
Episodes Vol. 43, No. 3

893Article

by Elena Marrocchino1, Virginia Lattao1*, Negar Eftekhari1, Aida Maria Conte2, Stefano 

Franceschini3, Salvatore Pepi1, Marzia Rizzo1, and Carmela Vaccaro1,4

Rationalist architecture in rural villages: petro-morphological

characterization of natural asbestos fibers in decorative plas-

ters used for artificial stones

1 Department of Physics and Earth Sciences, University of Ferrara - via Saragat 1, 44121 Ferrara, Italy; *Corresponding author, E-mail: 

Virginia Lattao lttvgn@unife.it
2 CNR-IGAG, Sede di Roma, c/o Dipartimento di Scienze della Terra, Sapienza Università di Roma, P. le A. Moro, 5 00185 Roma Italy
3 SOCOTEC ITALIA, Ferrara Department - via Annibale Zucchini 69, 44122 Ferrara, Italy
4 ISAC-CNR Institute of Atmospheric Sciences and Climate of the National Research Council of Italy, Via Piero Gobetti, 101, 40129 Bologna, Italy

(Received: January 31, 2020; Revised accepted: July 17, 2020)

https://doi.org/10.18814/epiiugs/2020/0200s08

At the beginning of the twentieth century, artificial stones

became commonly used as structural building materials,

masonry materials, and architectural decorative elements.

The main purpose of this work was to characterize the

building materials used in a historical building in Codigoro, a

small town near Ferrara, northeastern Italy. This building

was constructed according to the Italian rationalist rules

for monumental architecture and is an example of the

rationalist architecture found in rural villages, which uses

innovative materials and decorations including artificial

stone. The samples analyzed in this work were imitation natu-

ral stone, such as “fake travertine” and “fake Ceppo di Grè”,

composed of reinforced concrete slabs coated with white

mortar. Asbestos minerals have been observed in the fill-

ers in these materials. Petrographic, mineralogical, and

chemical characterization of samples of artificial stones

and concrete was performed with optical transmitted light

microscopy, scanning electron microscopy–energy disper-

sive spectroscopy, and X-ray diffraction analyses. The results

revealed chemical and biological degradation in almost

all the artificial stones examined and enabled identifica-

tion of the presence of calcite, iron oxychloride complexes,

and asbestos lizardites used as fillers in two of the analyzed

samples. This study aimed to describe a general investiga-

tion methodology used to examine the artificial stone façades

of the Ex Casa del Fascio of Codigoro, whose architecture is

particularly representative of the rationalist architecture

in rural villages. The results highlight the relevance of com-

patible and suitable conservation measures that should

be monitored during all restoration interventions to minimize

post-degradation fracturing and transformation into ele-

ments harmful to human health and the environment.

Introduction

During the nineteenth century, the process of construction rational-

ization, together with its economic implications, led to the introduc-

tion of new construction systems as well as new industrial materials,

which were sometimes used in conjunction with, or as substitutes for,

traditional materials. Artificial stone appeared in the early nineteenth

century and represents a link between traditional stone construction

and the newer reinforced concrete technique (Bertolazzi, 2013). The

use of artificial stone, together with unconventional materials (iron,

glass, or concrete), spread throughout European architecture from the

end of the nineteenth century. Artificial stone was broadly present at

the beginning of the twentieth century in social and economic con-

texts, as an expression of the middle-class cultural evolution, which

enabled building prestigious buildings inexpensively by using mod-

ern hydraulic binders (cements) for the decorative elements. The term

“artificial stone” describes materials obtained by mixing sand, gravel,

and water with lime, Portland cement, or plaster to produce a material

resembling stone (Pecchioni et al., 2005; Stefanidou et al, 2015). This

material provided an economical alternative to natural lithic ornamen-

tal luxury materials, owing to the reuse of waste material (Mazzeo,

2018). After the invention of Portland cement in the United Kingdom

at the end of the nineteenth century, the use of artificial stone became

widespread, and residential and industrial architecture (Pecchioni et

al., 2005; Fatiguso et al., 2013) were transformed with the develop-

ment of the Art Nouveau style in Europe. These materials provided

high aesthetic value and allowed for decorative elements to be used in

public and industrial architecture, as well as in the residential sector

(Mazzeo, 2018). This artificial building material could be mass-pro-

duced enabled high reproducibility in short time periods, with low envi-

ronmental and economic costs; ornamental elements with properties

similar to those of specific stones could be created in the desired

shapes and sizes. The construction techniques used for artificial stone
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decorations and their use in the cultural heritage were well described

in many European architecture magazines, as indicated by Baldazzi,

2012. The production of artificial stones in Italy first appeared in 1881

at the Industrial Expo in Milan (Sandrolini et al., 2011). 

