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Abstract
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Nomenclature

b thermal diffusivity
C constant such that P = −Cx1 + p0

c0, cd, ca angular viscosity coefficients
2d channel width
E electric field
g= −ge1 gravity acceleration
Gr Grashof number defined by (6)9
H total magnetic field
h(y) dimensionless function desribing the induced magnetic

field defined by (6)15
H0e2 external uniform magnetic field (H0 > 0)
H1(x2) induced magnetic field component in the x1−direction
I microinertia coefficient
k fluid thermal conductivity
k1,2 heat transfer coefficients evaluated at Π1,2

l characteristic length defined by (6)2
L dimensionless constant defined by (6)3
M2 Hartmann number defined by (6)5
M2

p micropolar parameter defined by (6)4
N2 coupling number defined by (6)1 (0 < N2 < 1)
Nu Nusselt number
p pressure

P = p + µe
H2

1

2
+ ρ0gx1 difference between the hydromagnetic pressure and the

hydrostatic pressure
p0 arbitrary constant
q heat flux vector
Re Reynolds number defined by (6)8
T = T (x2) temperature
T0 reference temperature
T1, T2 uniform temperatures (T2 ≥ T1)
v velocity field
v(y) dimensionless function describing the velocity defined by (6)12
V0 characteristic velocity defined by (6)6
v1(x2) velocity component in the x1−direction
w microrotation field
w(y) dimensionless function describing the microrotation defined by (6)13
w3(x2) microrotation component in the x3−direction
y dimensionless transverse coordinate defined by (6)11

Greek symbols
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α, β, γ dimensionless constants defined by (11)
αT thermal expansion coefficient

ηe electrical permettivity

(

ηe =
1

µeσe

)

ϑ(y) dimensionless temperature defined by (6)14
λ buoyancy coefficient defined by (6)10
µ Newtonian viscosity coefficient
µe magnetic permeability
µr dynamic microrotation viscosity coefficient
ν0 constant defined by (6)7
ρ0 mass density at the temperature T0

σe electrical conductivity
τ 1,2 skin friction at the plates Π1,2

τ p1,2 skin couple friction at the plates Π1,2

1. Introduction

The recent industrial processes are characterized by the use of new materi-
als which cannot be described by Newtonian fluids. Due to this reason, many
non-Newtonian models have been proposed. Among these models, the microp-
olar fluids have been introduced by Eringen ([1]) in order to take into account
the effects of local structure and micro-motions of the fluid particles which can-
not be described by the classical models. The incompressible micropolar fluids
represent liquids consisting of rigid, randomly oriented spherical particles sus-
pended in a viscous medium, where the deformation of fluid particles is ignored.
The related mathematical model is based on the introduction of a new vector
field (the microrotation) which describes the total angular velocity field of the
particles rotation. Hence, one new equation is added representing the balance
law of local angular momentum.
There are many examples of flows of micropolar fluids that are relevant for prac-
tical applications as flows of biological fluids in thin vessels, polymeric suspen-
sions, liquid crystals, slurries, colloidal fluids, exotic lubricants, etc. Extensive
reviews of the theory and its applications can be found in [2] and [3].

The purpose of the present paper is to study the influence of an external
uniform magnetic field on the mixed convection in the fully developed flow of
a micropolar fluid filling a vertical channel under the Oberbeck-Boussinesq ap-
proximation. A systematic and rigorous derivation of this approximation is
provided in [4].
Convection flow of an electrically conducting fluid in a channel under the effect
of a transverse magnetic field has a relevant technical significance because of
its many industrial applications such as geothermal reservoirs, cooling of nu-
clear reactors, electric transmission cables, thermal insulation and petroleum
reservoirs, to name a few.

In our study we solve the problem of the mixed convection of a Bossinesquian
electrically conducting micropolar fluid which steadily flows in a vertical channel
under the action of a uniform magnetic field applied normal to the direction of
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the velocity. The walls are maintained at constant temperatures T1 and T2

(T1 ≤ T2).
The first paper on the fully developed free convection of a micropolar fluid in a
vertical channel is [5]; this work has been generalized in [6] in order to consider
also the mass transfer. In [7], [8], [9] mixed convection flow with symmetric and
asymmetric heating is examined. To the best of our knowledge, few results are
known concerning the influence of an external magnetic field on the convective
flow of a micropolar fluid in a vertical channel ([10], [11]), while in recent years
the same situation in a double channel has been studied in [12]. However, in
most of the previous papers, a restrictive condition on the material parameters
has been imposed following the work of Ahmadi ([13]). We point out that in our
research we have not required any condition so that two material parameters
describe the micropolar nature of the fluid, instead of one as in the simplified
Ahmadi’s approach.

