EXPLICIT LOG FANO STRUCTURES ON BLOW-UPS OF PROJECTIVE SPACES

CAROLINA ARAUJO AND ALEX MASSARENTI

Abstract

In this paper we determine which blow-ups X of \mathbb{P}^{n} at general points are log Fano, that is, when there exists an effective \mathbb{Q}-divisor Δ such that $-\left(K_{X}+\Delta\right)$ is ample and the pair (X, Δ) is klt. For these blow-ups, we produce explicit boundary divisors Δ making $X \log$ Fano.

Contents

| 1. Introduction | 1 |
| :--- | :--- | ---: |
| 2. Mori Dream Spaces | 4 |
| 3. Cones of curves and divisors on blow-ups of \mathbb{P}^{n} at general points | 6 |
| $4 . \quad$ Finding explicit divisors making $X_{k}^{n} \log$ Fano for $k \leq n+2$ | 11 |
| 5. Finding explicit divisors making $X_{n+3}^{n} \log$ Fano | 13 |
| $6 . \quad$ On a question of Hassett | 24 |
| References | 29 |

1. Introduction

In this paper we investigate special properties of blow-ups of complex projective spaces at general points. These varieties appear frequently in algebraic geometry, for example in moduli problem. In general, the more points are blown-up, the more complicated the resulting variety is. For positive integers n and k, denote by X_{k}^{n} a blow-up of \mathbb{P}^{n} at k points in general position. The 2-dimensional case has been understood classically. For $k \leq 8$, $S=X_{k}^{2}$ is a del Pezzo surface (i.e. $-K_{S}$ is ample), and its geometry can be completely described in terms of some finite data. For $k \geq 9$, the situation changes drastically. The anti-canonical class of S is no longer big, and S contains infinitely many (-1)-curves.

For $n \geq 3, X_{1}^{n}$ is a Fano manifold (i.e., $-K_{X_{1}^{n}}$ is ample), but as soon as $k \geq 2, X_{k}^{n}$ is no longer Fano. However, for small values of k, the blow-up X_{k}^{n} behaves like a Fano manifold. A more appropriate notion here is that of a log Fano variety.

Definition 1.1. Let X be a normal projective \mathbb{Q}-factorial variety. We say that X is \log Fano if there exists an effective \mathbb{Q}-divisor Δ such that $-\left(K_{X}+\Delta\right)$ is ample, and the pair (X, Δ) is klt. (See for instance [Ko, Definition 3.5] for the notion of klt singularities).

[^0]Log Fano varieties play an important role in the classification of algebraic varieties. It was proved in [BCHM, Corollary 1.3.2] that they are special instances of Mori dream spaces. We refer to Section 2 and references therein for the definition and special properties of Mori dream spaces. Here we just vaguely remark that a Mori dream space X behaves very well with respect to the minimal model program. Moreover, the birational geometry of X can be encoded in some finite data, namely its cone of effective divisors $\operatorname{Eff}(X)$ together with a chamber decomposition on it.

In this paper we address the following problems:
For which values of n and k is X_{k}^{n} a log Fano variety?
In those cases, can we find an explicit \mathbb{Q}-divisor Δ making $X_{k}^{n} \log$ Fano?
In the second question, the expected properties of Δ depend on the context. In some cases, one would like Δ to be irreducible. On the other hand, when X_{k}^{n} appears as a compactification of some moduli space, it is often desirable that Δ is supported on the boundary divisor.
Example 1.2. Let us consider the case $n=3$. By Proposition 1.4 below, if $k \leq 8$, then the Mori cone of $X=X_{k}^{3}$ is generated by classes of lines R_{i} in the exceptional divisors, $1 \leq i \leq k$, and strict transforms $L_{i, j}$ of the lines through two of the blown-up points. Using this result, one checks easily that $-K_{X}$ is nef for $k \leq 8$. Moreover, by computing the top intersection $\left(-K_{X}\right)^{3}$, one concludes that $-K_{X}$ is big if and only if $k \leq 7$. Projective manifolds with nef and big anti-canonical class are called weak Fano. The fact that X_{k}^{3} is weak Fano if and only if $k \leq 7$ has been proven, with slightly different techniques, in BL, Proposition 2.9]. By Lemma [2.5, weak Fano manifolds are log Fano. On the other hand, \log Fano varieties have big anti-canonical class. So we conclude that X is \log Fano if and only if $k \leq 7$.

When $k \leq 4, X_{k}^{3}$ is a toric variety and one can take Δ to be a suitable combination of toric invariant divisors. Alternatively, we may choose $\Delta=\epsilon D$ to be irreducible. We describe such irreducible Δ when $k=4$. We may assume that the blown-up points are the fundamental points of \mathbb{P}^{3}. Let $D \subset X_{4}^{3}$ be the strict transform of the Cayley nodal cubic surface

$$
S=\left\{x_{0} x_{1} x_{2}+x_{0} x_{1} x_{3}+x_{0} x_{2} x_{3}+x_{1} x_{2} x_{3}=0\right\} \subset \mathbb{P}^{3} .
$$

The surface S has ordinary double points at the fundamental points of \mathbb{P}^{3}, and is smooth elsewhere. Thus D is smooth and $D \sim 3 H-2\left(E_{1}+\ldots+E_{4}\right)$. One computes that

$$
\left(-K_{X_{4}^{3}}-\epsilon D\right) \cdot R_{i}=2-2 \epsilon \text { and }\left(-K_{X_{4}^{3}}-\epsilon D\right) \cdot L_{i, j}=4 \epsilon .
$$

Thus $(X, \epsilon D)$ is klt and $-\left(K_{X_{4}^{3}}+\epsilon D\right)$ is ample for any $0<\epsilon<1$.
When $k=5$, let $H_{i, j, k} \subset \mathbb{P}^{3}$ be the plane spanned by three of the blown-up points p_{i}, p_{j} and p_{k}, and take D to be the strict transform of $\sum_{i, j, k} H_{i, j, k}$. Then $D \sim 10 H-6\left(E_{1}+\ldots+\right.$ E_{5}), and one computes

$$
-\left(K_{X_{5}^{3}}-\epsilon D\right) \cdot R_{i}=2-6 \epsilon \text { and }-\left(K_{X_{5}^{3}}-\epsilon D\right) \cdot L_{i, j}=2 \epsilon .
$$

So $-\left(K_{X_{5}^{3}}+\epsilon D\right)$ is ample for any $0<\epsilon<\frac{1}{3}$. Furthermore, we can take $\epsilon>0$ sufficiently small so that the pair $\left(X_{5}^{3}, \epsilon D\right)$ is klt.

When $k=6$, let $Q_{i} \subset \mathbb{P}^{3}$ be the unique irreducible quadric cone through the 6 blown-up points, with vertex at one of the points p_{i}. Let D be the strict transform of $Q_{1}+Q_{2}+Q_{3}+$
$H_{4,5,6}$ in X_{6}^{3}. (As before, $H_{4,5,6} \subset \mathbb{P}^{3}$ denotes the plane spanned by p_{4}, p_{5} and p_{6}.) Then $D \sim 7 H-4\left(E_{1}+\ldots+E_{6}\right)$, and one computes

$$
-\left(K_{X_{6}^{3}}+\epsilon D\right) \cdot R_{i}=2-4 \epsilon \text { and }-\left(K_{X_{6}^{3}}+\epsilon D\right) \cdot R_{i}=\epsilon .
$$

So $-\left(K_{X_{6}^{3}}+\epsilon D\right)$ is ample for any $0<\epsilon<\frac{1}{2}$. Furthermore we can take $\epsilon>0$ sufficiently small so that the pair $\left(X_{6}^{3}, \epsilon D\right)$ is klt.

Suppose now that $k=7$. For each triple $1 \leq i, j, k \leq 7$, consider the linear system of cubics defining the standard Cremona transformation of \mathbb{P}^{3} centered at the four points p_{h}, $h \neq i, j, k$. There exists an unique irreducible cubic surface $S_{i, j, k} \subset \mathbb{P}^{3}$ in this linear system passing through p_{i}, p_{j} and p_{k}. It is smooth at p_{i}, p_{j} and p_{k}, and has a double point at p_{h} for $h \neq i, j, k$. Its strict transform in X_{7}^{3} is a rigid surface. Let D be the strict transform of $\sum_{i, j, k} S_{i, j, k}$ in X_{7}^{3}. Then $D \sim 105 H-55\left(E_{1}+\ldots+E_{7}\right)$, and one computes

$$
-\left(K_{X_{7}^{3}}+\epsilon D\right) \cdot R_{i}=2-55 \epsilon \text { and }\left(K_{X_{7}^{3}}+\epsilon D\right) \cdot L_{i, j}=5 \epsilon
$$

So $-\left(K_{X_{5}^{3}}+\epsilon D\right)$ is ample for any $0<\epsilon<\frac{2}{55}$. Furthermore we can take $\epsilon>0$ sufficiently small so that the pair $\left(X_{7}^{3}, \epsilon D\right)$ is klt.

For $n \geq 4$, we can approach the first question using Mori dream spaces. The main results of Muk01 and CT06] put together show that X_{k}^{n} is a Mori dream space if and only if one of the following holds:
$-n=4$ and $k \leq 8$.

- $n>4$ and $k \leq n+3$.

Using Mukai's description of the geometry of the boundary cases X_{8}^{4} and X_{n+3}^{n}, see Section [3.2, we answer the first question.

Theorem 1.3. Let X_{k}^{n} be a blow-up of \mathbb{P}^{n} at k points in general position, with $n \geq 2$ and $k \geq 0$. Then X_{k}^{n} is log Fano if and only if one of the following holds:

- $n=2$ and $k \leq 8$,
- $n=3$ and $k \leq 7$,
- $n=4$ and $k \leq 8$,
- $n>4$ and $k \leq n+3$.

The proof of Theorem 1.3, which may already have been known to experts, does not give any hint on which \mathbb{Q}-divisor Δ makes $X_{k}^{n} \log$ Fano. So we proceed to find such explicit \mathbb{Q}-divisor Δ. The first step is to determine the Mori cone of X_{k}^{n}.
Proposition 1.4. Let X_{k}^{n} be the blow-up of \mathbb{P}^{n} at points in general position p_{1}, \ldots, p_{k}, $n \geq 2$. Denote by R_{i} the class of a line in the exceptional divisors over p_{i}, and by $L_{i, j}$ the class of the strict transforms of the line through two distinct points p_{i} and p_{j}. Suppose that either of the following holds:

- $k \leq 2 n$.
- $n=3$ and $k \leq 8$.

Then the Mori cone $\overline{\mathrm{NE}}\left(X_{k}^{n}\right)$ is generated by the R_{i} 's and $L_{i, j}$'s.
Using Proposition 1.4, it is not hard to find a \mathbb{Q}-divisor Δ such that $-\left(K_{X_{k}^{n}}+\Delta\right)$ is ample. We often choose Δ as linear combinations of extremal divisors in X_{k}^{n}. The hard part is to show that for such divisors $\left(X_{k}^{n}, \Delta\right)$ is klt. We do so by providing explicit log resolutions for
these pairs, and computing discrepancies. Explicit \mathbb{Q}-divisors Δ making $X_{k}^{n} \log$ Fano are given in Theorems 4.3, 4.5, 5.7 and 5.9. In particular, they provide a new proof that these varieties are Mori dream spaces.

Some blow-ups of projective spaces at points (and, more generally, linear spaces) appear as moduli spaces $\bar{M}_{g, A[n]}$ of weighted pointed stable curves. These spaces were introduced and investigated by Hassett in [Ha. In [Ha, Problem 7.1], Hassett asks whether there is an effective \mathbb{Q}-divisor Δ on $\bar{M}_{g, A[n]}$, supported on the boundary, such that $\left(\bar{M}_{g, A[n]}, \Delta\right)$ is \log canonical, and $K_{\bar{M}_{g, A[n]}}+\Delta$ is ample. We end the paper by addressing this question.

The paper is organized as follows. In Section 2, we recall the definition and some special properties of Mori dream spaces. In Section 3] we review the description from [CT06] of the cone of effective divisors of X_{k}^{n}, and make explicit the description of its Mori chamber decomposition proposed in Muk05. We end this section by proving Theorem 1.3. In Section 4, we exhibit an integral divisor $D \subset X_{k}^{n}$ and rational number $\epsilon>0$ such that $\Delta=\epsilon D$ makes $X_{k}^{n} \log$ Fano for $k \leq n+2$. This task is relatively easy, and serves as warm up for the next case $n=k+3$, treated in Section 5. For X_{n+3}^{n}, we construct D from joins of suitable linear spaces and higher secant varieties of the unique rational normal curve through the blown-up points. In order to construct an explicit log resolution for the resulting pair $\left(X_{n+3}^{n}, \Delta\right)$, we need a good understanding of the intersections of such joins. Subsection 5.1 is devoted to this. The description of D is given separately when n is odd (Subsection 5.2) and even (Subsection 5.3). Finally, in Section 6, we address a question of Hassett about some moduli spaces $\bar{M}_{g, A[n]}$ of weighted pointed stable curves.

Acknowledgments. This work was done while the second named author was a PostDoctorate at IMPA, funded by CAPES-Brazil. The first named author was partially supported by CNPq and Faperj Research Fellowships. We would like to thank Cinzia Casagrande, Ana-Maria Castravet and Massimiliano Mella for inspiring conversations that helped giving shape to this paper.

2. Mori Dream Spaces

Let X be a normal projective variety. We denote by $N^{1}(X)$ the real vector space of \mathbb{R}-Cartier divisors modulo numerical equivalence. The nef cone of X is the (closed) convex cone $\operatorname{Nef}(X) \subset N^{1}(X)$ generated by classes of nef divisors. The movable cone of X is the convex cone $\operatorname{Mov}(X) \subset N^{1}(X)$ generated by classes of movable divisors. These are Cartier divisors whose stable base locus has codimension at least two in X. The effective cone of X is the convex cone $\operatorname{Eff}(X) \subset N^{1}(X)$ generated by classes of effective divisors. We have inclusions:

$$
\operatorname{Nef}(X) \subset \overline{\operatorname{Mov}(X)} \subset \overline{\operatorname{Eff}(X)}
$$

We say that a birational map $f: X \rightarrow X^{\prime}$ into a normal projective variety X^{\prime} is a birational contraction if its inverse does not contract any divisor. We say that it is a small \mathbb{Q}-factorial modification if X^{\prime} is \mathbb{Q}-factorial and f is an isomorphism in codimension one. If $f: X \rightarrow X^{\prime}$ is a small \mathbb{Q}-factorial modification, then the natural pullback map f^{*} : $N^{1}\left(X^{\prime}\right) \rightarrow N^{1}(X)$ sends $\operatorname{Mov}\left(X^{\prime}\right)$ and $\operatorname{Eff}\left(X^{\prime}\right)$ isomorphically onto $\operatorname{Mov}(X)$ and $\operatorname{Eff}(X)$, respectively. In particular, we have $f^{*}\left(\operatorname{Nef}\left(X^{\prime}\right)\right) \subset \overline{\operatorname{Mov}(X)}$.

Definition 2.1. A normal projective \mathbb{Q}-factorial variety X is called a Mori dream space if the following conditions hold:
$-\operatorname{Pic}(X)$ is finitely generated,

- $\operatorname{Nef}(X)$ is generated by the classes of finitely many semi-ample divisors,
- there is a finite collection of small \mathbb{Q}-factorial modifications $f_{i}: X \rightarrow X_{i}$, such that each X_{i} satisfies the second condition above, and

$$
\operatorname{Mov}(X)=\bigcup_{i} f_{i}^{*}\left(\operatorname{Nef}\left(X_{i}\right)\right)
$$

The collection of all faces of all cones $f_{i}^{*}\left(\operatorname{Nef}\left(X_{i}\right)\right)$'s above forms a fan supported on $\operatorname{Mov}(X)$. If two maximal cones of this fan, say $f_{i}^{*}\left(\operatorname{Nef}\left(X_{i}\right)\right)$ and $f_{j}^{*}\left(\operatorname{Nef}\left(X_{j}\right)\right)$, meet along a facet, then there exists a commutative diagram:

where Y is a normal projective variety, and h_{i} and h_{j} are small birational morphisms. The fan structure on $\operatorname{Mov}(X)$ can be extended to a fan supported on $\operatorname{Eff}(X)$ as follows.

Definition 2.2. Let X be a Mori dream space. We describe a fan structure on the effective cone $\operatorname{Eff}(X)$, called the Mori chamber decomposition. We refer to HK00, Proposition $1.11(2)$] and [Oka11, Section 2.2] for details. There are finitely many birational contractions from X to Mori dream spaces, denoted by $g_{i}: X \rightarrow Y_{i}$. The set $\operatorname{Exc}\left(g_{i}\right)$ of exceptional prime divisors of g_{i} has cardinality $\rho\left(X / Y_{i}\right)=\rho(X)-\rho\left(Y_{i}\right)$. The maximal cones \mathcal{C}_{i} of the Mori chamber decomposition of $\operatorname{Eff}(X)$ are of the form:

$$
\mathcal{C}_{i}=\operatorname{Cone}\left(g_{i}^{*}\left(\operatorname{Nef}\left(Y_{i}\right)\right), \operatorname{Exc}\left(g_{i}\right)\right)
$$

We call \mathcal{C}_{i} or its interior \mathcal{C}_{i}° a maximal chamber of $\operatorname{Eff}(X)$.
By BCHM, Corollary 1.3.2], a log Fano variety is a Mori dream space. The converse does not hold in general, and there are several criteria for a Mori dream space to be log Fano [GOST]. We will use the following.

Proposition 2.3. Let X be a log Fano variety. Then any small \mathbb{Q}-factorial modification of X is also log Fano.

Proposition 2.3 follows from the properties of Mori dream spaces and Lemma 2.4 below. In what follows, a normal projective variety X is said to be of Fano type if there exists an effective \mathbb{Q}-divisor D on X such that $-\left(K_{X}+D\right)$ is \mathbb{Q}-Cartier and ample, and the pair (X, D) is klt. This is weaker than our current notion of \log Fano because it does not require that X be \mathbb{Q}-factorial.

Lemma 2.4 ([GOST, Lemma 3.1]). Let $h: X \rightarrow Y$ be a small birational morphism between normal projective varieties. Then X is of Fano type if and only if so is Y.

Lemma 2.5. Let X be a normal \mathbb{Q}-factorial projective variety with at worst klt singularities. Suppose that $-K_{X}$ is nef and big. Then X is log Fano.