At the beginning of the twentieth century, the production of artifi-

cial stone became well known, and many production methods were

issued in Italy. Several patents in this period describe the use of asbes-

tos fillers to improve the physical-mechanical features, polishability,

and durability of cement decorative elements, such as the GB 277884

patent (1927) for mold improvement in the construction of artificial

stone blocks. Artificial stone was used throughout Italy (Biscontin

and Driussi, 2006; Rocchi, 2012), and studies of materials from differ-

ent areas in Italy have revealed that the mixture was often prepacked and

modified according to the desired prototype (Michelacci, 2000; Di Biase

et al., 2008; Dameri, 2012;  Monica and Bergamaschi 2019). As a result,

unconventional and cost-effective materials (some of which have recently

been identified as harmful materials) were used to create the decora-

tive elements of buildings.

Asbestos is a general commercial-industrial term used to describe a

group of naturally occurring silicate minerals of fibrous or asbesti-

form habit. These minerals can be divided into two groups: (i) serpen-

tine, which includes only the asbestos chrysotile polymorph, and (ii)

amphibole, which includes the actinolite, tremolite, anthophyllite, crocido-

lite (riebeckite), and amosite (cummingtonite-grunerite) asbestos varieties.

The other serpentine polymorphs (i.e., lizardite and antigorite) and other

amphiboles (i.e., fluoro-edenite) or zeolites (i.e., erionite) are not regu-

lated and therefore are termed “asbestiform.” Because of their excep-

tional attributes (high tensile strength, flexibility, and chemical and

heat resistance), asbestos minerals have been used since ancient times

as raw materials to produce a large variety of materials and objects.

The inherent properties of asbestos fibers appear to contribute to the

toxicity of these mineral particles when they are lodged inside the human

respiratory system (Stanton et al., 1981; Mossman et al., 1990; Wylie

et al., 1993; Nolan et al., 2001; Constantopoulos, 2008; Harper 2008;

Murray and Nelson, 2008; Baumann and Ambrosi, 2013; Bloise et al.,

2016; Pollastri et al., 2016; Turci et al., 2016; Bloise et al., 2020).

Ophiolitic rocks may contain various amounts of asbestos minerals

(e.g., Skarpelis and Dabitzias, 1987; Ross and Nolan, 2003; Skarpelis,

2006; Rigopoulos et al., 2008; Punturo et al., 2015), among which

chrysotile is usually the most common. Chrysotile can be found in many

types of serpentinized ultrabasic rock, either as alteration product of

olivine and/or orthopyroxene, or as veins crosscutting the rock. Among

ophiolitic rocks, metabasite may also contain considerable amounts of

amphibole asbestos fibers, principally actinolite and/or tremolite, which

represent the transformation products of clinopyroxene (e.g., Tsikouras

et al., 2005; Rigopoulos et al., 2006). Asbestos fibers are thin, needle-like

crystals that may vary widely in diameter from millimeters to microme-

ters. The biologically important “critical” fibers are those with the fol-

lowing shape criteria: length ≥ 5 μm, diameter (width) ≤ 3 μm, and

length to diameter ratio (aspect ratio) ≥ 3:1 (World Health Organiza-

tion, 1986; National Institute for Occupational Safety and Health,

2008; International Agency for Research on Cancer, 2009). Asbestos

minerals in the ophiolitic rocks used as aggregates for road construc-

tion, railway ballast, concrete, and other applications are particularly

dangerous for public health, because fibers of the sizes described

above may be released into the air during in-service deterioration of

aggregates and may be inhaled into the lungs, thus causing serious

health problems (Bloise et al., 2016; Punturo et al., 2019).