In our paper, as it is usual in the Oberbeck-Boussinesq approximation ([14]),
we neglect the dissipation terms in the energy equation, so that we can obtain the
explicit solution of the problem which takes into account the induced magnetic
field. We point out that the induced magnetic field is neglected in most of the
works concerning the convective flow in a vertical channel, also in the simpler
case of a Newtonian fluid.

The paper is organized in this way:
In Section 2 we formulate the problem from the physical point of view. In order
to determine the analytical solution, we have to distinguish three cases which
are related to the strength of the external uniform magnetic field.
Section 3 is devoted to integrate the boundary value problem which describes
the motion in the previous three cases.
In Section 4 we make some comments about the flow and we give the solution
when the heating is symmetric, in the case of natural convection, in the absence
of magnetic field and in the same problems for the Newtonian fluid.
The trend of the solution is plotted in Section 5 in order to show the influence
of the relevant parameters on the flow. The behavior of the micropolar flow
differs highly from the Newtonian one as the coupling number increases and
the micropolar parameter Mp decreases. For suitable values of the buoyancy
parameter λ, the reverse flow occurs near the coldest (hottest) wall if λ > 0
(λ < 0). The presence of the external magnetic field tends to prevent the
occurrence of the reverse flow. If the buoyancy parameter vanishes (symmetric
heating), then the phenomenon of the reverse flow does not appear.
Section 6 summarizes the results.

2. Formulation of the problem

Let us consider a Boussinesquian, electrically conducting micropolar fluid
filling the region S between two infinite rigid, fixed, non-electrically conducting
vertical plates Π1, Π2 separated by a distance 2 d (Figure 1).

We assume the regions outside the plane to be a vacuum (free space). The
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Figure 1: Physical configuration and coordinate system.

coordinate axes are fixed in order to have

S = {(x1, x2, x3) ∈ R
3 : (x1, x3) ∈ R

2, x2 ∈ (−d, d)},
Πi = {(x1, x2, x3) ∈ R

3 : (x1, x3) ∈ R
2, x2 = (−1)id}, i = 1, 2 (1)

and x1-axis is vertical upward.
Our aim is to study the steady mixed convection in the fully developed flow

of the fluid under the action of an external uniform magnetic field H0e2 normal
to planes Π1,2 (H0 > 0).

This flow in the absence of external mechanical body forces, body couples
and free electric charges under the Oberbeck-Boussinesq approximation is gov-
erned by ([3], [1], [2])

ρ0v · ∇v = −∇p + (µ + µr)△v + 2µr(∇× w) + µe(∇× H) × H + ρ0[1 − αT (T − T0)]g,

ρ0Iv · ∇w = (ca + cd)△w + (c0 + cd − ca)∇(∇ ·w) + 2µr(∇× v − 2w),

∇ · v = 0,

ηe△H = ∇× (H × v),

∇ · H = 0,

∇T · v = b△T, in S . (2)

All the material parameters are positive constants and µe is equal to the mag-
netic permeability of free space. As it is usual in the Boussinesq approximation
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([14]), in equation (2)6 the dissipative terms have been neglected.
We note that in [1] and in [2] equations (2) are slightly different because they
are deduced as a special case of a much more general model of microfluids. For
the details we refer to [3], p.23.

We search v,w,H, T in the following form:

v = v1(x2)e1, w = w3(x2)e3, H = H0e2 + H1(x2)e1, T = T (x2), (3)

where (e1, e2, e3) is the canonical base of R
3. Thank to (3), v,w,H are diver-

gence free.
The previous unknown functions satisfy the boundary conditions

v1(±d) = 0, w3(±d) = 0, H1(±d) = 0, T (−d) = T1, T (d) = T2. (4)

If T1 = T2, then the heating is called symmetric, otherwise it is asymmetric. We

choice the reference temperature T0 =
T1 + T2

2
and, at the moment, we suppose

T2 > T1.
By virtue of (3) and (2)1, we deduce P = P (x1) = −Cx1 + p0 (C, p0 some

constants) so that the governing equations give:

(µ + µr)v
′′

1 + 2µrw
′

3 + µeH0H
′

1 + ρ0αT (T − T0)g = −C,

(ca + cd)w
′′

3 − 2µrv
′

1 − 4µrw3 = 0,

ηeH
′′

1 + H0v
′

1 = 0,

T ′′ = 0, in [−d, d]. (5)

