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Abstract: For any aspect ratio Ro/Ri of the cylinder radii, the non-linear stability of the steady 2D-solutions
of the Non-Linear Stokes system, which is an approximation of the Oberbeck-Boussinesq system, is theoreti-
cally studied. The sufficient condition for the stability shows a critical Ra which is function of the aspect ratio.
It is the same of the associated homogeneous linear problem and it can be found by looking for the largest
eigenvalue of a suitable symmetric operator. The critical Ra so defined proves to be uniformly bounded from
below in the space of dimensionless parameters, while it is non uniformly bounded from above for the aspect
ratio going to infinity. A scheme to evaluate it as function of the aspect ratio is given. The results do not depend
on the Prandtl number Pr.
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1 Introduction

Natural convective flows arising in horizontal coaxial cylinders are involved in different applications
such as energy storage systems, thermal insulation and cooling. A large amount of experimental
data and numerical results, concerning both the flow fields and the heat transfer, can be found in the
literature, see for instance [1, 2, 3, 4, 5, 6].

In Figure 1, we show as sketch of the problem a graphical outcome with streamlines and isother-
mal lines for the steady flows. Here, the temperatures Ti > To are respectively fixed at the inner
Ri and the outer Ro radii. This geometrical setting gives as immediate result, both experimental and
numerical, that natural convective motions are always present for any value, no matter how small, of
the Rayleigh number

Ra :=
αg

νk
(Ti − To)(Ro −Ri)

3

(α is the volumetric expansion coefficient, g the gravity acceleration, ν the kinematic viscosity, k the
thermal diffusivity).

Actually, all the authors agree on the assertion that for sufficiently small Rayleigh numbers Ra,
independently of the Prandtl number Pr := ν

κ and of the inverse relative gap width

A = 2Ri/(Ro −Ri) ,

a steady flow with unicellular crescent-shaped eddies occurs.
Although in the papers by Yoo, see Figure 2, the critical Rayleigh for the first transition seems

to be a strongly decreasing function of A, only the basic steady flow is always observed close to the
A-axis.

Therefore, in such region stable steady solutions should exist for the system of partial differential
equations which models natural convection. This is actually confirmed by the theoretical papers on
the subject [7, 8, 9, 10, 11]

All mathematical models in fluid-dynamics derive from the basic conservation laws, while the
Newtonian fluid is the most common model of material [12]. Further, the equations are simplified by
means of the Oberbeck-Boussinesq approximation[13, 14], whose rigorous derivation under proper
hypotheses on the materials is shown in [15] and which is widely studied in several versions depend-
ing on the applications (see for instance [16, 17, 18, 19, 20]). The four classical assumptions to write
the O-B system are:

• isochoric motion: ∇ · v = 0,
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Figure 1.1: basic flow, streamlines (left) and isotherms (right)

• thermal expansion of the material in the weight force: ρ = ρ0(1− α(T − T0)),

• uniform density in all the other terms: ρ = ρ0,

• negligible self dissipation: D : D ≈ 0,

(ρ0 is the reference value for the density and D is the symmetric part of the gradient of v).
The resulting system is

∇ · v = 0

ρ0

(
∂v

∂t
+ v · ∇v

)
= −∇p+ µ∆v + ρ0(1− α(T − T0))g (1.1)

ρ0CV

(
∂T

∂t
+ v · ∇T

)
= k∆T.

For (approximately) 2.5 < A < 8.5, , see Figure 2, it happens that 3D flows are observable,
say spiral motions, while elsewhere in the space of dimensionless parameters only 2D solutions are
observable, so that a 2D description makes sense. Our 2D-domain is endowed with a reference frame
with horizontal x- and vertical z-axis, we set x = (x, z), and the cylindrical axis coincides with the
(hidden) y-direction. Of course, polar coordinates (r, φ) with r ∈ [Ri, Ro] and φ ∈ [−π, π) come in
handy for this geometrical configuration (φ = 0 corresponds to the positive part of the x-axis). and
polar coordinates are chosen. Accordingly, e3 = k = ∇(r sinφ) = sinφer + cosφeφ.

All functions and vector fields are periodic in φ and depend on the dimensionless variable r, in
agreement with the following choice:

r =
r′

Ro −Ri
, z =

z′

Ro −Ri
, t =

κ

(Ro −Ri)2
t′ , T =

T ′

Ti − To
. (1.2)

Next, we write the dimensionless definition of the annulus: for A > 0, the domains in considera-
tion are

ΩA := {(r, φ) ∈ R2 : r ∈ (A/2, 1 +A/2)} .