Italian monumental rationalist architecture has recently become a

subject of particular interest in the study of its constituent materials

(Fiorentino et al., 2015). Codigoro and Tresigallo, two small towns

near Ferrara in northeastern Italy, have well-known examples of the

Italian monumental architecture from the twentieth century and of

rationalist architecture (Caprotti, 2007), which widely used artificial

stone. Moreover, these two municipalities have examples of Italian

architecture in the fascist period (Viganò, 1971; Baldazzi, 2012). On

May 20th and 29th 2012, both these towns, as well as Ferrara and most

parts of the Emilia Romagna region, were affected by two seismic

events that damaged buildings in the historic centers and rural areas

(Courard et al., 2012; Freire-Lista et al., 2019). This work was part of

a reconstruction and post-seismic restoration project involving several

historic rationalist architectural buildings damaged by these earthquakes.

Our focus was on the Ex Casa del Fascio of Codigoro. According to

Tamiozzo (2009), the ability to distinguish between original building

materials and those used after restoration is fundamental for making

effective and respectful choices to ensure effective intervention. Accord-

ingly, with a suitable stability plan for damaged historical buildings in

place, we performed a chemical and micro-structural investigation on

the construction materials (and artificial stones) used in rationalist

buildings. As suggested by Varas-Muriel et al. (2015), mineralogical and

petrographic characterization of the materials used in buildings is a

helpful tool to identify the best and most cost-effective strategies for

removing or reducing degradation agents, as well as for predicting

behavior over time, in the presence of agents of material degradation. 

Many analyses were performed to understand the probable degra-

dation resulting from reusing building elements and materials and to

investigate the presence of asbestos minerals. This particular study

was justified because, in the period of rationalist architecture, some

artificial stone materials were produced from products potentially

containing materials with harmful health effects (Bloise et al., 2016).

Determining the presence of asbestos mineral phases is important

because they pose health risks.

Materials and Methods

According to well established methodological procedures (Binda et

al., 2000; McCann and Forde, 2001; Schuller, 2003; Warkea, 2003),

an investigation system to support the study of artificial stone façade

components should be based on preliminary analysis using historical

research, geometry surveys, and visual assessment. The diagnostic pro-

cess may involve onsite destructive/non-destructive and laboratory

tests (Sandrolini, 2005; Bartz, 2012).

To qualify the mixtures and assess the decay, we characterized the

materials through laboratory analyses. Preliminary macroscopic observa-

tion of all samples was fundamental to support the interpretation of

the results obtained from onsite non-destructive tests. 

Petrographic and mineralogical characterization of the binders,

aggregates, and microstructural and morphological observations was

performed on samples from the ground floor of the external façade of

the Ex Casa del Fascio building in Codigoro (near the city of Ferrara).

This building is a typical example of rationalist architecture in rural
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areas. Its ground floor is clad with artificial stone slabs, used as deco-

rative stones, built above a reinforced concrete base. These slabs were

severely damaged because of dilation phenomena caused by the highly

corroded reinforcements. To fix this damage, several restoration oper-

ations were performed before 1992; these interventions were per-

formed with mortar mixes containing fibrous fillers, whereas the most

recent restoration operations used mortars without fillers.

Monumental balconies overlooking the main entrance are a typical

Figure 1. The Ex Casa del Fascio building façade, Codigoro, near to Ferrara, northeastern Italy.

Figure 2. “Fake travertine” sample CO1. This artificial stone is present in the ground floor of the Ex Casa del Fascio building and is com-

posed by 3 different layers: layer A (the inner), layer B (above layer A) and layer C the most superficial.
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element with high symbolic value in public buildings built during the

rational and neoclassical architecture periods. The Ex Casa del Fascio

building follows that architectural rule. The monumental colonnade

balcony in artificial stone imitating marble is one of the most relevant

elements of this building (Fig. 1).

Sampling

Samples were collected at different locations from the ground level

up, and differences among the types of artificial stone decorative ele-

ments and exposure to rainwater were considered.

Although well established diagnostic procedures and techniques

exist for natural stone, for artificial stone components, the diagnostic

process should be carefully planned to consider specific features such

as mixtures, installation and connection methods, and the mechanisms of

interaction with reinforcement and support materials.

For “fake travertine” artificial stone, CO1, the sampling was mainly

performed on the ground floor slabs in the areas near fractures where

the reinforcement bars of the basement concrete produced expansion

phenomena due to weathering (Fig. 2). 

Samples of “fake Ceppo di Grè” artificial stone, CO2, CO4, and

CO7, were collected from the inner parts of the pillars (Fig. 3).