Proof. Since $-K_{X}$ is big, by [La, Corollary 2.2.6], there exist an ample divisor A, an effective divisor D, and a positive integer m such that $-m K_{X} \equiv A+D$. For $h>m$, we can write
$-h K_{X} \equiv-(h-m) K_{X}+A+D$. The divisor $D^{\prime}=-(h-m) K_{X}+A$ is a sum of a nef and an ample divisor, and so it is ample. Setting $\epsilon=\frac{1}{h}$, we get that $-\left(K_{X}+\epsilon D\right) \equiv \epsilon D^{\prime}$ is ample. Since X has at worst klt singularities, by taking h large enough, we get that the pair $(X, \epsilon D)$ is klt.

Remark 2.6. In the next section, we will use Proposition 2.3 and Lemma 2.5 to prove that certain blow-ups X of \mathbb{P}^{n} at general points are Mori dream spaces. To do so, we will use the fact that X admits a small \mathbb{Q}-factorial modification X^{\prime} which is smooth and has $-K_{X^{\prime}}$ nef and big. Notice that smoothness of X^{\prime} is essential. In fact, there are examples of Mori dream spaces X which are not log Fano, but admit a (very singular) small \mathbb{Q}-factorial modification X^{\prime} with $-K_{X^{\prime}}$ ample, see for instance [CG, Example 5.1].

3. Cones of curves and divisors on blow-ups of \mathbb{P}^{n} at general points

Let $p_{1}, \ldots, p_{k} \in \mathbb{P}^{n}$ be general points, and let X_{k}^{n} be the blow-up of \mathbb{P}^{n} at p_{1}, \ldots, p_{k}. In this section we describe several cones of curves and divisors on X_{k}^{n}.

Notation 3.1. We denote by $H \in N^{1}\left(X_{k}^{n}\right)$ the class of the pullback of the hyperplane section of \mathbb{P}^{n}. By abuse of notation, we denote by E_{i} both the exceptional divisor over p_{i} and its class in $N^{1}\left(X_{k}^{n}\right)$. Then $\left\{H, E_{1}, \ldots, E_{k}\right\}$ is a basis of $N^{1}\left(X_{k}^{n}\right)$, and we have

$$
-K_{X_{k}^{n}}=(n+1) H-(n-1) E_{1}-\ldots-(n-1) E_{k} .
$$

We denote by $L \in N_{1}\left(X_{k}^{n}\right)$ the class of the strict transform of a general line on \mathbb{P}^{n}. For each $i \in\{1, \ldots, k\}$, we denote by $R_{i} \in N_{1}\left(X_{k}^{n}\right)$ the class of a line on $E_{i} \cong \mathbb{P}^{n-1}$, and by $L_{i} \in N_{1}\left(X_{k}^{n}\right)$ the class of the strict transform of a general line on \mathbb{P}^{n} passing through p_{i}. For $i \neq j$, we denote by $L_{i, j}$ the class of the strict transform of the line on \mathbb{P}^{n} joining p_{i} and p_{j}. Then $\left\{L, R_{1}, \ldots, R_{k}\right\}$ is a basis of $N_{1}\left(X_{k}^{n}\right)$, and we have

$$
\begin{equation*}
L \equiv L_{i, j}+R_{i}+R_{j} \text { and } L_{i} \equiv L-R_{i} \equiv L_{i, j}+R_{j} . \tag{3.1}
\end{equation*}
$$

3.1. The Mori cone of X_{k}^{n}. In this section we prove Proposition 1.4,

Lemma 3.2. Let $p_{1}, \ldots, p_{8} \in \mathbb{P}^{3}$ be general points, and $C \subset \mathbb{P}^{3}$ an irreducible curve of degree d having multiplicity $m_{i}=\operatorname{mult}_{p_{i}}(C)$ at $p_{i}, 1 \leq i \leq 8$. Then $m_{1}+\ldots+m_{8} \leq 2 d$.

Proof. If C is degenerate, then $m_{i} \neq 0$ for at most three points p_{i}, and the conclusion follows easily from Bézout's Theorem. So from now on we assume that C is non degenerate. Let Λ be the pencil of irreducible quadric surfaces passing through p_{1}, \ldots, p_{8}. Suppose that $m_{1}+\ldots+m_{8}>2 d$. It follows from Bézout's Theorem that C is contained in every member of Λ. In particular, C is a non degenerate irreducible curve contained in the intersection of two irreducible quadric surfaces. So $d \in\{3,4\}$. Suppose that $d=3$. Then C must be a twisted cubic through at most 6 of the p_{i} 's, and thus $m_{1}+\ldots+m_{8} \leq 6=2 d$, contradicting our assumptions. We conclude that $d=4, m_{i} \geq 1$ for every i, and $m_{j} \geq 2$ for some j. If follows from Bézout's Theorem that $m_{j}=2$, and $m_{i}=1$ for $i \neq j$. Consider the projection from p_{j}

$$
\pi_{p_{j}}: C \rightarrow \mathbb{P}^{2} .
$$

The image $\overline{\pi_{p_{1}}(C)}$ is a conic though the seven general points $\pi_{p_{j}}\left(p_{i}\right), i \neq j$, which is impossible. This shows that $m_{1}+\ldots+m_{8} \leq 2 d$.

Proof of Proposition 1.4. Let X_{k}^{n} be the blow-up of $\mathbb{P}^{n}, n \geq 2$, at points in general position p_{1}, \ldots, p_{k}. We follow Notation 3.1, Let $\widetilde{C} \subset X_{k}^{n}$ be an irreducible curve not contained in any exceptional divisor E_{i}, and denote by C the image of \widetilde{C} in \mathbb{P}^{n}. It is an irreducible curve of degree $d>0$ and multiplicity $m_{i}=\operatorname{mult}_{p_{i}} C \geq 0$ at p_{i}, \widetilde{C} is the strict transform of C, and

$$
\begin{equation*}
\widetilde{C} \equiv d L-m_{1} R_{1}-\ldots-m_{k} R_{k} \tag{3.2}
\end{equation*}
$$

We must show that the class of \widetilde{C} in $N_{1}\left(X_{k}^{n}\right)$ lies in the cone generated by the R_{i} 's and $L_{i, j}$'s. We may assume that $m_{1} \leq m_{2} \leq \cdots \leq m_{k}$.

Suppose first that $k \leq 2 n$.
First let us assume that k is even. We write

$$
\begin{align*}
\widetilde{C} \equiv & d L-m_{1}\left(R_{1}+R_{2}\right)-\left(m_{2}-m_{1}\right) R_{2}-m_{3}\left(R_{3}+R_{4}\right)-\left(m_{4}-m_{3}\right) R_{4}- \tag{3.3}\\
& \ldots-m_{k-1}\left(R_{k-1}+R_{k}\right)-\left(m_{k}-m_{k-1}\right) R_{k} .
\end{align*}
$$

Note that $m_{1}+\left(m_{2}-m_{1}\right)+m_{3}+\left(m_{4}-m_{3}\right)+\ldots+m_{k-1}+\left(m_{k}-m_{k-1}\right)=m_{2}+m_{4}+\ldots+m_{k}$. We claim that $m_{2}+m_{4}+\ldots+m_{k} \leq d$. Indeed, since $k \leq 2 n$, the set $\left\{p_{2}, p_{4}, \ldots, p_{k}\right\}$ has cardinality at most n. Consider the linear space $P=\left\langle p_{2}, p_{4}, \ldots, p_{k}\right\rangle \varsubsetneqq \mathbb{P}^{n}$. If $\left.m_{2}+m_{4}+\ldots+m_{k}\right\rangle d$, then $C \subset P$ by Bézout's Theorem. Since the p_{i} 's are general, $p_{1}, p_{3}, \ldots, p_{k-1} \notin P$, and so $m_{1}=m_{3}=\ldots=m_{k-1}=0$. But this implies that $m_{i}=0$ for $i \leq k-1$ and $m_{k}>d$, which is impossible. This proves the claim. So we can rewrite (3.3) as

$$
\begin{aligned}
\widetilde{C} \equiv & m_{1} L_{1,2}+\left(m_{2}-m_{1}\right) L_{2}+m_{3} L_{3,4}+\left(m_{4}-m_{3}\right) L_{4}- \\
& \ldots+m_{k-1} L_{k-1, k}+\left(m_{k}-m_{k-1}\right) L_{k}+\left(d-m_{2}-m_{4}-\ldots-m_{k}\right) L
\end{aligned}
$$

It follows from (3.1) that the class of \widetilde{C} in $N_{1}\left(X_{k}^{n}\right)$ lies in the cone generated by the R_{i} 's and $L_{i, j}$'s.

Now suppose that k is odd, and write

$$
\begin{align*}
\widetilde{C} \equiv & d L-m_{1}\left(R_{1}+R_{2}\right)-\left(m_{2}-m_{1}\right) R_{2}-m_{3}\left(R_{3}+R_{4}\right)-\left(m_{4}-m_{3}\right) R_{4}- \tag{3.4}\\
& \ldots-m_{k-2}\left(R_{k-2}+R_{k-1}\right)-\left(m_{k-1}-m_{k-2}\right) R_{k-1}-m_{k} R_{k} .
\end{align*}
$$

In this case $m_{1}+\left(m_{2}-m_{1}\right)+m_{3}+\left(m_{4}-m_{3}\right)+\ldots+m_{k-2}+\left(m_{k-1}-m_{k-2}\right)+m_{k}=$ $m_{2}+m_{4}+\ldots+m_{k-1}+m_{k}$. Like in the even case, one shows that $m_{2}+m_{4}+\ldots+m_{k-1}+m_{k} \leq d$ and rewrite (3.4) as an effective linear combination of the R_{i} 's and $L_{i, j}$'s.

From now on we suppose that $n=3$ and $k \leq 8$. Then $m_{i} \leq d$ and $m_{1}+\ldots+m_{k} \leq 2 d$ by Lemma 3.2. If $m_{k-1}=0$, then $\widetilde{C} \equiv m_{k} L_{k}+\left(d-m_{k}\right) L$. It follows from (3.1) that the class of \widetilde{C} in $N_{1}\left(X_{k}^{n}\right)$ lies in the cone generated by the R_{i} 's and $L_{i, j}$'s. If $m_{k-1} \neq 0$, then rewrite (3.2) as

$$
\widetilde{C} \equiv\left(L_{k-1, k}\right)+d^{\prime} L-m_{1}^{\prime} R_{1}-\ldots-m_{k}^{\prime} R_{k},
$$

where $d^{\prime}=d-1, m_{i}^{\prime}=m_{i}$ for $i \leq k-2$, and $m_{i}^{\prime}=m_{i}-1$ for $i=k-1$ or k. Note that $m_{i}^{\prime} \leq d^{\prime}$. This is clear for $i=k-1$ or k. For $i \leq k-2$ it follows from the assumptions that $m_{1} \leq m_{2} \leq \cdots \leq m_{k} \leq d$ and $m_{1}+\ldots+m_{k} \leq 2 d$. We also have $m_{1}^{\prime}+\ldots+m_{k}^{\prime} \leq 2 d^{\prime}$. So we can repeat the process and conclude by induction that the class of \widetilde{C} in $N_{1}\left(X_{k}^{n}\right)$ lies in the cone generated by the R_{i} 's and $L_{i, j}$'s.
3.2. The effective cone of X_{n+3}^{n}. In this section we describe the effective cone of the blowup of \mathbb{P}^{n} at $n+3$ points in general position, as well as its Mori chamber decomposition. The main references are CT06, Muk05 and Bau91. See also BDP15 for a recent new proof.
3.3 (The effective cone of the blow-up of \mathbb{P}^{n} at $n+3$ points). Let $X=X_{n+3}^{n}$ be the blow-up of \mathbb{P}^{n} at $n+3$ points p_{i} in general position. We follow Notation 3.1] By [CT06, Theorems 1.3], X is a Mori dream space. Next we describe the 1 -dimensional faces of $\operatorname{Eff}(X)$ (CT06, Theorem 1.2]). For each subset $I \subset\{1, \cdots, n+3\}$ whose complement has odd cardinality $\left|I^{c}\right|=2 k+1$, consider the divisor class

$$
E_{I}:=k H-k \sum_{i \in I} E_{i}-(k-1) \sum_{i \in I^{c}} E_{i} .
$$

There is a unique divisor in the linear system $\left|E_{I}\right|$, which we also denote by E_{I}. When $k=0$ we have $E_{\{i\}^{c}}=E_{i}$ When $k \geq 1, E_{I}$ can be described as follows. Let $\pi_{I}: \mathbb{P}^{n} \rightarrow \mathbb{P}^{2 k-2}$ be the projection from the linear space $\left\langle p_{i}\right\rangle_{i \in I}$. Let $C_{I} \subset \mathbb{P}^{2 k-2}$ be the image of the unique rational normal curve through all the p_{i}^{\prime} s. The divisor E_{I} is the cone with vertex $\left\langle p_{i}\right\rangle_{i \in I}$ over $\operatorname{Sec}_{k-1} C_{I}$. Each E_{I} generates a 1-dimensional face of $\operatorname{Eff}(X)$, and all 1-dimensional faces are of this form.

Let X be the blow-up of \mathbb{P}^{n} at $n+3$ points in general position, and follow the notation of Paragraph 3.3 above. In order to describe the Mori chamber decomposition of Eff (X), we make explicit the map to the weight space proposed by Mukai in Muk05. Write ($y, x_{1}, \ldots, x_{n+3}$) for coordinates in \mathbb{R}^{n+4}, and $\left(\alpha_{1}, \ldots, \alpha_{n+3}\right)$ for coordinates in \mathbb{R}^{n+3}. We identify \mathbb{R}^{n+4} with $N^{1}(X)$ by associating to a point $\bar{x}=\left(y, x_{1}, \ldots, x_{n+3}\right) \in \mathbb{R}^{n+4}$ the divisor class of $D_{\bar{x}}=y H+\sum x_{i} E_{i}$. Note that all the E_{I} 's defined in Paragraph 3.3 lie in the hyperplane

$$
(n+1) y+\sum x_{i}=1
$$

Consider the projection from the origin

$$
\begin{gather*}
\varphi=\left(\varphi_{1}, \cdots, \varphi_{n+3}\right): \operatorname{Eff}(X) \rightarrow \mathbb{R}^{n+3}, \\
\varphi_{i}=\frac{y+x_{i}}{(n+1) y+\sum x_{i}} . \tag{3.5}
\end{gather*}
$$

We shall describe the image of $\operatorname{Eff}(X)$ under φ, along with the decomposition induced by the Mori chamber decomposition of $\operatorname{Eff}(X)$. Before we do so, let us introduce some notation. The vertices of the hypercube $[0,1]^{n+3} \subset \mathbb{R}^{n+3}$ are the points of the form $\xi_{I}=$ $\left(\left(\xi_{I}\right)_{1}, \ldots,\left(\xi_{I}\right)_{n+3}\right)$, where $I \subset\{1, \ldots, n+3\},\left(\xi_{I}\right)_{i}=1$ if $i \in I$, and $\left(\xi_{I}\right)_{i}=0$ otherwise. The parity of the vertex ξ_{I} is the parity of $|I|$. For each subset $I \subset\{1, \ldots, n+3\}$, define the degree one polynomial in the α_{i} 's:

$$
\begin{equation*}
H_{I}:=\sum_{j \notin I} \alpha_{j}+\sum_{i \in I}\left(1-\alpha_{i}\right) . \tag{3.6}
\end{equation*}
$$

For any subset $J \subset\{1, \ldots, n+3\}$, we have:

$$
\begin{equation*}
H_{I}\left(\xi_{J}\right)=\#\left(I^{c} \cap J\right)+\#\left(J^{c} \cap I\right) \tag{3.7}
\end{equation*}
$$

Given $J \subset\{1, \ldots, n+3\}$ and $i_{0} \notin J$, set $I:=J \cup\left\{i_{0}\right\}$. Then

$$
\begin{equation*}
H_{I}=H_{J}+1-2 \alpha_{i_{0}} . \tag{3.8}
\end{equation*}
$$

One computes that $\varphi\left(E_{I}\right)=\xi_{I^{c}}$. Therefore, the image of $\operatorname{Eff}(X)$ under φ is the polytope $\Delta \subset \mathbb{R}^{n+3}$ generated by the odd vertices of the hypercube. Using (3.7) above, one can easily check that the polytope $\Delta \subset \mathbb{R}^{n+3}$ is defined by the following set of inequalities:

$$
\Delta=\varphi(\operatorname{Eff}(X))=\left\{\begin{array}{lr}
0 \leq \alpha_{i} \leq 1, & i \in\{1, \ldots, n+3\} \tag{3.9}\\
H_{I} \geq 1, & |I| \text { even }
\end{array}\right.
$$

Next we describe the chamber decomposition in Δ induced by the Mori chamber decomposition of $\operatorname{Eff}(X)$. For each subset $I \subset\{1, \ldots, n+3\}$, and each integer k satisfying $2 \leq k \leq \frac{n+3}{2}$ and $|I| \not \equiv k \bmod 2$, consider the hyperplane $\left(H_{I}=k\right)$. Now take the complement in the interior of Δ of the hyperplane arrangement

$$
\begin{equation*}
\left(H_{I}=k\right)_{2 \leq k \leq \frac{n+3}{2},|I| \not \equiv k \bmod 2 .} \tag{3.10}
\end{equation*}
$$

and consider its decomposition into connected components. Each connected component is called a chamber of Δ.

The following theorem summarizes the results of Muk05] and Bau91. The proof follows from the proof of the main theorem in [Muk05, Page 6] and the description of wall crosses in [Muk05, Propositions 2 and 3]. Mukai's proof relies on interpreting X as a moduli space of parabolic vector bundles on \mathbb{P}^{1}, and the description of these spaces in Bau91, Section 2].

Theorem 3.4. Let X be the blow-up of \mathbb{P}^{n} at $n+3$ points in general position, and consider the projection

$$
\varphi: \operatorname{Eff}(X) \rightarrow \Delta
$$

defined in (3.5) above.