By putting

N2 =
µr

µ + µr

, l2 =
cd + ca

4µ
, L =

d

l
, M2

p = N2L2, M2 =
σe

µ
µ2

eH
2
0d2,

V0 =
Cd2

µ
, ν0 =

µ + µr

ρ0

, Re =
V0d

ν0

, Gr =
αT g(T2 − T1)d

3

ν2
0

, λ =
Gr

Re
, y =

x2

d
,

v(y) =
v1(dy)

V0

, w(y) =
dw3(dy)

V0

, ϑ(y) =
T (dy) − T0

T2 − T1

, h(y) =
H1(dy)

V0

√
σeµ

, (6)

equations (5) can be written in dimensionless form:

v′′ + 2N2w′ + M(1 − N2)h′ + λϑ + 1 − N2 = 0,

w′′ −
M2

p

2(1 − N2)
v′ −

M2
p

1 − N2
w = 0,

h′′ + Mv′ = 0,

ϑ′′ = 0, in [−1, 1]. (7)
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Boundary conditions (4) in dimensionless form become

v(±1) = 0, w(±1) = 0, h(±1) = 0, ϑ(±1) = ±1

2
. (8)

Equation (7)4 together with (8)4 imply

ϑ(y) =
y

2
, in [−1, 1]. (9)

By differentiating (7)1,2 and using (7)3 and (9), w has to satisfy the following
linear ordinary differential equation:

wIV − αw′′ + βw = γ, (10)

where

α = M2
p + (1 − N2)M2, β = M2

p M2, γ = −
λM2

p

4(1 − N2)
. (11)

The general solution of equation (10) depends on the sign of the discriminant
∆ = α2 − 4β of the algebraic equation

ξ4 − αξ2 + β = 0. (12)

In the next section, we solve problem (7), (8) in the three cases: ∆ > 0, ∆ = 0,

∆ < 0. These cases are all possible from the physical point of view because they
represent the following situations:

• if ∆ > 0, then 0 < H0 <

√

µ

σe

Mp

µed(1 + N)
or H0 >

√

µ

σe

Mp

µed(1 − N)
weak or strong external uniform magnetic field;

• if ∆ = 0, then H0 =

√

µ

σe

Mp

µed(1 + N)
or H0 =

√

µ

σe

Mp

µed(1 − N)
critical

external uniform magnetic field;

• if ∆ < 0, then

√

µ

σe

Mp

µed(1 + N)
< H0 <

√

µ

σe

Mp

µed(1 − N)
bounded ex-

ternal uniform magnetic field.

3. Solution of the flow

3.1. ∆ > 0: weak or strong external uniform magnetic field

In this situation, equation (12)1 admits the following real routes

ξ1 =

√

α −
√

∆

2
=

1

2

[

√

(Mp + M)2 − N2M2 −
√

(Mp − M)2 − N2M2

]

,

ξ2 =

√

α +
√

∆

2
=

1

2

[

√

(Mp + M)2 − N2M2 +
√

(Mp − M)2 − N2M2

]

,

ξ3 = −ξ1, ξ4 = −ξ2, (13)
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so that the general solution of (10) is given by

w(y) = C1 cosh(ξ1y) + C2 sinh(ξ1y) + C3 cosh(ξ2y) + C4 sinh(ξ2y) +
γ

β
. (14)

Thanks to this last equation, we obtain

v(y) = 2
{

A+

1 [C1 sinh(ξ1y) + C2 cosh(ξ1y)]+

A+

2 [C3 sinh(ξ2y) + C4 cosh(ξ2y)] − γ

β
y
}

+ C5,

h(y) =
2

M

{

B+

1 [C1 cosh(ξ1y) + C2 sinh(ξ1y)]+

B+

2 [C3 cosh(ξ2y) + C4 sinh(ξ2y)] +
M2

2

γ

β
y2 − y

2
+

γ

β

}

+ C6, (15)

where

A+

1 =
1 − N2

M2
p

ξ1 −
1

ξ1

, A+

2 =
1 − N2

M2
p

ξ2 −
1

ξ2

,

B+
1 = 1 − ξ2

1

M2
p

, B+
2 = 1 − ξ2

2

M2
p

, (16)

and Ci, i = 1, . . . , 6 are arbitrary constants.
The solution of our problem is determined by asking that the functions given
by (14), (15) satisfy the boundary conditions (8)1,2,3. More precisely:

v(y) =
M2

p

ξ2
2 − ξ2

1

A+
1 sinh ξ2[cosh(ξ1y) − cosh ξ1] − A+

2 sinh ξ1[cosh(ξ2y) − cosh ξ2]

sinh ξ1 sinh ξ2

+ 2
γ

β

A+

1 D+

2 sinh(ξ1y) − A+

2 D+

1 sinh(ξ2y)