The artificial stone materials used for building the monumental col-

onnade balcony has been covered by successive layers of a mixture of

gray cement and lime; for this reason the materials below this strata

were sampled as CO6 (Fig. 4).

Sample CO3 came from the replacement materials used to infill

cracks, which was easily recognizable because of the dark gray color,

relief with respect to the surfaces of the slabs, and thin appearance

(Fig. 5).

Details of collected samples are listed on Table 1.

Chemical and Mineralogical Characterization

A petrographic study of the samples was performed to determine

the composition and granulometry of the aggregate and to verify the

potential presence of asbestos minerals used as fillers. Petrographic

observations and measurements were performed with optical trans-

Figure 3. “Fake Ceppo di Grè” samples CO2, CO4, CO7. Big clasts of carbonate rocks (limestone and dolomite in prevalence). Damaged

areas are in correspondence of emerging oxidized reinforcement bars.

Figure 4. Fake limestone sample CO6. The first-floor colonnade. The white strata visible in the pictures is not coeval with the columns build-

ing, it has been applied on at the end of the twentieth centuries during restoration operations.
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mitted light microscopy (OTLM) with an OPLOPTIKA B510 POL-

AOS and a stereomicroscope SZ6745TR. Both microscopes were

equipped with a MOTICAM 2500 5.0 M pixel webcam operated by

Motic Images Plus 2.0 ML software. Microscopic observations were

performed on polished thin sections of whole rock samples prepared

according to the standard procedures established for Cultural Heri-

tage (UNI 11176:2006, 2006; Di Biase et al., 2008; Tamiozzo, 2009;

Fatiguso et al., 2013). Scanning electron microscopy (SEM) observa-

tions on thin sections and fragments of samples were performed with

a model ZEISS EVO MA 15, coupled with an energy dispersive X-

ray spectroscopy (EDS) system (Aztec Oxford apparatus, SDD detec-

tor, WD 8.5 mm, EHT 20 kV), with an LaB6 filament as the electron

source, and used for microstructural characterization and qualitative

determination of chemical composition. SEM images in back-scattered

detector imaging mode were used to study the morphological and

topographical features of the samples. SEM imaging is an efficient tool

used to determine the chemistry of amphibole fibers/particles (diameter >

3 μm). By extension, the combination of polarized light microscopy

and SEM coupled to EDS analyses enabled efficient identification of

amphibole fragments and/or fibers larger than 3 μm. Additionally, the

qualitative EDS analyses indicated extensive variations in textures,

morphologies, crystal growth patterns, habits, and crystal structures. 

Compared with OTLM, SEM allows for imaging and identifica-

tion of smaller fibers, and it can be used to evaluate the morphologi-

cal and chemical composition of asbestiform minerals. In contrast to

OTLM, the ability of SEM to utilize reflected energy for imaging allows

fibers adhering to other mineral surfaces to be easily observed. Asbes-

tiform minerals are clearly identifiable, because high magnifications

can be obtained (Clinkenbeard et al., 2002).

Morphological and microstructural characterization was performed

with SEM analysis to detect the morphology of the particles, to deter-

mine the presence of fibers (i.e., asbestos minerals), and to identify

the fiber dimensions (diameter and length) and any aggregation (e.g.,

presence of growth or microfractures). The morphological analysis was

conducted through microanalysis to identify the chemical and miner-

alogical composition of the observed granules.

XRD analyses were performed with a Seifert MZIV automatic pow-

der diffractometer equipped with a graphite monochromator operating

Figure 5. Concrete infilling mortar sample CO3. The Ex casa del Fascio building has been affected by damages caused by the earthquakes in

May 2012, but before these events it was been subjected to restore operations not always made following the correct procedures for historical

building.

Table 1. Details of analyzed samples

Sample Samples Classification
Height from ground 

level (m)
Protection from rain Original Restoration Type of Analyses

CO1 (a, b, c) Fake travertine 0.95 cm – 1.10 m Sheltered X OPLM SEM-EDS

CO2 (a, b, c, d) Fake Ceppo di Gré 1.70 – 1.75 m Partly sheltered X OPLM

CO3 e Concrete infilling mortar 0.40 – 0.45 m Partly sheltered X OPLM SEM-EDS XRD

CO4 (a, b) Fake Ceppo di Gré 1.70 – 1.75 m Partly sheltered X OPLM SEM-EDS

CO6 (a, b, c) Fake limestone used in columns 0.20 – 0.25 m Partly sheltered X OPLM SEM-EDS