- The chamber decomposition of Δ defined by the hyperplane arrangement (3.10) coincides with that induced by the Mori chamber decomposition of $\operatorname{Eff}(X)$ via φ.
- The image of $\operatorname{Mov}(X)$ under φ is given by

$$
\Pi=\varphi(\operatorname{Mov}(X))=\left\{\begin{array}{lr}
0 \leq \alpha_{i} \leq 1, & i \in\{1, \ldots, n+3\} \\
H_{I} \geq 2, & |I| \text { odd }
\end{array}\right.
$$

- All small \mathbb{Q}-factorial modifications of X are smooth. Let \mathcal{C} and \mathcal{C}^{\prime} be two adjacent chambers of $\operatorname{Mov}(X)$, corresponding to small \mathbb{Q}-factorial modifications of X, f : $X \rightarrow \widetilde{X}$ and $f^{\prime}: X \rightarrow \widetilde{X}^{\prime}$, respectively. The images of these chambers in Δ are separated by a hyperplane of the form $\left(H_{I}=k\right)$, with $3 \leq k \leq \frac{n+3}{2}$ and $|I| \not \equiv k$ $\bmod 2$. Suppose that $\varphi(\mathcal{C}) \subset\left(H_{I} \leq k\right)$ and $\varphi\left(\mathcal{C}^{\prime}\right) \subset\left(H_{I} \geq k\right)$. Then the birational map $f^{\prime} \circ f^{-1}: \widetilde{X} \rightarrow \widetilde{X}^{\prime}$ flips a \mathbb{P}^{k-2} into a \mathbb{P}^{n+1-k}.
- Let \mathcal{C} be a chamber of $\operatorname{Mov}(X)$, corresponding to small \mathbb{Q}-factorial modification \tilde{X} of X. Let $\sigma \subset \partial \mathcal{C}$ be a wall such that $\sigma \subset \partial \operatorname{Mov}(X)$, and let $f: \tilde{X} \rightarrow Y$ be the corresponding elementary contraction. The image of σ in Π is supported on a hyperplane of one of the following forms:
(a) $\left(\alpha_{i}=0\right)$ or $\left(\alpha_{i}=1\right)$.
(b) $\left(H_{I}=2\right)$, with $|I|$ odd.

In case (a), $f: \widetilde{X} \rightarrow Y$ is a \mathbb{P}^{1}-bundle. In case (b), $f: \widetilde{X} \rightarrow Y$ is the blow-up of a smooth point, and the exceptional divisor of f is the image in \widetilde{X} of the divisor $E_{I^{c}}$.

Remark 3.5. In Theorem 3.4, note that

$$
\Delta \cap\left(H_{I} \geq 2\right)_{|I| \text { odd }}=[0,1]^{n+3} \cap\left(H_{I} \geq 2\right)_{|I| \text { odd }} .
$$

This can be checked using (3.8).
Remark 3.6. The image of $\operatorname{Nef}(X)$ under φ is given by

$$
\Sigma=\varphi(\operatorname{Nef}(X))=\left\{\begin{array}{lr}
H_{\{i\}} \geq 2, & i \in\{1, \ldots, n+3\} \\
H_{\{i, j\}} \leq 3, & i, j \in\{1, \ldots, n+3\}, i \neq j .
\end{array}\right.
$$

Remark 3.7. Formula (3.5), together with the equations for the walls in the chamber decomposition of Δ defined by the hyperplane arrangement (3.10), allow us to find explicit inequalities defining the cones $\operatorname{Eff}(X), \operatorname{Mov}(X)$, and $\operatorname{Nef}(\widetilde{X})$, for any small \mathbb{Q}-factorial modification \widetilde{X} of X.
3.3. Proof of Theorem 1.3. Let X_{k}^{n} be a blow-up of \mathbb{P}^{n} at k points in general position. By [Muk01] and [CT06], X_{k}^{n} is a Mori dream space if and only if one of the following holds:

- $n=2$ and $k \leq 8$.
- $n=3$ and $k \leq 7$.
- $n=4$ and $k \leq 8$.
- $n>4$ and $k \leq n+3$.

We will show that in each of these cases X_{k}^{n} is \log Fano. In view of the classification of del Pezzo surfaces and Example 1.2, we may assume that $n \geq 4$.

Suppose that $k=n+3$, set $X:=X_{n+3}^{n}$, and follow the notation of the previous subsection. The center of the polytopes Π and Δ is the point $\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)=\varphi\left(-K_{X}\right)$.

When n is even, this point is in the interior of a chamber of Π, namely the chamber defined by:

$$
\Sigma^{\prime}=\left(H_{I} \geq \frac{n+2}{2}\right)_{|I| \neq \frac{n+2}{2}} \bmod 2 .
$$

Let X^{\prime} be the small \mathbb{Q}-factorial modification of X whose nef cone is the inverse image of the chamber Σ^{\prime}. Then X^{\prime} is a smooth Fano manifold with very interesting geometry and symmetries. See Cas14 and references therein for several descriptions of X^{\prime}. By Proposition 2.3, X is log Fano.

When n is odd, the point $\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)=\varphi\left(-K_{X}\right)$ lies in the intersection of the hyperplanes:

$$
\left(H_{I}=\frac{n+3}{2}\right)_{|I| \neq \frac{n+3}{2} \bmod 2}
$$

Let X^{\prime} be the small \mathbb{Q}-factorial modification of X whose nef cone is the inverse image of some chamber Σ^{\prime} containing $\varphi\left(-K_{X}\right)$ in its boundary. Then X^{\prime} is a smooth projective variety with $-K_{X^{\prime}}$ nef and big. By Lemma 2.5 and Proposition 2.3, X is \log Fano.

It follows from [GOST, Corollary 1.3] that X_{k}^{n} is \log Fano for any $k \leq n+3$.
The case $n=4$ and $k=8$ can be treated in a similar way. In [Muk05, Section 2], Mukai describes the Mori chamber decomposition of $\operatorname{Mov}\left(X_{8}^{4}\right)$. It follows from his description that X_{8}^{4} admits a small \mathbb{Q}-factorial modification X^{\prime} which is a Fano manifold. Again we conclude that X_{8}^{4} is \log Fano by Proposition 2.3.
4. Finding explicit divisors making X_{k}^{n} LOG Fano for $k \leq n+2$

Throughout this section, we let $p_{1}, \ldots, p_{k} \in \mathbb{P}^{n}$ be general points, $k \leq n+2$, and let X_{k}^{n} be the blow-up of \mathbb{P}^{n} at p_{1}, \ldots, p_{k}. We shall exhibit an integral divisor $D \subset X_{k}^{n}$ and rational numbers $\epsilon>0$ such that $\Delta=\epsilon D$ makes $X_{k}^{n} \log$ Fano. In order to show that $-\left(K_{X_{k}^{n}}+\Delta\right)$ is ample, we will use Proposition 1.4 To show that $\left(X_{k}^{n}, \Delta\right)$ is klt, we will need an explicit log resolutions for this pair, which we introduce next.

Notation 4.1. For each $0 \leq h \leq k-1$ and each subset $I=\left\{i_{1}<\cdots<i_{h+1}\right\} \subset\{1, \ldots, k\}$, consider the h-dimensional linear subspace $H_{I}^{h}=\left\langle p_{i_{1}}, \ldots, p_{i_{h+1}}\right\rangle \subset \mathbb{P}^{n}$. Denote by \mathcal{H}^{h} the collection of all such h-dimensional linear subspaces, and by $\rho_{h}=\binom{k}{h+1}$ its cardinality.

Let $\pi: Y \rightarrow X_{k}^{n}$ be the blow-up of the strict transforms of the lines in \mathcal{H}^{1}, followed by the blow-up of the strict transforms of the planes in \mathcal{H}^{2}, and so on, in order of increasing dimension, up to the blow-up of the strict transforms of the $(n-2)$-planes in \mathcal{H}^{n-2}. For each $1 \leq h \leq n-2$, denote by $E_{1}^{h}, \ldots, E_{\rho_{h}}^{h} \subset Y$ the exceptional divisors over the $\rho_{h} h$-planes in \mathcal{H}^{h}. We have

$$
\begin{equation*}
K_{Y}=\pi^{*} K_{X_{k}^{n}}+\sum_{h=1}^{n-2}(n-h-1)\left(E_{1}^{h}+\ldots+E_{\rho_{h}}^{h}\right) \tag{4.1}
\end{equation*}
$$

Remark 4.2. For $k=n+1$, the variety Y constructed above is the Losev-Manin moduli space, introduced in LM as a toric compactification of $M_{0, n+3}$. For $k=n+2$, the construction above gives Kapranov's description of $Y=\bar{M}_{0, n+3}$ as an iterated blow-up of \mathbb{P}^{n} (Ka]).
4.1. Blow-ups of \mathbb{P}^{n} in at most $n+1$ points. For $k \leq n+1$, the variety X_{k}^{n} is toric, and one can take Δ making $X_{k}^{n} \log$ Fano to be a suitable combination of toric invariant divisors. Alternatively, we show that the divisor Δ can be chosen irreducible. We work out the case $k=n+1$. When $k<n+1$, the boundary divisor can be taken to be the image of Δ under the natural morphism $X_{n+1}^{n} \rightarrow X_{k}^{n}$.
Theorem 4.3. Let $D \subset X_{n+1}^{n}$ be the strict transform of a general member of the linear system $\Gamma \subset\left|\mathcal{O}_{\mathbb{P}^{n}}(n)\right|$ of the standard Cremona transformation of \mathbb{P}^{n}, centered at p_{1}, \ldots, p_{n+1}. For any $\frac{n-3}{n-2}<\epsilon<1$ the divisor $-\left(K_{X_{n+1}^{n}}+\epsilon D\right)$ is ample, and the pair $\left(X_{n+1}^{n}, \epsilon D\right)$ is klt.

For the proof of Theorem 4.3, we will need the following.
Lemma 4.4. Let $\Gamma \subset\left|\mathcal{O}_{\mathbb{P}^{n}}(n)\right|$ be the linear system of the standard Cremona transformation of \mathbb{P}^{n}, centered at p_{1}, \ldots, p_{n+1}, and $D \in \Gamma$ be a general member. Let H_{I}^{h} and $\pi: Y \rightarrow \mathbb{P}^{n}$ be as in Notation 4.1. Then the strict transform \widetilde{D} of D in Y is smooth and transversal to all the exceptional divisors of π. Furthermore

$$
\operatorname{mult}_{H_{I}^{h}} D=n-h+1
$$

for any $h=0, \ldots, n-2$.
Proof. By MM, Theorem 1] the Cremona transformation induced by Γ lifts to an automorphism of Y. This implies that \widetilde{D} is smooth and transversal to all the exceptional divisors of π. In particular, D is smooth away from the union of the codimension two linear subspaces H_{I}^{n-2}, .

We may assume that the p_{i} 's are the fundamental points of \mathbb{P}^{n}, and consider the element of the linear system Γ given by:

$$
D_{0}:=\left\{x_{0} x_{1} \ldots x_{n-1}+x_{0} x_{1} \ldots x_{n-2} x_{n}+\ldots+x_{1} x_{2} \ldots x_{n}=0\right\} .
$$

Let $p \in H_{I}^{h}$ be a general point. Then one checks easily that $\operatorname{mult}_{p} D_{0}=\operatorname{mult}_{H_{I}^{h}} D_{0}=$ $n-h+1$. To conclude, note that mult $H_{I}^{h} D \geq n-h+1$ for any $D \in \Gamma$.
Proof of Theorem 4.3. With Notation 3.1, we have

$$
D \sim n H-(n-1)\left(E_{1}+\ldots+E_{n-1}\right) .
$$

Recall from Proposition 1.4 that the Mori cone of X_{n+1}^{n} is generated by the classes R_{i} 's and $L_{i, j}$'s. One computes

$$
-\left(K_{X_{n+1}^{n}}+\epsilon D\right) \cdot R_{i}=n-1-\epsilon(n-1) \text { and }-\left(K_{X_{n+1}^{n}}+\epsilon D\right) \cdot L_{i, j}=(n-1) \epsilon-n+3 .
$$

Therefore $-K_{X_{n+1}^{n}}-\epsilon D$ is ample provided that $\frac{n-3}{n-2}<\epsilon<1$.
Next we check when the pair $\left(X_{n+1}^{n}, \epsilon D\right)$ is klt. Let $\pi: Y \rightarrow X_{n+1}^{n}$ be the morphism introduced in Notation 4.1. By Lemma 4.4 $\pi: Y \rightarrow X_{n+1}^{n}$ is a \log resolution of $\left(X_{n+1}^{n}, \epsilon D\right)$, and

$$
\pi^{*}(D)=\widetilde{D}+\sum_{h=1}^{n-2}(n-h-1)\left(E_{1}^{h}+\ldots+E_{\rho_{h}}^{h}\right)
$$

Together with (4.1), this gives

$$
K_{Y}+\epsilon \widetilde{D}=\pi^{*}\left(K_{n+1}^{n}+\epsilon D\right)+\sum_{h=1}^{n-2}(n-h-1)(1-\epsilon)\left(E_{1}^{h}+\ldots+E_{\rho_{h}}^{h}\right)
$$

Therefore the pair ($X_{n+1}^{n}, \epsilon D$) is klt for any $0 \leq \epsilon<1$.
4.2. Blow-ups of \mathbb{P}^{n} in $n+2$ points. In this subsection we construct divisors Δ making $X_{n+2}^{n} \log$ Fano. Note that X_{n+2}^{n} is not toric. We follow Notation 4.1, and denote by $H_{1}, \ldots, H_{\rho_{n-1}} \subset \mathbb{P}^{n}$ the ρ_{n-1} hyperplanes through n of the p_{i} 's.
Theorem 4.5. Let $D \subset X_{n+2}^{n}$ be the strict transform of the divisor $H_{1}+\cdots+H_{\rho_{n-1}}$. For any $\frac{2(n-3)}{(n+1)(n-2)}<\epsilon<\frac{2(n-1)}{n(n+1)}$ the divisor $-\left(K_{X_{n+2}^{n}}+\epsilon D\right)$ is ample, and the pair $\left(X_{n+2}^{n}, \epsilon D\right)$ is klt.

For the proof of Theorem 4.5, we will need the following.
Lemma 4.6. Let $D \subset X_{n+2}^{n}$ be the strict transform of the divisor $H_{1}+\cdots+H_{\rho_{n-1}}$. Let $\pi: Y \rightarrow X_{n+2}^{n}$ be the morphism introduced in Notation 4.1. Then $\pi: Y \rightarrow X_{n+2}^{n}$ is a \log resolution of $\left(X_{n+2}^{n}, D\right)$, and

$$
\pi^{*}(D)=\widetilde{D}+\sum_{h=1}^{n-2}\binom{n-h+1}{n-h-1}\left(E_{1}^{h}+\ldots+E_{\rho_{h}}^{h}\right)
$$

Proof. Note that at each step in the description of Y as an iterated blow-up, the center of the blow-up is a disjoint union of smooth subvarieties. Moreover, the divisor $\operatorname{Exc}(\pi) \cup \widetilde{D}$ is simple normal crossing, and so $\pi: Y \rightarrow X_{n+2}^{n}$ is a log resolution of $\left(X_{n+2}^{n}, D\right)$.

Any $H_{I}^{h} \in \mathcal{H}^{h}$ is contained in exactly $\binom{n-h+1}{n-h-1}$ of the ρ_{n-1} hyperplanes H_{i} 's. Thus mult $_{H_{I}^{h}} D=\binom{n-h+1}{n-h-1}$, and the formula for $\pi^{*}(D)$ follows.

Proof of Theorem 4.5. Each point p_{i} lies in exactly $\binom{n+1}{n-1}=\frac{1}{2}(n+1) n$ hyperplanes among the H_{i} 's, $1 \leq i \leq \rho_{n-1}=\frac{1}{2}(n+2)(n+1)$. So we have, with Notation 3.1,

$$
D \sim \frac{1}{2}(n+2)(n+1) H-\frac{1}{2}(n+1) n E_{1}-\ldots-\frac{1}{2}(n+1) n E_{n+2} .
$$

Recall from Proposition 1.4 that the Mori cone of X_{n+2}^{n} is generated by the classes R_{i} 's and $L_{i, j}$'s. One computes
$-\left(K_{X_{n+2}^{n}}+\epsilon D\right) \cdot R_{i}=\left(n-1-\frac{\epsilon}{2}(n+1) n\right)$ and $-\left(K_{X_{n+2}^{n}}+\epsilon D\right) \cdot L_{i, j}=-n+3+\frac{\epsilon}{2}(n+1)(n-2)$.
Therefore $-K_{X_{n+2}^{n}}-\epsilon D$ is ample provided that $\frac{2(n-3)}{(n+1)(n-2)}<\epsilon<\frac{2(n-1)}{n(n+1)}$.
Next we check when the pair $\left(X_{n+2}^{n}, \epsilon D\right)$ is klt. Let $\pi: Y \rightarrow X_{n+2}^{n}$ be the morphism introduced in Notation 4.1. By Lemma 4.6 $\pi: Y \rightarrow X_{n+2}^{n}$ is a \log resolution of $\left(X_{n+2}^{n}, \epsilon D\right)$, and

$$
\pi^{*}(D)=\widetilde{D}+\sum_{h=1}^{n-2}\binom{n-h+1}{n-h-1}\left(E_{1}^{h}+\ldots+E_{\rho_{h}}^{h}\right)
$$

Together with (4.1), this gives

$$
K_{Y}+\epsilon \widetilde{D}=\pi^{*}\left(K_{n+2}^{n}+\epsilon D\right)+\sum_{h=1}^{n-2}\left((n-h-1)-\epsilon\binom{n-h+1}{n-h-1}\right)\left(E_{1}^{h}+\ldots+E_{\rho_{h}}^{h}\right) .
$$

Therefore the pair ($X_{n+2}^{n}, \epsilon D$) is klt for any $0 \leq \epsilon<\frac{2}{n}$.

5. Finding explicit divisors making X_{n+3}^{n} Log Fano

Throughout this section, let $p_{1}, \ldots, p_{n+3} \in \mathbb{P}^{n}$ be general points, and let X_{n+3}^{n} be the blow-up of \mathbb{P}^{n} at p_{1}, \ldots, p_{n+3}. We shall exhibit integral divisors $D \subset X_{n+3}^{n}$ and rational numbers $\epsilon>0$ such that $\Delta=\epsilon D$ makes $X_{n+3}^{n} \log$ Fano. In the previous cases, D was taken as sum of strict transforms of hyperplanes through n of the $n+3$ points. For X_{n+3}^{n}, we will also need other extremal divisors $E_{I} \subset X_{n+3}^{n}$ introduced in Paragraph 3.3. This will make the \log resolution of (X, Δ) more complicated, and we will need to understand well how the divisors E_{I} 's intersect. For this purpose, we start this section with some preliminaries on secant varieties of rational normal curves. Then we will consider separately the cases $n=2 h+1$ odd, and $n=2 h$ even.
5.1. Preliminaries on secant varieties of rational normal curves. Given an irreducible and reduced non-degenerate variety $X \subset \mathbb{P}^{n}$, and a positive integer $k \leq n$ we denote by $\operatorname{Sec}_{k}(X)$ the k-secant variety of X. This is the subvariety of \mathbb{P}^{n} obtained as the closure of the union of all $(k-1)$-planes $\left\langle x_{1}, \ldots, x_{k}\right\rangle$ spanned by k general points of X. We will be concerned with the case when $X=C$ is a rational normal curve of degree n in \mathbb{P}^{n}. The following proposition gathers some of the basic properties of the secant varieties $\operatorname{Sec}_{k}(C)$ in this case.