If all the variables in the Oberbeck-Boussinesq system are renamed with primes, by expressing
all terms as functions of the dimensionless ones, and redefining the pressure by putting together all
the gradient-like terms, it follows the system 1

1though this is seldom specified, in polar coordinates the symbol v · ∇v is a strong abuse of notation, since the sum
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Figure 1.2: The line represents the critical Rayleigh number above which dual steady solutions exist.
Below the dashed line experiments [2] show prevailing 2d steady flow. The results are for Pr = 0.7

∇ · v = 0

1

Pr

(
∂v

∂t
+ v · ∇v

)
−∆v +∇Π =

Ra

b
sinφ er +Ra τe3 (1.3)

∂τ

∂t
+ v · ∇τ −∆τ =

vr

rb
,

with the boundary conditions

v|
∂ΩA

= 0 τ |
∂ΩA

= 0 ,

where the third equation follows from the definition of the excess temperature τ :

τ := T − T ∗ = T − Ti
Ti − To

+
1

b

(
ln r − ln

Ri

Ri −Ro

)
= T − Ti

Ti − To
+

1

b
ln

2r

A
. (1.4)

Here, the scalar field T ∗ is the conductive solution 2. Moreover, the pressure Π is not the thermody-
namical pressure but is redefined by adding gradient-like terms arising from the right hand side of the
second equation in (1.1). Of course, er is the unit vector in direction r, e3 = sinφer + cosφeφ the
one in direction z, while

b := ln
Ro

Ri
= ln

(
1 +

2

A

)
, (1.5)

is a purely geometric parameter, unbounded as A tends to zero.
Further, by considering the region in which stable basic steady flows occur, one can see how the

linear Stokes-like system, studied in [3], works as approximation of the complete model which is

over repeated indices vi∂iv is understood in Cartesian coordinates. In polar coordinates, v · ∇v actually stands for

v · ∇v =


∂rv

r 1

r
(∂φv

r − vφ)

∂rv
φ 1

r
(vr + ∂φv

φ)


 vr

vφ

 =


vr∂rv

r +
vφ

r
(∂φv

r − vφ)

vr∂rv
φ +

vφ

r
(vr + ∂φv

φ)

 .

In what follows, this involved expression is understood unless its manipulation was strictly necessary.
2In particular, T ∗ solves ∆T ∗ = 0 with boundary conditions T ∗(A

2
, φ) = Ti

Ti−To
and T ∗(A

2
+ 1, φ) = To

Ti−To
. So

that, with the same boundary conditions, T solves −∆T + v · ∇T = 0.
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most commonly used: it gives a stable flow for any Ra close to zero. However, in [8] it is proved that
by using such simplified model, although the fluid flows for any Ra, the heat transfer is the same as
for conduction: the Nusselt number is not increased by the motion if one neglects the transport term
in the heat equation. This feature makes the model very weak in describing how the thermal energy
can be transported by convection.

The present paper deals with the non-linear stability of the non-linear Stokes problem [21], a less
simplified and more realistic approximation of the full system of equations. This simplified version
of (1.3) is got by erasing only the non-linear term v · ∇v lying in the linear momentum balance.

The mathematical tools herein used are the classical ones of the functional analysis applied to
fluid dynamics and can be found, for instance in [22, 23, 24].

In particular, in the next section by using the Straughan scheme [25], we define the critical
Rayleigh number Racr of the non-linear Stokes problem in the annulus. It depends on the curva-
ture of the domain but it is uniformly bounded from below, and we prove that for Ra < Racr(A) the
steady solutions, which can easily be found with the same techniques as in [11], are asymptotically
stable and then unique. Actually, a further boundRa < Ra∗ (A) must hold, confiningRa to a region
of the space of parameters which is however unbounded.

In Section 3, we furnish the computational scheme to identifyRacr(A), hoping that such function,
once plotted by numerical methods, will be compared with Yoo’s first transition line.

2 The non linear stability

As announced in the Introduction, the model in consideration is

∇ · v = 0

1

Pr

∂v

∂t
−∆v +∇Π =

Ra

b
sinφ er +Ra τe3 (2.1)

∂τ

∂t
+ v · ∇τ −∆τ =

vr

rb
,

with the boundary conditions

v|
∂ΩA

= 0 τ |
∂ΩA

= 0 ,

The steady solutions obey to the system:

∇ · v0 = 0

−∆v0 +∇Π0 =
Ra

b
sinφ er +Ra τ0e3 (2.2)

−∆τ0 + v0 · ∇τ0 =
vr0
rb
,

Both for (2.1) and (2.2), some existence and regularity theorems can easily be found by particularizing
the corresponding proofs given in [9] and [11] for the full O-B system (1.3).

For system (2.1), everything is simplified by the 2D setting. For system (2.2) -whose basic so-
lution is not the rest state as in the Bénard problem, since (2.2) is not homogeneous- one has global
existence in the space of the dimensionless parameters. This is essentially due to the pointwise bound-
edness of the temperature field, consequence of a maximum principle holding for the heat equation.

Thus, giving as understood the existence of regular solutions, the aim of the present paper is
to present a clear result about non linear stability and suggest a procedure to find numerically a
theoretically well defined critical Ra. In fact, it should be compared with Yoo’s one, which was
numerically found for the full system, and the reason is that the non linear stability implies uniqueness
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by the Poincaré inequality, so that the asserted (in [?]) existence of dual steady solutions has to be
excluded for the Non-Linear Stokes Problem in the region where stability is proved. In [?], it looks
like the basic solution of the full system looses its stability while another steady solution becomes
stable, on the opposite in [11] the non linear stability result proved for the full system (although only
in the ”small A” region) shows a unique steady solution, which is an attractor as in the present paper.
only.