CO7 a Fake Ceppo di Gré 0.30 – 0.35 m Exposed to the weathering X OPLM SEM-EDS
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at 40 kV and 20 mA, using Cu Kα radiation. The XRD data were col-

lected from 5° to 60° 2θ with a counting time of 8 s and step-size of

0.02°. The grinding of samples to perform the diffractometric analyses

was performed in an agate mortar and pestle in humid environmental

conditions to avoid dispersion of the environment fibers that might be

dangerous to human health. XRD analysis was performed on a pulver-

ized sample of replacement cement paste (Clinkenbeard et al., 2002).

Although polarized microscopy and XRD are useful for preliminary

identification of asbestos mineral phases, given the possible presence of

asbestos minerals in these samples, SEM-EDS was considered the most

powerful tool for the detailed investigation of fibrous minerals. 

Results

Macroscopic Characterization

“Fake travertine” artificial stone (Fig. 2)

Figure 6. “Fake travertine” Sample CO1. Thin section micrographs. Layer A, examples of concrete mix with silico-carbonate aggregate a)

sharp edge quartz and silicate rocks fragments; b) sharp edge quartz, silicate rocks fragment and carbonate fragments. Layer B, aggregate

mainly composed by various lithotypes of carbonate rocks, such as c) light white limestone, low-round foraminifera rocks, d) well-rounded

beige micritic pebbles and rare spathic calcite fragments. Reddish color should be due to presence of iron oxides and hydroxides, often depos-

ited inside the binder in contact with the macro and micropores. Layer C stereomicroscope pictures of the outer layer e) spider; f) particular of

a black crust.
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Macroscopic observations of CO1 “fake travertine” artificial stone

decoration revealed the presence of three layers. 

i) Layer A represents the structural element of the decorative slabs

and was composed of bar-reinforced well mixed concrete with homo-

geneous distribution of the aggregate. Thin section observations revealed

that the aggregate fraction was mainly composed of a silico-carbon-

ate fraction, with a higher prevalence of silicate than carbonate. The sili-

cate fraction was mainly composed of fragments of polymineral rocks,

such as gneiss, arenaceous-pelitic metamorphosed rocks, and a small

amount of ultramafic rock fragments. Quartz, feldspars, a low percent-

age of micas (muscovite and biotite), and some serpentine crystals

were the identified silica mineral phases. Few carbonate rock aggre-

gates were also present (Fig. 6).

ii) Layer B represents the decorative layer, which was obtained by

mixing a white cement type with white/pale yellow limestone rock.

This decorative layer overlapped the reinforced concrete of layer A.

Micrite grains and a low percentage of yellow limestone fragments

was detected. OTLM observations indicated that this layer was com-

posed primarily of a carbonate aggregate within a plaster mortar with

the typical optical features of a hydraulic binder. The binder aggregate

modal ratio was estimated to be approximately 1/3 with a non-homo-

geneous distribution of aggregate. The aggregate was mainly composed

of various lithotypes of carbonate rocks, such as light white limestone,

low-round foraminifera rocks, well-rounded beige micritic pebbles, and

rare spathic calcite fragments. Reddish areas were present in the mix-

ture, owing to the presence of iron oxides and hydroxides related to

steel bar reinforcement alteration phenomena (Fig. 6).

iii) Layer C represents the protection strata subjected to yellowing

in the altered areas. Stereomicroscopic observations of the surface revealed

strong biological degradation with the presence of nests of insects and

fungal hyphae, together with a black crust (Fig. 6) (Randazzo et al.,

2015; Chen et al., 2017; Molina et al., 2017).

“Fake Ceppo di Grè” (Fig. 3)

The natural stone material known as Ceppo di Grè is a polygenic

conglomerate whose geological name is Ceppo Conglomerate (Vola

et al., 2009). It crops out along all foothills of the River Po Valley

and as reported by Vola et al., 2009 has been widely used as a deco-

rative stone material in northern Italy. The artificial stone classified

here as “fake Ceppo di Grè” faithfully reproduces the Lombard

Breccia that crops out in the surroundings of Iseo Lake (Jadoul and

Galli, 2008; Muttoni et al., 2010; Berra and Carminati, 2010; Ron-

chi et al, 2011).

