Existence and uniqueness of very weak solutions to the steady–state Navier–Stokes problem in Lipschitz domains*

Vincenzo Coscia

Dipartimento di Matematica e Informatica v.coscia@unife.it

October 18, 2016

Abstract

It is proved that in a bounded Lipschitz domain of \mathbb{R}^3 the Navier–Stokes equations with boundary data in $L^2(\partial\Omega)$ have a very weak solution $\boldsymbol{u} \in L^3(\Omega)$, unique for large viscosity.

1 Introduction

In the last years several papers have been devoted to existence of solutions to the Navier Stokes equations 1

$$\nu \Delta \boldsymbol{u} - \boldsymbol{u} \cdot \nabla \boldsymbol{u} - \nabla p + \boldsymbol{f} = \boldsymbol{0} \quad \text{in } \Omega,$$

div $\boldsymbol{u} = 0 \quad \text{in } \Omega,$
 $\boldsymbol{u} = \boldsymbol{a} \quad \text{on } \partial \Omega$ (1)

^{*2000} Mathematical Subject classification. Primary 76D05, 35Q30; Secondary 31B10, 76D03; Key words: stationary Navier Stokes equations, bounded Lipschitz domains, boundary-value problem.

¹We use a standard notation as, e.g., in [4], [11], [26]. In particular, italic light–face letters except o, x, y, ξ, ζ that denote points of \mathbb{R}^3 , and small upper–case letters indicate scalars and vectors respectively; $o \in \mathbb{R}^3 \setminus \overline{\Omega}$ is the origin of the reference frame $(o, \{e_i\}_{i=1,2,3})$; $\boldsymbol{x} = x - o, r = r(x) = |\boldsymbol{x}|$; $\boldsymbol{u} \cdot \nabla \boldsymbol{u}$ is the vector with components $u_i \partial_i u_j$. S_R is a ball centered at o, containing Ω and $\Omega_R = \Omega \cap S_R$. For $q \in (1, +\infty)$ $D^{1,q}(\Omega) = \{\varphi : \|\nabla\varphi\|_{L^q(\Omega)} < +\infty\}$, $D_0^{1,q}(\Omega)$ is the completion of $C_0^{\infty}(\Omega)$ with respect to the norm $\|\nabla\varphi\|_{L^q(\Omega)}$ and $D^{-1,q'}(\Omega)$ is the dual space of $D_0^{1,q}(\Omega)$. A subscript σ in a vector function space donotes its free divergence fields and the symbol c is reversed to indicate a positive constant unessential to our purposes

in a bounded domain of \mathbb{R}^3 under weak assumptions on \boldsymbol{f} and \boldsymbol{a} . The first results in this directions are due to D. Serre [21] and E. Marušić-Paloka [13]. In [21], assuming that $\partial\Omega$ is connected and of class C^2 , $\boldsymbol{f} \in W^{-1,q}(\Omega)$, and $\boldsymbol{a} \in W^{1-1/q,q}(\partial\Omega)$, q > 3/2, satisfies the necessary compatibility condition

$$\int_{\partial\Omega} \boldsymbol{a} \cdot \boldsymbol{n} = 0, \qquad (2)$$

where \boldsymbol{n} is the outward (with respect to Ω) unit normal to $\partial\Omega$, it is proved that (1) admits a weak solution, *i.e.*, a field $\boldsymbol{u} \in W^{1,q}_{\sigma}(\Omega)$ such that

$$\nu \int_{\Omega} \nabla \boldsymbol{u} \cdot \nabla \boldsymbol{\varphi} = \int_{\Omega} \boldsymbol{u} \cdot \nabla \boldsymbol{\varphi} \cdot \boldsymbol{u} + \langle \boldsymbol{f}, \boldsymbol{\varphi} \rangle, \quad \forall \boldsymbol{\varphi} \in C_{0,\sigma}^{\infty}(\Omega), \quad (3)$$

and whose trace in the sense of the Sobolev spaces coincides with \boldsymbol{a} . In [13], assuming that $\partial\Omega$ is connected and of class $C^{1,1}$, $\boldsymbol{a} \in L^2(\partial\Omega)$ satisfies (2) and $\boldsymbol{f} \in W^{-1,3}(\Omega)$, and it is proved that (1) has a very weak solution, *i.e.*, a field $\boldsymbol{u} \in L^3(\Omega)$ such that

$$\nu \int_{\Omega} \boldsymbol{u} \cdot \Delta \boldsymbol{z} = -\int_{\Omega} \boldsymbol{u} \cdot \nabla \boldsymbol{z} \cdot \boldsymbol{u} - \int_{\partial \Omega} \boldsymbol{u} \cdot \partial_n \boldsymbol{z} + \langle \boldsymbol{f}, \boldsymbol{z} \rangle,$$

$$\int_{\Omega} \boldsymbol{u} \cdot \nabla Q = \int_{\partial \Omega} Q(\boldsymbol{a} \cdot \boldsymbol{n}),$$
(4)

for every $\mathbf{z} \in W^{2,3/2}_{\sigma}(\Omega) \cap W^{1,3/2}_0(\Omega)$ and for every $Q \in W^{1,3/2}(\Omega)$. The results of [13] were extended to more general situations, like boundary data in $W^{-1/3,3}(\partial\Omega)$ and $\partial\Omega$ not connected for "small fluxes", in [1], [2], [3], [5], [7], [18], [19], [20], [25] (see also [4] and the reference therein)² ³. In [17] a definition of very weak solution is given following a point of view of J. Nečas [15]. To to this we consider, as usual, the *Stokes problem*

$$\nu \Delta \boldsymbol{u} - \nabla p + \boldsymbol{f} = \boldsymbol{0} \quad \text{in } \Omega,$$

div $\boldsymbol{u} = 0 \quad \text{in } \Omega,$
 $\boldsymbol{u} = \boldsymbol{a} \quad \text{on } \partial \Omega.$ (5)

