$\{\sigma, \tau\}$-Rota-Baxter operators, infinitesimal Hom-bialgebras and the associative (Bi)Hom-Yang-Baxter equation

Ling Liu
College of Mathematics, Physics and Information Engineering, Zhejiang Normal University,
Jinhua 321004, China
e-mail: ntliulin@zjnu.cn

Abdenacer Makhlouf
Université de Haute Alsace, IRIMAS - département de Mathématiques, 6, rue des frères Lumière, F-68093 Mulhouse, France
e-mail: Abdenacer.Makhlouf@uha.fr
Claudia Menini
University of Ferrara, Department of Mathematics,
Via Machiavelli 35, Ferrara, I-44121, Italy
e-mail: men@unife.it
Florin Panaite
Institute of Mathematics of the Romanian Academy, PO-Box 1-764, RO-014700 Bucharest, Romania
e-mail: florin.panaite@imar.ro
February 22, 2018

Abstract

We introduce the concept of $\{\sigma, \tau\}$-Rota-Baxter operator, as a twisted version of a RotaBaxter operator of weight zero. We show how to obtain a certain $\{\sigma, \tau\}$-Rota-Baxter operator from a solution of the associative (Bi)Hom-Yang-Baxter equation, and, in a compatible way, a Hom-pre-Lie algebra from an infinitesimal Hom-bialgebra.

Keywords: Rota-Baxter operator, Hom-pre-Lie algebra, infinitesimal Hom-bialgebra, associative (Bi)Hom-Yang-Baxter equation.
MSC2010: 15A04, 17A99, 17D99.

1 Introduction

Hom-type algebras appeared in the Physics literature related to quantum deformations of algebras of vector fields; these types of algebras satisfy a modified version of the Jacobi identity involving a homomorphism, and were called Hom-Lie algebras by Hartwig, Larsson and Silvestrov in [10], [12]. Afterwards, Hom-analogues of various classical algebraic structures have
been introduced in the literature, such as Hom-(co)associative (co)algebras, Hom-dendriform algebras, Hom-pre-Lie algebras etc. Recently, structures of a more general type have been introduced in [8], called BiHom-type algebras, for which a classical algebraic identity is twisted by two commuting homomorphisms (called structure maps).

Infinitesimal bialgebras were introduced by Joni and Rota in [11] (under the name infinitesimal coalgebra). The current name is due to Aguiar, who developed a theory for them in a series of papers $([2,3,4])$. It turns out that infinitesimal bialgebras have connections with some other concepts such as Rota-Baxter operators, pre-Lie algebras, Lie bialgebras etc. Aguiar discovered a large class of examples of infinitesimal bialgebras, namely he showed that the path algebra of an arbitrary quiver carries a natural structure of infinitesimal bialgebra. In an analytical context, infinitesimal bialgebras have been used in [22] by Voiculescu in free probability theory.

The Hom-analogue of infinitesimal bialgebras, called infinitesimal Hom-bialgebras, was introduced and studied by Yau in [23]. He extended to the Hom-context some of Aguiar's results; however, there exist several basic results of Aguiar that do not have a Hom-analogue in Yau's paper. It is our aim here to complete the study, by proving those Hom-analogues.

The associative Yang-Baxter equation was introduced by Aguiar in [2]. Let (A, μ) be an associative algebra and $r=\sum_{i} x_{i} \otimes y_{i} \in A \otimes A$; then r is called a solution of the associative Yang-Baxter equation if

$$
\sum_{i, j} x_{i} \otimes y_{i} x_{j} \otimes y_{j}=\sum_{i, j} x_{i} x_{j} \otimes y_{j} \otimes y_{i}+\sum_{i, j} x_{i} \otimes x_{j} \otimes y_{j} y_{i} .
$$

In this situation, Aguiar noticed in [1] that the map $R: A \rightarrow A, R(a)=\sum_{i} x_{i} a y_{i}$, is a RotaBaxter operator of weight zero. We recall (see for instance [9) that if B is an algebra and $R: B \rightarrow B$ is a linear map, then R is called a Rota-Baxter operator of weight zero if

$$
R(a) R(b)=R(R(a) b+a R(b)), \quad \forall a, b \in B
$$

Rota-Baxter operators appeared first in the work of Baxter in probability and the study of fluctuation theory, and were intensively studied by Rota in connection with combinatorics. Rota-Baxter operators occured also in other areas of mathematics and physics, notably in the seminal work of Connes and Kreimer [6] concerning a Hopf algebraic approach to renormalization in quantum field theory.

The Hom-analogue of the associative Yang-Baxter equation was introduced by Yau in [23], but without exploring the relation between this new equation and Rota-Baxter operators. Our first aim is to obtain Hom and BiHom-analogues of Aguiar's observation mentioned above, expressing a relationship between Hom and BiHom-analogues of the associative Yang-Baxter equation and certain generalized Rota-Baxter operators. The BiHom-analogue of the associative Yang-Baxter equation is defined as follows. Let (A, μ, α, β) be a BiHom-associative algebra and $r=\sum_{i} x_{i} \otimes y_{i} \in A \otimes A$ such that $(\alpha \otimes \alpha)(r)=r=(\beta \otimes \beta)(r)$; we say that r is a solution of the associative BiHom-Yang-Baxter equation if

$$
\sum_{i, j} \alpha\left(x_{i}\right) \otimes y_{i} x_{j} \otimes \beta\left(y_{j}\right)=\sum_{i, j} x_{i} x_{j} \otimes \beta\left(y_{j}\right) \otimes \beta\left(y_{i}\right)+\sum_{i, j} \alpha\left(x_{i}\right) \otimes \alpha\left(x_{j}\right) \otimes y_{j} y_{i}
$$

To such an element r we want to associate a certain linear map $R: A \rightarrow A$, that will turn out to be a twisted version of a Rota-Baxter operator of weight zero. More precisely, the map R is defined by

$$
R: A \rightarrow A, \quad R(a)=\sum_{i} \alpha \beta^{3}\left(x_{i}\right)\left(a \alpha^{3}\left(y_{i}\right)\right)=\sum_{i}\left(\beta^{3}\left(x_{i}\right) a\right) \alpha^{3} \beta\left(y_{i}\right), \quad \forall a \in A,
$$

which in the Hom case (i.e. for $\alpha=\beta$) reduces to $R(a)=\sum_{i} \alpha\left(x_{i}\right)\left(a y_{i}\right)=\sum_{i}\left(x_{i} a\right) \alpha\left(y_{i}\right)$, for all $a \in A$, and the equation it satisfies is (see Theorem 4.4)

$$
R(\alpha \beta(a)) R(\alpha \beta(b))=R(\alpha \beta(a) R(b)+R(a) \alpha \beta(b)), \quad \forall a, b \in A .
$$

We call a linear map satisfying this equation an $\alpha \beta$-Rota-Baxter operator (of weight zero). This is a particular case of the following concept we introduce and study in this paper. Let B be an algebra, $\sigma, \tau: B \rightarrow B$ algebra maps and $R: B \rightarrow B$ a linear map. We call R a $\{\sigma, \tau\}$-Rota-Baxter operator if

$$
R(\sigma(a)) R(\tau(b))=R(\sigma(a) R(b)+R(a) \tau(b)), \quad \forall a, b \in B .
$$

This concept is a sort of modification of the concept of (σ, τ)-Rota-Baxter operator introduced in [21] (inspired by an example in [7]). In Section 3 we prove that certain classes of $\{\sigma, \tau\}$-RotaBaxter operators have similar properties to those of a usual Rota-Baxter operator of weight zero (see Theorem 3.12 and its corollaries, and Proposition 3.17).

Our second aim is to extend to infinitesimal Hom-bialgebras the following result from [4] providing a left pre-Lie algebra from a given infinitesimal bialgebra.

Theorem 1.1 (Aguiar) Let (A, μ, Δ) be an infinitesimal bialgebra, with notation $\mu(a \otimes b)=a b$ and $\Delta(a)=a_{1} \otimes a_{2}$, for all $a, b \in A$. If we define a new operation on A by $a \bullet b=b_{1} a b_{2}$, then (A, \bullet) is a left pre-Lie algebra.

Let (A, μ, Δ, α) be an infinitesimal Hom-bialgebra, with notation $\mu(a \otimes b)=a b$ and $\Delta(a)=$ $a_{1} \otimes a_{2}$, for all $a, b \in A$. We want to define a new multiplication \bullet on A, turning it into a left Hom-pre-Lie algebra. It is not clear what the formula for this multiplication should be (note for instance that the obvious choice $a \bullet b=\alpha\left(b_{1}\right)\left(a b_{2}\right)=\left(b_{1} a\right) \alpha\left(b_{2}\right)$ does not work), and we need to guess it. We proceed as follows. Recall first the following old result:

Theorem 1.2 (Gel'fand-Dorfman) Let (A, μ) be an associative and commutative algebra, with notation $\mu(a \otimes b)=a b$, and $D: A \rightarrow A$ a derivation. Define a new multiplication on A by $a \star b=a D(b)$. Then (A, \star) is a left pre-Lie algebra (it is actually even a Novikov algebra).

We make the following observation: if the infinitesimal bialgebra in Aguiar's Theorem is commutative, then his theorem is a particular case of the theorem of Gel'fand and Dorfman. Indeed, by using commutativity, the multiplication \bullet becomes $a \bullet b=b_{1} a b_{2}=a b_{1} b_{2}=a D(b)$, where we denoted by D the linear map $D: A \rightarrow A, D(b)=b_{1} b_{2}$, i.e. $D=\mu \circ \Delta$, and it is well-known (see [2]) that D is a derivation.