Macroscopic observations of “fake Ceppo di Grè” artificial stones

investigated in this work (samples CO2, CO4, and CO7) showed

irregular and angular fragments with a prevalence of micritic and

microsparitic carbonate rocks. In “fake Ceppo di Grè,” as described

for “fake travertine” slabs, regions near the damaged areas showed

oxidation affecting the reinforcement bars. Because of the sizes of

limestone and dolomite clasts (from 3–5 cm to 100 cm), analysis of

these samples focused on the binder. Stereomicroscopic and petro-

graphic microscopic observations of mortars showed the yellowish-

gray background of the matrix, with aggregate constituted by sandy

fractions. In addition to natural aggregate, some asbestos phases such

as fillers (less than 1%) were observed. Thin sections showed a

medium aggregate/binding ratio in mortars binding well with mixing.

The binder porosity was mainly macroscopic, with low microporos-

ity. Extensive degradation phenomena and carbonation processes cor-

responded to the weathering of exposed areas. The cement matrix

natural aggregate was composed mostly of carbonate aggregates, with

a presence of vitrophiric slag and asbestos minerals used as reinforce-

ment fillers. Oxides and hydroxides with black (ilmenite-magnetite)

and red blood color were rare (Fig. 7).

Fake limestone used for columns (Fig. 4)

The observation of samples collected from the columns (CO6) showed

a tenacious mortar consisting of a white cement with an amorphous

structure and a well-classed medium silica sand aggregate enriched in

serpentinite. The aggregate was characterized by the prevalence of

serpentinite (around 70%) with a minor percentage of micritic lime-

stones, quartz, iron hydroxides, pale yellow vitrophiric slag, and green

glass fragments. Degradation phenomena were absent. The aggregate/

Figure 7. “Fake Ceppo di Grè” samples CO2, C74, CO7. Thin section observations: a) carbonate fragments and femic fragments in a green-

ish matrix. b) carbonation phenomena and greenish areas. Greenish color is probably due to alteration process of aggregates in the matrix.



900

September 2020

binder modal ratio was approximately 1/3, and the mix appeared highly

homogeneous (Fig. 8).

Concrete infilling mortar (Fig. 5)

Despite the high quality of these artificial stone materials, in “fake

travertine” and “fake Ceppo di Grè” types, macroscopic observations

revealed the decay process of the reinforced concrete base structures

with cracking fragility. The infill materials used for restoration with

fibrous minerals were present in restricted and localized areas, with a

maximum extension of 10 cm in diameter and thicknesses less than 4

cm. Stereomicroscopic observations of sample CO3, infilling mortar,

allowed us to identify fibrous phases that favored macroporosity, which

was presumably related to colonization with lithophagous fauna responsi-

ble for biodegradation decay. For these samples, thin sections were not

made, to avoid the risk of fiber dispersion during the lapping and pol-

Figure 8. Fake limestone sample CO6. This section observations reveal a great Yang et al. (2019) quantity of serpentine mineral phases in the

mixture.

Figure 9. “Fake travertine” Layer A. a) Secondary micrograph of the matrix in the concrete substrata showing the iron oxychloride com-

plexes around and inside a vacuolar structure with corresponding the SEM-Energy Dispersion Spectroscopy (EDS) spectra. b) Secondary

micrograph showing layered two-dimensional iron oxychloride (FeOCl) husk like structured.
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ishing operations. Therefore, the analysis was performed by combining

microscopic observations with SEM analysis to confirm the presence

of asbestos minerals.

SEM-EDS Data Analysis

“Fake travertine” artificial stone

Layer A: the corrosion products of reinforcement steel bar were

typical layered structures with red and brownish-red color (Fig. 9).

This finding was consistent with the iron mobilization from reinforce-

ment steel bars, presumably as a result of capillary action of water,

that characterizes the lithological substratum where this edifice was

built. These globular clusters were observed in pores of “fake travertine”

as well as in the corrosion products of steel reinforcement.

Layer B: the components of the mix design were white cement paste,

carbonate aggregate rocks, and yellow pigments, such as iron hydrox-

ides (Fig. 10).

In the samples subjected to SEM observation, EDX analysis revealed

iron hydration products with a self-oriented flower shape with an

average diameter of 10–12 μm (Fig. 11).