Let us write down the equation for the perturbation of the solutions of (2.2):

∇ · u = 0

1

Pr

∂u

∂t
−∆u+∇P = +Raσe3 (2.3)

∂σ

∂t
+ u · ∇σ + v0 · ∇σ + u · ∇τ0 −∆σ =

ur

rb
,

By performing the scalar product in the Hilbert space, precisely L(ΩA) for scalar functions and
H(ΩA) for vectorial divergence free functions, one immediately finds the energy equalities:

1

Pr

d

dt

1

2

∫
ΩA

u2 +

∫
ΩA

|∇u|2 = Ra

∫
ΩA

σu3 (2.4)

d

dt

1

2

∫
ΩA

σ2 +

∫
ΩA

|∇σ|2 +
∫
ΩA

u · ∇τ0σ =
1

b

∫
ΩA

ur

r
σ ,

In [11], some bounds for τ0 can be found and, in particular, we are going to use:

∥∇τ0∥2 ≤
RaC(Ra,A)√

b3(A)
, (2.5)

where C(Ra,A) is a uniformly bounded function of both the variables, whose form we are going to
specify, since it’s important to get the optimal critical value of Ra. To this end we increase the details
of the proof in [11].

Theorem 2.1 For any Ra and A > 0 any solution of system (2.2) verifies

∥∇v0∥2 ≤ Ra
c(Ra,A)

b
∥∇τ0∥2 ≤ Ra

C(Ra,A)

b
3
2

, (2.6)

where

c(Ra,A) = cp(A)

√
π

2
(1+A)

(
1+Ra c3p(A)

√
π

(
1√
b(A)

+Rac3p(A)
√
π

(
1

b(A)
+
√
2

)))

C(Ra,A) = c2p(A)
√
π

√
π

2
(1+A)

(
1+Ra c3p(A)

√
π

(
1√
b(A)

+Rac3p(A)
√
π

(
1

b(A)
+
√
2

)))
.

(2.7)
are continuous function on [0,∞) × (0,∞) and, in particular, uniformly continuous with respect to
Ra, while cp(A) is the Poincaré constant.

Proof: Since |τ0(x)| < 1, we can compute

∥τ0∥2 <
√
2π

(∫ 1+A/2

A/2
r dr

)1/2

=
√
π(1 +A) . (2.8)
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We put v0 and τ0 as test functions in (2.2), and consider the first of the two energy equalities. We first
apply the Schwarz inequality and calculate

∥ sinφ∥2 =
√
π

2
(1 +A) ,

then we insert estimate (2.8) and, finally, with the Poincaré inequality, one arrives at

∥∇v0∥22 ≤
Ra

b(A)

√
π

2
(1 +A)∥v0∥2 +Ra ∥τ0∥2∥v0∥2 ≤ Ra cp(A)

(
1

b(A)
+

√
2

)√
π

2
(1 +A)∥∇v0∥2

where we can insert the estimate (see [9])

cp(A) ≤ max

{
1

2

√
1 +

2

A
; 1 +

A
2

}

of the Poincaré constant, and the first expression is the best one for A >
√
2− 1.

This implies

∥∇v0∥2 ≤ Ra cp(A)

(
1

b(A)
+

√
2

)√
π

2
(1 +A) =: f1(Ra,A). (2.9)

For the second energy equality we get by Hölder’s inequality

∥∇τ0∥22 ≤
1

b(A)

(
vr0
r
, τ0

)
≤ 1

b(A)
∥v0∥4∥τ0∥4

∥∥∥∥1r
∥∥∥∥
2

, (2.10)

where ∥∥∥∥1r
∥∥∥∥
2

=
√

2πb(A).

Since, by taking into account Ladyzenskaya’s and Poincaré’s inequalities, we see

∥v0∥4 ≤
1
4
√
2

√
∥v0∥2∥∇v0∥2 ≤

1
4
√
2

√
cp(A)∥∇v0∥2

and, analogously, also

∥τ0∥4 ≤
1
4
√
2

√
cp(A)∥∇τ0∥2 ,

then (2.10) becomes

∥∇τ0∥22 ≤
1

b(A)
cp(A)∥∇v0∥2∥∇τ0∥2

√
πb(A) ≤ 1√

b(A)
cp(A)

√
πf1(Ra,A)∥∇τ0∥2. (2.11)

This implies

∥∇τ0∥2 ≤
√

π

b(A)
cp(A)f1(Ra,A).