We want to exploit this observation in order to guess the formula for the multiplication in the Hom case. There, we already have an analogue of the Gel'fand-Dorfman Theorem, due to Yau (see [24]), saying that if (A, μ, α) is a commutative Hom-associative algebra and $D: A \rightarrow A$ is a derivation (in the usual sense) commuting with α and we define a new multiplication on A by $a * b=a D(b)$, then $(A, *, \alpha)$ is a left Hom-pre-Lie algebra (it is actually even Hom-Novikov). So, we begin with a commutative infinitesimal Hom-bialgebra (A, μ, Δ, α) and we define the map $D: A \rightarrow A$ also by the formula $D=\mu \circ \Delta$. The problem is that, because of the condition from the definition of an infinitesimal Hom-bialgebra satisfied by Δ (which involves the map α), D is not a derivation (so we cannot use Yau's result mentioned above). Instead, it turns out that D is a so-called α^{2}-derivation, that is it satisfies $D(a b)=\alpha^{2}(a) D(b)+D(a) \alpha^{2}(b)$. So what we need first is a generalization of Yau's version of the Gel'fand-Dorfman Theorem, one that would apply not only to derivations but also to α^{2}-derivations. A generalization dealing with
α^{k}-derivations, for k an arbitrary natural number, is achieved in Proposition 5.1. The outcome is a left Hom-pre-Lie algebra (actually, a Hom-Novikov algebra) whose structure map is α^{k+1}. Coming back to the case $k=2$, by applying this result we obtain that, for the commutative infinitesimal Hom-bialgebra we started with, we are able to obtain a left Hom-pre-Lie algebra structure on it, with structure map α^{3} and multiplication $x \bullet y=\alpha^{2}(x) D(y)=\alpha^{2}(x)\left(y_{1} y_{2}\right)$, which, by using commutativity and Hom-associativity, may be written as $x \bullet y=\alpha\left(y_{1}\right)\left(\alpha(x) y_{2}\right)$.

We can consider this formula even if the infinitesimal Hom-bialgebra is not commutative, and it turns out that this is the formula we were trying to guess (see Proposition 5.4).

Let $\left(A, \mu, \Delta_{r}\right)$ be a quasitriangular infinitesimal bialgebra, i.e. the comultiplication is given by the principal derivation corresponding to a solution $r=\sum_{i} x_{i} \otimes y_{i}$ of the associative YangBaxter equation. There are two left pre-Lie algebras associated to A : the first one is obtained by Theorem 1.1, the second is obtained from the fact that the Rota-Baxter operator $R: A \rightarrow A$, $R(a)=\sum_{i} x_{i} a y_{i}$ provides a dendriform algebra, which in turn provides a left pre-Lie algebra. Aguiar proved in [4] that these two left pre-Lie algebras coincide. Our last result shows that the Hom-analogue of this fact is also true.

In a subsequent paper ($[15]$) we will introduce the BiHom-analogue of infinitesimal bialgebras and prove the BiHom-analogue of Theorem [1.1, It turns out that things are more complicated than in the Hom case, and moreover the result in the Hom case is not a particular case of the corresponding result in the BiHom case. This comes essentially from the following phenomenon. A BiHom-associative algebra (A, μ, α, β) for which $\alpha=\beta$ is the same thing as the Hom-associative algebra (A, μ, α). But a left BiHom-pre-Lie algebra (A, μ, α, β) (as defined in [14]) for which $\alpha=\beta$ is not the same thing as the left Hom-pre-Lie algebra (A, μ, α), unless α is bijective.

2 Preliminaries

We work over a base field \mathbb{k}. All algebras, linear spaces etc. will be over \mathbb{k}; unadorned \otimes means $\otimes_{\mathfrak{k}}$. Unless otherwise specified, the (co)algebras ((co)associative or not) that will appear in what follows are not supposed to be (co)unital, a multiplication $\mu: V \otimes V \rightarrow V$ on a linear space V is denoted by $\mu\left(v \otimes v^{\prime}\right)=v v^{\prime}$, and for a comultiplication $\Delta: C \rightarrow C \otimes C$ on a linear space C we use a Sweedler-type notation $\Delta(c)=c_{1} \otimes c_{2}$, for $c \in C$. For the composition of two maps f and g, we will write either $g \circ f$ or simply $g f$. For the identity map on a linear space V we will use the notation $i d_{V}$.
Definition 2.1 ([8]) A BiHom-associative algebra is a 4-tuple (A, μ, α, β), where A is a linear space, $\alpha, \beta: A \rightarrow A$ and $\mu: A \otimes A \rightarrow A$ are linear maps, such that $\alpha \circ \beta=\beta \circ \alpha, \alpha(x y)=$ $\alpha(x) \alpha(y), \beta(x y)=\beta(x) \beta(y)$ and the so-called BiHom-associativity condition

$$
\begin{equation*}
\alpha(x)(y z)=(x y) \beta(z) \tag{2.1}
\end{equation*}
$$

hold, for all $x, y, z \in A$. The maps α and β (in this order) are called the structure maps of A.
A Hom-associative algebra, as defined in [18], is a BiHom-associative algebra (A, μ, α, β) for which $\alpha=\beta$. The defining relation,

$$
\begin{equation*}
\alpha(x)(y z)=(x y) \alpha(z), \quad \forall x, y, z \in A, \tag{2.2}
\end{equation*}
$$

is called the Hom-associativity condition and the map α is called the structure map.
If (A, μ) is an associative algebra and $\alpha, \beta: A \rightarrow A$ are two commuting algebra maps, then $A_{(\alpha, \beta)}:=(A, \mu \circ(\alpha \otimes \beta), \alpha, \beta)$ is a BiHom-associative algebra, called the Yau twist of A via the maps α and β.

Definition 2.2 ([19]) A Hom-coassociative coalgebra is a triple (C, Δ, α), in which C is a linear space, $\alpha: C \rightarrow C$ and $\Delta: C \rightarrow C \otimes C$ are linear maps, such that $(\alpha \otimes \alpha) \circ \Delta=\Delta \circ \alpha$ and

$$
\begin{equation*}
(\Delta \otimes \alpha) \circ \Delta=(\alpha \otimes \Delta) \circ \Delta . \tag{2.3}
\end{equation*}
$$

The map α is called the structure map and (2.3) is called the Hom-coassociativity condition.
For a Hom-coassociative coalgebra (C, Δ, α), we will use the extra notation $(i d \otimes \Delta)(\Delta(c))=$ $c_{1} \otimes c_{(2,1)} \otimes c_{(2,2)}$ and $(\Delta \otimes i d)(\Delta(c))=c_{(1,1)} \otimes c_{(1,2)} \otimes c_{2}$, for all $c \in C$.
Definition 2.3 A left pre-Lie algebra is a pair (A, μ), where A is a a linear space and μ : $A \otimes A \rightarrow A$ is a linear map satisfying the condition

$$
x(y z)-(x y) z=y(x z)-(y x) z, \quad \forall x, y, z \in A .
$$

A morphism of left pre-Lie algebras from (A, μ) to $\left(A^{\prime}, \mu^{\prime}\right)$ is a linear map $\alpha: A \rightarrow A^{\prime}$ satisfying $\alpha(x y)=\alpha(x) \alpha(y)$, for all $x, y \in A$.

Definition 2.4 ([18], [24]) A left Hom-pre-Lie algebra is a triple (A, μ, α), where A is a linear space and $\mu: A \otimes A \rightarrow A$ and $\alpha: A \rightarrow A$ are linear maps satifying $\alpha(x y)=\alpha(x) \alpha(y)$ and

$$
\begin{equation*}
\alpha(x)(y z)-(x y) \alpha(z)=\alpha(y)(x z)-(y x) \alpha(z), \tag{2.4}
\end{equation*}
$$

for all $x, y, z \in A$. We call α the structure map of A. If moreover the condition

$$
\begin{equation*}
(x y) \alpha(z)=(x z) \alpha(y), \quad \forall x, y, z \in A, \tag{2.5}
\end{equation*}
$$

is satisfied, then (A, μ, α) is called a Hom-Novikov algebra.
If (A, μ) is a left pre-Lie algebra and $\alpha: A \rightarrow A$ is a morphism of left pre-Lie algebras, then $A_{\alpha}:=(A, \alpha \circ \mu, \alpha)$ is a left Hom-pre-Lie algebra, called the Yau twist of A via the map α.

Definition 2.5 ([2]) An infinitesimal bialgebra is a triple (A, μ, Δ), in which (A, μ) is an associative algebra, (A, Δ) is a coassociative coalgebra and $\Delta: A \rightarrow A \otimes A$ is a derivation, that is $\Delta(a b)=a b_{1} \otimes b_{2}+a_{1} \otimes a_{2} b$, for all $a, b \in A$.

A morphism of infinitesimal bialgebras from (A, μ, Δ) to $\left(A^{\prime}, \mu^{\prime}, \Delta^{\prime}\right)$ is a linear map $\alpha: A \rightarrow$ A^{\prime} that is a morphism of algebras and a morphism of coalgebras.

Definition 2.6 ([23]) An infinitesimal Hom-bialgebra is a 4-tuple (A, μ, Δ, α), in which (A, μ, α) is a Hom-associative algebra, (A, Δ, α) is a Hom-coassociative coalgebra and

$$
\begin{equation*}
\Delta(a b)=\alpha(a) b_{1} \otimes \alpha\left(b_{2}\right)+\alpha\left(a_{1}\right) \otimes a_{2} \alpha(b), \quad \forall a, b \in A \tag{2.6}
\end{equation*}
$$

Definition 2.7 ([23]) Let (A, μ, α) be a Hom-associative algebra and $r=\sum_{i} x_{i} \otimes y_{i} \in A \otimes A$ such that $(\alpha \otimes \alpha)(r)=r$. Define the following elements in $A \otimes A \otimes A$:

$$
\begin{array}{ll}
r_{12} r_{23}=\sum_{i, j} \alpha\left(x_{i}\right) \otimes y_{i} x_{j} \otimes \alpha\left(y_{j}\right), & r_{13} r_{12}=\sum_{i, j} x_{i} x_{j} \otimes \alpha\left(y_{j}\right) \otimes \alpha\left(y_{i}\right), \\
r_{23} r_{13}=\sum_{i, j} \alpha\left(x_{i}\right) \otimes \alpha\left(x_{j}\right) \otimes y_{j} y_{i}, & A(r)=r_{13} r_{12}-r_{12} r_{23}+r_{23} r_{13}
\end{array}
$$

We say that r is a solution of the associative Hom-Yang-Baxter equation if $A(r)=0$, that is

$$
\begin{equation*}
\sum_{i, j} \alpha\left(x_{i}\right) \otimes y_{i} x_{j} \otimes \alpha\left(y_{j}\right)=\sum_{i, j} x_{i} x_{j} \otimes \alpha\left(y_{j}\right) \otimes \alpha\left(y_{i}\right)+\sum_{i, j} \alpha\left(x_{i}\right) \otimes \alpha\left(x_{j}\right) \otimes y_{j} y_{i} \tag{2.7}
\end{equation*}
$$

We introduce the following variation of the concept introduced by Yau in [23]:
Definition 2.8 An infinitesimal Hom-bialgebra (A, μ, Δ, α) is called quasitriangular if there exists an element $r \in A \otimes A, r=\sum_{i} x_{i} \otimes y_{i}$, such that $(\alpha \otimes \alpha)(r)=r$ and r is a solution of the associative Hom-Yang-Baxter equation, with the property that

$$
\Delta(b)=\sum_{i} \alpha\left(x_{i}\right) \otimes y_{i} b-\sum_{i} b x_{i} \otimes \alpha\left(y_{i}\right), \quad \forall b \in A .
$$

In this situation, we denote Δ by Δ_{r}.
Yau's definition requires $\Delta(b)=\sum_{i} b x_{i} \otimes \alpha\left(y_{i}\right)-\sum_{i} \alpha\left(x_{i}\right) \otimes y_{i} b$, for all $b \in A$. This is consistent with Aguiar's convention in [2]; our choice is consistent with the convention in [4].