“Fake Ceppo di Grè” 

Two types of sulfates was recognized: calcium sulfate (Fig. 12) and

barium sulfate (Fig. 13). The EDS spectra of these particles demon-

strated a high-amount of sulfate in these black points.

Figure 10. “Fake travertine” Layer B. Secondary micrograph showing the composition of amorphous white matrix and the corresponding

the SEM-Energy Dispersion Spectroscopy (EDS) spectra.

Figure 11. “Fake travertine” Layer B. a) and b) BSE micrographs showing the iron oxychloride complexes with the self-oriented flower shape with

average diameter of 10–12 µm and the corresponding the SEM-Energy Dispersion Spectroscopy (EDS) spectra.
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Concrete Infilling Mortar

Because stereomicroscopic observation revealed the presence of

fibrous phases, SEM-EDS analysis was performed to better identify

the chemical. Fig. 14 shows back scattered images highlighting the

presence of various fiber types and confirming the microscopic obser-

vations. In these samples, asbestos tailings mainly contained serpen-

tine, including snakesite, antigorite and chrysotile, as well as small

amounts of brucite, magnetite, quartz, talc, and chlorite. The main

chemical composition of the asbestos tailings was SiO2, MgO, and

Fe2O3, with a small amount of Al2O3 and CaO.

Fake Limestone Used for Columns

Thin section observations showed a white cement mortar with

amorphous structure and a well-classed medium silica sand aggre-

gate enriched in serpentinite. SEM analyses revealed a composition

compatible with the presence of tremolite-actinolite amphibole group

phases (Fig. 15). SEM analyses also confirmed the use of pale green

and white leaded glass (Fig. 16).

XRPD Data Analysis

XRD patterns of sample CO3 (Fig. 17) revealed peaks of lizardite

Figure 12. “Fake Ceppo di Grè”. Secondary micrograph showing calcium sulphate as indicated by SEM-Energy Dispersion Spectroscopy

(EDS) spectra indicating a high-amount of sulphate for this portion of sample.

Figure 13. “Fake Ceppo di Grè”. A) and b) BSE micrographs showing presence of barium sulphate phases as confirmed by SEM-Energy

Dispersion Spectroscopy (EDS) spectra. The barium hydroxide mixture has been added to make the concrete harder and therefore resistant to

physical and mechanical stress and degradation. 
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(Mg3Si2O5(OH)4) (2θ at 12° and 24°), a polymorph of the serpentine

group minerals.

Discussion 

The combination of techniques used in this study to characterize the

mixtures used to formulate artificial stones highlighted the typical

features of each type of artificial stone. OPLM is the most common

analytical technique used by geologists for mineralogical and petro-

graphic characterization of materials. Macroscopic observation indi-

cated the presence of a steel bar-reinforced concrete substratum in

almost all of the samples; therefore, we hypothesized that pre-pack-

aged slabs based on cement mortar were used. The bar-reinforced

concrete substratum was evident only in the “fake travertine” slabs;

the artificial stone mixture was found over this layer. OPLM investi-

gation of the artificial stone material revealed the absence of efflores-

cence that, as suggested by Morillas et al., 2015 and Chen et al., 2017,

may be associated with the use of materials with low salt content as

aerators. Optical microscopy observations indicated the presence of

asbestos minerals in some analyzed samples, but, as suggested by

Militello et al. (2019), this technique is considerably limited for iden-

tifying asbestos fibers. Therefore, OPLM was coupled with XRD and

SEM analyses to investigate the potential presence of asbestiform

Figure 14. Concrete infilling mortar. BSE micrograph showing fibrous minerals presumably of asbestos phases, SEM-Energy Dispersion Spec-

troscopy (EDS) spectra revealed high peaks in Mg and Si, with minor peaks of Ti and Al coherent with phases belonging to serpentine group.

Figure 15. Fake limestone used for columns. A) and b) Secondary micrographs showing minerals presumably of asbestos phases, SEM-

Energy Dispersion Spectroscopy (EDS) spectra revealed high peaks in Mg, Si and Ca, this in accordance with composition of same amphibole

belonging to tremolite-actinolite group.
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minerals in concrete infilling mortars and in fake limestone used for

columns. In both types of samples, SEM-EDS data showed high peaks

of Mg and Si that may indicate the presence of asbestos at the fibrous

elements, but a distinction must be made: in the fake limestone samples,

asbestos mineral phases may be associated with weathering processes

of ultramafic rock minerals characterizing the aggregate, because lizard-

ite is commonly the main polymorph present in serpentinites (Schwartz

et al., 2013). For concrete infilling mortar, the presence of asbestos

minerals may be due to the presence of these types of minerals in the

starting mixture.