The former estimate can be inserted in the chain of inequalities leading to (2.9), replacing the use of
(2.8). Thus, we obtain

∥∇v0∥22 ≤
Ra

b(A)

√
π

2
(1 +A)∥v0∥2 +Ra∥τ0∥2∥v0∥2 ≤ Ra

(
1

b(A)

√
π

2
(1 +A) + cp(A) ∥∇τ0∥2

)
∥v0∥2

≤ Ra√
b(A)

cp(A)

√
π

2
(1 +A)

[
1√
b(A)

+Rac3p(A)
√
π

(
1

b(A)
+

√
2

)]
∥∇v0∥2,

(2.12)
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from which:
∥∇v0∥2 ≤

Ra√
b(A)

f2(Ra,A) , (2.13)

where

f2(Ra,A) = cp(A)

√
π

2
(1 +A)

[
1√
b(A)

+Rac3p(A)
√
π

(
1

b(A)
+

√
2

)]
is a continuous function of both the variables. Now, we go back to the estimate derived by the
momentum balance equation, to improve the decay as A tends to 0 (read: as b tends to ∞) up to the
optimal one. If we substitute (2.13) in (2.11), we obtain

∥∇τ0∥22 ≤
√

π

b(A)
cp(A)∥∇v0∥2∥∇τ0∥2 ≤

Ra

b(A)
cp(A)

√
πf2(Ra,A)∥∇τ0∥2. (2.14)

Therefore:

∥∇τ0∥2 ≤
Ra

b(A)

√
πc2p(A)

√
π

2
(1 +A)

[
1√
b(A)

+Rac3p(A)
√
π

(
1

b(A)
+
√
2

)]
:= f3(Ra,A) .

(2.15)
By inserting (2.15) in (2.12):

∥∇v0∥2 ≤ Ra cp(A)

(
1

b(A)

√
π

2
(1 +A) + cp(A) ∥∇τ0∥2

)
one obtains

∥∇v0∥2 ≤ Ra
cp(A)

b(A)

√
π

2
(1+A)

(
1+Ra c3p(A)

√
π

(
1√
b(A)

+Rac3p(A)
√
π

(
1

b(A)
+
√
2

)))
:=

:=
Ra

b(A)
c(Ra,A). (2.16)

From the structure of (2.12), it can easily be deduced that the exponent of the decay with respect
to b can not further be improved for the velocity field. On the opposite, by inserting (2.16) in (2.14)
one finally obtains the optimal estimate for the temperature gradient:

∥∇τ0∥2 ≤ Ra

√
π

b3(A)
cp(A)c(Ra,A) =

= Ra

√
π

b3(A)
c2p(A)

√
π

2
(1+A)

(
1+Ra c3p(A)

√
π

(
1√
b(A)

+Rac3p(A)
√
π

(
1

b(A)
+
√
2

)))
.

(2.17)

Thus (2.6) is proved.

In fact, by using Hölder’s, Ladyzenskaya’s, Poincaré’s and Young’s inequalities (as done in [11]),
one can write

|(u · ∇τ0, σ)| ≤ ∥u∥4∥σ∥4∥∇τ0∥2 ≤
1√
2
cp(A)∥∇τ0∥2∥∇u∥2∥∇σ∥2 ≤ (2.18)

µ2c2p(A)

4

Ra2C2(Ra,A)

b3(A)
∥∇u∥22 +

1

2µ2
∥∇σ∥22 , (2.19)
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for all µ.
Then, we multiply byRa the second of (2.4), next we sum the inequalities and finally we increase

the trilinear form by using (2.18). We see that the total derivative of the Lyapunov function

E :=
1

2

(
1

Pr

∫
ΩA

u2 +Ra

∫
ΩA

σ2
)

can be positive and we can write:

d

dt

1

2

(
1

Pr

∫
ΩA

u2 +Ra

∫
ΩA

σ2
)
+ (1− ϵ2)

(∫
ΩA

|∇u|2 +Ra

∫
ΩA

|∇σ|2
)

≤ (2.20)

≤ Ra

(∫
ΩA

σu3 +
1

b

∫
ΩA

ur

r
σ

)
,

where ϵ2 > 0 can be arbitrarily small, since we can ask

1− ϵ2 = 1−
µ2c2p(A)

4

Ra3C2(Ra,A)

b3(A)
≤ 1

2µ2
, (2.21)

(where C(Ra,A) is as defined in (2.7)) and this can be verified by arbitrarily small µ2 for fixed Ra
and A. Actually, we see that (2.21) is a bi-quadratic inequality for µ and, provided that for any A we
keep Ra(A) bounded by Ra∗ such that

1 >
c2p(A)

2

Ra3∗C
2(Ra∗,A)

b3(A)
,

it allows for positive and arbitrarily small real solutions. The explicit form of the bound is given by

1>
c6p(A)

2

Ra3∗π
2

b3(A)
(1+A)

(
1+Ra∗c

3
p(A)

√
π

(
1√
b(A)

+Ra∗c
3
p(A)

√
π

(
1

b(A)
+
√
2

)))2

. (2.22)

Therefore, in the region whose boundary is defined by (2.22), which is an unbounded region (as
one can easily deduce from the behaviour of b(A)), a standard study of the non linear stability can be
performed.

To this end, we are now going to define the critical Rayleigh number Racr(A) of the non linear
Stokes problem and prove that it is also bounded from below independently of A.