A+
1 sinh ξ1 cosh ξ2 − A+

2 sinh ξ2 cosh ξ1

− 2
γ

β
y,

w(y) =
M2

p

2(ξ2
2 − ξ2

1)

sinh ξ2 sinh(ξ1y) − sinh ξ1 sinh(ξ2y)

sinh ξ1 sinh ξ2

+
γ

β

D+

2 cosh(ξ1y) − D+

1 cosh(ξ2y)

A+
1 sinh ξ1 cosh ξ2 − A+

2 sinh ξ2 cosh ξ1

+
γ

β
,

h(y) =
M2

p

M(ξ2
2 − ξ2

1)

B+

1 sinh ξ2 sinh(ξ1y) − B+

2 sinh ξ1 sinh(ξ2y)

sinh ξ1 sinh ξ2

− y

M

+
2

M

γ

β

B+

1 D+

2 [cosh(ξ1y) − cosh ξ1] − B+

2 D+

1 [cosh(ξ2y) − cosh ξ2]

A+
1 sinh ξ1 cosh ξ2 − A+

2 sinh ξ2 cosh ξ1

− M
γ

β
(1 − y2). (17)
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where

D+

1 = cosh ξ1 + A+

1 sinh ξ1, D+

2 = cosh ξ2 + A+

2 sinh ξ2. (18)

3.2. ∆ = 0: critical external uniform magnetic field

In this situation, equation (12)1 admits the following real routes

ξ1 = ξ2 =

√

α

2
=

√

MpM =: ξ, ξ3 = ξ4 = −ξ1. (19)

After determining the general solution of (7)1,2,3 and imposing the boundary
conditions (8)1,2,3, we arrive at:

v(y) =
M2

p

2ξ

A0
1[cosh ξ cosh(ξy) − y sinh ξ sinh(ξy) − 1] + A0

2 sinh ξ[cosh ξ − cosh(ξy)]

sinh2 ξ

+ 2
γ

β

(A0
2 cosh ξ − A0

1D
0
2) sinh(ξy) + A0

1D
0
1y cosh(ξy)

A0
1 + A0

2 sinh ξ cosh ξ
− 2

γ

β
y,

w(y) =
M2

p

4ξ

cosh ξ sinh(ξy) − y sinh ξ cosh(ξy)

sinh2 ξ

+
γ

β

D0
1y sinh(ξy) − (A0

2 sinh ξ + D0
2) cosh(ξy)

A0
1 + A0

2 sinh ξ cosh ξ
+

γ

β
,

h(y) =
M2

p

2ξM

(B0
1 cosh ξ + 2B0

2 sinh ξ) sinh(ξy) − B0
1y sinh ξ cosh(ξy)

sinh2 ξ
− y

M

+
2

M

γ

β

{

B0
1

[

1 +
D0

1y sinh(ξy) − (A0
2 sinh ξ + D0

2) cosh(ξy)

A0
1 + A0

2 sinh ξ cosh ξ

]

+ 2B0
2

D0
1 [cosh ξ − cosh(ξy)]

A0
1 + A0

2 sinh ξ cosh ξ

}

− M
γ

β
(1 − y2), (20)

where

A0
1 =

1 − N2

M2
p

ξ − 1

ξ
, A0

2 =
1 − N2

M2
p

+
1

ξ2
, B0

1 = 1 − ξ2

M2
p

, B0
2 =

ξ

M2
p

,

D0
1 = cosh ξ + A0

1 sinh ξ, D0
2 = sinh ξ + A0

1 cosh ξ. (21)
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3.3. ∆ < 0: bounded external uniform magnetic field

In this situation, equation (12)1 admits the following complex routes

ξ1 =
1

2

[

√

(Mp + M)2 − N2M2 − i

√

N2M2 − (Mp − M)2
]

,

ξ2 =
1

2

[

√

(Mp + M)2 − N2M2 + i

√

N2M2 − (Mp − M)2
]

,

ξ3 = −ξ1, ξ4 = −ξ2. (22)