Definition 2.9 ([13]) A BiHom-dendriform algebra is a 5-tuple $(A, \prec, \succ, \alpha, \beta)$ consisting of a linear space A, linear maps $\prec, \succ: A \otimes A \rightarrow A$ and commuting linear maps $\alpha, \beta: A \rightarrow A$ such that α and β are multiplicative with respect to \prec and \succ and satisfying the conditions

$$
\begin{align*}
& (x \prec y) \prec \beta(z)=\alpha(x) \prec(y \prec z+y \succ z), \tag{2.8}\\
& (x \succ y) \prec \beta(z)=\alpha(x) \succ(y \prec z), \tag{2.9}\\
& \alpha(x) \succ(y \succ z)=(x \prec y+x \succ y) \succ \beta(z), \tag{2.10}
\end{align*}
$$

for all $x, y, z \in A$. We call α and β (in this order) the structure maps of A.
A dendriform algebra, as introduced by Loday in [16], is just a BiHom-dendriform algebra $(A, \prec, \succ, \alpha, \beta)$ for which $\alpha=\beta=i d_{A}$. A Hom-dendriform algebra, as introduced in [17, is a BiHom-dendriform algebra $(A, \prec, \succ, \alpha, \beta)$ for which $\alpha=\beta$.

Let (A, \prec, \succ) be a dendriform algebra and $\alpha, \beta: A \rightarrow A$ two commuting linear maps that are multiplicative with respect to \prec and \succ. Define two new operations on A by $x \prec_{(\alpha, \beta)} y=\alpha(x) \prec$ $\beta(y)$ and $x \succ_{(\alpha, \beta)} y=\alpha(x) \succ \beta(y)$, for all $x, y \in A$. Then $A_{(\alpha, \beta)}:=\left(A, \prec_{(\alpha, \beta)}, \succ_{(\alpha, \beta)}, \alpha, \beta\right)$ is a BiHom-dendriform algebra, called the Yau twist of A via the maps α and β.

Proposition 2.10 ([17], [20], [13]) Let $(A, \prec, \succ, \alpha, \beta)$ be a BiHom-dendriform algebra and define a new multiplication on A by $x * y=x \prec y+x \succ y$. Then $(A, *, \alpha, \beta)$ is a BiHom-associative algebra. Moreover, if $\alpha=\beta$ and we define a new operation on A by $x \circ y=x \succ y-y \prec x$, then (A, \circ, α) is a left Hom-pre-Lie algebra.

$3\{\sigma, \tau\}$-Rota-Baxter operators

In this section we introduce and study some classes of modified Rota-Baxter operators which are twisted by algebra maps. We recall first the following well-known concept:

Definition 3.1 Let A be an algebra, $\sigma, \tau: A \rightarrow A$ algebra maps and $D: A \rightarrow A$ a linear map. We call D a (τ, σ)-derivation if $D(a b)=D(a) \tau(b)+\sigma(a) D(b)$, for all $a, b \in A$.

The following concept is a variation of the one introduced in [21] for associative algebras.
Definition 3.2 Let A be an algebra, $\sigma, \tau: A \rightarrow A$ algebra maps and $R: A \rightarrow A$ a linear map. We call R a (σ, τ)-Rota-Baxter operator (of weight zero) if

$$
R(a) R(b)=R(\sigma(R(a)) b+a \tau(R(b))), \quad \forall a, b \in A .
$$

Remark 3.3 For associative algebras, an (id, τ)-Rota-Baxter operator is the same thing as a τ-twisted Rota-Baxter operator, a concept introduced in [5].

Remark 3.4 Let R be a (σ, τ)-Rota-Baxter operator on an associative algebra A. One can easily check that the triple $(A, \sigma \circ R, \tau \circ R)$ is a Rota-Baxter system, as defined by Brzeziński in [5] (the case $\sigma=i d_{A}$ may be found in [5]). Consequently, by [5], if we define two operations on A by $a \prec b=a \tau(R(b))$ and $a \succ b=\sigma(R(a)) b$, then (A, \prec, \succ) is a dendriform algebra.

It is well-know that, if A is an algebra and $D: A \rightarrow A$ is a bijective linear map, then D is a derivation (in the usual sense) if and only D^{-1} is a Rota-Baxter operator of weight zero. This fact may be easily generalized, as follows:

Proposition 3.5 Let A be an algebra, $\sigma, \tau: A \rightarrow A$ algebra maps and $D: A \rightarrow A$ a bijective linear map with inverse $R=: D^{-1}$. Then D is a (τ, σ)-derivation if and only if R is a (σ, τ) -Rota-Baxter operator.

We are interested in the following modification of the concept of (σ, τ)-Rota-Baxter operator.
Definition 3.6 Let A be an algebra, $\sigma, \tau: A \rightarrow A$ algebra maps and $R: A \rightarrow A$ a linear map. We call R a $\{\sigma, \tau\}$-Rota-Baxter operator (of weight zero) if

$$
\begin{equation*}
R(\sigma(a)) R(\tau(b))=R(\sigma(a) R(b)+R(a) \tau(b)), \quad \forall a, b \in A . \tag{3.1}
\end{equation*}
$$

Remark 3.7 Let A be an algebra, $\sigma, \tau: A \rightarrow A$ bijective algebra maps and $R: A \rightarrow A$ a linear map commuting with σ and τ. Then one can easily see that R is a (σ, τ)-Rota-Baxter operator if and only if R is a $\left\{\sigma^{-1}, \tau^{-1}\right\}$-Rota-Baxter operator.

Remark 3.8 Let (A, μ) be an algebra, $\sigma: A \rightarrow A$ an algebra map and $R: A \rightarrow A$ a RotaBaxter operator of weight zero commuting with σ. Then one can easily see that $R \circ \sigma$ is a $\{\sigma, \sigma\}$-Rota-Baxter operator both for (A, μ) and for $(A, \sigma \circ \mu)$.

We will be particularly interested in the following two classes of $\{\sigma, \tau\}$-Rota-Baxter operators.
Definition 3.9 Let A be an algebra, $\alpha: A \rightarrow A$ an algebra map, $R: A \rightarrow A$ a linear map commuting with α and n a natural number. We call R an α^{n}-Rota-Baxter operator if it is an $\left\{\alpha^{n}, \alpha^{n}\right\}$-Rota-Baxter operator, i.e.

$$
\begin{equation*}
R\left(\alpha^{n}(a)\right) R\left(\alpha^{n}(b)\right)=R\left(\alpha^{n}(a) R(b)+R(a) \alpha^{n}(b)\right), \quad \forall a, b \in A . \tag{3.2}
\end{equation*}
$$

Obviously, an α^{0}-Rota-Baxter operator is just a usual Rota-Baxter operator of weight zero commuting with α.

Remark 3.10 From previous remarks it follows that, if A is an algebra, $\alpha: A \rightarrow A$ a bijective algebra map, $D: A \rightarrow A$ a bijective linear map commuting with α and n a natural number, then $R:=D^{-1}$ is an α^{n}-Rota-Baxter operator if and only if D is an $\left(\alpha^{-n}, \alpha^{-n}\right)$-derivation.

Definition 3.11 Let (A, μ, α, β) be a BiHom-associative algebra and $R: A \rightarrow A$ a linear map commuting with α and β. We call R an $\alpha \beta$-Rota-Baxter operator if it is an $\{\alpha \beta, \alpha \beta\}$-RotaBaxter operator, that is

$$
\begin{equation*}
R(\alpha \beta(a)) R(\alpha \beta(b))=R(\alpha \beta(a) R(b)+R(a) \alpha \beta(b)), \quad \forall a, b \in A . \tag{3.3}
\end{equation*}
$$

Theorem 3.12 Let (A, μ, α, β) be a BiHom-associative algebra and $\sigma, \tau, \eta, R: A \rightarrow A$ linear maps such that σ, τ, η are algebra maps, R is a $\{\sigma, \tau\}$-Rota-Baxter operator and any two of the maps $\alpha, \beta, \sigma, \tau, \eta, R$ commute. Define new operations on A by

$$
x \prec y=\sigma(x) R \eta(y) \quad \text { and } \quad x \succ y=R(x) \tau \eta(y),
$$

for all $x, y \in A$. Then $(A, \prec, \succ, \alpha \sigma, \beta \tau \eta)$ is a BiHom-dendriform algebra.
Proof. One can see that $\alpha \sigma$ and $\beta \tau \eta$ are multiplicative with respect to \prec and \succ. We compute:

$$
\begin{aligned}
&(x \prec y) \prec \beta \tau \eta(z)=(\sigma(x) R \eta(y)) \prec \beta \tau \eta(z)=\sigma(\sigma(x) R \eta(y)) R \beta \tau \eta^{2}(z) \\
&=\left(\sigma^{2}(x) \sigma R \eta(y)\right) \beta R \tau \eta^{2}(z) \\
& \stackrel{\text { 2.1 }}{=} \alpha \sigma^{2}(x)\left(R \sigma \eta(y) R \tau \eta^{2}(z)\right) \\
& \stackrel{\text { 3.1 }}{=} \alpha \sigma^{2}(x) R\left(\sigma \eta(y) R \eta^{2}(z)+R \eta(y) \tau \eta^{2}(z)\right) \\
&=\alpha \sigma^{2}(x) R \eta(\sigma(y) R \eta(z)+R(y) \tau \eta(z)) \\
&=\alpha \sigma(x) \prec(\sigma(y) R \eta(z)+R(y) \tau \eta(z)) \\
&=\alpha \sigma(x) \prec(y \prec z+y \succ z) .
\end{aligned}
$$

Then we compute:

$$
\begin{aligned}
(x \succ y) \prec \beta \tau \eta(z) & =(R(x) \tau \eta(y)) \prec \beta \tau \eta(z)=\sigma(R(x) \tau \eta(y)) R \beta \tau \eta^{2}(z) \\
& =(\sigma R(x) \sigma \tau \eta(y)) \beta R \tau \eta^{2}(z) \\
\stackrel{\text { 2.1. }}{=} & \alpha \sigma R(x)\left(\sigma \tau \eta(y) R \tau \eta^{2}(z)\right)=R \alpha \sigma(x) \tau \eta(\sigma(y) R \eta(z)) \\
& =\alpha \sigma(x) \succ(\sigma(y) R \eta(z))=\alpha \sigma(x) \succ(y \prec z) .
\end{aligned}
$$

Also, by using again (3.1), one proves that $\alpha \sigma(x) \succ(y \succ z)=(x \prec y+x \succ y) \succ \beta \tau \eta(z)$, finishing the proof.