Proposition 5.1. Let $C \subset \mathbb{P}^{n}$ be a rational normal curve of degree n, and let k be an integer such that $1 \leq k \leq \frac{n}{2}$. Then the following statements hold.
(1) $\operatorname{dim}\left(\operatorname{Sec}_{k}(C)\right)=2 k-1$ (see for instance [Har, Proposition 11.32]).
(2) $\operatorname{deg}\left(\operatorname{Sec}_{k}(C)\right)=\binom{n-k+1}{k}$ (see for instance [EH, Theorem 12.16]).
(3) $\operatorname{Sec}_{k}(C)$ is normal and $\operatorname{Sing}\left(\operatorname{Sec}_{k}(C)\right)=\operatorname{Sec}_{k-1}(C)$ (see for instance Ve1, Theorem 1.1]).
(4) If $n=2 h$ is even, then for any $1 \leq t<h$ we have

$$
\operatorname{mult}_{\operatorname{Sec}_{h-t}(C)} \operatorname{Sec}_{h}(C)=t+1
$$

Proof of (4). Suppose that $n=2 h$ is even, and consider the $(h+1) \times(h+1)$ matrix

$$
M_{h}=\left(\begin{array}{cccc}
x_{0} & x_{1} & \ldots & x_{h} \tag{5.1}\\
x_{1} & x_{2} & \ldots & x_{h+1} \\
\vdots & \vdots & \ddots & \vdots \\
x_{h} & x_{h+1} & \ldots & x_{2 h}
\end{array}\right)
$$

For any $1 \leq k \leq h$, the secant variety $\operatorname{Sec}_{k}(C)$ can be described as the determinantal variety:

$$
\operatorname{Sec}_{k}(C)=\left\{\operatorname{rank}\left(M_{h}\right) \leq k\right\}
$$

(See for instance Har, Proposition 9.7]). In particular, $\operatorname{Sec}_{h}(C) \subset \mathbb{P}^{2 h}$ is the degree $h+1$ hypersurface defined by the polynomial $F:=\operatorname{det}\left(M_{h}\right)$. For each $j \in\{0, \ldots, 2 h\}$, let $\left\{M_{i}^{j}\right\}$ be the set of $h \times h$ minors of M_{h} produced by erasing in M_{h} a row and a column meeting in an entry of type x_{j} Denote by ρ_{j} be the number of such minors. Then

$$
\frac{\partial F}{\partial x_{j}}=\sum_{i=1}^{\rho_{j}} \alpha_{i}^{j} \operatorname{det}\left(M_{i}^{j}\right)
$$

for suitable $\alpha_{i}^{j} \neq 0$. Inductively, we see that for any $1 \leq t<h$ the partial derivatives of order t of F are linear combinations of determinants of $(h+1-t) \times(h+1-t)$ minors of M_{h}. The vanishing of such determinants defines $\operatorname{Sec}_{h-t}(C)$, while the vanishing of the of determinants of the $(h-t) \times(h-t)$ minors of M_{h} defines $\operatorname{Sec}_{h-t-1}(C) \subsetneq \operatorname{Sec}_{h-t}(C)$. Therefore, there is at least one partial derivative of order $t+1$ of F not vanishing on $\operatorname{Sec}_{h-t}(C)$. This means that mult $\operatorname{Sec}_{h-t}(C) \operatorname{Sec}_{h}(C)=t+1$ for any $1 \leq t<h$.

The following proposition is just a particular instance of [Be, Theorem 1]. The general statement for smooth curves embedded via a $2 h$-very ample line bundle can be found in Ve, Theorem 3.1] as well.
Proposition 5.2. Let $C \subset \mathbb{P}^{n}$ be a rational normal curve of degree n, and set $h:=\left\lfloor\frac{n}{2}\right\rfloor$. Consider the following sequence of blow-ups:

$$
\begin{aligned}
& -\pi_{1}: X_{1} \rightarrow \mathbb{P}^{n} \text { the blow-up of } C \text {, } \\
& -\pi_{2}: X_{2} \rightarrow X_{1} \text { the blow-up of the strict transform of } \operatorname{Sec}_{2}(C) \text {, } \\
& \vdots \\
& -\pi_{h}: X_{h} \rightarrow X_{h-1} \text { the blow-up of the strict transform of } \operatorname{Sec}_{h}(C) \text {. }
\end{aligned}
$$

Let $\pi: X \rightarrow \mathbb{P}^{n}$ be the composition of these blow-ups. Then, for any $k \leq h$ the strict transform of $\operatorname{Sec}_{k}(C)$ in X_{k-1} is smooth and transverse to all exceptional divisors. In particular X is smooth and the exceptional locus of π is a simple normal crossing divisor.

Notation 5.3. Let $p_{1}, \ldots, p_{n+3} \in \mathbb{P}^{n}$ be general points, and let $C \subset \mathbb{P}^{n}$ be the unique rational normal curve of degree n through these points. Given $1 \leq m \leq n, I=\left\{i_{1}<\cdots<\right.$
$\left.i_{m}\right\} \subset\{1, \ldots, n+3\}$, and a positive integer k such that $0 \leq k \leq \frac{n-m}{2}$, we consider the following variety of dimension $d=2 k-1+m$:

$$
Y_{I}^{d}:=\operatorname{Join}\left(\left\langle p_{i_{1}}, \ldots, p_{i_{m}}\right\rangle, \operatorname{Sec}_{k}(C)\right) .
$$

Alternatively, Y_{I}^{d} can be defined as follows. Let $\pi_{I}: \mathbb{P}^{n} \longrightarrow \mathbb{P}^{n-m}$ be the projection from the linear space $\left\langle p_{i_{1}}, \ldots, p_{i_{m}}\right\rangle$. Let $C_{I} \subset \mathbb{P}^{n-m}$ be the image of C under π_{I}. It is the the unique rational normal curve of degree $n-m$ through the points $\pi\left(p_{j}\right), j \notin I$. Then Y_{I}^{d} is the cone with vertex $\left\langle p_{i_{1}}, \ldots, p_{i_{m}}\right\rangle$ over $\operatorname{Sec}_{k}\left(C_{I}\right)$.

By convention, when $k=0$, we set $Y_{I}^{m-1}:=\left\langle p_{i_{1}}, \ldots, p_{i_{m}}\right\rangle$.
Fix $I=\left\{i_{1}<\cdots<i_{m}\right\} \subset\{1, \ldots, n+3\}$, with $m \leq n$. Given k such that $0 \leq k \leq \frac{n-m}{2}$, set $d:=2 k-1+m$. By Proposition 5.1, we have

$$
\begin{equation*}
\operatorname{deg}\left(Y_{I}^{d}\right)=\binom{n-m-k+1}{k} \text { and } \operatorname{Sing}\left(Y_{I}^{d}\right)=Y_{I}^{d-2} \tag{5.2}
\end{equation*}
$$

Moreover, if $n-m$ is even and $d_{1}=2 k_{1}-1+m>2 k_{2}-1+m=d_{2}$, then $Y_{I}^{d_{2}} \subset Y_{I}^{d_{1}}$ and

$$
\begin{equation*}
\operatorname{mult}_{Y_{I}^{d_{2}}} Y_{I}^{d_{1}}=\frac{d_{1}-d_{2}}{2}+1 \tag{5.3}
\end{equation*}
$$

We also have analogs of Proposition 5.2 for sequences of blow-ups of Y_{I}^{d}, for $|I|-1 \leq$ $d \leq n-1$. More precisely:

Proposition 5.4. Let $C \subset \mathbb{P}^{n}$ be a rational normal curve of degree n, $p_{1}, \ldots, p_{m} \in C$ distinct points, with $1 \leq m \leq n$, and set $h:=\left\lfloor\frac{n-m}{2}\right\rfloor$. Consider the following sequence of blow-ups:

- $\pi_{1}: X_{1} \rightarrow \mathbb{P}^{n}$ the blow-up of $Y_{I}^{m-1}:=\left\langle p_{1}, \ldots, p_{m}\right\rangle$,
- $\pi_{2}: X_{2} \rightarrow X_{1}$ the blow-up of the strict transform of Y_{I}^{m+1},
\vdots
- $\pi_{h}: X_{h} \rightarrow X_{h-1}$ the blow-up of the strict transform of $Y_{I}^{m+2 h-1}$.

Let $\pi: X \rightarrow \mathbb{P}^{n}$ be the composition of these blow-ups. Then, for any $k \leq h$ the strict transform of $Y_{I}^{m+2 k-1}$ in X_{k-1} is smooth and transverse to all exceptional divisors.

Proposition 5.4 follows easily from Proposition 5.2, In the next sections, we will blowup varieties of type Y_{I}^{d} for several subsets $I \subset\{1, \ldots, n+3\}$, in a suitable order. In order to show the smoothness and transversality of the strict transforms of the Y_{I}^{d} 's in the intermediate blow-ups, we will need the following result.

Proposition 5.5. Let $W \subsetneq Z \subsetneq X$ be smooth projective varieties, and let $Y \subset X$ be a projective variety such that $\operatorname{Sing}(Y)=Z$ and Y has ordinary singularities along Z. Let $\pi_{W}: X_{W} \rightarrow X$ be the blow-up of W, and denote by Z_{W} and Y_{W} the strict transforms of Z and Y, respectively. Then $\operatorname{Sing}\left(Y_{W}\right)=Z_{W}$ and Y_{W} has ordinary singularities along Z_{W}.
Proof. Denote by E_{W} the exceptional divisor of π_{W}. Then $\pi_{W}^{-1}(Z)=Z_{W} \cup E_{W}$. Let $\pi_{Z_{W}}: X_{Z_{W}} \rightarrow X_{W}$ be the blow-up of X_{W} along Z_{W}, with exceptional divisor $E_{Z_{W}}$.

We claim that the composite morphism $\pi_{W} \circ \pi_{Z_{W}}: X_{Z_{W}} \rightarrow X$ is isomorphic to the blow-up $\pi_{Z}: X_{Z} \rightarrow X$ of X along Z, followed by the blow-up of X_{Z} along $\pi_{Z}^{-1}(W)$. Indeed,
by the universal property of the blow-up ([Hart, Proposition 7.14]), there exits a unique morphism $f: X_{Z_{W}} \rightarrow X_{Z}$ making the following diagram commute.

Note that all varieties in this diagram are smooth. Since Z and W are smooth, the intersection $Z_{W} \cap E_{W} \subset X_{W}$ is smooth. Thus, any normal direction of Z_{W} in X_{W} at a point $p \in Z_{W} \cap E_{W}$ is the image of a normal direction at p of $Z_{W} \cap E_{W}$ in E_{W}. In other words, the inverse image of W in $X_{Z_{W}}$ consists of the strict transform \widetilde{E}_{W} of E_{W} in $X_{Z_{W}}$. Therefore, the inverse image of the smooth variety $\pi_{Z}^{-1}(W)$ in X_{W} is precisely \widetilde{E}_{W}. Using the the universal property of the blow-up, and comparing the Picard number of these smooth varieties, we conclude that $f: X_{Z_{W}} \rightarrow X_{Z}$ is the blow-up of X_{Z} along $\pi_{Z}^{-1}(W)$, proving the claim.

Next we prove that $\operatorname{Sing}\left(Y_{W}\right)=Z_{W}$. Clearly $Z_{W} \subset \operatorname{Sing}\left(Y_{W}\right)$. Suppose that this inclusion is strict. Then the strict transform $Y_{Z_{W}}$ of Y_{W} in $X_{Z_{W}}$ is singular. Since f : $X_{Z_{W}} \rightarrow X_{Z}$ is a smooth blow-up, $f\left(Y_{Z_{W}}\right) \subset X_{Z}$ is singular as well. But notice that $f\left(Y_{Z_{W}}\right) \subset X_{Z}$ is the strict transform of $Y \subset X$ via π_{Z}. Since $\operatorname{Sing}(Y)=Z$ and Y has ordinary singularities along Z, the blow-up π_{Z} resolves the singularities of Y. This contradiction shows that $\operatorname{Sing}\left(Y_{W}\right)=Z_{W}$. Moreover, since Y has ordinary singularities along Z, the intersection of its strict transform Y_{Z} with the exceptional divisor E_{Z} of π_{Z} is transverse. This implies that the intersection $Y_{Z_{W}} \cap E_{Z_{W}}$ is also transverse, i.e., Y_{W} has ordinary singularities along Z_{W}.

We end this section by describing the intersection of some of the Y_{I}^{d} 's. This can be computed using elementary projective geometry. In what follows we adopt the following notation. Given two finite sets I and J, we define their distance to be

$$
d(I, J):=|(I \cup J) \backslash(I \cap J)|
$$

We start by intersecting varieties Y_{I}^{d} 's of the same dimension.
Proposition 5.6. Let the assumptions and notation be as in Notation 5.3. Let $I_{1}, I_{2} \subset$ $\{1, \ldots, n+3\}$ be subsets with cardinality m_{1} and m_{2}, respectively, and suppose that $I_{1} \cap I_{2}=$ Ø. Let k_{1} and k_{2} be integers such that $0 \leq k_{i} \leq \frac{n-m_{i}}{2}, i=1,2$, and $m_{1}+2 k_{1}-1=$ $m_{2}+2 k_{2}-1=: d$. Set $s=\frac{m_{1}+m_{2}}{2}$ and suppose that $d \leq n-s$. Then

$$
Y_{I_{1}}^{d} \cap Y_{I_{2}}^{d}=\bigcup_{J} Y_{J}^{d-s}
$$

where the union is taken over all subsets $J \subset I_{1} \cup I_{2}$ satisfying $d\left(I_{i}, J\right)=s$ for $i=1,2$.
Moreover, for a general point in any irreducible component of the above intersections, the intersection is transverse.

Proof. We note that the assumptions of the theorem imply that $d=k_{1}+k_{2}+s-1$ and $m_{1}-m_{2}=2\left(k_{2}-k_{1}\right)$.

Let $J \subset I_{1} \cup I_{2}$ be such that $d\left(I_{i}, J\right)=s$ for $i=1,2$. We shall prove that $Y_{J}^{d-s} \subset Y_{I_{1}}^{d} \cap Y_{I_{2}}^{d}$. Write $J=J_{1} \cup J_{2}$, where $J_{i} \subset I_{i}, i=1,2$, set $\ell_{i}:=\left|J_{i}\right|, i=1,2$, and $\ell=|J|=\ell_{1}+\ell_{2}$.

The assumption that $d\left(I_{i}, J\right)=s$ for $i=1,2$ implies that $k_{2}-k_{1}=\ell_{1}-\ell_{2}$. We set $k:=k_{2}-\ell_{1}=k_{1}-\ell_{2}$, and note that $d-s=\ell+2 k-1$.

Let $x \in Y_{J}^{d-s}$. Then there exists a point $q \in \operatorname{Sec}_{k}(C)$ such that $x \in\left\langle q, p_{i} \mid i \in J\right\rangle \cong \mathbb{P}^{\ell}$. The following two linear subspaces of this \mathbb{P}^{ℓ}

$$
\left\langle x, p_{i} \mid i \in I_{1}\right\rangle \cong \mathbb{P}^{\ell_{1}} \text { and }\left\langle q, p_{i} \mid i \in I_{2}\right\rangle \cong \mathbb{P}^{\ell_{2}}
$$

have complementary dimensions. Hence there exists a point

$$
z \in\left\langle x, p_{i} \mid i \in J_{1}\right\rangle \cap\left\langle q, p_{i} \mid i \in J_{2}\right\rangle .
$$

In particular, $z \in \operatorname{Sec}_{k+\ell_{2}}(C)$. Since $k+\ell_{2}=k_{1}$, we conclude that $x \in Y_{I_{1}}^{d}$. Similarly we show that $x \in Y_{I_{2}}^{d}$.

Now assume that x is a general point of Y_{J}^{d-s}. Keeping the same notation as above, we will prove now that $Y_{I_{1}}^{d}$ and $Y_{I_{2}}^{d}$ intersect transversely at x. This amounts to proving that $T_{x}\left(Y_{I_{1}}^{d}\right) \cap T_{x}\left(Y_{I_{2}}^{d}\right)=T_{x}\left(Y_{J}^{d-s}\right)$. By Terracini's Lemma Te, we have

$$
\begin{aligned}
T_{x}\left(Y_{I_{1}}^{d}\right) & =\left\langle\left\langle p_{i} \mid i \in I_{1}\right\rangle,\left\langle T_{q_{i}} C \mid 1 \leq i \leq k\right\rangle,\left\langle T_{p_{i}} C \mid i \in J_{2}\right\rangle\right\rangle, \\
T_{x}\left(Y_{I_{2}}^{d}\right) & =\left\langle\left\langle p_{i} \mid i \in I_{2}\right\rangle,\left\langle T_{q_{i}} C \mid 1 \leq i \leq k\right\rangle,\left\langle T_{p_{i}} C \mid i \in J_{1}\right\rangle\right\rangle, \\
T_{x}\left(Y_{J}^{d-s}\right) & =\left\langle\left\langle p_{i} \mid i \in J\right\rangle,\left\langle T_{q_{i}} C \mid 1 \leq i \leq k\right\rangle\right\rangle,
\end{aligned}
$$

where $q_{1}, \ldots, q_{k} \in C$ are such that $q \in\left\langle q_{i} \mid 1 \leq i \leq k\right\rangle$.
Consider the linear subspaces:

$$
\begin{aligned}
L_{1} & :=\left\langle\left\langle p_{i} \mid i \in I_{1}\right\rangle,\left\langle T_{p_{i}} C \mid i \in J_{2}\right\rangle\right\rangle, \\
L_{2} & :=\left\langle\left\langle p_{i} \mid i \in I_{2}\right\rangle,\left\langle T_{p_{i}} C \mid i \in J_{1}\right\rangle\right\rangle, \\
L & :=\left\langle\left\langle p_{i} \mid i \in J\right\rangle\right\rangle \subset L_{1} \cap L_{2} .
\end{aligned}
$$

We have that $\operatorname{dim}\left(\left\langle L_{1}, L_{2}\right\rangle\right) \leq m_{1}+m_{2}+\ell-1$, and equality holds if and only if $L_{1} \cap L_{2}=L$. On the other hand, note that L intersects C in at least $m_{1}+m_{2}+\ell$ points, counted with multiplicity. Therefore we must have $\operatorname{dim}\left(\left\langle L_{1}, L_{2}\right\rangle\right)=m_{1}+m_{2}+\ell-1$, and $L_{1} \cap L_{2}=L$. It follows from the description of the tangent spaces above that $T_{x}\left(Y_{I_{1}}^{d}\right) \cap T_{x}\left(Y_{I_{2}}^{d}\right)=T_{x}\left(Y_{J}^{d-s}\right)$.