Proceeding as in the previous cases, the solution of the problem (7)1,2,3, (8)1,2,3

is given by:

v(y) =
M2

p

2δσ

1

sin2 σ + sinh2 δ

[

(A−

1 sin σ cosh δ − A−

2 cosσ sinh δ) cos(σy) cosh(δy)

− (A−

1 cosσ sinh δ + A−

2 sin σ cosh δ) sin(σy) sinh(δy) + A−

2 sinh δ cosh δ − A−

1 cosσ sin σ
]

+ 2
γ

β

(A−

2 D−

1 − A−

1 D−

2 ) cos(σy) sinh(δy) + (A−

1 D−

1 + A−

2 D−

2 ) sin(σy) cosh(δy)

A−

1 sin σ cosσ + A−

2 sinh δ cosh δ
− 2

γ

β
y,

w(y) =
M2

p

4δσ

sin σ cosh δ cos(σy) sinh(δy) − cosσ sinh δ sin(σy) cosh(δy)

sin2 σ + sinh2 δ

+
γ

β

D−

1 sin(σy) sinh(δy) − D−

2 cos(σy) cosh(δy)

A−

1 sin σ cosσ + A−

2 sinh δ cosh δ
+

γ

β
,

h(y) =
M2

p

2Mδσ

1

sin2 σ + sinh2 δ

[

(B−

1 sin σ cosh δ − B−

2 cosσ sinh δ) cos(σy) sinh(δy)

− (B−

1 cosσ sinh δ + B−

2 sin σ cosh δ) sin(σy) cosh(δy)
]

− y

M

+
2

M

γ

β

1

A−

1 sin σ cosσ + A−

2 sinh δ cosh δ

{

(B−

2 D−

1 − B−

1 D−

2 )[cos(σy) cosh(δy) − cosσ cosh δ]

+ (B−

1 D−

1 + B−

2 D−

2 )[sin(σy) sinh(δy) − sin σ sinh δ]
}

− M
γ

β
(1 − y2),

(23)
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where

δ =
1

2

√

(Mp + M)2 − N2M2, σ =
1

2

√

N2M2 − (Mp − M)2,

A−

1 =

(

1 − N2

M2
p

− 1

MpM

)

δ, A−

2 =

(

1 − N2

M2
p

+
1

MpM

)

σ,

B−

1 =
M2

p − M2(1 − N2)

2M2
p

, B−

2 = − 2

M2
p

σδ,

D−

1 = A−

1 cosσ sinh δ − A−

2 sin σ cosh δ + cosσ cosh δ,

D−

2 = A−

1 sinσ cosh δ + A−

2 cosσ sinh δ + sin σ sinh δ. (24)

4. Remarks on the flow

In this section, we first make some considerations on the flow which hold in
all the three previous cases when the heating is asymmetric.

• It is easy to prove that all the denominators in (17), (20), (23) do not
vanish.

• It is interesting to compute the electric field E associated to the magnetic
field. From the Maxwell equation

E =
1

σe

∇× H + µeH× v

and (3)1,3 we get that E is parallel to w:

E = −µeH0V0

M
[h′(y) + Mv(y)]e3.

Taking into account (7)3 and the boundary conditions, after some straight-
forward and long calculations, we obtain that E is constant and when
∆ > 0, ∆ = 0, ∆ < 0 it assumes the following form

E = E0e3 =
µeH0V0

M2

[

1 −
M2M2

p

ξ2
2 − ξ2

1

A+

2 sinh ξ1 cosh ξ2 − A+

1 sinh ξ2 cosh ξ1

sinh ξ1 sinh ξ2

]

e3,

E = E0e3 =
µeH0V0

M2

[

1 −
M2M2

p

2ξ

A0
2 sinh ξ cosh ξ − A0

1

sinh2 ξ

]

e3,

E = E0e3 =
µeH0V0

M2

[

1 −
M2M2

p

2σδ

A−

2 sinh δ cosh δ − A−

1 sin σ cosσ

sin2 σ + sinh2 δ

]

e3.

(25)

The electric field does not depend on λ, i.e. on the difference of the
temperature between the walls.
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We notice that the computation of the electric field is omitted in most of
the papers concerning MHD flows.

• Outside the planes where the vacuum is, by virtue of the usual transmis-
sion conditions for the electromagnetic field across Π1,2, we have

E = E0e3, H = H0e2.

• From the practical point of view, it is interesting to compute the Nusselt
number at Π1,2:

Nu1,2 =
k1,2 d

k
=

d

T2 − T1

dT

dx2

|x2=±d = ϑ′(±1) =
1

2
.