The XRD pattern of a representative sample confirmed the pres-

ence of lizardite, one of the three polymorphs of serpentine (Auzende

et al., 2004; Votyakov et al., 2005 and Liu et al., 2010; Schwartz et al.,

2013; Guillot et al., 2015; Liu et al., 2019), and SEM-EDS analyses

characterized the aspect ratios and the textural relationships among

the various mineral phases and revealed the presence of different

fibrous phases in the studied samples.

SEM-EDS analyses of “fake travertine” samples indicated the pres-

ence of iron oxychloride complexes with self-oriented flower shaped

markings (Fig. 13). Thus, we hypothesized that iron oxide fibers were

present, as reported by Sayed and Polshettiwar (2015), in agreement

with iron mobilization from reinforcement steel bars. Oxygen fugac-

ity and pH may influence the corrosion of iron materials, and chloride

might be adsorbed or might penetrate easily through the passive film,

Figure 16. Fake limestone used for columns. A) and b) Secondary micrographs showing presence of glass microparticles in some cases

enriched in lead.

Figure 17. X Ray diffraction pattern. In the red squares are highlighted the peaks of lizardite, confirming the presence of these serpentinite

mineral phases in a sample of concrete used for restoring operation.



Episodes Vol. 43, No. 3

905

thus damaging the integrity and subsequently accelerating the electro-

chemical reactions. 

SEM-EDS analyses of “fake Ceppo di Grè” highlighted unusual peaks

of Ba, thus suggesting that Ba hydroxide was added to the mixture to

make the concrete harder and therefore resistant to physical and mechani-

cal stress and degradation. The same procedure might have been used

for cement, in which barium may be added to help bind and enhance

resistance to different types of radiation (Zezulová et al., 2016). Bar-

ium cations are a part of the raw mixture and thus can be incorporated

into the crystal lattices of alite and belite, and the interstitial phase.

Some authors have found neither barium nor ferrite in belite (Juel and

Jøns, 2001); only tricalcium aluminate can contain barium in its struc-

ture (Katyal et al., 1999). These findings are in accordance with the high

SiO2/calcium in the Ba-rich matrix (spectrum 70–72). Zezulová et al.

(2016) have observed that an excessive BaO concentration can inhibit

the crystallization of alite or decompose alite in favor of belite and

free lime. The free lime then produces an excess of portlandite, which,

in the presence of sulfur in the mixture, justifies the high content of

calcium sulfate observed with SEM analyses in this process.

The use of pale green and white leaded glass, as confirmed by SEM

analyses, is consistent with the addition of glass fragments to mortar

mixtures for aesthetic purposes and with increasing the mortar’s resis-

tance to sunlight.

Conclusions

A combination of different analytical methods were used to charac-

terize the artificial stone materials used in a rationalist architectural

building in a rural town near Ferrara in the Emilia Romagna region

(northeastern Italy).

Macroscopic observations revealed superficial damage with frac-

tures and cracks, the exposure of degraded and oxidized bar reinforce-

ments, and biological degradation in almost all the artificial stones. 

OPLM observations showed different compositions of the aggre-

gate in the various types of artificial stone materials used, thus high-

lighting the presence of minerals from metamorphosed ultramafic rocks

in some samples and filler containing fibrous minerals in other samples.

SEM-EDS and XRD analyses confirmed the presence of asbestos

mineral phases, particularly lizardite, both in the concrete used for

restoring operations and in samples enriched in ultramafic aggregate.

The observed lizardite fibers did not appear to be present at danger-

ous levels, but potential risks during restoration or collection should

be taken into consideration. In this light, mineralogical and petrographic

characterization of building materials is a useful tool for investigating

the presence of potentially dangerous fillers that required caution during

degradation product removal through sandblasting or other methodol-

ogies that pulverize the altered surfaces. To prevent effective post-deg-

radation fracturing and transformation into elements harmful for health

and the environment, careful monitoring is recommended.

In conclusion, the overall project, besides providing valuable sup-

port for the restoration work, enabled studying an eminent artistic

product of epochal monumental architecture—a symbol of recent his-

tory now deserving renewed attention.
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