It remains to prove that $Y_{I_{1}}^{d} \cap Y_{I_{2}}^{d} \subset \bigcup_{J} Y_{J}^{d-s}$. Write $\left\{p_{i} \mid i \in I_{1}\right\}=\left\{x_{1}, \ldots, x_{m_{1}}\right\}$ and $\left\{p_{i} \mid i \in I_{2}\right\}=\left\{y_{1}, \ldots, y_{m_{2}}\right\}$. Suppose that $x \in Y_{I_{1}}^{d} \cap Y_{I_{2}}^{d}$. This means that there exist points $z_{1}, \ldots, z_{k_{1}}, w_{1}, \ldots, w_{k_{2}} \in C$ such that:

$$
\begin{gathered}
\left\langle x_{1}, \ldots, x_{m_{1}}\right\rangle \cap\left\langle z_{1}, \ldots, z_{k_{1}}\right\rangle=\emptyset=\left\langle y_{1}, \ldots, y_{m_{2}}\right\rangle \cap\left\langle w_{1}, \ldots, w_{k_{2}}\right\rangle, \text { and } \\
x \in\left\langle x_{1}, \ldots, x_{m_{1}}, z_{1}, \ldots, z_{k_{1}}\right\rangle \cap\left\langle y_{1}, \ldots, y_{m_{2}}, w_{1}, \ldots, w_{k_{2}}\right\rangle .
\end{gathered}
$$

The assumption that $d \leq n-s$ implies that $m_{1}+m_{2}+k_{1}+k_{2} \leq n+1$, and thus

$$
\begin{array}{r}
\left\langle x_{1}, \ldots, x_{m_{1}}, z_{1}, \ldots, z_{k_{1}}\right\rangle \cap\left\langle y_{1}, \ldots, y_{m_{2}}, w_{1}, \ldots, w_{k_{2}}\right\rangle= \\
\left\langle\left\{x_{1}, \ldots, x_{m_{1}}, z_{1}, \ldots, z_{k_{1}}\right\} \cap\left\{y_{1}, \ldots, y_{m_{2}}, w_{1}, \ldots, w_{k_{2}}\right\}\right\rangle .
\end{array}
$$

By relabeling the points if necessary, we may write, for suitable integers s_{1}, s_{2} and r :

$$
\begin{aligned}
\left\{x_{1}, \ldots, x_{s_{1}}\right\} & =\left\{x_{1}, \ldots, x_{m_{1}}\right\} \cap\left\{w_{1}, \ldots, w_{k_{2}}\right\} \\
\left\{y_{1}, \ldots, y_{s_{2}}\right\} & =\left\{y_{1}, \ldots, y_{m_{2}}\right\} \cap\left\{z_{1}, \ldots, z_{k_{1}}\right\} \\
\left\{z_{1}=w_{1}, \ldots, z_{r}=w_{r}\right\} & =\left\{z_{1}, \ldots, z_{k_{1}}\right\} \cap\left\{w_{1}, \ldots, w_{k_{2}}\right\} .
\end{aligned}
$$

Note that $s_{i}+r \leq k_{j},\{i, j\}=\{1,2\}$, and we have

$$
\begin{equation*}
x \in\left\langle x_{1}, \ldots, x_{s_{1}}, y_{1}, \ldots, y_{s_{2}}, z_{1}, \ldots, z_{r}\right\rangle \tag{5.4}
\end{equation*}
$$

Let $J_{0} \subset I_{1} \cup I_{2}$ be the subset of indices corresponding to the subset $\left\{x_{1}, \ldots, x_{s_{1}}, y_{1}, \ldots, y_{s_{2}}\right\} \subset$ $\left\{p_{1}, \ldots, p_{n+3}\right\}$. Note that $d\left(J_{0}, I_{i}\right)=m_{i}-s_{i}+s_{j}$, for $\{i, j\}=\{1,2\}$. In particular we have

$$
d\left(J_{0}, I_{1}\right)+d\left(J_{0}, I_{2}\right)=2 s
$$

Suppose first that $d\left(J_{0}, I_{1}\right)=d\left(J_{0}, I_{2}\right)=s$. It follows from (5.4) that

$$
x \in \operatorname{Join}\left(\left\langle p_{i} \mid i \in J_{0}\right\rangle, \operatorname{Sec}_{r}(C)\right) .
$$

Since $s_{i}+r \leq k_{j},\{i, j\}=\{1,2\}$, we get that

$$
\left|J_{0}\right|+2 r-1=s_{1}+s_{2}+2 r-1 \leq k_{1}+k_{2}-1=d-s .
$$

Hence $x \in Y_{J_{0}}^{d-s}$.
From now on we consider the case when $d\left(J_{0}, I_{1}\right) \neq d\left(J_{0}, I_{2}\right)$. Without lost of generality, we assume that

$$
d\left(J_{0}, I_{1}\right)-d\left(J_{0}, I_{2}\right)=m_{1}-m_{2}+2 s_{2}-2 s_{1}>0 .
$$

We will modify the subset $J_{0} \subset I_{1} \cup I_{2}$ by adding points of $I_{1} \backslash J_{0}$ or removing points of $I_{2} \cap J_{0}$ to obtain another subset $J \subset I_{1} \cup I_{2}$ satisfying $d\left(I_{i}, J\right)=s$ for $i=1,2$. Note that if $i \in I_{1} \backslash J_{0}$, then $d\left(J_{0} \cup\{i\}, I_{1}\right)=d\left(J_{0}, I_{1}\right)-1$ and $d\left(J_{0} \cup\{i\}, I_{2}\right)=d\left(J_{0}, I_{2}\right)+1$. Similarly, if $i \in I_{2} \cap J_{0}$, then $d\left(J_{0} \backslash\{i\}, I_{1}\right)=d\left(J_{0}, I_{1}\right)-1$ and $d\left(J_{0} \backslash\{i\}, I_{2}\right)=d\left(J_{0}, I_{2}\right)+1$. So we have to modify J_{0} by adding or removing exactly $\frac{m_{1}-m_{2}}{2}+s_{2}-s_{1}$ points of the appropriate I_{i}.

Suppose first that $\left|I_{1} \backslash J_{0}\right|=m_{1}-s_{1} \geq \frac{m_{1}-m_{2}}{2}+s_{2}-s_{1}$. This is equivalent to the inequality $s \geq s_{2}$. We construct $J_{1} \subset I_{1} \cup I_{2}$ by adding to J_{0} exactly $\frac{m_{1}-m_{2}}{2}+s_{2}-s_{1}$ points of $I_{1} \backslash J_{0}$. Then $d\left(I_{i}, J_{1}\right)=s$ for $i=1,2$, and it follows from (5.4) that

$$
x \in \operatorname{Join}\left(\left\langle p_{i} \mid i \in J_{1}\right\rangle, \operatorname{Sec}_{r}(C)\right) .
$$

Since $s_{2}+r \leq k_{1}$, we get that

$$
\left|J_{1}\right|+2 r-1=\left(k_{2}-k_{1}+2 s_{2}\right)+2 r-1 \leq k_{1}+k_{2}-1=d-s .
$$

Hence $x \in Y_{J_{1}}^{d-s}$.
Next we suppose that $s<s_{2}$. Let $I_{2}^{\prime} \subset I_{2}$ be the subset of indices corresponding to the subset $\left\{y_{1}, \ldots, y_{s}\right\}$, and set $J_{2}:=I_{1} \cup I_{2}^{\prime}$. Then $d\left(I_{i}, J_{2}\right)=s$ for $i=1,2$, and it follows from (5.4) that

$$
x \in \operatorname{Join}\left(\left\langle p_{i} \mid i \in J_{2}\right\rangle, \operatorname{Sec}_{r+s_{2}-s}(C)\right) .
$$

Since $s_{2}+r \leq k_{1}$, we get that

$$
\left|J_{2}\right|+2\left(r+s_{2}-s\right)-1=m_{1}+2\left(r+s_{2}\right)-s-1 \leq m_{1}+2 k_{1}-1-s=d-s .
$$

Hence $x \in Y_{J_{2}}^{d-s}$.
5.2. The odd case $n=2 h+1$. In this subsection we construct divisors Δ making $X_{n+3}^{n} \log$ Fano when $n=2 h+1$ is odd. We follow Notation 5.3) For each $1 \leq i \leq 3$, let $\Delta_{i} \subset X_{n+3}^{n}$ be the strict transform of the divisor $Y_{i}^{2 h} \subset \mathbb{P}^{n}$, and denote by $H_{4, \ldots, n+3} \subset X_{n+3}^{n}$ the strict transform of the hyperplane $\left\langle p_{4}, \ldots, p_{n+3}\right\rangle \subset \mathbb{P}^{n+3}$.

Theorem 5.7. Let $n=2 h+1 \geq 5$ be an odd integer. Set

$$
D:=\Delta_{1} \cup \Delta_{2} \cup \Delta_{3} \cup H_{4, \ldots, n+3} \subset X_{n+3}^{n} .
$$

For any $\frac{2 h-2}{3 h-2}<\epsilon<\frac{2 h}{3 h+1}$ the divisor $-\left(K_{X_{n+3}^{n}}+\epsilon D\right)$ is ample, and the pair $\left(X_{n+3}^{n}, \epsilon D\right)$ is klt.

For the proof of Theorem 5.7, we will need the following.
Proposition 5.8. Let the assumptions be as in Theorem 5.7, and follow Notation 5.3. For $0 \leq m \leq n-3$, we define a modification X_{m} of X_{n+3}^{n} recursively as follows:

- $X_{0}=X_{n+3}^{n}$,
- $X_{2 k+1}$ is the blow-up of $X_{2 k}$ along the strict transforms of $\operatorname{Sec}_{k+1}(C)$, and of the $Y_{i, j}^{2 k+1}$'s $(0 \leq k \leq h-2)$,
- $X_{2 k}$ is the blow-up of $X_{2 k-1}$ along the strict transforms of the $Y_{i}^{2 k}$'s, and of $Y_{1,2,3}^{2 k}$ ($1 \leq k \leq h-1$),
- X_{n-2} is the blow-up of X_{n-3} along the strict transform of $\operatorname{Sec}_{h}(C)$.

Then, for any $0 \leq m \leq n-3$, the center of the blow-up $X_{m+1} \rightarrow X_{m}$ is a disjoint union of smooth subvarieties, all transverse to the exceptional divisors of $X_{m} \rightarrow X_{0}$. Moreover, the composition $\pi: X_{n-2} \rightarrow X_{n+3}^{n}$ of these blow-ups is a log resolution of the pair $\left(X_{n+3}^{n}, D\right)$.
Proof. We will prove the result by induction on m. The statement is clearly try for $m=0$. For simplicity of notation we will denote by \widetilde{Z} the strict transform of a subvariety $Z \subset X_{n+3}^{n}$ in any X_{m}.

Suppose that the statement is true $m=2 k$. We will show that it holds for $X_{2 k+1}$ and $X_{2 k+2}$. We start with the following observation. Let $I \subset\{1, \ldots, n+3\}$ be such that either $|I| \in\{0,1,2\}$ or $I=\{1,2,3\}, 0 \leq k \leq \frac{n-|I|}{2}$, and $d=2 k-1+|I|$. Then, for any $m<d-1$, each component of the center of the blow-up $X_{m+1} \rightarrow X_{m}$ is either contained in $\operatorname{Sing}\left(Y_{I}^{d}\right)$, or is disjoint from it. This allows us to apply Proposition 5.5, together with Propositions 5.2 and 5.4 and conclude by induction that the following holds.

- The subvarieties $\widetilde{Y}_{i}^{2 k+2} \subset X_{2 k+1}, 1 \leq i \leq 3$, are smooth and transverse to the exceptional divisors over X_{0}.
- The subvarieties $\mathbb{S e c} \widetilde{c_{k+2}}(C), \widetilde{Y}_{i, j}^{2 k+3} \subset X_{2 k+2}, 1 \leq i<j \leq 3$, are smooth and transverse to the exceptional divisors over X_{0}.
Next we show that the $\widetilde{Y}_{i}^{2 k+2}$, s and $\widetilde{Y}_{1,2,3}^{2 k+2}$ are pairwise disjoint in $X_{2 k+1}$, and similarly for $\widetilde{\operatorname{Sec} c_{k+2}(C)}$ and the $\widetilde{Y}_{i, j}^{2 k+3}$'s in $X_{2 k+2}$.

Consider the blow-up $X_{2 k+1} \rightarrow X_{2 k}$. By Proposition 5.6, on $X_{2 k}$ we have

$$
\widetilde{Y}_{i}^{2 k+2} \cap \widetilde{Y}_{j}^{2 k+2}=\widetilde{\operatorname{Sec}_{k+1}(C)} \cup \widetilde{Y}_{i, j}^{2 k+1}, \quad \widetilde{Y}_{i}^{2 k+2} \cap \widetilde{Y}_{i, r, s}^{2 k+2}=\widetilde{Y}_{i, r}^{2 k+1} \cup \widetilde{Y}_{i, s}^{2 k+1}
$$

By the induction hypothesis, $\widetilde{\operatorname{Sec}\left(\widetilde{c_{k+1}(} C\right)}$ and $\widetilde{Y}_{i, j}^{2 k+1}$ are smooth and disjoint. So the intersections are everywhere transverse. We conclude that on $X_{2 k+1}$, which is obtained from $X_{2 k}$ by blowing-up $\widetilde{\operatorname{Sec}(C)}(C)$ and $\widetilde{Y}_{i, j}^{2 k+1}$, the $\widetilde{Y}_{i}^{2 k+2}$,s and $\widetilde{Y}_{1,2,3}^{2 k+2}$ are pairwise disjoint.

Now consider the blow-up $X_{2 k+2} \rightarrow X_{2 k+1}$. By Proposition 5.6, on $X_{2 k+1}$ we have

$$
\widetilde{\operatorname{Sec}_{k+2}(C)} \cap \widetilde{Y}_{i, j}^{2 k+3}=\widetilde{Y}_{i}^{2 k+2} \cup \widetilde{Y}_{j}^{2 k+2}, \quad \widetilde{Y}_{i, j}^{2 k+3} \cap \widetilde{Y}_{i, r}^{2 k+3}=\widetilde{Y}_{i}^{2 k+2} \cup \widetilde{Y}_{i, j, r}^{2 k+2}
$$

By the induction hypothesis, the $\widetilde{Y}_{i}^{2 k+2}$,s and $\widetilde{Y}_{1,2,3}^{2 k+2}$ are smooth and pairwise disjoint. So the intersections are everywhere transverse. We conclude that on $X_{2 k+2}$, which is obtained from $X_{2 k+1}$ by blowing-up the $\widetilde{Y}_{i}^{2 k+2}$,s and $\widetilde{Y}_{1,2,3}^{2 k+2}$, the varieties $\mathbb{S e c} \widetilde{c_{k+2}(C)}$ and the $\widetilde{Y}_{i, j}^{2 k+3}$'s are pairwise disjoint.