This allows us to compute the heat transfer coefficients k1,2 evaluated at
the walls.
The Nusselt number is related to the heat flux vector in the channel, which
is given by

q = − (T2 − T1)k

2d
e2.

This expression is physically quite reasonable because the heat transfer
occurs from the hot wall to the cold one.

• The skin friction (τ 1,2) and the skin couple friction (τ p1,2) at both plates
are given by

τ 1,2 = (µ + µr)
V0

d
v′(±1)e1; τ p1,2 = (cd + ca)

V0

d2
w′(±1)e3.

The expression of τ1,2 is related to the occurrence of the reverse flow, as
we will see in the next section.

We now consider other interesting physical situations.

• It is very easy to obtain the corresponding results to Section 3.1, 3.2, 3.3
when T1 = T2 (symmetric heating). From (5)4 we get T = T1 = T2 so
that λ = 0 and the expression of v, w, h is deduced by putting γ = 0 in
(17), (20), (23).

• In the previous Sections we have considered the mixed convection case
assuming the constant C 6= 0. In the case of natural convection (C = 0),
when the heating is asymmetric, the solution is obtained by (17), (20),

(23) writing only the terms having coefficient
γ

β
. This fact implies that

the electric field vanishes. Of course in the dimensionless variables, the
reference velocity V0 cannot be expressed in terms of C.
If C = 0 and the heating is symmetric, then the fluid is at rest and the
induced magnetic field vanishes (v = w = h = 0).
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• In the absence of external magnetic field and when the heating is asym-
metric, the motion is given by

v(y) =
1

2
(1 − y2)

[

λ

6(1 − N2)
y + 1

]

+
N2

Mp

cosh(Mpy) − coshMp

sinhMp

+
λN2[M2

p + 3(1 − N2)][sinh(Mpy) − y sinhMp]

6M2
p (1 − N2)(Mp coshMp − N2 sinhMp)

,

w(y) = − λ(1 − y2)

8(1 − N2)
+

y sinhMp − sinh(Mpy)

2 sinhMp

+ λ
[M2

p + 3(1 − N2)][coshMp − cosh(Mpy)]

12Mp(1 − N2)(Mp coshMp − N2 sinhMp)
. (26)

If T1 = T2, then v, w can be deduced by putting λ = 0 in the previ-
ous expressions. This result is in agreement with the one obtained by
Lukaszewicz for the Poiseuille flow of a homogeneous, incompressible mi-
cropolar fluid ([3]).

• If S is occupied by a Boussinesquian, electrically conducting Newtonian
fluid, then its MHD mixed convective flow is governed by (7)1 with w =
0, N = 0, (7)3,4 and (8)1,3,4 and it is given by

T2 > T1 :

θ(y) =
y

2
,

v(y) =
coshM − cosh(My)

M sinhM
− λ[sinh(My) − y sinhM ]

2M2 sinhM
,

h(y) =
sinh(My)

M sinhM
− y

M
+

λ[cosh(My) − coshM ]

2M2 sinhM
+

λ

4M
(1 − y2),

E = E0e3 =
µeH0V0

M2

[

1 − M coshM

sinhM

]

e3;

T2 = T1 :

T = T1 = T2,

v(y) =
coshM − cosh(My)

M sinhM
,

h(y) =
sinh(My)

M sinhM
− y

M
,

E = E0e3 =
µeH0V0

M2

[

1 − M coshM

sinhM

]

e3. (27)

In the case of symmetric heating the previous solution coincides with Hart-
mann flow (see for example [15]).
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In the case of natural convection, either when the heating is symmetrical
or not, the solution can be easily obtained by the previous relations writ-
ing only the terms having coefficient λ.
Finally, as in [16] and [17] , in the absence of the external magnetic field
we obtain

T2 > T1 : θ(y) =
y

2
, v(y) =

1

2
(1 − y2)

(

λ

6
y + 1

)

,

T2 = T1 : T = T1 = T2, v(y) =
1

2
(1 − y2). (28)

Due to the geometry of the problem, all the previous relations hold for all
y ∈ [−1, 1].