D(w, θ) := ∥∇w∥22 + ∥∇θ∥22 ,

F(w, θ,A) := (τ, wz) +
1

b

(
θ,
wr

r

)
, where wz := w · e3 ,

(2.23)

1

Racr(A)
:= sup

F(w, θ,A)

D(w, θ)
, (2.24)

where the supremum is taken over all the couples of functions (w, θ) both vanishing on the boundary,
with the gradients in the Hilbert space (the definition of the scalar product is of course different for
scalar, vector and tensor fields), and with divergence free w: we indicate it as V (ΩA) ×

o

W1,2(ΩA),
where W is the usual symbol of the Sobolev spaces.

We recall a result given in [11]

Theorem 2.2 For all A it holds
Racr(A) > 1.
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Proof:. Let us apply the inequality in (2.10) to increase the functional

F = (θ, wz) +
1

b

(
θ,
wr

r

)
≤
c2p(A)

2

(
∥∇w∥22 + ∥∇θ∥22

)
+

√
π

b

√
∥w∥2∥∇w∥2∥θ∥2∥∇θ∥2

≤

(
c2p(A)

2
+
cp(A)

2

√
π

b

)(
∥∇w∥22 + ∥∇θ∥22

)
.

However, for large A we can use a better estimate for the second term in F(w, θ,A): due to
supΩA

1
r = 2

A , we obtain by Hölder’s and Poincaré’s inequalities:

1

b(A)

(
ϑ,
wr

r

)
≤

2c2p(A)

b(A)A
∥∇ϑ∥2∥∇w∥2 .

We can choose the best estimate depending on the region by defining

f(A) := min

{
2c2p(A)

b(A)A
, cp(A)

√
π

b(A)

}
,

so that the bound for F can be summarized as

F ≤ 1

2

(
max
A

c2p(A) + max
A

f(A)

)
D .

By replacing the estimate of cp(A) and plotting the bound of F
D so obtained, one sees that the

supremum of the functional is always less than 1. In particular, for A close to zero one has

F ≤ 1

2

(
A
2
+ 1

)((
A
2
+ 1

)
+

√
π

b

)
D ,

therefore the limit of the expression in front ofD for A → 0 is 1
2 and so is the limit of the supremum.

Now, we rewrite (2.20) as

dE

dt
= −(1− ϵ2)D̂ +RaF , (2.25)

where

D̂ = D̂(u, σ) := ∥∇u∥22 +Ra∥∇σ∥22 . (2.26)

In order to estimate the right hand side of (2.25) we define

d0 := min {1, Ra} .

Then, d0D ≤ D̂ . Therefore, we can write 3

dE

dt
= −(1− ϵ2)D̂ +RaF ≤ −(1− ϵ2)d0D +RaD

F
D

≤ −RaD
(
(1− ϵ2)d0

Ra
− 1

Racr

)
,

where we increased F
D by choosing the worse possible initial condition: 1

Racr
.

Then, the stability condition is Racrd0(1− ϵ2) > Ra, and:
3Note that, if D = 0 for some t, then the solution is necessarily the rest state, since it holds uniqueness once the initial

conditions are given.
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• if d0 = Ra (and, consequently Ra ≤ 1) then the stability conditions reads Racr(1− ϵ2) > 1;

• if d0 = 1 then the stability conditions reads Racr(1− ϵ2) > Ra, and we have also Ra ≥ 1.

Thus, in both cases one has to require that

Racr(1− ϵ2) > 1 . (2.27)

However, by the theorem just proved condition (2.27) is automatically satisfied. Finally,

Ra < Racr(1− ϵ2) (2.28)

is the stability condition. Since ϵ2 is arbitrarily small, (2.28) can be replaced by Ra < Racr.
Moreover, since the Poincaré inequality holds true, it follows that whenever (2.28) is verified then

(for some positive κ)
dE

dt
≤ −κE ,

the exponential decay of the perturbation of the steady solution is inferred independently of the initial
condition and, consequently, the uniqueness of the steady solution follows too.

Theorem 2.3 For all A, if Ra is bounded by Ra∗ defined by

1=
c6p(A)

2

Ra3∗π
2

b3(A)
(1+A)

(
1+Ra∗c

3
p(A)

√
π

(
1√
b(A)

+Ra∗c
3
p(A)

√
π

(
1

b(A)
+
√
2

)))2

, (2.29)

where cp(A) is the Poincaré constant, and if moreover

Ra < Racr(A) =

 sup

V (ΩA)×
o
W1,2(ΩA)

F(w, θ,A)

D(w, θ)

−1

, (2.30)

then the corresponding steady solution of the non linear Stokes system (2.1) is asymptotically stable
and, consequently, unique.

The unbounded region whose bound is defined in (2.29) could contain or not the graph given by the
points (A, Racr(A)). Thus, that bound could be a stronger condition than Ra < Racr. This last is
anyway a non trivial condition, because Racr is bounded from below. The next section is devoted to
offer mathematical tools for computing it numerically.