As before, we have that the divisors $\widetilde{H}_{4, \ldots, n+3}, \widetilde{\Delta}_{1}, \widetilde{\Delta}_{2}$ and $\widetilde{\Delta}_{3}$ on X_{n-3} are smooth and transverse to the exceptional divisors over X_{0}, and their intersection are pairwise smooth and everywhere transverse. By Proposition 5.6 we have

$$
\widetilde{\Delta}_{1} \cap \widetilde{\Delta}_{2} \cap \widetilde{\Delta}_{3}=\widetilde{\sec _{h}(C)} .
$$

So, after the blow-up $X_{n-2} \rightarrow X_{n-3}$ of $\widetilde{\operatorname{Sec}_{h}(C)}$, we get a log resolution of $\left(X_{n+3}^{n}, D\right)$.
Proof of Theorem 5.7. With Notation 3.1, we have

$$
D=\Delta_{1}+\Delta_{2}+\Delta_{3}+H_{4, \ldots, n+3} \sim(3 h+4) H-(3 h+1)\left(E_{1}+\ldots+E_{n+3}\right) .
$$

Recall from Proposition 1.4 that the Mori cone of X_{n+3}^{n} is generated by the classes R_{i} 's and $L_{i, j}$'s. One computes

$$
-\left(K_{X_{n+3}^{n}}+\epsilon D\right) \cdot R_{i}=2 h-\epsilon(3 h+1) \text { and }-\left(K_{X_{n+3}^{n}}+\epsilon D\right) \cdot L_{i, j}=\epsilon(3 h-2)-2 h+2 .
$$

Therefore $-K_{X_{n+3}^{n}}-\epsilon D$ is ample provided that $\frac{2 h-2}{3 h-2}<\epsilon<\frac{2 h}{3 h+1}$.
Next we check when the pair $\left(X_{n+3}^{n}, \epsilon D\right)$ is klt. Let $\pi: \widetilde{X}:=X_{n-2} \rightarrow X_{n+3}^{n}$ be the log resolution of $\left(X_{n+3}^{n}, \epsilon D\right)$ introduced in Proposition 5.8 above. We have

$$
K_{\tilde{X}}=\pi^{*} K_{X_{n+3}^{n}}+\sum_{k=1}^{h}(n-2 k) E_{\operatorname{Sec}_{k}(C)}+\sum_{k=1}^{h-1}(n-2 k) \sum_{i, j} E_{Y_{i, j}^{2 k-1}}+\sum_{k=1}^{h-1}(n-2 k-1)\left(\sum_{i} E_{Y_{i}^{2 k}}+E_{Y_{1,2,3}^{2 k}}\right) .
$$

Here we denote by E_{Y} the exceptional divisor with center $Y \subset \mathbb{P}^{n}$. In order to compute discrepancies, we will compute the the multiplicities of the $Y_{i}^{2 h}$, along the images in \mathbb{P}^{n} of the subvarieties blown-up by π. By Proposition 5.1 we have mult $_{\operatorname{Sec}_{k}(C)} \operatorname{Sec}_{h}(C)=h-k+1$. Moreover, $\operatorname{mult}_{\text {Sec }}^{k}(C) Y_{r}^{2 h}=h-k+1$,

$$
\begin{gathered}
\operatorname{mult}_{Y_{i, j}^{2 k-1}} Y_{r}^{2 h}= \begin{cases}\operatorname{mult}_{\operatorname{Sec}_{k}(C)} \operatorname{Sec}_{h}(C)=h-k+1 & \text { if } r \in\{i, j\}, \\
\operatorname{mult}_{\operatorname{Sec}}^{k_{k+1}(C)} \\
\operatorname{Sec} & (C)=h-k \\
\text { if } r \notin\{i, j\},\end{cases} \\
\operatorname{mult}_{Y_{i}^{2 k}} Y_{r}^{2 h}= \begin{cases}\operatorname{mult}_{\operatorname{Sec} c_{k}(C)} \operatorname{Sec}_{h}(C)=h-k+1 & \text { if } r=i, \\
\operatorname{mult}_{\operatorname{Sec}_{k+1}(C)} \operatorname{Sec}_{h}(C)=h-k & \text { if } r \neq i,\end{cases}
\end{gathered}
$$

and $\operatorname{mult}_{Y_{1,2,3}^{2 k}} Y_{r}^{2 h}=\operatorname{mult}_{\operatorname{Sec}_{k+1}(C)} \operatorname{Sec}_{h}(C)=h-k$ for for $k=1, \ldots, h-1$. Let $\Delta \subset \mathbb{P}^{n}$ be the divisor whose strict transform is D. We have

$$
\begin{align*}
& \operatorname{mult}_{\sec _{k}(C)} \Delta=3(h-k+1) \\
& \operatorname{mult}_{Y_{i, j}^{2 k-1}}^{2 k} \Delta=2(h-k+1)+h-k=3(h-k)+2, \tag{5.5}\\
& \operatorname{mult}_{Y_{i, j, r}^{2 k}} \Delta=3(h-k) \\
& \operatorname{mult}_{Y_{i}^{2 k}} \Delta=h-k+1+2(h-k)=3 h-3 k+1
\end{align*}
$$

Equalities 5.5 yield:

$$
\begin{aligned}
\pi^{*}(D)= & \widetilde{D}+\sum_{k=1}^{h} 3(h-k+1) E_{\mathbb{S e c}_{k}(C)}+\sum_{k=1}^{h-1}(3(h-k)+2) \sum_{i, j} E_{Y_{i, j}^{2 k-1}} \\
& +\sum_{k=1}^{h-1}(3 h-3 k+1) \sum_{i} E_{Y_{i}^{2 k}}+\sum_{k=1}^{h-1} 3(h-k) E_{Y_{1,2,3}^{2 k}}
\end{aligned}
$$

and hence

$$
\begin{aligned}
K_{\tilde{X}}=\pi^{*}\left(K_{X_{n+3}^{n}}+\epsilon D\right) & +\sum_{k=1}^{h}(2 h-2 k+1-3 \epsilon(h-k+1)) E_{\text {Sec }_{k}(C)} \\
& +\sum_{k=1}^{h-1}(2 h-2 k+1-\epsilon(3(h-k)+2)) \sum_{i, j} E_{Y_{i, j}^{2 k-1}} \\
& +\sum_{k=1}^{h-1}(2(h-k)-\epsilon(3 h-3 k+1)) \sum_{i} E_{Y_{2}^{2 k}} \\
& +\sum_{k=1}^{h-1}(2(h-k)-\epsilon(3 h-3 k)) E_{Y_{1,2,3}^{22}}-\epsilon D .
\end{aligned}
$$

Therefore the pair $\left(X_{n+3}^{n}, \epsilon D\right)$ is klt for any $0 \leq \epsilon<\frac{2}{3}$.
5.3. The even case $n=2 h$. In this subsection we construct divisors Δ making $X_{n+3}^{n} \log$ Fano when $n=2 h$ is even. We follow Notation [5.3] For each $1 \leq i<j \leq n+3$, let $\Delta_{i, j} \subset$ X_{n+3}^{n} be the strict transform of the divisor $Y_{i, j}^{2 h-1} \subset \mathbb{P}^{n}$, and denote by $H_{5, \ldots, n+3} \subset X_{n+3}^{n}$ the strict transform of a general hyperplane in \mathbb{P}^{n+3} through p_{5}, \ldots, p_{n+3}.
Theorem 5.9. Let $n=2 h \geq 4$ be an even integer. Set

$$
D:=\Delta_{1,2} \cup \Delta_{3,4} \cup \widetilde{\operatorname{Sec}_{h}(C)} \cup H_{5, \ldots, n+3} \subset X_{n+3}^{n}
$$

For any $\frac{2 h-3}{3 h-4}<\epsilon<\frac{2 h-1}{3 h-1}$ the divisor $-\left(K_{X_{n+3}^{n}}+\epsilon D\right)$ is ample, and the pair $\left(X_{n+3}^{n}, \epsilon D\right)$ is klt.

To provide a log resolution of the pair $\left(X_{n+3}^{n}, D\right)$ in Proposition 5.11 below, we will need the following result.
Lemma 5.10. Any point of $Y_{1,2}^{n-1} \cap Y_{3,4}^{n-1} \subset \mathbb{P}^{n}$ which is smooth for both divisors $Y_{1,2}^{n-1}$ and $Y_{3,4}^{n-1}$ is a smooth point of $Y_{1,2}^{n-1} \cap Y_{3,4}^{n-1}$.
Proof. Let $x \in\left(Y_{1,2}^{n-1} \cap Y_{3,4}^{n-1}\right) \backslash\left(\operatorname{Sing}\left(Y_{1,2}^{n-1}\right) \cup \operatorname{Sing}\left(Y_{3,4}^{n-1}\right)\right)$. We shall prove that the intersection of $Y_{1,2}^{n-1}$ and $Y_{3,4}^{n-1}$ is transverse at x, that is, $T_{x} Y_{1,2}^{n-1} \neq T_{x} Y_{3,4}^{n-1}$.

Suppose otherwise, and set $P=T_{x} Y_{1,2}^{n-1}=T_{x} Y_{3,4}^{n-1}$. By Terracini's Lemma Te] we have

$$
P=\left\langle p_{1}, p_{2}, T_{z_{1}} C, \ldots, T_{z_{h-1}} C\right\rangle=\left\langle p_{2}, p_{3}, T_{w_{1}} C, \ldots, T_{w_{h-1}} C\right\rangle
$$

for suitable $z_{i}, w_{i} \in C$, with $z_{i} \notin\left\{p_{1}, p_{2}\right\}$ and $w_{i} \notin\left\{p_{3}, p_{4}\right\}$. Set $s=\mid\left\{z_{1}, \ldots, z_{h-1}\right\} \cap$ $\left\{w_{1}, \ldots, w_{h-1}\right\}\left|, r=\left|\left\{z_{1}, \ldots, z_{h-1}\right\} \cap\left\{p_{3}, p_{4}\right\}\right|\right.$, and $t=\left|\left\{w_{1}, \ldots, w_{h-1}\right\} \cap\left\{p_{1}, p_{2}\right\}\right|$. We may assume that $r \geq t$. Then $s \leq h-1-r$, and the number of intersection points in $P \cap C$, counted with multiplicity, is at least

$$
2(2(h-1)-s)+2-r+2-t \geq n+2+r-t \geq n+2 .
$$

This is impossible since C has degree n.
Proposition 5.11. Let the assumptions be as in Theorem 5.9, and follow Notation 5.3 . For $0 \leq m \leq n-3$, we define a modification X_{m} of X_{n+3}^{n} recursively as follows:

- $X_{0}=X_{n+3}^{n}$,
- $X_{2 k+1}$ is the blow-up of $X_{2 k}$ along the strict transforms of $\operatorname{Sec}_{k+1}(C)$ and the $Y_{i, j}^{2 k+1}$,s ($0 \leq k \leq h-3$), and also of $Y_{1,2,3,4}^{2 k+1}$ if $0<k \leq h-3$,
- $X_{2 k}$ is the blow-up of $X_{2 k-1}$ along the strict transforms of the $Y_{i}^{2 k}$,s, and of the $Y_{i, j, r}^{2 k}$'s $(1 \leq k \leq h-2)$.
- X_{n-3} is the blow-up of X_{n-4} along the strict transforms of $\operatorname{Sec}_{h-1}(C)$, of $Y_{1,2}^{2 h-3}$ and of $Y_{3,4}^{2 h-3}$.
Then, for any $0 \leq m \leq n-4$, the center of the blow-up $X_{m+1} \rightarrow X_{m}$ is a disjoint union of smooth subvarieties, all transverse to the exceptional divisors of $X_{m} \rightarrow X_{0}$. Moreover, the composition $\pi: X_{n-3} \rightarrow X_{n+3}^{n}$ of these blow-ups is a log resolution of the pair $\left(X_{n+3}^{n}, D\right)$.

Proof. Using the same arguments as in the proof of Proposition 5.8, we can prove that, for any $0 \leq m \leq n-4$, the center of the blow-up $X_{m+1} \rightarrow X_{m}$ is a disjoint union of smooth subvarieties, all transverse to the exceptional divisors of $X_{m} \rightarrow X_{0}$. Moreover, the strict transforms of $\Delta_{1,2}, \Delta_{3,4}, \widetilde{\operatorname{Sec}_{h}(C)}$ and $H_{5, \ldots, 2 h+3}$ in X_{n-3} are smooth and transverse to the exceptional divisors over X_{0}, and the intersection $\widetilde{\operatorname{Sec}_{h}(C)} \cap \widetilde{Y}_{i, j}^{2 h-1}$ is transverse. Clearly the strict transform of $H_{5, \ldots, 2 h+3}$ is transverse to $\widetilde{\operatorname{Sec}_{h}(C)}, \Delta_{1,2}, \Delta_{3,4}$ and to all exceptional divisors. To show that the strict transform of D in X_{n-3} is simple normal crossing, it remains to compute $\Delta_{1,2} \cap \Delta_{3,4}$. Note that we cannot use Proposition 5.6 in this case. To compute $\Delta_{1,2} \cap \Delta_{3,4}$, we first describe the intersection of $Y_{i, j}^{n-1}$ and $\operatorname{Sing}\left(Y_{r, s}^{n-1}\right)=Y_{r, s}^{n-3}$.
Claim 5.12. We have

$$
Y_{i, j}^{n-1} \cap Y_{r, s}^{n-3}=Y_{r}^{n-4} \cup Y_{s}^{n-4} \cup Y_{i, r, s}^{n-4} \cup Y_{j, r, s}^{n-4}
$$

Moreover, at a general point in any irreducible component of this intersection, the intersection is transverse.

Proof. Note that $Y_{i, j}^{n-1} \cap Y_{r, s}^{n-3}=\left(Y_{i, j}^{n-1} \cap Y_{i, j, r, s}^{n-1}\right) \cap Y_{r, s}^{n-3}$. By Proposition 5.6, $Y_{i, j}^{n-1} \cap Y_{i, j, r, s}^{n-1}=$ $Y_{i, j, r}^{n-2} \cup Y_{i, j, s}^{n-2}$. Applying Proposition 5.6 repeatedly, we have that
$Y_{i, j, r}^{n-2} \cap Y_{r, s}^{n-3}=\left(Y_{i, j, r}^{n-2} \cap Y_{i, r, s}^{n-2}\right) \cap Y_{r, s}^{2 h-3}=\left(Y_{i, r}^{n-3} \cup Y_{i, j, r, s}^{n-3}\right) \cap Y_{r, s}^{n-3}=Y_{r}^{n-4} \cup Y_{i, r, s}^{n-4} \cup Y_{j, r, s}^{n-4}$.
Similarly we show that $Y_{i, j, s}^{n-2} \cap Y_{r, s}^{n-3}=Y_{s}^{n-4} \cup Y_{i, r, s}^{2 h-4} \cup Y_{j, r, s}^{n-4}$.
The strict transforms $\widetilde{Y}_{1,2}^{n-1}$ and $\widetilde{Y}_{3,4}^{n-1}$ in X_{n-4} are still singular along $\widetilde{Y}_{1,2}^{n-3}$ and $\widetilde{Y}_{3,4}^{n-3}$, respectively. However, by Claim 5.12 we have

$$
\widetilde{Y}_{1,2}^{n-1} \cap \operatorname{Sing}\left(\widetilde{Y}_{3,4}^{n-1}\right)=\widetilde{Y}_{3,4}^{n-1} \cap \operatorname{Sing}\left(\widetilde{Y}_{1,2}^{n-1}\right)=\emptyset
$$

Hence, by Lemma 5.10, in $X_{n-3}, \widetilde{Y}_{1,2}^{n-1} \cap \widetilde{Y}_{3,4}^{n-1}$ is smooth, and so the intersection $\widetilde{Y}_{1,2}^{n-1} \cap \widetilde{Y}_{3,4}^{n-1}$ is transverse.

Proof of Theorem 5.9. With Notation 3.1, we have

$$
D=\Delta_{1,2} \cup \Delta_{3,4} \cup \widetilde{\sec _{h}(C)} \cup H_{5, \ldots, 2 h+3} \sim(3 h+2) H-(3 h-1)\left(E_{1}+\ldots+E_{n+3}\right)
$$

and

$$
-K_{X_{n+3}^{n}}-\epsilon D \sim(2 h+1-\epsilon(3 h+2)) H-(2 h-1-\epsilon(3 h-1))\left(E_{1}+\ldots+E_{n+3}\right) .
$$

Recall from Proposition 1.4 that the Mori cone of X_{n+3}^{n} is generated by the classes R_{i} 's and $L_{i, j}$'s. One computes

$$
\left(-K_{X_{n+3}^{n}}-\epsilon D\right) \cdot R_{i}=2 h-1-\epsilon(3 h-1) \text { and }\left(-K_{X_{n+3}^{n}}-\epsilon D\right) \cdot L_{i, j}=\epsilon(3 h-4)-2 h+3 .
$$

Therefore $-K_{X_{n+3}^{n}}-\epsilon D$ is ample provided that $\frac{2 h-3}{3 h-4}<\epsilon<\frac{2 h-1}{3 h-1}$.
Next we check when the pair $\left(X_{n+3}^{n}, \epsilon D\right)$ is klt. Let $\pi: \widetilde{X}:=X_{n-3} \rightarrow X_{n+3}^{n}$ be the log resolution of $\left(X_{n+3}^{n}, \epsilon D\right)$ introduced in Proposition 5.11 above. We have

$$
\begin{aligned}
K_{\tilde{X}}= & \pi^{*} K_{X_{n+3}^{n}}+\sum_{k=1}^{h-1}(n-2 k) E_{\operatorname{Sec}_{k}(C)}+\sum_{k=1}^{h-1}(n-2 k) \sum_{i, j} E_{Y_{i, j}^{2 k-1}} \\
& +\sum_{k=1}^{h-2}(n-2 k-1)\left(\sum_{i} E_{Y_{i}^{2 k}}+\sum_{i, j, r} E_{Y_{i, j, r}^{2 k}}\right)+\sum_{k=2}^{h-2}(n-2 k) E_{Y_{1,2,3,4}^{2 k-1}} .
\end{aligned}
$$

Here we denote by E_{Y} the exceptional divisor with center $Y \subset \mathbb{P}^{n}$.
In order to compute discrepancies, we will compute the the multiplicities of $\operatorname{Sec}_{h}(C)$, $Y_{1,2}^{2 h-1}$, and $Y_{3,4}^{2 h-1}$ along the images in \mathbb{P}^{n} of the subvarieties blown-up by π.