We have some particular cases of this theorem.
Corollary 3.13 Let A be an associative algebra, $\sigma, \tau: A \rightarrow A$ two commuting algebra maps and $R: A \rightarrow A$ a $\{\sigma, \tau\}$-Rota-Baxter operator commuting with σ and τ. Define new operations on A by $x \prec y=\sigma(x) R(y)$ and $x \succ y=R(x) \tau(y)$, for $x, y \in A$. Then $(A, \prec, \succ, \sigma, \tau)$ is a BiHom-dendriform algebra. Moreover, if we consider $(A, *, \sigma, \tau)$ the BiHom-associative algebra associated to it as in Proposition [2.10, then R is a morphism of BiHom-associative algebras from $(A, *, \sigma, \tau)$ to $A_{(\sigma, \tau)}$, the Yau twist of the associative algebra A via the maps σ and τ.

Proof. Take in Theorem $3.12 \alpha=\beta=\eta=i d_{A}$. The second statement is obvious.
Remark 3.14 Assume that we are in the hypotheses of Corollary 3.13 and moreover σ and τ are bijective; denote $\alpha=\sigma^{-1}, \beta=\tau^{-1}$. By Remark 3.7, R is an (α, β)-Rota-Baxter operator, so, by Remark 3.4, A becomes a dendriform algebra with operations $a \prec b=a \tau^{-1}(R(b))$ and $a \succ b=\sigma^{-1}(R(a)) b$. One can check that the Yau twist of this dendriform algebra via the maps σ and τ is exactly the BiHom-dendriform algebra obtained in Corollary 3.13.

Corollary 3.15 Let (A, μ, α) be a Hom-associative algebra, n a natural number and $R: A \rightarrow A$ an α^{n}-Rota-Baxter operator. Define new operations on A by $x \prec y=\alpha^{n}(x) R(y)$ and $x \succ y=$
$R(x) \alpha^{n}(y)$, for all $x, y \in A$. Then $\left(A, \prec, \succ, \alpha^{n+1}\right)$ is a Hom-dendriform algebra. Consequently, by Proposition 2.10, if we define new operations on A by

$$
\begin{aligned}
& x * y=x \prec y+x \succ y=\alpha^{n}(x) R(y)+R(x) \alpha^{n}(y), \\
& x \circ y=x \succ y-y \prec x=R(x) \alpha^{n}(y)-\alpha^{n}(y) R(x),
\end{aligned}
$$

then $\left(A, *, \alpha^{n+1}\right)$ is a Hom-associative algebra and $\left(A, \circ, \alpha^{n+1}\right)$ is a left Hom-pre-Lie algebra.
Proof. Take in Theorem 3.12 $\alpha=\beta, \sigma=\tau=\alpha^{n}, \eta=i d_{A}$.
Corollary 3.16 Let (A, μ, α, β) be a BiHom-associative algebra and $R: A \rightarrow A$ an $\alpha \beta$-RotaBaxter operator. Let $\eta: A \rightarrow A$ be an algebra map commuting with α, β and R. Define new operations on A by $x \prec y=\alpha \beta(x) R \eta(y)$ and $x \succ y=R(x) \alpha \beta \eta(y)$, for all $x, y \in A$. Then ($A, \prec, \succ, \alpha^{2} \beta, \alpha \beta^{2} \eta$) is a BiHom-dendriform algebra.

Proof. Take in Theorem $3.12 \sigma=\tau=\alpha \beta$.
We recall from [10] that a Hom-Lie algebra is a triple $(L,[\cdot, \cdot], \alpha)$ in which L is a linear space, $\alpha: L \rightarrow L$ is a linear map and $[\cdot, \cdot]: L \times L \rightarrow L$ is a bilinear map, such that, for all $x, y, z \in L:$

$$
\begin{aligned}
& \alpha([x, y])=[\alpha(x), \alpha(y)] \\
& {[x, y]=-[y, x], \quad \text { (skew-symmetry) }} \\
& {[\alpha(x),[y, z]]+[\alpha(y),[z, x]]+[\alpha(z),[x, y]]=0 . \text { (Hom-Jacobi condition) }}
\end{aligned}
$$

Proposition 3.17 Let $(L,[\cdot, \cdot], \alpha)$ be a Hom-Lie algebra and $R: L \rightarrow L$ an α^{n}-Rota-Baxter operator, i.e. R commutes with α and

$$
\begin{equation*}
\left[R\left(\alpha^{n}(a)\right), R\left(\alpha^{n}(b)\right)\right]=R\left(\left[\alpha^{n}(a), R(b)\right]+\left[R(a), \alpha^{n}(b)\right]\right), \quad \forall a, b \in L \tag{3.4}
\end{equation*}
$$

Then $\left(L, \cdot, \alpha^{n+1}\right)$ is a left Hom-pre-Lie algebra, where $a \cdot b=\left[R(a), \alpha^{n}(b)\right]$, for all $a, b \in L$.
Proof. Obviously, we have $\alpha^{n+1}(a \cdot b)=\alpha^{n+1}(a) \cdot \alpha^{n+1}(b)$, for all $a, b \in A$. Note that the Hom-Jacobi identity together with the skew-symmetry of the bracket $[\cdot, \cdot]$ imply

$$
\begin{equation*}
[\alpha(a),[b, c]]=[[a, b], \alpha(c)]+[\alpha(b),[a, c]], \quad \forall a, b, c \in A . \tag{3.5}
\end{equation*}
$$

Now for $x, y, z \in A$ we compute:

$$
\begin{array}{rll}
\alpha^{n+1}(x) \cdot(y \cdot z)- & (x \cdot y) \cdot \alpha^{n+1}(z) \\
= & \alpha^{n+1}(x) \cdot\left[R(y), \alpha^{n}(z)\right]-\left[R(x), \alpha^{n}(y)\right] \cdot \alpha^{n+1}(z) \\
= & {\left[R\left(\alpha^{n+1}(x)\right),\left[\alpha^{n}(R(y)), \alpha^{2 n}(z)\right]\right]-\left[R\left(\left[R(x), \alpha^{n}(y)\right]\right), \alpha^{2 n+1}(z)\right]} \\
\stackrel{\text { 3.4 }}{=} & {\left[R\left(\alpha^{n+1}(x)\right),\left[\alpha^{n}(R(y)), \alpha^{2 n}(z)\right]\right]-\left[\left[R\left(\alpha^{n}(x)\right), R\left(\alpha^{n}(y)\right)\right], \alpha^{2 n+1}(z)\right]} \\
& +\left[R\left(\left[\alpha^{n}(x), R(y)\right]\right), \alpha^{2 n+1}(z)\right] \\
= & {\left[R\left(\alpha^{n+1}(x)\right),\left[R\left(\alpha^{n}(y)\right), \alpha^{2 n}(z)\right]\right]-\left[\left[\alpha^{n}(R(x)), R\left(\alpha^{n}(y)\right)\right], \alpha^{2 n+1}(z)\right]} \\
& +\left[R\left(\left[\alpha^{n}(x), R(y)\right]\right), \alpha^{2 n+1}(z)\right] \\
& \stackrel{3.5}{=} & {\left[R\left(\alpha^{n+1}(x)\right),\left[R\left(\alpha^{n}(y)\right), \alpha^{2 n}(z)\right]\right]-\left[\alpha^{n+1}(R(x)),\left[R\left(\alpha^{n}(y)\right), \alpha^{2 n}(z)\right]\right]}
\end{array}
$$

$$
\begin{array}{cl}
& +\left[\alpha^{n+1}(R(y)),\left[\alpha^{n}(R(x)), \alpha^{2 n}(z)\right]\right]+\left[R\left(\left[\alpha^{n}(x), R(y)\right]\right), \alpha^{2 n+1}(z)\right] \\
\text { skew-symmetry } & {\left[\alpha^{n+1}(R(y)),\left[\alpha^{n}(R(x)), \alpha^{2 n}(z)\right]\right]-\left[R\left(\left[R(y), \alpha^{n}(x)\right]\right), \alpha^{2 n+1}(z)\right]} \\
= & \alpha^{n+1}(y) \cdot(x \cdot z)-(y \cdot x) \cdot \alpha^{n+1}(z),
\end{array}
$$

finishing the proof.

4 The associative BiHom-Yang-Baxter equation

In this section we introduce the associative BiHom-Yang-Baxter equation, generalizing the associative Yang-Baxter equation introduced by Aguiar as well as the associative Hom-Yang-Baxter equation introduced by Yau. Moreover, we discuss its connection with the generalized RotaBaxter operators introduced in Section 3 ,

Definition 4.1 Let (A, μ, α, β) be a BiHom-associative algebra and $r=\sum_{i} x_{i} \otimes y_{i} \in A \otimes A$ such that $(\alpha \otimes \alpha)(r)=r=(\beta \otimes \beta)(r)$. We define the following elements in $A \otimes A \otimes A$:

$$
\begin{array}{ll}
r_{12} r_{23}=\sum_{i, j} \alpha\left(x_{i}\right) \otimes y_{i} x_{j} \otimes \beta\left(y_{j}\right), & r_{13} r_{12}=\sum_{i, j} x_{i} x_{j} \otimes \beta\left(y_{j}\right) \otimes \beta\left(y_{i}\right) \\
r_{23} r_{13}=\sum_{i, j} \alpha\left(x_{i}\right) \otimes \alpha\left(x_{j}\right) \otimes y_{j} y_{i}, & A(r)=r_{13} r_{12}-r_{12} r_{23}+r_{23} r_{13}
\end{array}
$$

We say that r is a solution of the associative BiHom-Yang-Baxter equation if $A(r)=0$, i.e.

$$
\begin{equation*}
\sum_{i, j} \alpha\left(x_{i}\right) \otimes y_{i} x_{j} \otimes \beta\left(y_{j}\right)=\sum_{i, j} x_{i} x_{j} \otimes \beta\left(y_{j}\right) \otimes \beta\left(y_{i}\right)+\sum_{i, j} \alpha\left(x_{i}\right) \otimes \alpha\left(x_{j}\right) \otimes y_{j} y_{i} \tag{4.1}
\end{equation*}
$$

Remark 4.2 Obviously, for $\alpha=\beta$ the associative BiHom-Yang-Baxter equation reduces to the associative Hom-Yang-Baxter equation (2.7).