We conclude by remarking that Ra < Racr(A) is also the sufficient condition for the stability of
the rest state solution of the linear homogeneous system:

∇ ·w = 0
1

Pr

∂w

∂t
−∆w +∇p = Raθe3 (2.31)

∂θ

∂t
−∆θ =

wr

r b
,

We recall a result given in [11], which can be proved by means of the standard Galerkin method
and a priori estimates of the same kind as ones of Section 2, but simpler. Here, H(ΩA) denotes the
usual Hilbert space but with the divergence free condition
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Theorem 2.4 Let us arbitrarily fix A and Pr. If Ra < Rac(A), then
(i) for any (w0, ϑ0) ∈ H × L2 there exists a unique weak solution

(w, ϑ) ∈
(
L∞(0,∞;H) ∩ L2(0,∞;V )

)
×
(
L∞(0,∞;L2) ∩ L2(0,∞;

o

W
1,2)
)

of (2.31) which is globally exponentially stable, i.e. there exists β = β(Ra,A, P r) > 0 such that for
a.e. t ∈ (0,∞)

d1
(
∥w(t)∥22 + ∥ϑ(t)∥22) ≤ d2

(
∥w0∥22 + ∥ϑ0∥22

)
e−βt , (2.32)

where d1 = min{Pr−1, Ra} and d2 = max{Pr−1, Ra}.
(ii) If (w0, ϑ0) ∈ V ×

o

W1,2, then the weak solution belongs to

(w, ϑ) ∈
(
L∞(0,∞;V ) ∩ L2(0,∞;W 2,2)

)
×
(
L∞(0,∞;W 1,2) ∩ L2(0,∞;W 2,2)

)
.

In particular, for t ∈ (0,∞)

∥∇w(t)∥2 + ∥∇ϑ(t)∥2 < d3 , (2.33)

where the constant d3 depends continuously on of Ra,A, P r, and ∥w0∥1,2, ∥ϑ0∥1,2.

Since of the geometry of the domains, a distinction is often made in literature between convection
shear driven and convection buoyancy driven, depending on how large is the relative contribution to
the flow of the body force term with respect to the contribution of the two right hand sides in (2.31).
For body force we mean the first term on the right hand side of the momentum balance equation
(1.3), which is identically zero in the Bénard problem. One is naturally lead to think that the shear
contribution is weaker in the region of domains with A close to zero, since of the coefficient Ra

b(A)
going to zero.

Then, one could ask whether, in the limit of vanishing shear contribution the dynamical system
(2.31) would behave as in the Bénard problem where the uniqueness of the steady solutions is not
verified. But the rest state solution of (2.31) is clearly unique as steady solution for Ra < Racr(A),
which is a truly different situation from that of the corresponding linear system in the geometry of the
Bénard problem (with free surface conditions). Therefore, it has to be underlined that the multiplicity
of steady solutions exchanging their stabilities at the bifurcation point is not a general feature of the
linear systems derived from the O-B system. On the opposite, it looks related to the symmetries of
the Bénard domain.

3 Computational scheme for the critical constant

In this section we give a procedure to compute Racr(A) with standard methods from [25].
If we come back to the definition of Racr(A), we see that its value, provided it is finite, corre-

sponds to a stationary point (w̃, θ̃) for the functional F/D. With the help of a parameter η ∈ R, let
us write a suitable expression of F and D around the maximal point 4:

F = F(w̃ + ηũ, θ̃ + ησ̃) , D = D(w̃ + ηũ, θ̃ + ησ̃) ,

with arbitrary variation direction (ũ, σ̃) ∈ V ×W 1
2 . We will use the symbol d

dη |η=0 to perform a

variational derivative around (w̃, θ̃), which is identified as a stationary point if we impose that the

4The notation with tilde means that the stationary point has nothing to do with the solutions of (2.31); as we will see, it
is solution of a different system of equations.
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derivative vanishes. It must vanish for any variation direction when applied to F/D (and evaluated
in η = 0). So

0 =
d

dη

(
F
D

)∣∣∣∣
η=0

=

[
1

D2

(
D
d

dη
F − F d

dη
D

)]
η=0

=

dF
dη

D

∣∣∣∣∣
η=0

− 1

Rac

dD
dη

D

∣∣∣∣∣
η=0

.

Notice that 1
Rac

is inserted since it is by definition the value of F
D in the stationary point.

On the other hand,

dF
dη

∣∣∣∣
η=0

= (σ̃, w̃z) + (θ̃, ũz) +
1

b

((
θ̃,
ũr

r

)
+
(
σ̃,
w̃r

r

))
dD

dη

∣∣∣∣
η=0

= 2(∇ũ,∇w̃) + 2(∇θ̃,∇σ̃) .

Therefore, from the maximum condition it follows for all variations

(σ̃, w̃z) + (θ̃, ũz) +
1

b

((
θ̃,
ũr

r

)
+
(
σ̃,
w̃r

r

))
=

2

Rac

(
(∇ũ,∇w̃) + (∇θ̃,∇σ̃)

)
and, integrating by parts

(σ̃, w̃z) + (θ̃, ũz) +
1

b

((
θ̃,
ũr

r

)
+
(
σ̃,
w̃r

r

))
= − 2

Rac

(
(∆w̃, ũ) + (∆θ̃, σ̃)

)
.