We start with the divisor $Y_{i, j}^{2 h-1}$. For $1 \leq k \leq h-1$, we have:

$$
\left.\begin{array}{c}
\operatorname{mult}_{Y_{r, s}^{2 k-1}}^{2 k-1} Y_{i, j}^{2 h-1}= \begin{cases}\operatorname{mult}_{\operatorname{Sec}_{k-1}(C)} \operatorname{Sec}_{h-1}(C)=h-k+1 & \text { if }\{i, j\}=\{r, s\}, \\
\operatorname{mult}_{\operatorname{Sec}_{k}(C)} \operatorname{Sec}_{h-1}(C)=h-k & \text { if }|\{i, j\} \cap\{r, s\}|=1, \\
\operatorname{mult}_{\operatorname{Sec}_{k+1}(C)} \operatorname{Sec}_{h-1}(C)=h-k-1 & \text { if }\{i, j\} \cap\{r, s\}=\emptyset .\end{cases} \\
\operatorname{mult}_{Y_{r, s, t}^{2 k}} Y_{i, j}^{2 h-1}= \begin{cases}\operatorname{mult}_{\operatorname{Sec}_{k+2}(C)} \operatorname{Sec}_{h-1}(C)=h-k-2 & \text { if } i,\{i, j\} \cap\{r, s, t\}=\emptyset ., \\
\operatorname{mult}_{\operatorname{Sec}_{k+1}(C)} \operatorname{Sec}_{h-1}(C)=h-k-1 & \text { if }|\{i, j\} \cap\{r, s, t\}|=1, \\
\operatorname{mult}_{\operatorname{Sec}_{k}(C)} \operatorname{Sec}_{h-1}(C)=h-k & \text { if }\{i, j\} \subset\{r, s, t\} .\end{cases} \\
\operatorname{mult}_{Y_{r}^{2 k}} Y_{i, j}^{2 h-1}= \begin{cases}\operatorname{mult}_{\operatorname{Sec}_{k+1}(C)} \operatorname{Sec}_{h-1}(C)=h-k-1 & \text { if } r \notin\{i, j\}, \\
\operatorname{mult}_{\operatorname{Sec}}^{k}(C) & \operatorname{Sec} c_{h-1}(C)=h-k\end{cases} \\
\text { if } r \in\{i, j\} .
\end{array}\right\} \begin{aligned}
& \operatorname{mult}_{Y_{1,2,3,4}^{2 k-1} Y_{i, j}^{2 h-1}=\operatorname{mult}_{\operatorname{Sec}_{k}(C)} \operatorname{Sec}_{h-1}(C)=h-k .}
\end{aligned}
$$

Next we consider the divisor $\operatorname{Sec}_{h}(C)$. For $1 \leq k \leq h-1$, we have:

$$
\begin{array}{ll}
\operatorname{mult}_{\operatorname{Sec}_{k}(C)} \operatorname{Sec}_{h}(C) & =h-k+1, \\
\operatorname{mult}_{Y_{i, j}^{2 k-1}} \operatorname{Sec}_{h}(C) & =\operatorname{mult}_{\operatorname{Sec}_{k+1}(C)} \operatorname{Sec}_{h}(C)=h-k, \\
\operatorname{mult}_{Y_{i, j, r}^{2 k}} \operatorname{Sec}_{h}(C) & =\operatorname{mult}_{\operatorname{Sec}_{k+2}(C)} \operatorname{Sec}_{h}(C)=h-k-1, \\
\operatorname{mult}_{Y_{i}} \operatorname{Sec}_{h}(C) & =\operatorname{mult}_{\operatorname{Sec}_{k+1}(C)} \operatorname{Sec}_{h}(C)=h-k, \\
\operatorname{mult}_{Y_{1,2,3,4}^{2 k-1}} \operatorname{Sec}_{h}(C) & =\operatorname{mult}_{\operatorname{Sec}_{k+2}(C)} \operatorname{Sec}_{h}(C)=h-k-1 .
\end{array}
$$

Now let $\bar{D} \subset \mathbb{P}^{n}$ be the divisor whose strict transform is D. The above formulas yield:

$$
\begin{array}{ll}
\operatorname{mult}_{\operatorname{Sec}_{k}(C)} \bar{D} & =2(h-k)+(h-k+1)=3 h-3 k+1 \\
\operatorname{mult}_{Y_{i, j}^{2 k-1}} \bar{D} & =2(h-k)+(h-k)=(h-k+1)+(h-k-1)+(h-k)=3 h-3 k \\
\operatorname{mult}_{Y_{i, j, r}}^{2 k} & \bar{D} \\
\operatorname{mult}_{Y_{i}^{2 k}} & =(h-k-1)+(h-k)+(h-k-2)=3 h-3 k-3 \\
\operatorname{mult}_{Y_{1,2,3,4}^{2 k-1}} \bar{D} & =(h-k-1)+(h-k)+(h-k)=3 h-3 k-1 \\
& =2(h-k)+h-k-1=3 h-3 k-1
\end{array}
$$

Thus

$$
\begin{aligned}
\pi^{*}(D)= & \widetilde{D}+\sum_{k=1}^{h-1}(3 h-3 k+1) E_{\operatorname{Sec}_{k}(C)}+\sum_{k=1}^{h-1}(3 h-3 k) \sum_{i, j} E_{Y_{i, j}^{2 k-1}} \\
& +\sum_{k=1}^{h-2}(3 h-3 k-1) \sum_{i} E_{Y_{i}^{2 k}}+\sum_{k=1}^{h-2}(3 h-3 k-3) \sum_{i, j, r} E_{Y_{i, j, r}^{2 k}} \\
& +\sum_{k=2}^{h-2}(3 h-3 k-1) E_{Y_{1,2,3,4}^{2 k-1}}
\end{aligned}
$$

and hence

$$
\begin{aligned}
K_{\widetilde{X}}=\pi^{*}\left(K_{X_{n+3}^{n}}+\epsilon D\right) & +\sum_{k=1}^{h-1}(2 h-2 k-\epsilon(3 h-3 k+1)) E_{\mathbb{S e c}_{k}(C)} \\
& +\sum_{k=1}^{h-1}(2 h-2 k-\epsilon(3 h-3 k)) \sum_{i, j} E_{Y_{i, j}^{2 k-1}} \\
& +\sum_{k=1}^{h-2}(2 h-2 k-1-\epsilon(3 h-3 k-1)) \sum_{i} E_{Y_{i}^{2 k}} \\
& +\sum_{k=1}^{h-2}(2 h-2 k-1-\epsilon(3 h-3 k-3)) \sum_{i, j, r} E_{Y_{i, j, r}^{2 k}} \\
& +\sum_{k=2}^{h-2}(2 h-2 k-\epsilon(3 h-3 k-1)) E_{Y_{1,2,3,4}^{2 k-1}}-\epsilon \widetilde{D}
\end{aligned}
$$

For $\epsilon<\frac{2 h-1}{3 h-2}$ all the discrepancies are greater than -1 . Therefore, for $\frac{2 h-3}{3 h-4}<\epsilon<\frac{2 h-1}{3 h-1}$ the divisor $-K_{X_{n+3}^{n}}-\epsilon D$ is ample and the pair $\left(X_{n+3}^{n}, \epsilon D\right)$ is klt.

6. On a question of Hassett

In [Ha], Hassett introduced moduli spaces of weighted pointed curves. Given $g \geq 0$ and rational weight data $A[n]=\left(a_{1}, \ldots, a_{n}\right), 0<a_{i} \leq 1$, satisfying $2 g-2+\sum_{i=1}^{n} a_{i}>0$, the moduli space $\bar{M}_{g, A[n]}$ parametrizes genus g nodal n-pointed curves $\left\{C,\left(x_{1}, \ldots, x_{n}\right)\right\}$ subject to the following stability conditions:

- Each x_{i} is a smooth point of C, and the points $x_{i_{1}}, \ldots, x_{i_{k}}$ are allowed to coincide only if $\sum_{j=1}^{k} a_{i_{j}} \leq 1$.
- The twisted dualizing sheaf $\omega_{C}\left(a_{1} x_{1}+\cdots+a_{n} x_{n}\right)$ is ample.

In particular, $\bar{M}_{g, A[n]}$ is a compactification of the moduli space $M_{g, n}$ of genus g smooth n-pointed curves. The irreducible components of the boundary divisor $\bar{M}_{g, A[n]} \backslash M_{g, n}$ are well understood. In the special case when $g=0$, they are described as follows. Consider a partition $I \cup J=\{1, \ldots, n\}$ such that one of the following holds.
$-I=\left\{i_{1}, \ldots, i_{r}\right\}, J=\left\{j_{1}, \ldots, j_{n-r}\right\}$, with $r, n-r \geq 2, a_{i_{1}}+\ldots+a_{i_{r}}>1$ and $a_{j_{1}}+\ldots+$
$a_{j_{n-r}}>1$.

- $I=\left\{i_{1}, i_{2}\right\}$ and $i_{1}+i_{2} \leq 1$.

In the first case, there is a prime divisor $D_{I, J}(A)$ in $\bar{M}_{0, A[n]}$ whose general point corresponds to a nodal curve with two irreducible components, having marked points $x_{i_{1}}, \ldots, x_{i_{r}}$ on one component, and $x_{j_{1}}, \ldots, x_{j_{n-r}}$ on the other component. In the latter case, there is a
prime divisor $D_{I, J}(A)$ in $\bar{M}_{0, A[n]}$ parametrizing curves where the marked points $x_{i_{1}}$ and $x_{i_{2}}$ coincide. These are precisely the boundary divisors of $\bar{M}_{g, A[n]}$.
6.1 ([Ha, Section 4]). For fixed g and n, given two collections of rational weight data $A[n]$ and $B[n]$ such that $a_{i} \geq b_{i}$ for any $i=1, \ldots, n$, there exists a birational reduction morphism

$$
\rho_{B[n], A[n]}: \bar{M}_{g, A[n]} \rightarrow \bar{M}_{g, B[n]} .
$$

This morphism associates to a curve $\left[C, x_{1}, \ldots, x_{n}\right] \in \bar{M}_{g, A[n]}$ the pointed curve obtained by collapsing components of C along which $\omega_{C}\left(b_{1} x_{1}+\ldots+b_{n} x_{n}\right)$ fails to be ample.
Example 6.2 (Ha , Sections 6.1 and 6.2]). Consider the weight data

$$
\begin{aligned}
& A_{0}[n]=(1 /(n-2), \ldots, 1 /(n-2), 1), \\
& A_{1}[n]=(1 /(n-3), \ldots, 1 /(n-3), 1) \\
& A_{1,2}[n]=(1 /(n-2), \ldots, 1 /(n-2), 2 /(n-2), 1) .
\end{aligned}
$$

Then we have $\bar{M}_{0, A_{0}[n]} \cong \mathbb{P}^{n-3}, \bar{M}_{0, A_{1}[n]} \cong X_{n-1}^{n-3}=B l_{p_{1}, \ldots, p_{n-1}} \mathbb{P}^{n-3}$ and $\bar{M}_{0, A_{1,2}[n]} \cong$ $X_{n-2}^{n-3}=B l_{p_{1}, \ldots, p_{n-2}} \mathbb{P}^{n-3}$. The reduction morphisms $\rho_{A_{1,2}[n], A_{1}[n]}: X_{n-1}^{n-3} \rightarrow X_{n-2}^{n-3}$ and $\rho_{A_{0}[n], A_{1}[n]}: X_{n-1}^{n-3} \rightarrow \mathbb{P}^{n-3}$ are the natural blow-up morphisms.

Let us describe some of the boundary divisors of $\bar{M}_{0, A_{1}[n]}$ under the blowup morphism $\rho: X_{n-1}^{n-3} \rightarrow \mathbb{P}^{n-3}$. There are $(n-1)$ partitions of type $I=\{\hat{\imath}, n\}, J=\{1, \ldots, \hat{\imath}, \ldots, n-1\}$. The corresponding $(n-1)$ divisors $D_{I, J}$ are the $(n-1)$ exceptional divisors of the blowup. There are $\binom{n-1}{2}$ partitions of type $I=\left\{\hat{\imath}_{1}, \hat{\imath}_{2}\right\}, J=\left\{1, \ldots, \hat{\imath}_{1}, \ldots, \hat{\imath}_{2}, \ldots, n-1\right\} \cup\{n\}$. The corresponding $\binom{n-1}{2}$ divisors $D_{I, J}$ are the strict transforms of the $\binom{n-1}{2}$ hyperplanes spanned subsets of cardinality $n-3$ of $\left\{p_{1}, \ldots, p_{n-1}\right\}$.

In Ha Hassett proposed the following problem.
Problem 6.3 ([Ha, Problem 7.1]). Let $A[n]$ be a vector of weights and consider the moduli space $\bar{M}_{0, A[n]}$. Do there exist rational numbers $\alpha_{I, J}$ such that

$$
K_{\bar{M}_{0, A[n]}}+\sum_{I, J} \alpha_{I, J} D_{I, J}(A)
$$

is ample and the pair $\left(\bar{M}_{0, A[n]}, \sum_{I, J} \alpha_{I, J} D_{I, J}(A)\right)$ is log canonical?
In Ha, Sections 7.1, 7.2, 7.3, Remark 8.5] Hassett gives examples in which Problem 6.3 admits a positive answer. The techniques developed in this paper allow us to give some more examples.
Proposition 6.4. For the moduli space $\bar{M}_{0, A_{1}[n]}$, Problem 6.3 admits a positive answer.
Proof. Consider the blow-up $\rho: \bar{M}_{0, A_{1}[n]} \cong X_{n-1}^{n-3} \rightarrow \mathbb{P}^{n-3}$ described in Example 6.2, We denote by H the pullback of the hyperplane class of \mathbb{P}^{n-3}. Let E_{1}, \ldots, E_{n-1} be the exceptional divisors, and $H_{i_{1}, \ldots, i_{n-3}}$ be the strict transform of the hyperplane $\left\langle p_{i_{1}}, \ldots, p_{i_{n-3}}\right\rangle$, where $1 \leq i_{j} \leq n-1$. Then

$$
K_{\bar{M}_{0, A_{1}[n]}}=-(n-2) H+(n-4)\left(E_{1}+\ldots+E_{n-1}\right)
$$

and

$$
H_{i_{1}, \ldots, i_{n-3}} \sim H-E_{i_{1}}-\ldots-E_{i_{n-3}} .
$$

Recall from Example 6.2 that the E_{i} 's and the $H_{i_{1}, \ldots, i_{n-3}}$'s are boundary divisors of $\bar{M}_{0, A_{1}[n]}$. So we set

$$
\Delta=\alpha\left(H_{1, \ldots, n-3}+\ldots+H_{3, \ldots, n-1}\right)+\beta\left(E_{1}+\ldots+E_{n-1}\right)
$$

where α and β are positive numbers to be chosen. Then

$$
K_{\bar{M}_{0, A_{1}[n]}}+\Delta=\left(\alpha\binom{n-1}{2}-n+2\right) H-\left(\alpha\binom{n-2}{2}-n-\beta+4\right) \sum_{i=1}^{n-1} E_{i} .
$$

Recall from Proposition 1.4 that the Mori cone of $X_{n-1}^{n-3} \cong \bar{M}_{0, A_{1}[n]}$ is generated by the classes R_{i} 's and $L_{i, j}$'s introduced in Section 3.1. One computes:
$\left(K_{\bar{M}_{0, A_{1}[n]}}+\Delta\right) \cdot R_{i}=\frac{\alpha}{2}(n-2)(n-3)-n-\beta+4$ and $\left(K_{\bar{M}_{0, A_{1}[n]}}+\Delta\right) \cdot L_{i, j}=\frac{\alpha}{2}(n-2)(5-n)+2 \beta+n-6$.
Therefore $K_{\bar{M}_{0, A_{1}[n]}}+\Delta$ is ample for $\alpha=\frac{2}{n-2}$ and $\beta=\frac{2}{3}$.
Next we check that the pair $\left(\bar{M}_{0, A_{1}[n]}, \Delta\right)$ is \log canonical. Let $\bar{\rho}: Y=\bar{M}_{0, n} \rightarrow \bar{M}_{0, A_{1}[n]}$ be the composition of blow-ups introduced in Notation 4.1. It is also a reduction morphism (see [Ha, Section 6.1]). By Proposition 4.6, the morphism $\bar{\rho}$ is a \log resolution of the pair $\left(\bar{M}_{0, A_{1}[n]}, \Delta\right)$.

There are $\rho_{h}=\binom{n-1}{h+1} h$-planes spanned by subsets of cardinality $h+1$ of $\left\{p_{1}, \ldots, p_{n-1}\right\}$. Each such h-plane is contained in $\binom{n-h-2}{n-h-4}$ of the $H_{i_{1}, \ldots, i_{n-3}}$'s. Denote by $E_{j}^{h} \subset, j=1, \ldots, \rho_{h}$, the exceptional divisors over the h-planes. Then we have

$$
K_{Y}=\bar{\rho}^{*} K_{\bar{M}_{0, A_{1}[n]}}+\sum_{h=1}^{n-5}(n-h-4)\left(E_{1}^{h}+\ldots+E_{\rho_{h}}^{h}\right)
$$

and

$$
\bar{\rho}^{*}(\Delta) \sim \sum_{h=1}^{n-5} \alpha\binom{n-h-2}{2}\left(E_{1}^{h}+\ldots+E_{\rho_{h}}^{h}\right)+\alpha \sum_{i_{1}, \ldots, i_{n-3}} \widetilde{H}_{i_{1}, \ldots, i_{n-3}}+\beta \sum_{i} \widetilde{E}_{i} .
$$

Thus

$$
K_{Y}+\widetilde{\Delta}=\bar{\rho}^{*}\left(K_{\bar{M}_{0, A_{1}[n]}}+\Delta\right)+\sum_{h=1}^{n-5}\left(n-h-4-\alpha\binom{n-h-2}{2}\right)\left(E_{1}^{h}+\ldots+E_{\rho_{h}}^{h}\right) .
$$

For $\alpha=\frac{2}{n-2}$ and $\beta=\frac{2}{3}$ all the discrepancies are greater than -1 . Therefore the pair $\left(\bar{M}_{0, A_{1}[n]}, \Delta\right)$ is log canonical.

Proposition 6.5. For the moduli space $\bar{M}_{0, A_{1,2}[n]}$, Problem 6.3 admits a positive answer.
Proof. Consider the blow-up $\rho: \bar{M}_{0, A_{1,2}[n]} \cong X_{n-2}^{n-3} \rightarrow \mathbb{P}^{n-3}$ described in Example 6.2, We denote by H the pullback of the hyperplane class of \mathbb{P}^{n-3}. The prime divisors $D_{I, J}$ appearing in Δ will be the following:

- the ($n-2$) exceptional divisors E_{1}, \ldots, E_{n-2},
- the strict transforms $H_{i_{1}, \ldots, i_{n-3}}$ of the ($n-2$) hyperplanes spanned by subsets of cardinality $(n-3)$ of $\left\{p_{1}, \ldots, p_{n-2}\right\}\left(H_{i_{1}, \ldots, i_{n-3}} \sim H-E_{i_{1}}-\ldots-E_{i_{n-3}}\right)$,
- the strict transforms $\Lambda_{j_{1}, \ldots, j_{n-4}}$ of the $\binom{n-2}{2}$ hyperplanes spanned by subsets of cardinality $(n-4)$ of $\left\{p_{1}, \ldots, p_{n-2}\right\}$ and $p_{n-1}\left(\Lambda_{j_{1}, \ldots, j_{n-4}} \sim H-E_{j_{1}}-\ldots-E_{j_{n-4}}\right)$.