5. Results and discussions

The problem of the mixed magnetoconvection in the fully developed flow of
a micropolar fluid filling a vertical channel has been analytically solved. As it
is proved in Section 3, in the general case of asymmetric heating, the solution is
given by (17) or (20) or (23) according to the strength of the external magnetic
field. In any case, the solution depends on the values of some relevant physical
dimensionless parameters:

• the coupling parameter N2 which is related to the Newtonian and micro-
rotation viscosity coefficients. 0 < N < 1 and when N → 0 equation (2)1
reduces to the corresponding equation for a Newtonian fluid;

• the micropolar parameter Mp which is related to N , to the geometry of
the problem through L and to the particles size by means of l. Actually,
the more the particles sizes are small, the more Mp is big;

• the Hartmann number M2 which characterizes the strength of the external
magnetic field and the electromagnetic properties of the fluid;

• the buoyancy coefficient λ which appears in the analytical solution through
γ and which is related to the buoyancy forces due to the gravity. When
the heating is symmetric, it vanishes. Its sign depends on the one of the
characteristic velocity V0.

The micropolar properties of the fluid are described by two parameters (N and
Mp) unlike most of the papers in the literature because we have not employed
any condition on the material constants.

The aim of this Section is to present a selected set of graphical results illus-
trating the effects on the flow of the various parameters involved in the problem.
We first provide Figure 2 in order to show the influence of the parameter N on
the velocity, on the microrotation and on the induced magnetic field.
The velocity v decreases as the coupling number increases. It can be noticed

14
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Figure 2: The effect of N on the velocity, on the microrotation and on the induced magnetic
field. If N = 0.2, 0.5, 0.7, 0.9, then ∆ > 0, ∆ = 0, ∆ < 0, ∆ < 0, respectively.
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that the velocity in the case of micropolar fluid is less than that of the Newto-
nian fluid. Since N is an increasing function in µr, the difference of the velocity
between the micropolar and the Newtonian case grows with N , as it can be
expected.

As far as the microrotation field is concerned, it takes a minimum and a
maximum, which are more pronounced as N increases.
The absolute value of h (describing the induced magnetic field) decreases as N

increases.
Figure 3 reveals the effect of the micropolar parameter Mp on the flow.

When N and the geometry of the problem are fixed, different values of Mp

represent different values of ca and cd, i.e. different sizes of the particles. The
smaller the particles sizes (Mp increases), the greater the non-Newtonian effects
on the velocity. The minimum and the maximum of the microrotation and of
the induced magnetic field are more pronounced as Mp increases.

We now provide Figure 4 in order to show the influence of the strength of
the external magnetic field and the electromagnetic properties of the fluid on
v, w, h.

Figure 41 illustrates that the velocity decreases as M increases. The main
effect of the transverse external magnetic field is to generate electric currents
which retard the fluid in the central regions and accelerate the fluid near the
boundaries thus flattening the velocity profile in the absence of the magnetic
field. This behavior is the same as in the Hartmann flow ([15]).
The absolute value of the microrotation decreases as M increases.
From picture 43, it appears that the absolute value of h is an increasing function
in M until M reaches a critical values M∗. If M > M∗, then the absolute value
of h becomes a decreasing function in M .
This behavior of h has never been observed previously in the study of the MHD
flow of a fluid in a vertical channel.
The critical value M∗ depends on the other parameters, as it is shown in Table
1.
It is interesting to compare these values with the corresponding value of M∗

in the Newtonian case (Table 2).
In the micropolar fluid, M∗ is always grater than in the Newtonian fluid and

its value increases as N increases. This behavior can be expected because when
N → 1 the fluid differs highly from the Newtonian one.
Finally, the influence of the buoyancy parameter λ on the flow is provided in
Figure 5.
As Figures 51,2 reveal, the reverse flow occurs. This well known phenomenon

has been first discovered for the Newtonian fluid in [16]. The reverse flow
appears when the dimensional velocity and the gradient of P have the same
direction. If λ = 0 (symmetric heating, i.e. T1 = T2), then the pictures show
that v is always positive so that the dimensional velocity (v = v1e1) and the
gradient of P (∇P = −Ce1) have opposite direction, provided C 6= 0. Different
choices of the values of the other parameters do not modify the profile of the
velocity. Hence, in the case λ = 0 the reverse flow does not occur. Therefore,
the occurrence of the reverse flow is a feature of the mixed convection in the case
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Table 1: Micropolar: Critical value of M .