In order to find a maximum for the functional, among all the variations we have the freedom to choose

1. arbitrary ũ and σ̃ = 0;

2. ũ = 0 and arbitrary σ̃.

In the first case, one can deduce∫
ΩA

(
θ̃e3 +

θ̃

br
er +

2

Rac
∆w̃

)
· ũdx = 0 ⇒ θ̃e3 +

θ̃

br
er +

2

Rac
∆w̃ +∇p̃ = 0 .

Since ũ is arbitrary but divergence free, then the term in brackets belongs to the orthogonal comple-
ment with respect to Helmholtz’s decomposition. That’s why ∇p̃ is added. In the second case:∫

ΩA

(
w̃z +

w̃r

br
+

2

Rac
∆θ̃

)
σ̃dx = 0 ⇒ w̃z +

w̃r

br
+

2

Rac
∆θ̃ = 0 .

Moreover, we set

e3 +
er
br

= ∇S, where S := r sinφ+
1

b
ln r,

so that the Euler-Lagrange equations derived from the maximum condition become

θ̃∇S + λ∆w̃ = −∇p̃ (3.1)

w̃ · ∇S + λ∆θ̃ = 0 with λ =
2

Rac
. (3.2)

To be more precise, the maximum of the functional corresponds to the largest positive eigenvalue λ
of problem (3.1)-(3.2).

Theorem 3.1 For all A, system (3.1)-(3.2) has non trivial solutions (w̃, θ̃) ∈ V ×
o

W1,2 and all the
eigenvalues are real.
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Proof: Let us consider the representation of two-dimensional solenoidal vector fields by means of
the streamfunction Ψ = Ψ(r, φ), or, by considering the reference frame here chosen and the (hidden)
y-direction,

w̃ = ∇Ψ ∧ e2.

By using the vectorial identity ∇× (FV) = F∇×V +∇F ∧V, one can calculate the curl of all
terms in (3.1)

∇× (θ̃∇S) = ∇θ̃ ∧∇S
∇× (λ∆w̃) = −λ∆2Ψe2

∇×∇p̃ = 0 .

Hence, problem (3.1)-(3.2) becomes

e2 · ∇θ̃ ∧∇S − λ∆2Ψ = 0 (3.3)

e2 · ∇Ψ ∧∇S − λ∆θ̃ = 0 . (3.4)

Now, we are going to show that solving the eigenvalue problem is equivalent to diagonalise a sym-
metric bilinear form. To this end, one has first to prove that∫

ΩA

(e2 · ∇Ψ ∧∇S)θ̃dx = −
∫
ΩA

(e2 · ∇θ̃ ∧∇S)Ψdx . (3.5)

Actually, since ∇×∇S = 0, the left-hand side is equal to∫
ΩA

e2 · (θ̃∇× (Ψ∇S))dx =

∫
ΩA

e2 · ∇ × (θ̃Ψ∇S)dx−
∫
ΩA

e2 · (∇θ̃ ∧ (Ψ∇S))dx

and, on the other hand, here the first integral on the right-hand side vanishes, because of the Gauss
theorem and of the boundary condition for θ̃:∫

ΩA

e2 · ∇ × (θ̃Ψ∇S)dx =

∫
∂ΩA

θ̃Ψ∇Sdx .

Identity (3.5), so proved, is useful in projecting (3.3)-(3.4) on the eigenfunctions of the Bilaplacian
and of the Laplacian [24], respectively (the first one with boundary condition of vanishing gradient,
as follows from the definition of the streamfunction). For better understanding the completeness of
the bases, look at the Appendix.

In this way, the problem is reduced to an algebraic one of finding normal modes. Thus, let us
indicate the eigenfunctions as

∆2ψk = µ2(k)ψ
k , ∆χk = −ω2

(k)χ
k ,

where the definite sign of the eigenvalues can be proved by multiplying the first equation by ψk, the
second by χk and integrating by parts. Then, the streamfunction and the temperature can be expressed
as linear combinations

Ψ = ckψ
k , θ̃ = dkχ

k

and substituted in (3.3)-(3.4), which in turn can be projected on each basis function:

dj(e2 · ∇χj ∧∇S, ψk)− λcj(∆
2ψj , ψk) = 0

cj(e2 · ∇ψj ∧∇S, χk)− λdj(∆χ
j , χk) = 0 .
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Thus, the algebraic system

dj(e2 · ∇χj ∧∇S, ψk)− λµ2(k)ck = 0 (3.6)

cj(e2 · ∇ψj ∧∇S, χk) + λω2
(k)dk = 0 (3.7)

arises. Finally identity (3.5) can be used to show an important feature of the block matrix(
0 B
0 0

)
,

whose blocks are defined and characterised as follows

Bj
k := (e2 · ∇χj ∧∇S, ψk) = −(e2 · ∇ψk ∧∇S, χj) = −Bk

j = −
(
Bj

k

)T
. (3.8)

The algebraic system of equations associated with any finite projection of equations (3.3) and (3.4) is[(
0 B
BT 0

)
−

(
λ diag(µ2(k)) 0

0 λ diag(ω2
(k))

)](
c
d

)
= 0 . (3.9)

Its eigenvalue equation is

det

[(
0 B
BT 0

)
− λ

(
diag(µ2(k)) 0

0 diag(ω2
(k))

)]
= 0 , (3.10)

and the solutions are all real numbers, because the first matrix is symmetric and the second is diagonal
and positive defined.