Remark 4.3 Assume that the BiHom-associative algebra A in the previous definition has a unit, that is (see [8]) an element $1_{A} \in A$ satisfying the conditions $\alpha\left(1_{A}\right)=\beta\left(1_{A}\right)=1_{A}, a 1_{A}=\alpha(a)$ and $1_{A} a=\beta(a)$, for all $a \in A$. Then, by using the unit 1_{A}, one can define the elements $r_{12}, r_{13}, r_{23} \in A \otimes A \otimes A$ by $r_{12}=\sum_{i} x_{i} \otimes y_{i} \otimes 1_{A}, r_{13}=\sum_{i} x_{i} \otimes 1_{A} \otimes y_{i}$ and $r_{23}=\sum_{i} 1_{A} \otimes x_{i} \otimes y_{i}$. Then, the element $r_{12} r_{23}$ defined above is just the product between r_{12} and r_{23} in $A \otimes A \otimes A$, but the element $r_{13} r_{12}$ is not the product between r_{13} and r_{12} (which is $\sum_{i, j} x_{i} x_{j} \otimes \beta\left(y_{j}\right) \otimes \alpha\left(y_{i}\right)$), and similarly the element $r_{23} r_{13}$ is not the product between r_{23} and r_{13}.

Theorem 4.4 Let (A, μ, α, β) be a BiHom-associative algebra and $r=\sum_{i} x_{i} \otimes y_{i} \in A \otimes A$ such that $(\alpha \otimes \alpha)(r)=r=(\beta \otimes \beta)(r)$ and r is a solution of the associative BiHom-Yang-Baxter equation. Define the linear map

$$
\begin{equation*}
R: A \rightarrow A, \quad R(a)=\sum_{i} \alpha \beta^{3}\left(x_{i}\right)\left(a \alpha^{3}\left(y_{i}\right)\right)=\sum_{i}\left(\beta^{3}\left(x_{i}\right) a\right) \alpha^{3} \beta\left(y_{i}\right), \quad \forall a \in A \tag{4.2}
\end{equation*}
$$

Then R is an $\alpha \beta$-Rota-Baxter operator.
Proof. The fact that R commutes with α and β follows immediately from the fact that $(\alpha \otimes$ $\alpha)(r)=r=(\beta \otimes \beta)(r)$. Now we compute, for $a, b \in A$:

$$
R(\alpha \beta(a)) R(\alpha \beta(b))=\left\{\sum_{i}\left(\beta^{3}\left(x_{i}\right) \alpha \beta(a)\right) \alpha^{3} \beta\left(y_{i}\right)\right\}\left\{\sum_{j} \alpha \beta^{3}\left(x_{j}\right)\left(\alpha \beta(b) \alpha^{3}\left(y_{j}\right)\right)\right\}
$$

$$
\begin{array}{cl}
\stackrel{(\alpha \otimes \alpha)(r)=r}{=} & \left\{\sum_{i}\left(\alpha \beta^{3}\left(x_{i}\right) \alpha \beta(a)\right) \alpha^{4} \beta\left(y_{i}\right)\right\}\left\{\sum_{j} \alpha \beta^{3}\left(x_{j}\right)\left(\alpha \beta(b) \alpha^{3}\left(y_{j}\right)\right)\right\} \\
\stackrel{(2.11}{=} & \sum_{i, j}\left\{\left\{\left(\beta^{3}\left(x_{i}\right) \beta(a)\right) \alpha^{3} \beta\left(y_{i}\right)\right\} \alpha \beta^{3}\left(x_{j}\right)\right\}\left\{\alpha \beta^{2}(b) \alpha^{3} \beta\left(y_{j}\right)\right\} \\
\stackrel{(2.11}{=} & \sum_{i, j}\left\{\left(\alpha \beta^{3}\left(x_{i}\right) \alpha \beta(a)\right)\left(\alpha^{3} \beta\left(y_{i}\right) \alpha \beta^{2}\left(x_{j}\right)\right)\right\}\left\{\alpha \beta^{2}(b) \alpha^{3} \beta\left(y_{j}\right)\right\} \\
(\beta \otimes \beta)(r)=r & \sum_{i, j}\left\{\left(\alpha \beta^{4}\left(x_{i}\right) \alpha \beta(a)\right)\left(\alpha^{3} \beta^{2}\left(y_{i}\right) \alpha \beta^{2}\left(x_{j}\right)\right)\right\}\left\{\alpha \beta^{2}(b) \alpha^{3} \beta\left(y_{j}\right)\right\} \\
\left(\alpha^{2} \otimes \alpha^{2}\right)(r)=r & \sum_{i, j}\left\{\left(\alpha \beta^{4}\left(x_{i}\right) \alpha \beta(a)\right) \alpha^{3} \beta^{2}\left(y_{i} x_{j}\right)\right\}\left\{\alpha \beta^{2}(b) \alpha^{5} \beta\left(y_{j}\right)\right\} \\
\stackrel{\text { 4.16 }}{=} & \sum_{i, j}\left\{\left(\beta^{4}\left(x_{i} x_{j}\right) \alpha \beta(a)\right) \alpha^{3} \beta^{3}\left(y_{j}\right)\right\}\left\{\alpha \beta^{2}(b) \alpha^{5} \beta\left(y_{i}\right)\right\} \\
& +\sum_{i, j}\left\{\left(\alpha \beta^{4}\left(x_{i}\right) \alpha \beta(a)\right) \alpha^{4} \beta^{2}\left(x_{j}\right)\right\}\left\{\alpha \beta^{2}(b) \alpha^{5}\left(y_{j} y_{i}\right)\right\} \\
\stackrel{\text { 2.11 }}{=} \quad & \sum_{i, j}\left\{\alpha \beta^{4}\left(x_{i} x_{j}\right)\left(\alpha \beta(a) \alpha^{3} \beta^{2}\left(y_{j}\right)\right)\right\}\left\{\alpha \beta^{2}(b) \alpha^{5} \beta\left(y_{i}\right)\right\} \\
& +\sum_{i, j}\left\{\left(\alpha \beta^{4}\left(x_{i}\right) \alpha \beta(a)\right) \alpha^{4} \beta^{2}\left(x_{j}\right)\right\}\left\{\alpha \beta^{2}(b) \alpha^{5}\left(y_{j} y_{i}\right)\right\} \\
= & \sum_{i, j}\left\{\left(\beta^{3}\left(x_{i}\right) \beta^{2}\left(x_{j}\right)\right)\left(\alpha \beta(a) \alpha^{2}\left(y_{j}\right)\right)\right\}\left\{\alpha \beta^{2}(b) \alpha^{4}\left(y_{i}\right)\right\} \\
& +\sum_{i, j}\left\{\left(\beta^{4}\left(x_{i}\right) \alpha \beta(a)\right) \beta^{2}\left(x_{j}\right)\right\}\left\{\alpha \beta^{2}(b)\left(\alpha\left(y_{j}\right) \alpha^{4}\left(y_{i}\right)\right)\right\}, \\
&
\end{array}
$$

where for the last equality we used the identities $\sum_{i} \alpha \beta^{4}\left(x_{i}\right) \otimes \alpha^{5} \beta\left(y_{i}\right)=\sum_{i} \beta^{3}\left(x_{i}\right) \otimes \alpha^{4}\left(y_{i}\right)$ and $\sum_{j} \alpha \beta^{4}\left(x_{j}\right) \otimes \alpha^{3} \beta^{2}\left(y_{j}\right)=\sum_{j} \beta^{2}\left(x_{j}\right) \otimes \alpha^{2}\left(y_{j}\right)$, for the first term, and $\sum_{i} \alpha \beta^{4}\left(x_{i}\right) \otimes \alpha^{5}\left(y_{i}\right)=$ $\sum_{i} \beta^{4}\left(x_{i}\right) \otimes \alpha^{4}\left(y_{i}\right)$ and $\sum_{j} \alpha^{4} \beta^{2}\left(x_{j}\right) \otimes \alpha^{5}\left(y_{j}\right)=\sum_{j} \beta^{2}\left(x_{j}\right) \otimes \alpha\left(y_{j}\right)$, for the second term, identities that are consequences of the relation $(\alpha \otimes \alpha)(r)=r=(\beta \otimes \beta)(r)$. On the other hand, we have:

$$
\begin{aligned}
R(R(a) \alpha \beta(b)+ & \alpha \beta(a) R(b)) \\
= & R\left(\sum_{j}\left\{\alpha \beta^{3}\left(x_{j}\right)\left(a \alpha^{3}\left(y_{j}\right)\right)\right\} \alpha \beta(b)\right)+R\left(\alpha \beta(a)\left\{\sum_{j} \alpha \beta^{3}\left(x_{j}\right)\left(b \alpha^{3}\left(y_{j}\right)\right)\right\}\right) \\
= & \sum_{i, j} \alpha \beta^{3}\left(x_{i}\right)\left\{\left\{\left(\alpha \beta^{3}\left(x_{j}\right)\left(a \alpha^{3}\left(y_{j}\right)\right)\right) \alpha \beta(b)\right\} \alpha^{3}\left(y_{i}\right)\right\} \\
& +\sum_{i, j} \alpha \beta^{3}\left(x_{i}\right)\left\{\left\{\alpha \beta(a)\left(\alpha \beta^{3}\left(x_{j}\right)\left(b \alpha^{3}\left(y_{j}\right)\right)\right)\right\} \alpha^{3}\left(y_{i}\right)\right\} \\
(\beta \otimes \beta)(r)=r & \sum_{i, j} \alpha \beta^{4}\left(x_{i}\right)\left\{\left\{\left(\alpha \beta^{3}\left(x_{j}\right)\left(a \alpha^{3}\left(y_{j}\right)\right)\right) \alpha \beta(b)\right\} \alpha^{3} \beta\left(y_{i}\right)\right\} \\
& +\sum_{i, j} \alpha \beta^{3}\left(x_{i}\right)\left\{\left\{\alpha \beta(a)\left(\alpha \beta^{3}\left(x_{j}\right)\left(b \alpha^{3}\left(y_{j}\right)\right)\right)\right\} \alpha^{3}\left(y_{i}\right)\right\} \\
\stackrel{\text { 2.1 }}{=} & \sum_{i, j} \alpha \beta^{4}\left(x_{i}\right)\left\{\left\{\alpha^{2} \beta^{3}\left(x_{j}\right)\left(\alpha(a) \alpha^{4}\left(y_{j}\right)\right)\right\}\left\{\alpha \beta(b) \alpha^{3}\left(y_{i}\right)\right\}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{i, j} \alpha \beta^{3}\left(x_{i}\right)\left\{\left\{\left(\beta(a) \alpha \beta^{3}\left(x_{j}\right)\right)\left(\beta(b) \alpha^{3} \beta\left(y_{j}\right)\right)\right\} \alpha^{3}\left(y_{i}\right)\right\} \\
& \stackrel{2.1}{=} \sum_{i, j}\left\{\beta^{4}\left(x_{i}\right)\left\{\alpha^{2} \beta^{3}\left(x_{j}\right)\left(\alpha(a) \alpha^{4}\left(y_{j}\right)\right)\right\}\right\}\left\{\alpha \beta^{2}(b) \alpha^{3} \beta\left(y_{i}\right)\right\} \\
& +\sum_{i, j} \alpha \beta^{3}\left(x_{i}\right)\left\{\left\{\left(\beta(a) \alpha \beta^{3}\left(x_{j}\right)\right)\left(\beta(b) \alpha^{3} \beta\left(y_{j}\right)\right)\right\} \alpha^{3}\left(y_{i}\right)\right\} \\
& \stackrel{(\beta \otimes \beta)(r)=r}{=} \sum_{i, j}\left\{\beta^{4}\left(x_{i}\right)\left\{\alpha^{2} \beta^{3}\left(x_{j}\right)\left(\alpha(a) \alpha^{4}\left(y_{j}\right)\right)\right\}\right\}\left\{\alpha \beta^{2}(b) \alpha^{3} \beta\left(y_{i}\right)\right\} \\
& +\sum_{i, j} \alpha \beta^{4}\left(x_{i}\right)\left\{\left\{\left(\beta(a) \alpha \beta^{3}\left(x_{j}\right)\right)\left(\beta(b) \alpha^{3} \beta\left(y_{j}\right)\right)\right\} \alpha^{3} \beta\left(y_{i}\right)\right\} \\
& \stackrel{2.1}{=} \sum_{i, j}\left\{\beta^{4}\left(x_{i}\right)\left\{\alpha^{2} \beta^{3}\left(x_{j}\right)\left(\alpha(a) \alpha^{4}\left(y_{j}\right)\right)\right\}\right\}\left\{\alpha \beta^{2}(b) \alpha^{3} \beta\left(y_{i}\right)\right\} \\
& +\sum_{i, j} \alpha \beta^{4}\left(x_{i}\right)\left\{\left(\alpha \beta(a) \alpha^{2} \beta^{3}\left(x_{j}\right)\right)\left\{\left(\beta(b) \alpha^{3} \beta\left(y_{j}\right)\right) \alpha^{3}\left(y_{i}\right)\right\}\right\} \\
& \stackrel{(\alpha \otimes \alpha)(r)=r}{=} \sum_{i, j}\left\{\alpha \beta^{4}\left(x_{i}\right)\left\{\alpha^{2} \beta^{3}\left(x_{j}\right)\left(\alpha(a) \alpha^{4}\left(y_{j}\right)\right)\right\}\right\}\left\{\alpha \beta^{2}(b) \alpha^{4} \beta\left(y_{i}\right)\right\} \\
& +\sum_{i, j} \alpha \beta^{4}\left(x_{i}\right)\left\{\left(\alpha \beta(a) \alpha^{2} \beta^{3}\left(x_{j}\right)\right)\left\{\left(\beta(b) \alpha^{3} \beta\left(y_{j}\right)\right) \alpha^{3}\left(y_{i}\right)\right\}\right\} \\
& \stackrel{2.11}{=} \sum_{i, j}\left\{\left(\beta^{4}\left(x_{i}\right) \alpha^{2} \beta^{3}\left(x_{j}\right)\right)\left(\alpha \beta(a) \alpha^{4} \beta\left(y_{j}\right)\right)\right\}\left\{\alpha \beta^{2}(b) \alpha^{4} \beta\left(y_{i}\right)\right\} \\
& +\sum_{i, j}\left\{\beta^{4}\left(x_{i}\right)\left(\alpha \beta(a) \alpha^{2} \beta^{3}\left(x_{j}\right)\right)\right\}\left\{\left(\beta^{2}(b) \alpha^{3} \beta^{2}\left(y_{j}\right)\right) \alpha^{3} \beta\left(y_{i}\right)\right\} \\
& \stackrel{(\alpha \otimes \alpha)(r)=r}{=} \sum_{i, j}\left\{\left(\beta^{4}\left(x_{i}\right) \alpha^{2} \beta^{3}\left(x_{j}\right)\right)\left(\alpha \beta(a) \alpha^{4} \beta\left(y_{j}\right)\right)\right\}\left\{\alpha \beta^{2}(b) \alpha^{4} \beta\left(y_{i}\right)\right\} \\
& +\sum_{i, j}\left\{\alpha \beta^{4}\left(x_{i}\right)\left(\alpha \beta(a) \alpha^{2} \beta^{3}\left(x_{j}\right)\right)\right\}\left\{\left(\beta^{2}(b) \alpha^{3} \beta^{2}\left(y_{j}\right)\right) \alpha^{4} \beta\left(y_{i}\right)\right\} \\
& \text { (2.1) } \\
& \sum_{i, j}\left\{\left(\beta^{4}\left(x_{i}\right) \alpha^{2} \beta^{3}\left(x_{j}\right)\right)\left(\alpha \beta(a) \alpha^{4} \beta\left(y_{j}\right)\right)\right\}\left\{\alpha \beta^{2}(b) \alpha^{4} \beta\left(y_{i}\right)\right\} \\
& +\sum_{i, j}\left\{\left(\beta^{4}\left(x_{i}\right) \alpha \beta(a)\right) \alpha^{2} \beta^{4}\left(x_{j}\right)\right\}\left\{\alpha \beta^{2}(b)\left(\alpha^{3} \beta^{2}\left(y_{j}\right) \alpha^{4}\left(y_{i}\right)\right)\right\} .
\end{aligned}
$$

By using the identities $\sum_{i} \beta^{4}\left(x_{i}\right) \otimes \alpha^{4} \beta\left(y_{i}\right)=\sum_{i} \beta^{3}\left(x_{i}\right) \otimes \alpha^{4}\left(y_{i}\right)$ and $\sum_{j} \alpha^{2} \beta^{3}\left(x_{j}\right) \otimes \alpha^{4} \beta\left(y_{j}\right)=$ $\sum_{j} \beta^{2}\left(x_{j}\right) \otimes \alpha^{2}\left(y_{j}\right)$, for the first term, and $\sum_{j} \alpha^{2} \beta^{4}\left(x_{j}\right) \otimes \alpha^{3} \beta^{2}\left(y_{j}\right)=\sum_{j} \beta^{2}\left(x_{j}\right) \otimes \alpha\left(y_{j}\right)$, for the second term, identities that are consequences of the relation $(\alpha \otimes \alpha)(r)=r=(\beta \otimes \beta)(r)$, the final expression becomes

$$
\begin{aligned}
& \sum_{i, j}\left\{\left(\beta^{3}\left(x_{i}\right) \beta^{2}\left(x_{j}\right)\right)\left(\alpha \beta(a) \alpha^{2}\left(y_{j}\right)\right)\right\}\left\{\alpha \beta^{2}(b) \alpha^{4}\left(y_{i}\right)\right\} \\
& \quad+\sum_{i, j}\left\{\left(\beta^{4}\left(x_{i}\right) \alpha \beta(a)\right) \beta^{2}\left(x_{j}\right)\right\}\left\{\alpha \beta^{2}(b)\left(\alpha\left(y_{j}\right) \alpha^{4}\left(y_{i}\right)\right)\right\},
\end{aligned}
$$

and this coincides with the expression we obtained for $R(\alpha \beta(a)) R(\alpha \beta(b))$.

Corollary 4.5 Let (A, μ, α) be a Hom-associative algebra and $r=\sum_{i} x_{i} \otimes y_{i} \in A \otimes A$ such that $(\alpha \otimes \alpha)(r)=r$ and r is a solution of the associative Hom-Yang-Baxter equation. Define $R: A \rightarrow A, R(a)=\sum_{i} \alpha\left(x_{i}\right)\left(a y_{i}\right)=\sum_{i}\left(x_{i} a\right) \alpha\left(y_{i}\right)$. Then R is an α^{2}-Rota-Baxter operator.

Proof. Take $\alpha=\beta$ in the previous theorem and note that, for $\alpha=\beta$, since $(\alpha \otimes \alpha)(r)=r$, the formula (4.2) becomes $R(a)=\sum_{i} \alpha\left(x_{i}\right)\left(a y_{i}\right)=\sum_{i}\left(x_{i} a\right) \alpha\left(y_{i}\right)$.

5 Hom-pre-Lie algebras from infinitesimal Hom-bialgebras

In this section we derive Hom-pre-Lie algebras from infinitesimal Hom-bialgebras, generalizing Aguiar's result in the classical case.