Set

$$
\Delta=\frac{2}{n-2} \sum_{i_{1}, \ldots, i_{n-3}} H_{i_{1}, \ldots, i_{n-3}}+\frac{2}{n-2} \sum_{j_{1}, \ldots, j_{n-4}} \Lambda_{j_{1}, \ldots, j_{n-4}}+\frac{2}{3} \sum_{i=1}^{n-2} E_{i}
$$

Each $p_{i}, i=1, \ldots, n-2$, lies in exactly $(n-3)$ of the $H_{i_{1}, \ldots, i_{n-3}}$'s, and $\binom{n-3}{2}$ of the $\Lambda_{i_{1}, \ldots, i_{n-3}}$'s. So we have

$$
\Delta \sim(n-1) H+\left(\frac{2}{3}-\frac{2(n-3)}{n-2}-\frac{2}{n-2}\binom{n-3}{2}\right) \sum_{i=1}^{n-2} E_{i}=(n-1) H-\frac{3 n-11}{3} \sum_{i=1}^{n-2} E_{i}
$$

and

$$
K_{\bar{M}_{0, A_{1,2}[n]}}+\Delta=(-n+2+n-1) H+\left(n-4+\frac{11-3 n}{3}\right) \sum_{i=1}^{n-2} E_{i}=H-\frac{1}{3} \sum_{i=1}^{n-2} E_{i} .
$$

Recall from Proposition 1.4 that the Mori cone of $X_{n-2}^{n-3} \cong \bar{M}_{0, A_{1,2}[n]}$ is generated by the classes R_{i} 's and $L_{i, j}$'s introduced in Section 3.1. One computes:

$$
\left(K_{\bar{M}_{0, A_{1,2}[n]}}+\Delta\right) \cdot R_{i}=\left(K_{\bar{M}_{0, A_{1,2}[n]}}+\Delta\right) \cdot L_{i, j}=\frac{1}{3} .
$$

Therefore $K_{\bar{M}_{0, A_{1,2}[n]}}+\Delta$ is ample.
Next we check that the pair $\left(\bar{M}_{0, A_{1,2}[n]}, \Delta\right)$ is log canonical. Let $\pi_{n-1}: X_{n-1}^{n-3} \rightarrow X_{n-2}^{n-3}$ be the blow-up of p_{n-1} and consider the composition

$$
Y \xlongequal[\tilde{\rho}]{\bar{\rho}} X_{n-1}^{n-3}=\bar{M}_{0, A_{1}[n]} \xrightarrow{\pi_{n-1}} X_{n-2}^{n-3}=\bar{M}_{0, A_{1,2}[n]},
$$

where $\bar{\rho}$ is the \log resolution used in the proof of Proposition 6.4. Then $\widetilde{\rho}$ is a \log resolution of the pair $\left(\bar{M}_{0, A_{1,2}[n]}, D\right)$. Let E_{n-1} be the exceptional divisor over p_{n-1}. There are $\gamma_{h}=\binom{n-2}{h+1} h$-planes spanned by subsets of cardinality $h+1$ of $\left\{p_{1}, \ldots, p_{n-2}\right\}$. We denote by $E_{j}^{h}, 1 \leq j \leq \gamma_{h}$, the exceptional divisors over these h-planes. Similarly, there are $\bar{\gamma}_{h}=\binom{n-2}{h}$ h-planes spanned by p_{n-1} and subsets of cardinality h of $\left\{p_{1}, \ldots, p_{n-2}\right\}$. We denote by \bar{E}_{j}^{h}, $1 \leq j \leq \bar{\gamma}_{h}$, the exceptional divisors over these h-planes. Note that

- the point p_{n-1} is contained all of the $\binom{n-2}{2} \Lambda_{j_{1}, \ldots, j_{n-4}}$'s,
- any h-plane spanned by subsets of cardinality $h+1$ of $\left\{p_{1}, \ldots, p_{n-2}\right\}$ is contained in $n-h-3$ of the $H_{i_{1}, \ldots, i_{n-3}}$'s and in $\binom{n-h-3}{2}$ of the $\Lambda_{j_{1}, \ldots, j_{n-4}}$'s,
- any h-plane spanned by p_{n-1} and subsets of cardinality h of $\left\{p_{1}, \ldots, p_{n-2}\right\}$ is contained in $\binom{n-h-2}{2}$ of the $\Lambda_{j_{1}, \ldots, j_{n-4}}$'s.
Therefore, we have

$$
\begin{aligned}
\widetilde{\rho}^{*}(\Delta)= & \frac{2}{n-2}\binom{n-2}{2} E_{n-1}+\frac{2}{n-2} \sum_{h=1}^{n-5}\left(n-h-3+\binom{n-h-3}{2}\right)\left(E_{1}^{h}+\ldots+E_{\gamma_{h}}^{h}\right)+ \\
& \frac{2}{n-2} \sum_{h=1}^{n-5}\binom{n-h-2}{2}\left(\bar{E}_{1}^{h}+\ldots+\bar{E}_{\bar{\gamma}_{h}}^{h}\right)+\widetilde{\Delta} .
\end{aligned}
$$

Since

$$
K_{Y}=\widetilde{\rho}^{*} K_{\bar{M}_{0, A_{1,2}[n]}}+(n-4) E_{n-1}+\sum_{h=1}^{n-5}(n-h-4)\left(E_{1}^{h}+\ldots+E_{\gamma_{h}}^{h}+\bar{E}_{1}^{h}+\ldots+\bar{E}_{\gamma_{h}}^{h}\right)
$$

we have

$$
\begin{aligned}
K_{Y}+\widetilde{\Delta}= & \widetilde{\rho}^{*}\left(K_{\bar{M}_{0, A_{1,2}[n]}}+\Delta\right)+\left(n-4-\frac{2}{n-2}\binom{n-2}{2}\right) E_{n-1}+ \\
& \sum_{h=1}^{n-5}\left(n-h-4-\frac{2}{n-2}\left(n-h-3+\binom{n-h-3}{2}\right)\right)\left(E_{1}^{h}+\ldots+E_{\gamma_{h}}^{h}\right)+ \\
& \sum_{h=1}^{n-5}\left(n-h-4-\frac{2}{n-2}\binom{n-h-2}{2}\right)\left(\bar{E}_{1}^{h}+\ldots+\bar{E}_{\bar{\gamma}_{h}}^{h}\right) .
\end{aligned}
$$

The discrepancies are all ≥-1, and hence the pair $\left(\bar{M}_{0, A_{1,2}[n]}, \Delta\right)$ is log canonical.
Remark 6.6. Any 3-dimensional Hassett's space $\bar{M}_{0, A[6]}$ admits a reduction morphism $\rho: \bar{M}_{0,6} \rightarrow \bar{M}_{0, A[6]}$ (Ha, Theorem 4.1]). The moduli space $\bar{M}_{0,6}$ is log Fano by [HK00]. So, by GOST, Corollary 1.3], $\bar{M}_{0, A[6]}$ is also log Fano. Examples of 3-dimensional Hassett's spaces are the following.

- The blow-up of \mathbb{P}^{3} in four general points, along the strict transforms of the lines spanned by them, and in a fifth general point. This variety corresponds to $A[6]=$ ($1 / 3,1 / 3,1 / 3,1 / 3,1,1$).
- The blow-up of \mathbb{P}^{3} in five general points, and along the strict transforms of the lines spanned by them. This is $\bar{M}_{0,6}$ itself.
- The blow-up X_{1} of $\mathbb{P}_{1}^{1} \times \mathbb{P}_{2}^{1} \times \mathbb{P}_{3}^{1}$ in $p_{1}=([0: 1],[0: 1],[0: 1]), p_{2}=([1: 0],[1:$ $0],[1: 0])$, and $p_{3}=([1: 1],[1: 1],[1: 1])$. This variety corresponds to $A_{1}[6]=$ (2/3,2/3, 2/3, 1/6, 1/6, 1/6) (see [Ha, Section 6.3]).
- Consider the projections $\pi_{i}: \mathbb{P}_{1}^{1} \times \mathbb{P}_{2}^{1} \times \mathbb{P}_{3}^{1} \rightarrow \mathbb{P}_{i}^{1}$, and set $F_{0}=\bigcup_{i=1}^{3} \pi_{i}^{-1}([0: 1]), F_{1}=$ $\bigcup_{i=1}^{3} \pi_{i}^{-1}([1: 0]), F_{\infty}=\bigcup_{i=1}^{3} \pi_{i}^{-1}([1: 1])$. Let Δ_{2} be the union of the 2-dimensional diagonals of $\mathbb{P}_{1}^{1} \times \mathbb{P}_{2}^{1} \times \mathbb{P}_{3}^{1}$. Let X_{2} be the blow-up of X_{1} along the strict transform of $\Delta_{2} \cap\left(F_{0} \cup F_{1} \cup F_{\infty}\right)$. This variety corresponds to $A_{2}[6]=(2 / 3,2 / 3,2 / 3,1 / 3,1 / 3,1 / 3)$ (see [Ha, Section 6.3]).
- The blow-up X_{3} of X_{2} along the strict transform of the 1-dimension diagonal Δ_{1} of $\mathbb{P}_{1}^{1} \times \mathbb{P}_{2}^{1} \times \mathbb{P}_{3}^{1}$. This is $\bar{M}_{0,6}$ (see [Ha, Section 6.3]).
Let $q_{1}=([1: 0], \ldots,[1: 0]), q_{2}=([0: 1], \ldots,[0: 1]), q_{3}=([1: 1], \ldots,[1: 1]) \in$ $\left(\mathbb{P}^{1}\right)^{n-3}$, and set $Y_{3}^{n-3}=B l_{q_{1}, q_{2}, q_{3}}\left(\mathbb{P}^{1}\right)^{n-3}$. By Ha, Section 6.3], $Y_{3}^{n-3} \cong \bar{M}_{0, A[n]}$ for $A[n]=\left(\frac{2}{3}, \frac{2}{3}, \frac{2}{3}, \frac{1}{3(n-4)}, \ldots, \frac{1}{3(n-4)}\right)$.
Proposition 6.7. Then there exists a small birational modification

$$
X_{n-1}^{n-3}-\rightarrow Y_{3}^{n-3} .
$$

In particular, Y_{3}^{n-3} is log Fano.
Proof. Note that the Picard numbers satisfy $\rho\left(X_{n-1}^{n-3}\right)=\rho\left(Y_{3}^{n-3}\right)=n$. Without lost of generality, we may assume that X_{n-1}^{n-3} is the blow-up of \mathbb{P}^{n-3} at the points $p_{1}=[1: 0:$ $\ldots: 0], p_{2}=[0: 1: \ldots: 0], \ldots, p_{n-2}=[0: \ldots: 0: 1]$ and $p_{n-1}=[1: 1: \ldots: 1]$. Set $X_{n-2}^{n-3}=B l_{p_{1}, \ldots, p_{n-2}} \mathbb{P}^{n-3}, X_{n-3}^{n-3}=B l_{p_{1}, \ldots, p_{n-3}} \mathbb{P}^{n-3}, Y_{2}^{n-3}=B l_{q_{1}, q_{2}}\left(\mathbb{P}^{1}\right)^{n-3}$ and and $Y_{1}^{n-3}=B l_{q_{1}}\left(\mathbb{P}^{1}\right)^{n-3}$. These are all toric varieties. Let e_{1}, \ldots, e_{n-3} be the standard basis
vectors of the co-character lattice of $\left(k^{*}\right)^{n-3}$. The rays of the fan of \mathbb{P}^{n-3} are e_{1}, \ldots, e_{n-3} and $-e_{1}-\ldots-e_{n-3}$. By blowing-up p_{1}, \ldots, p_{n-2} we add the rays $-e_{1}, \ldots,-e_{n-3}$ and $e_{1}+\ldots+e_{n-3}$. On the other hand the rays of $\left(\mathbb{P}^{1}\right)^{n-3}$ are $e_{1}, \ldots, e_{n-3},-e_{1}, \ldots,-e_{n-3}$, and blowing-up q_{1}, q_{2} corresponds to introducing the two rays $e_{1}+\ldots+e_{n-3}$ and $-e_{1}-\ldots-e_{n-3}$. So the fans of X_{n-2}^{n-3} and Y_{2}^{n-3} have the same 1-dimensional rays. Therefore, X_{n-2}^{n-3} and Y_{2}^{n-3} are isomorphic in codimension one.

Given $1 \leq i_{1}<\ldots<i_{n-4} \leq n-3$, set $H_{i_{1}, \ldots, i_{n-4}}^{n-5}=\left\langle p_{i_{1}}, \ldots, p_{i_{n-4}}\right\rangle$, and $\left\{j_{1}, j_{2}\right\}=$ $\{0, \ldots, n-3\} \backslash\left\{i_{1}-1, \ldots, i_{n-4}-1\right\}$. The projection from $H_{i_{1}, \ldots, i_{n-4}}^{n-5}$ is the rational map

$$
\begin{array}{cccc}
\pi_{i_{1}, \ldots, i_{n-4}}: & \mathbb{P}^{n-3} & \rightarrow & \mathbb{P}^{1} \\
{\left[x_{0}: \ldots: x_{n-3}\right]} & \mapsto & {\left[x_{j_{1}}: x_{j_{2}}\right] .}
\end{array}
$$

There are $(n-3)$ of those, inducing a rational map

$$
\begin{array}{cccc}
g: & \mathbb{P}^{n-3} & -- & \left(\mathbb{P}^{1}\right)^{n-3} \\
& x=\left[x_{0}: \ldots: x_{n-3}\right] & \mapsto & \left(\pi_{1, \ldots, n-4}(x), \ldots, \pi_{2, \ldots, n-3}(x)\right)
\end{array}
$$

The hyperplane $W=\left\langle p_{1}, \ldots, p_{n-3}\right\rangle=\left\{x_{n-3}=0\right\}$ is mapped to the point $q_{1} \in\left(\mathbb{P}^{1}\right)^{n-3}$ by g. This is the only divisor contracted by g. Therefore, by blowing-up $q_{1} \in\left(\mathbb{P}^{1}\right)^{n-3}$ we obtain a small transformation $g_{1}: X_{n-3}^{n-3} \longrightarrow Y_{1}^{n-3}$ fitting in the following diagram:

Note that g_{1} maps the strict transform \widetilde{W} of W to the exceptional divisor $E_{q_{1}}$, while the exceptional divisors $E_{p_{1}}, \ldots, E_{p_{n-3}}$ are mapped to the strict transforms of the $(n-3)$ divisors in $\left(\mathbb{P}^{1}\right)^{n-3}$ obtained by fixing one of the factors. Note also that $g([0: \ldots: 0: 1])=([0:$ $1], \ldots,[0: 1])$ and $g([1: \ldots: 1])=([1: 1], \ldots,[1: 1])$. It follows from the universal property of the blow-up that g_{1} lifts to a small modification $f: X_{n-1}^{n-3} \rightarrow Y_{3}^{n-3}$ mapping $E_{p_{n-2}}$ to $E_{q_{2}}$, and $E_{p_{n-3}}$ to $E_{q_{3}}$.

References

[Bau91] S. Bauer, Parabolic bundles, elliptic surfaces and $S U(2)$-representation spaces of genus zero Fuchsian groups, Math. Ann. 290 (1991), 509-526.
[Be] A. Bertram, Moduli of Rank-2 Vector Bundles, Theta divisors, and the geometry of curves in projective space, J. Differential Geom. 35, 1992, 429-469.
[BCHM] C. Birkar, P. Cascini, C. Hacon, J. McKernan, Existence of minimal models for varieties of log general type, Journal of the American Mathematical Society, vol. 23, no. 2, 2010, 405-468.
[BL] J. Blanch, S. Lamy, Weak Fano threefolds obtained by blowing-up a space curve and construction of Sarkisov links, Proc. Lond. Math. Soc, no. 5, 2012, 1047-1075.
[BDP15] M. C. Brambilla, O. Dumitrescu, E. Postinghel, On the effective cone of \mathbb{P}^{n} blown-up at $n+3$ points, arXiv:1501.04094v1
[Cas14] C. Casagrande, Rank 2 quasiparabolic vector bundles on \mathbb{P}^{1} and the variety of linear subspaces contained in two odd-dimensional quadrics, arXiv:1410.3087v1
[CG] P. Cascini, Y. Gongyo, On the anti-canonical ring and varieties of Fano type, arXiv:1306.4689v3
[CT06] A. M. Castravet, J. Tevelev, Hilbert's 14 th problem and Cox rings, Compositio Math. 142, 2006, 1479-1498.
[EH] D. Eisenbud, J. Harris, 3264 \& All That Intersection Theory in Algebraic Geometry, http://isites.harvard.edu/fs/docs/icb.topic720403.files/book.pdf.
[FG] O. Fujino, Y. Gongyo, On images of weak Fano manifolds, Math. Zeit, 2012, vol. 270, Issue 1-2, 531-544.
[Har] J. Harris, Algebraic Geometry: A first course, Springer-Verlag Graduate Texts in Mathematics, 133, 1993.
[Hart] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, no. 52, Springer-Verlag, New York-Heidelberg, 1977.
[Ha] B. Hassett, Moduli spaces of weighted pointed stable curves, Advances in Mathematics, 173, 2003, Issue 2, 316-352.
[HK00] Y. Hu, S. Keel, Mori dream spaces and GIT, Michigan Math. J. 48, 2000, 331-348.
[GOST] Y. Gongyo, S. Okawa, A. Sannai, S. Takagi, Characterization of varieties of Fano type via singularities of Cox rings, J. Algebraic Geom, 24, 2015, 159-182.
[Ka] M. Kapranov, Veronese curves and Grothendieck-Knudsen moduli spaces $\bar{M}_{0, n}$, Jour. Alg. Geom. 2, 1993, 239-262.
[Ko] J. Kollár, Singularities of Pairs, Algebraic Geometry, Santa Cruz 1995, Proc. Symp. Pure Math, vol. 62, Amer. Math. Soc, Providence, RI, 1997, 221-287.
[La] R. K. Lazarsfeld, Positivity in Algebraic Geometry I, Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge, A Series of Modern Surveys in Mathematics, vol. 48
[LM] A. Losev, Y. Manin, New moduli spaces of pointed curves and pencils of flat connections, Michigan Math. J. Volume 48, Issue 1, 2000, 443-472.
[Muk01] S. MukaI, Counterexample to Hilbert's fourteenth problem for the 3-dimensional additive group, RIMS Preprint o. 1343, Kyoto, 2001.
[Muk05] S. Mukai, Finite generation of the Nagata invariant rings in $A-D-E$ cases, RIMS Preprint n. 1502, Kyoto, 2005.
[MM] A. Massarenti, M. Mella, On the automorphisms of Hassett's moduli spaces, arXiv:1307.6828v1
[Oka11] S. Okawa, On images of Mori dream spaces, arXiv:1104.1326v1.
[Te] A. Terracini, Sulle V_{k} per cui la varietá degli $S_{h}(h+1)$-seganti ha dimensione minore dell'ordinario, Rend. Circ. Mat. Palermo, 31, 1911, 392-396.
[Ve] P. Vermeire, On the Regularity of Powers of Ideal Sheaves, Compositio Mathematica, 131, 2002, 161-172.
[Ve1] P. Vermeire, Singularities of the secant variety, Journal of Pure and Applied Algebra, 213, 2009, 1129-1132.

Carolina Araujo, impa, Estrada Dona Castorina 110, 22460-320 Rio de Janeiro, Brazil
E-mail address: caraujo@impa.br
Alex Massarenti, IMPA, Estrada Dona Castorina 110, 22460-320 Rio de Janeiro, Brazil
E-mail address: massaren@impa.br

[^0]: Date: October 24, 2018.
 2010 Mathematics Subject Classification. Primary 14J45; Secondary 14E30, 14C20.
 Key words and phrases. Weak Fano varieties, log Fano varieties, Mori Dream Spaces.