Appendix

We want to find a basis for functions in
o

W1,2(ΩA) which are periodic in φ. Let us start by considering
the eigenvalue equation:

−∆Θ = λ2Θ (3.11)

or
∂2Θ

∂r2
+

1

r

∂Θ

∂r
+

1

r2
∂2Θ

∂φ2
= −λ2Θ . (3.12)

By using Dirichlet boundary conditions, equation (3.11) can be written in the weak form, so defining
a symmetric operator in

o

W1,2, whose eigenfunctions can have orthogonal gradients. Moreover, one
sees that λ2 is in fact a positive number:

λ2
∫
ΩA

Θ2 =

−
∫
ΩA

Θ∆Θ = −
∫
ΩA

∇ · (Θ∇Θ) +

∫
ΩA

|∇Θ|2 =

= −
∫
∂ΩA

Θn · ∇Θ +

∫
ΩA

|∇Θ|2

since the integral on the boundary vanishes. Next, we first look for solutions via separation of vari-
ables and next ask ourselves whether such solutions are a complete basis:

Θ(r, φ) = F (r)G(φ) ⇒ r2

F

d2F

dr2
+
r

F

dF

dr
+ λ2r2 = − 1

G

d2G

dφ2
= n2, n ∈ R.
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We get the two equations:

d2G

d2φ2
= −n2G (3.13)

s2
d2F̂

ds2
+ s

dF̂

ds
+ (s2 − n2)F̂ = 0 , (3.14)

where we set s = λr, so that F (r) = F̂ (s) = F̂ (λr). Equation (3.13) in the space of periodic
functions has the two independent solutions

Gn(φ) =

{
cosnφ = Gn1

sinnφ = Gn2
(3.15)

with integer n. For even n one sees that Gn1 is even and Gn2 is odd, while for odd n is the opposite.
To span the space, we’ll write Gnk with k = 1, 2.

Equation (3.14) is Bessel’s equation, whose general solution is

F̂ (s) = AJn(λr) +BYn(λr), (3.16)

with Jn and Yn first and second kind Bessel functions of order n, respectively. For the moment, A
and B are arbitrary constants. Now, their ratio will be fixed by the boundary conditions.

Θnk = (AJn(λr) +BYn(λr))Gnk(φ),

has to verify

AJn (λA/2) + BYn (λA/2) = 0

AJn (λ (1 +A/2)) + BYn (λ (1 +A/2)) = 0 .

This algebraic homogeneous system allows for non trivial solutions if and only if the matrix of the
coefficients is singular: by asking vanishing determinant the eigenvalues are found, by solving the
system B/A is found. In particular, elementary numerical analysis shows that the eigenvalues, which
are from now on denoted as λnl, are infinitely many for each n. As a consequence, the radial part of
the eigenfunction is denoted by Θnkl. Finally, the constant A is fixed by normalization.

However, other eigenfunctions different from the ones we found could exist. In order to prove
that we have a complete basis, we first notice that any periodic f ∈

o

W1,2 can be written in a unique
way as

f(r, φ) =

∞∑
0

an(r) cosnφ+ bn(r) sinnφ ,

since the Gnk’s are a complete basis in one dimension and, in particular, an orthonormal basis in L2.
Moreover, one can prove that an(r), bn(r) ∈

o

W1,2(A/2, 1 + A/2), where the measure is redefined
with the weight r. In fact, one has∫ 1+A/2

A/2
(
∞∑
0

|an(r)|2 + |bn(r)|2)r dr =
∫
ΩA

|f(r, φ)|2 <∞ ,

∫ 1+A/2

A/2
(
∞∑
0

|a′n(r)|2 + |b′n(r)|2)r dr =
∫
ΩA

|∂rf(r, φ)|2 <∞ .
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At this point, one can rewrite (3.14) in the weak form∫ 1+A/2

A/2
F ′G′r dr = λ2nl

∫ 1+A/2

A/2
FGr dr − n2

∫ 1+A/2

A/2

1

r2
FGr dr (3.17)

with the testfunction G ∈
o

W1,2(A/2, 1 +A/2).
In fact this is a variational formulation for problem (3.14) from which we easily see that the

corresponding operator S is self-adjoint and linear. Moreover, due to the Poincare inequality solutions
exist in

o

W1,2(A/2, 1 +A/2) and are unique for any F ∈ (
o

W1,2(A/2, 1 +A/2))∗ (and for any F ∈
L2(A/2, 1+A/2) ). Due to the compact imbedding of

o

W1,2(A/2, 1+A/2) into L2(A/2, 1+A/2)
this means that S is compact in L2 and has a orthonormal sequence of eigenfunctions, which is a
basis of

o

W1,2(A/2, 1 +A/2) as we wanted to show.
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