and to define the corresponding critical stresses. 550 

Approximated expressions for fitting the numerical results were proposed for the first three 551 

dimensionless critical loads of pin-ended beams and for the buckling wavelength of sliding-ended 552 

beams, in order to obtain generalized formulas for estimating the minimum critical loads and the 553 

critical wavelength of beams on an elastic continuum. In particular, the proposed expression for the 554 

buckling wavelength turned out to be more accurate than existing analogous formulas and in 555 

agreement with existing laboratory tests. 556 

As a future challenging task, frictionless assumption will be removed to consider also tangential 557 

tractions at the interface between the beam and the half-space boundary. In this case the task is 558 

more burdensome than that outlined in Tezzon et al. (2015, 2016) for a beam in adhesive contact 559 

with a half-plane. In fact, tangential and normal surface tractions are coupled with both horizontal 560 

and vertical displacements. 561 
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APPENDIX 565 

For a generic i-th beam element, the stiffness matrix 
bi

K%  is (Tullini et al. 2013a, Baraldi and 566 

Tullini, 2018): 567 

3 2 2

2

12 6 12 6

4 6 2

12 6

sym 4

xi xi

xi xi xi

bi

xixi

xi

l l

l l lL

ll

l

− − − 
    =     
 
 

K%  568 
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Considering the penalty parameter k already introduced in section 2.1, in case of beam with sliding 569 

ends, the stiffness matrices of the 1st and last beam elements become: 570 

1 1
33 2 22 2

1 1 1
1

11

2 2
1

12 6 12 612 6 12 6

4 6 24 6 2
,

12 6 12 6

sym 4 sym 4

x x

x x x

x

xx

x

x n x n
x x

x n x n x nx x x

b bn

x x nx xn

x x n

l ll l

l l ll k l lL L

l ll l

l l k

− − − − − − 
    +    = =             
 +   

K K% % . 571 

Leading to a stiffness matrix for the entire beam as follows: 572 

3 2 3 2
1 1 1 1

2 2
1 1 1 13

2 2

12 6 12 6 0 0 0 0

6 4 6 2 0 0 0 0

0 0 0 0 6 2 6 4
x x x x

x x x x

x x x x

b

x n x n x n x n

l l l l

l l k l l
L

l l l l k

 − −
 − + − =
 
 

− +  

K

L

L
%

M M M M M M M M

L

. 573 

Whereas in case of beam with pinned ends, the stiffness matrix of the entire beam becomes: 574 

3 2 3 2
1 1 1 1

3
3 2 3 2

2 3 2

12 6 12 6 0 0 0

0 0 0 12 6 12 6

0 0 0 0 6 12 6 4
x x x x

x x x x

x x x x

b

x n x n x n x n

x n x n x n x n

l k l l l k

L
k l l l k l

l l l l

 + − − −
 
 =  − − +
 

−  

K

L

M M M M M M M M
%

L

L

. 575 
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Figure captions 701 

Fig. 1. Compressed beam resting on a half-space. 702 

Fig. 2. Beam with pinned ends on a half-space, given by a rigid frame with columns hinged to 703 

the foundation beam (a); beam with sliding ends on a half-space, given by a frame with rigid 704 

columns and simply supported beam (b). 705 

Fig. 3. Relative differences for the first three critical loads versus the overall number 706 

subdivisions along beam length for a compressed beam with free ends with αL = 5 (a, c) and 25 (b, 707 

d), with χ = 10 708 

Fig. 4. Dimensionless critical loads Pcr,s versus αL for a beam with sliding ends on elastic half-709 

space. 710 

Fig. 5. First (continuous line) and second (dashed line) mode shapes for a beam with sliding ends 711 

and αL equal to 5 (a) and 25 (b). 712 

Fig. 6. Dimensionless critical loads Pcr,p versus αL for a beam with pinned ends on elastic half-713 

space. 714 

Fig. 7. First (continuous line) and second (dashed line) mode shapes for a beam with pinned ends 715 

on half-space and αL equal to 5 (a), 10 (b), 25 (c) and 50 (d). 716 

Fig. 8. Dimensionless critical loads Pcr,f versus αL for a beam with free ends on elastic half-717 

space. 718 

Fig. 9. First (continuous line) and second (dashed line) mode shapes for a beam with free ends 719 

and αL equal to 1 (a), 5 (b), 10 (c) and 25 (d). 720 

Fig. 10. First three dimensionless critical loads of a beam on half-space versus αL/χ. 721 

Fig. 11. Second mode shape for a beam with pinned ends, αL = 50 and increasing χ. 722 

Fig. 12. Determination of buckling wavelength corresponding to the minimum critical load for 723 

/ 4 / 4L x L− ≤ ≤ , for two αL and χ cases. 724 

Fig. 13. Buckling wavelength of beams with sliding ends on elastic half-space versus αL and 725 

varying χ (a); with respect to the wavelength of a beam on elastic half-plane versus αL/χ (b). 726 
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Fig. 14. Buckling wavelength corresponding to Pcr,p,2 with respect to the wavelength of a beam 727 

on elastic half-plane versus αL/χ. 728 
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Table captions 729 

Tab. 1. Reference critical loads for a compressed beam with free ends on elastic half-space, 730 

obtained with nx = 211 and a power-graded subdivision along y direction with ny = 7 and β = 3. 731 

Tab. 2. Dimensionless critical loads of a beam on half-space with αL = 50 varying χ. 732 