Proposition 5.1 Let (A, μ, α) be a commutative Hom-associative algebra, k a natural number and $D: A \rightarrow A$ an α^{k}-derivation, that is D is a linear map commuting with α and

$$
\begin{equation*}
D(a b)=D(a) \alpha^{k}(b)+\alpha^{k}(a) D(b), \quad \forall a, b \in A \tag{5.1}
\end{equation*}
$$

Define a new operation on A by

$$
\begin{equation*}
x \bullet y=\alpha^{k}(x) D(y), \quad \forall x, y \in A \tag{5.2}
\end{equation*}
$$

Then $\left(A, \bullet, \alpha^{k+1}\right)$ is a Hom-Novikov algebra.
Proof. Since D commutes with α, it is obvious that $\alpha^{k+1}(x \bullet y)=\alpha^{k+1}(x) \bullet \alpha^{k+1}(y)$, for all $x, y \in A$. Now we compute:

$$
\begin{aligned}
\alpha^{k+1}(x) \bullet(y \bullet z) & (x \bullet y) \bullet \alpha^{k+1}(z) \\
& = \\
= & \alpha^{k+1}(x) \bullet\left(\alpha^{k}(y) D(z)\right)-\left(\alpha^{k}(x) D(y)\right) \bullet \alpha^{k+1}(z) \\
= & \alpha^{2 k+1}(x) D\left(\alpha^{k}(y) D(z)\right)-\alpha^{k}\left(\alpha^{k}(x) D(y)\right) D\left(\alpha^{k+1}(z)\right) \\
\stackrel{5.1}{=} & \alpha^{2 k+1}(x)\left(D\left(\alpha^{k}(y)\right) \alpha^{k}(D(z))+\alpha^{2 k}(y) D^{2}(z)\right) \\
& -\left(\alpha^{2 k}(x) \alpha^{k}(D(y))\right) \alpha^{k+1}(D(z)) \\
\stackrel{2.2}{=} & \alpha^{2 k+1}(x)\left(\alpha^{k}(D(y)) \alpha^{k}(D(z))\right)+\alpha^{2 k+1}(x)\left(\alpha^{2 k}(y) D^{2}(z)\right) \\
& -\alpha^{2 k+1}(x)\left(\alpha^{k}(D(y)) \alpha^{k}(D(z))\right) \\
\stackrel{2.2}{=} & \left(\alpha^{2 k}(x) \alpha^{2 k}(y)\right) \alpha\left(D^{2}(z)\right)=\alpha^{2 k}(x y) \alpha\left(D^{2}(z)\right),
\end{aligned}
$$

and since $x y=y x$, this expression is obviously symmetric in x and y, so $\left(A, \bullet, \alpha^{k+1}\right)$ is a left Hom-pre-Lie algebra. Now we compute:

$$
\begin{array}{rll}
(x \bullet y) \bullet \alpha^{k+1}(z) \quad & \left(\alpha^{k}(x) D(y)\right) \bullet \alpha^{k+1}(z)=\alpha^{k}\left(\alpha^{k}(x) D(y)\right) D\left(\alpha^{k+1}(z)\right) \\
& = & \left(\alpha^{2 k}(x) \alpha^{k}(D(y))\right) \alpha^{k+1}(D(z)) \\
\stackrel{(2.2}{=} & \alpha^{2 k+1}(x)\left(\alpha^{k}(D(y)) \alpha^{k}(D(z))\right)=\alpha^{2 k+1}(x) \alpha^{k}(D(y) D(z)) \\
\text { commutativity } & \alpha^{2 k+1}(x) \alpha^{k}(D(z) D(y))=(x \bullet z) \bullet \alpha^{k+1}(y) .
\end{array}
$$

So indeed $\left(A, \bullet, \alpha^{k+1}\right)$ is a Hom-Novikov algebra.
By taking $k=0$ in the Proposition, we obtain:

Corollary 5.2 ([24]) Let (A, μ, α) be a commutative Hom-associative algebra and $D: A \rightarrow A$ a derivation (in the usual sense) commuting with α. Define a new operation on A by $x \bullet y=x D(y)$, for all $x, y \in A$. Then (A, \bullet, α) is a Hom-Novikov algebra.

Proposition 5.3 Let (A, μ, Δ, α) be an infinitesimal Hom-bialgebra. Define the linear map $D: A \rightarrow A, D(a)=a_{1} a_{2}$ for all $a \in A$, i.e. $D=\mu \circ \Delta$. Then D is an α^{2}-derivation.

Proof. Obviously D commutes with α and, for all $a, b \in A$, we have

$$
\begin{aligned}
D(a b) & \stackrel{(2.6)}{=}\left(\alpha(a) b_{1}\right) \alpha\left(b_{2}\right)+\alpha\left(a_{1}\right)\left(a_{2} \alpha(b)\right) \\
& \stackrel{(2.2}{=} \alpha^{2}(a)\left(b_{1} b_{2}\right)+\left(a_{1} a_{2}\right) \alpha^{2}(b)=\alpha^{2}(a) D(b)+D(a) \alpha^{2}(b),
\end{aligned}
$$

finishing the proof.
Let now (A, μ, Δ, α) be a commutative infinitesimal Hom-bialgebra. By using Propositions 5.3 and 5.1, we obtain a Hom-Novikov algebra $\left(A, \bullet, \alpha^{3}\right)$, where

$$
\begin{array}{lcl}
x \bullet y & \stackrel{55.2}{=} & \alpha^{2}(x) D(y)=\alpha^{2}(x)\left(y_{1} y_{2}\right) \\
& \stackrel{(2.2}{=} & \left(\alpha(x) y_{1}\right) \alpha\left(y_{2}\right) \\
& \text { commutativity } & \left(y_{1} \alpha(x)\right) \alpha\left(y_{2}\right) \\
& \stackrel{(2.2}{=} & \alpha\left(y_{1}\right)\left(\alpha(x) y_{2}\right) .
\end{array}
$$

Inspired by this, now we have:
Proposition 5.4 Let (A, μ, Δ, α) be an infinitesimal Hom-bialgebra, and define a new multiplication on A by

$$
\begin{equation*}
x \bullet y=\alpha\left(y_{1}\right)\left(\alpha(x) y_{2}\right)=\left(y_{1} \alpha(x)\right) \alpha\left(y_{2}\right), \quad \forall x, y \in A . \tag{5.3}
\end{equation*}
$$

Then $\left(A, \bullet, \alpha^{3}\right)$ is a left Hom-pre-Lie algebra.
Proof. Since $(\alpha \otimes \alpha) \circ \Delta=\Delta \circ \alpha$, it is easy to see that $\alpha^{3}(x \bullet y)=\alpha^{3}(x) \bullet \alpha^{3}(y)$, for all $x, y \in A$. Now, for all $x, y, z \in A$ we compute:

$$
\begin{aligned}
& \alpha^{3}(x) \bullet(y \bullet z)-(x \bullet y) \bullet \alpha^{3}(z) \\
&= \alpha^{3}(x) \bullet\left(\alpha\left(z_{1}\right)\left(\alpha(y) z_{2}\right)\right)-\left(\alpha\left(y_{1}\right)\left(\alpha(x) y_{2}\right)\right) \bullet \alpha^{3}(z) \\
&= \alpha\left(\left[\alpha\left(z_{1}\right)\left(\alpha(y) z_{2}\right)\right]_{1}\right)\left(\alpha^{4}(x)\left[\alpha\left(z_{1}\right)\left(\alpha(y) z_{2}\right)\right]_{2}\right) \\
&-\alpha^{4}\left(z_{1}\right)\left\{\left[\alpha^{2}\left(y_{1}\right)\left(\alpha^{2}(x) \alpha\left(y_{2}\right)\right)\right] \alpha^{3}\left(z_{2}\right)\right\} \\
& \stackrel{2.6)}{=} \text { twice } \alpha\left(\alpha^{2}\left(z_{1}\right)\left(\alpha^{2}(y) z_{(2,1)}\right)\right)\left[\alpha^{4}(x) \alpha^{2}\left(z_{(2,2)}\right)\right]+\alpha\left(\alpha^{2}\left(z_{1}\right) \alpha^{2}\left(y_{1}\right)\right)\left[\alpha^{4}(x)\left(\alpha^{2}\left(y_{2}\right) \alpha^{2}\left(z_{2}\right)\right)\right] \\
&+\alpha^{3}\left(z_{(1,1)}\right)\left[\alpha^{4}(x)\left(\alpha\left(z_{(1,2)}\right) \alpha\left(\alpha(y) z_{2}\right)\right)\right]-\alpha^{4}\left(z_{1}\right)\left\{\left[\alpha^{2}\left(y_{1}\right)\left(\alpha^{2}(x) \alpha\left(y_{2}\right)\right)\right] \alpha^{3}\left(z_{2}\right)\right\} \\
&= \alpha\left(\left[\alpha^{2}\left(z_{1}\right)\left(\alpha^{2}(y) z_{(2,1)}\right)\right] \alpha\left(\alpha^{2}(x) z_{(2,2)}\right)\right)+\alpha^{2}\left(\alpha\left(z_{1} y_{1}\right)\left[\alpha^{2}(x)\left(y_{2} z_{2}\right)\right]\right) \\
&+\alpha\left(\alpha^{2}\left(z_{(1,1)}\right)\left[\alpha^{3}(x)\left(z_{(1,2)}\left(\alpha(y) z_{2}\right)\right)\right]\right)-\alpha\left(\alpha^{3}\left(z_{1}\right)\left\{\left[\alpha\left(y_{1}\right)\left(\alpha(x) y_{2}\right)\right] \alpha^{2}\left(z_{2}\right)\right\}\right) .
\end{aligned}
$$

We claim that the second and fourth terms in this expression cancel each other. To show this, it is enough to prove that $\alpha^{2}\left(z_{1} y_{1}\right)\left[\alpha^{3}(x)\left(\alpha\left(y_{2}\right) \alpha\left(z_{2}\right)\right)\right]=\alpha^{3}\left(z_{1}\right)\left\{\left[\alpha\left(y_{1}\right)\left(\alpha(x) y_{2}\right)\right] \alpha^{2}\left(z_{2}\right)\right\}$. We compute, by applying repeatedly the Hom-associativity condition:

$$
\alpha^{3}\left(z_{1}\right)\left\{\left[\alpha\left(y_{1}\right)\left(\alpha(x) y_{2}\right)\right] \alpha^{2}\left(z_{2}\right)\right\}=\alpha^{3}\left(z_{1}\right)\left\{\alpha^{2}\left(y_{1}\right)\left[\left(\alpha(x) y_{2}\right) \alpha\left(z_{2}\right)\right]\right\}
$$

$$
\begin{aligned}
& =\left[\alpha^{2}\left(z_{1}\right) \alpha^{2}\left(y_{1}\right)\right]\left[\left(\alpha^{2}(x) \alpha\left(y_{2}\right)\right) \alpha^{2}\left(z_{2}\right)\right] \\
& =\alpha^{2}\left(z_{1} y_{1}\right)\left[\alpha^{3}(x)\left(\alpha\left(y_{2}\right) \alpha\left(z_{2}\right)\right)\right], \quad \text { q.e.d. }
\end{aligned}
$$