Mp N λ M∗

1 0.20 1 3.3333
2 3.2778
5 3.2222
10 3.2778

0.90 1 6.6667
2 6.6667
5 6.9444
10 6.9444

5 0.20 1 3.2778
2 3.2222
5 3.2222
10 3.2778

0.90 1 5.2778
2 5.2778
5 5.2778
10 5.2778

Table 2: Newtonian: Critical value of M .
λ M∗

1 3.2158
2 3.1603
5 3.1318
10 3.1731
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Figure 5: The effect of λ on the velocity, on the microrotation and on the induced magnetic
field (∆ = 0).
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of asymmetric heating. Actually, this phenomenon appears for suitable values
of λ. It is possible to compute a critical value λ∗ of λ such that

• C > 0 (⇐⇒ λ > 0): if λ ≤ λ∗, then the reverse flow does not appear; if
λ > λ∗, then the reverse flow occurs near the coldest wall;

• C < 0 (⇐⇒ λ < 0): if λ ≥ λ∗, then the reverse flow does not appear; if
λ < λ∗, then the reverse flow occurs near the hottest wall.

The value of λ∗ depends on the choice of the other parameters and it is computed
by putting τ 1,2 equal to zero. In Table 3 we furnish the values of λ∗ when
C > 0. From this Table we can easily obtain the corresponding critical values
of λ∗ when C < 0 because the profiles of v for negative values of λ can be found
by symmetry from the corresponding graphics of v when λ > 0.
From this Table it appears that

• λ∗ increases as M increases;

• λ∗ decreases as N increases;

• λ∗ is not influenced in a relevant way by Mp.

Hence, the influence of M on λ∗ shows that the presence of the external mag-
netic field tends to prevent the occurrence of the reverse flow. This behavior
has been observed also in other physical situations ([18]).
For fixed values of M , when N → 1 the value of λ∗ differs highly from the
corresponding value in the Newtonian case (see Tables 3 and 4).
We point out that the value of λ∗ is never computed in the papers concerning
micropolar fluid.

From pictures 53,4,5,6 we see that the absolute values of w and h increase as
|λ| increases.

In order to complete the description of the flow, in Table 5 we furnish the
values of E0

µeH0V0

as Mp, N , and M change. We have that E has always opposite
direction of e3.

For the sake of completeness, we provide Figure 6 which displays the behavior
of the flow in the case of natural convection.

6. Conclusions

The analytical solution is obtained for the MHD mixed convection in the fully
developed flow of an electrically conducting micropolar fluid filling a vertical
channel with symmetric and asymmetric wall temperatures. In our analysis,
we determine also the induced magnetic field, which is usually neglected in the
literature.
The following facts have been reported:

1. The behavior of the micropolar flow differs highly from the Newtonian
one as the coupling number N increases and the micropolar parameter
Mp decreases.
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Table 3: Micropolar: Critical value of λ.

Mp N M λ∗

1 0.20 1 6.1086
2 7.0873
4 10.0861
10 20.9480

0.50 1 4.6599
2 5.2791
4 7.2492
10 14.6721

0.70 1 3.0595
2 3.3612
4 4.3715
10 8.4447

0.90 1 1.0547
2 1.1027
4 1.2785
10 2.1232

5 0.20 1 6.0998
2 7.0881
4 10.1031
10 20.9725

0.50 1 4.6245
2 5.2925
4 7.3536
10 14.8314

0.70 1 3.0310
2 3.4014
4 4.5575
10 8.7554

0.90 1 1.0699
2 1.1643
4 1.4610
10 2.4971

Table 4: Newtonian: Critical value of λ.
M λ∗

1 6.3891
2 7.4444
4 10.6571
10 22.2222
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Figure 6: Behavior of the velocity, of the microrotation and of the induced magnetic field in
the case of natural convection.
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Table 5: Electric field.

Mp N M E0

µeH0V0

1 0.20 1 -0.3019
2 -0.2602
4 -0.1828
10 -0.0880

0.90 1 -0.0783
2 -0.0743
4 -0.0626
10 -0.0357

5 0.20 1 -0.3071
2 -0.2637
4 -0.1842
10 -0.0882

0.90 1 -0.1920
2 -0.1651
4 -0.1119
10 -0.0475

2. The absolute value of the function h describing the induced magnetic field
is an increasing function in the Hartmann number M until M reaches a
critical values M∗. If M > M∗, then the absolute value of h becomes a
decreasing function in M .

3. For suitable values of the buoyancy parameter λ, the reverse flow occurs
near the coldest (hottest) wall if λ > 0 (λ < 0). If the buoyancy parameter
vanishes (symmetric heating), then the phenomenon of the reverse flow
does not appear.

4. The presence of the external magnetic field tends to prevent the occurrence
of the reverse flow.
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