So, we can now write (by using both Hom-associativity and Hom-coassociativity):

$$
\begin{aligned}
\alpha^{3}(x) & \bullet(y \bullet z)-(x \bullet y) \bullet \alpha^{3}(z) \\
& =\alpha\left(\left[\alpha^{2}\left(z_{1}\right)\left(\alpha^{2}(y) z_{(2,1)}\right)\right] \alpha\left(\alpha^{2}(x) z_{(2,2)}\right)\right)+\alpha\left(\alpha^{2}\left(z_{(1,1)}\right)\left[\alpha^{3}(x)\left(z_{(1,2)}\left(\alpha(y) z_{2}\right)\right)\right]\right) \\
& =\alpha\left(\left[\left(\alpha\left(z_{1}\right) \alpha^{2}(y)\right) \alpha\left(z_{(2,1)}\right)\right] \alpha\left(\alpha^{2}(x) z_{(2,2)}\right)\right)+\alpha\left(\left[\alpha\left(z_{(1,1)}\right) \alpha^{3}(x)\right] \alpha\left(z_{(1,2)}\left(\alpha(y) z_{2}\right)\right)\right) \\
& =\alpha\left(\left[\alpha^{2}\left(z_{1}\right) \alpha^{3}(y)\right]\left[\alpha\left(z_{(2,1)}\right)\left(\alpha^{2}(x) z_{(2,2)}\right)\right]+\left[\alpha\left(z_{(1,1)}\right) \alpha^{3}(x)\right]\left[\alpha\left(z_{(1,2)}\right)\left(\alpha^{2}(y) \alpha\left(z_{2}\right)\right)\right]\right) \\
& =\alpha\left(\left[\alpha\left(z_{(1,1)}\right) \alpha^{3}(y)\right]\left[\alpha\left(z_{(1,2)}\right)\left(\alpha^{2}(x) \alpha\left(z_{2}\right)\right)\right]+\left[\alpha\left(z_{(1,1)}\right) \alpha^{3}(x)\right]\left[\alpha\left(z_{(1,2)}\right)\left(\alpha^{2}(y) \alpha\left(z_{2}\right)\right)\right]\right),
\end{aligned}
$$

and this expression is obviously symmetric in x and y.
Remark 5.5 The construction introduced in Proposition 5.4 is compatible with the Yau twist, in the following sense. Let (A, μ, Δ) be an infinitesimal bialgebra and $\alpha: A \rightarrow A$ a morphism of infinitesimal bialgebras. Consider the Yau twist $A_{\alpha}=\left(A, \mu_{\alpha}=\alpha \circ \mu, \Delta_{\alpha}=\Delta \circ \alpha, \alpha\right)$ (with notation $\mu_{\alpha}(x \otimes y)=x * y=\alpha(x y)$ and $\left.\Delta_{\alpha}(x)=x_{[1]} \otimes x_{[2]}=\alpha\left(x_{1}\right) \otimes \alpha\left(x_{2}\right)\right)$, which is an infinitesimal Hom-bialgebra, to which we can apply Proposition 5.4 and obtain a left Hom-preLie algebra with structure map α^{3} and multiplication

$$
x \bullet y=\alpha\left(y_{[1]}\right) *\left(\alpha(x) * y_{[2]}\right)=\alpha^{2}\left(y_{1}\right) * \alpha^{2}\left(x y_{2}\right)=\alpha^{3}\left(y_{1} x y_{2}\right)
$$

This is exactly the Yau twist via the map α^{3} of the left pre-Lie algebra obtained from (A, μ, Δ) by Theorem 1.1.

Assume now that we have a quasitriangular infinitesimal Hom-bialgebra $\left(A, \mu, \Delta_{r}, \alpha\right)$ as in Definition [2.8, there are two left Hom-pre-Lie algebras that may be associated to A, and we want to show that they coincide.

The first one is $\left(A, \bullet, \alpha^{3}\right)$ obtained from A by using Proposition 5.4. with multiplication

$$
\begin{aligned}
& a \bullet b=\alpha\left(b_{1}\right)\left(\alpha(a) b_{2}\right)=\sum_{i} \alpha^{2}\left(x_{i}\right)\left(\alpha(a)\left(y_{i} b\right)\right)-\sum_{i} \alpha\left(b x_{i}\right)\left(\alpha(a) \alpha\left(y_{i}\right)\right) \\
& \stackrel{\boxed{2.2}}{=} \sum_{i} \alpha^{2}\left(x_{i}\right)\left[\left(a y_{i}\right) \alpha(b)\right]-\sum_{i}\left[\alpha(b) \alpha\left(x_{i}\right)\right] \alpha\left(a y_{i}\right) \\
& \stackrel{(2.2)}{=} \sum_{i}\left[\alpha\left(x_{i}\right)\left(a y_{i}\right)\right] \alpha^{2}(b)-\sum_{i} \alpha^{2}(b)\left[\alpha\left(x_{i}\right)\left(a y_{i}\right)\right] .
\end{aligned}
$$

The second is obtained by applying Corollary 3.15 (for $n=2$) to the α^{2}-Rota-Baxter operator R defined in Corollary 4.5. So, its structure map is α^{3} and the multiplication is

$$
a \circ b=R(a) \alpha^{2}(b)-\alpha^{2}(b) R(a)=\sum_{i}\left[\alpha\left(x_{i}\right)\left(a y_{i}\right)\right] \alpha^{2}(b)-\sum_{i} \alpha^{2}(b)\left[\alpha\left(x_{i}\right)\left(a y_{i}\right)\right],
$$

so indeed \bullet and \circ coincide.

Acknowledgements

Ling Liu was supported by NSFC (Grant No.11601486) and Foundation of Zhejiang Educational Committee (Y201738645). This paper was written while Claudia Menini was a member of the "National Group for Algebraic and Geometric Structures, and their Applications" (GNSAGAINdAM). Parts of this paper have been written while Florin Panaite was a visiting professor at Université de Haute Alsace in May 2017 and a visiting professor at University of Ferrara in September 2017 (supported by GNSAGA-INdAM); he would like to thank these institutions for hospitality and support.

References

[1] M. Aguiar, Pre-Poisson algebras, Lett. Math. Phys. 54 (2000), 263-277.
[2] M. Aguiar, Infinitesimal Hopf algebras, in: New trends in Hopf algebra theory (La Falda, 1999), 1-29, Contemp. Math. 267, Amer. Math. Soc., Providence, RI, 2000.
[3] M. Aguiar, On the associative analog of Lie bialgebras, J. Algebra 244 (2001), 492-532.
[4] M. Aguiar, Infinitesimal bialgebras, pre-Lie and dendriform algebras, in: Hopf algebras, 1-33, Lect. Notes in Pure Appl. Math. 237, Marcel Dekker, New York, 2004.
[5] T. Brzeziński, Rota-Baxter systems, dendriform algebras and covariant bialgebras, J. Algebra 460 (2016), 1-25.
[6] A. Connes, D. Kreimer, Hopf algebras, renormalization and noncommutative geometry, Comm. Math. Phys. 199 (1998), 203-242.
[7] K. Ebrahimi-Fard, D. Manchon, Twisted dendriform algebras and the pre-Lie Magnus expansion, J. Pure Appl. Algebra 215 (2011), 2615-2627.
[8] G. Graziani, A. Makhlouf, C. Menini, F. Panaite, BiHom-associative algebras, BiHom-Lie algebras and BiHom-bialgebras, Symmetry Integrability Geom. Methods Appl. 11 (2015), 086 (34 pages).
[9] L. Guo, An introduction to Rota-Baxter algebra, Surveys of Modern Mathematics, 4. International Press, Somerville, MA; Higher Education Press, Beijing, 2012.
[10] J. T. Hartwig, D. Larsson, S. D. Silvestrov, Deformations of Lie algebras using σ derivations, J. Algebra 295 (2006), 314-361.
[11] S. A. Joni, G.-C. Rota, Coalgebras and bialgebras in combinatorics, Stud. Appl. Math. 61 (1979), 93-139.
[12] D. Larsson, S. D. Silvestrov, Quasi-hom-Lie algebras, central extensions and 2-cocycle-like identities, J. Algebra 288 (2005), 321-344.
[13] L. Liu, A. Makhlouf, C. Menini, F. Panaite, Rota-Baxter operators on BiHom-associative algebras and related structures, arXiv:math.QA/1703.07275.
[14] L. Liu, A. Makhlouf, C. Menini, F. Panaite, BiHom-pre-Lie algebras, BiHom-Leibniz algebras and Rota-Baxter operators on BiHom-Lie algebras, arXiv:math.QA/1706.00474.
[15] L. Liu, A. Makhlouf, C. Menini, F. Panaite, BiHom-Novikov algebras and infinitesimal BiHom-bialgebras, in preparation.
[16] J.-L. Loday, Dialgebras, in "Dialgebras and other operads", Lecture Notes in Mathematics, 1763, Springer, Berlin, 2001, 7-66.
[17] A. Makhlouf, Hom-dendriform algebras and Rota-Baxter Hom-algebras, in "Operads and universal algebra", Nankai Ser. Pure Appl. Math. Theor. Phys. (Eds. C. Bai, L. Guo and J.-L. Loday), Vol. 9, World Sci. Publ., Singapore, 2012, 147-171.
[18] A. Makhlouf, S. Silvestrov, Hom-algebra structures, J. Gen. Lie Theory Appl. 2 (2008), 51-64.
[19] A. Makhlouf, S. Silvestrov, Hom-algebras and Hom-coalgebras, J. Algebra Appl. 9 (2010), 553-589.
[20] A. Makhlouf, D. Yau, Rota-Baxter Hom-Lie-admissible algebras, Comm. Algebra 42 (2014), 1231-1257.
[21] F. Panaite, F. Van Oystaeyen, Twisted algebras and Rota-Baxter type operators, J. Algebra Appl. 16 (2017), 1750079 (18 pages).
[22] D. Voiculescu, The coalgebra of the free difference quotient in free probability, Internat. Math. Res. Notices 2 (2000), 79-106.
[23] D. Yau, Infinitesimal Hom-bialgebras and Hom-Lie bialgebras, arXiv:math.RA/1001.5000.
[24] D. Yau, Hom-Novikov algebras, J. Phys. A. 44 (2011), 085202.