Let \boldsymbol{f} belongs to a normal space of distribution, *i.e.*, the dual of a Banach space which has $C_0^{\infty}(\Omega)$ as dense subspace. We say that a field $\boldsymbol{u} \in L^3(\Omega)$

²In some of these papers the more general problem $(1)_{1,3}$ with the condition div $u = \gamma$ is considered. In Section 4 we shall observe that our results retain their validity also in this case under weak assumptions on γ (see Theorem 4).

³Existence of a weak solution to (1) in 2–D and 3–D axially symmetric domains without assumptions on the magnitude of fluxes have recently established in [8], [9], [10].

²

is a very weak solution to (5) if

$$\nu \int_{\Omega} \boldsymbol{u} \cdot \boldsymbol{\varphi} = -\int_{\partial \Omega} \boldsymbol{a} \cdot \boldsymbol{s}(\boldsymbol{z}, Q) + \langle \boldsymbol{f}, \boldsymbol{z} \rangle, \qquad (6)$$

for every $\boldsymbol{\varphi} \in C_0^{\infty}(\Omega)$, with (\boldsymbol{z}, Q) solution to the equations

$$\nu \Delta \boldsymbol{z} - \nabla Q + \boldsymbol{\varphi} = \boldsymbol{0} \quad \text{in } \Omega,$$

div $\boldsymbol{z} = 0 \quad \text{in } \Omega,$
 $\boldsymbol{z} = \boldsymbol{0} \quad \text{on } \partial \Omega,$ (7)

and

$$\boldsymbol{s}(\boldsymbol{z}, \boldsymbol{Q}) = \boldsymbol{\nu} (\nabla \boldsymbol{z} + \nabla \boldsymbol{z}^{\top}) \boldsymbol{n} - p \boldsymbol{n}.$$
(8)

Choosing $\boldsymbol{\varphi} = \nabla \zeta$ we see that $\boldsymbol{z} = \boldsymbol{0}$ and

$$\int_{\Omega} \boldsymbol{u} \cdot \nabla \zeta = 0, \quad \forall \zeta \in C_0^{\infty}(\Omega),$$

so that \boldsymbol{z} is weakly divergence free. Moreover, for $\boldsymbol{\varphi} = \Delta \boldsymbol{\phi}$, with $\boldsymbol{\phi} \in C^{\infty} 0_{\sigma}(\Omega)$ and Q constant, (7) writes

$$u \int_{\Omega} \boldsymbol{u} \cdot \Delta \boldsymbol{\phi} = \langle \boldsymbol{f}, \boldsymbol{\phi} \rangle, \quad \boldsymbol{\phi} \in C^{\infty} 0_{\sigma}(\Omega).$$

Hence by a classical result of G. De Rham (see, e.g., [26] p.14) there is a "pressure field" $p \in C_0^{\infty}(\Omega)$ such that

$$\langle \nu \Delta \boldsymbol{u} + \boldsymbol{f} - \nabla p, \boldsymbol{\varphi} \rangle = 0, \quad \forall \boldsymbol{\varphi} \in C_0^{\infty}(\Omega),$$
(9)

so that (\boldsymbol{u}, p) is a solution to (5) in the sense of the distributions. By a standard theoretical functional approach it can be proved that a solution \boldsymbol{u} to (10) takes the boundary values in a suitable weak sense. Nevertheless, we shall observe that \boldsymbol{u} takes the value \boldsymbol{a} is a well-defined sense which coincide with that of the nontangential convergence for $\boldsymbol{f} \in W^{-1,q}(\Omega)$, (q > 3), say [17]. Now, a very weak weak solution to (1) is defined as a field which satisfies

$$\nu \int_{\Omega} \boldsymbol{u} \cdot \boldsymbol{\varphi} = -\int_{\partial \Omega} \boldsymbol{a} \cdot \boldsymbol{s}(\boldsymbol{z}, Q) + \langle \boldsymbol{f}, \boldsymbol{z} \rangle - \int_{\Omega} \boldsymbol{u} \cdot \nabla \boldsymbol{z} \cdot \boldsymbol{u}, \quad (10)$$

for every $\varphi \in C_0^{\infty}(\Omega)$, with (\boldsymbol{z}, Q) solution to (7). Classical results assure that if \boldsymbol{f} is more regular in Ω , then so does \boldsymbol{u} and p, In particular, if $\boldsymbol{f} \in C^{\infty}(\Omega)$, then $(\boldsymbol{u}, p) \in C^{\infty}(\Omega) \times C^{\infty}(\Omega)$ (see, *e.g.*, Section IX.5 in [4]).

Owing on the results of [19], [16], [17] and the argument of [13], we proved existence of a very weak solution to the Navier–Stokes problem for Lipschitz domains under somewhat weak assumptions.

Let

$$\Omega = \Omega_0 \setminus \bigcup_{1=1}^m \overline{\Omega}_i \tag{11}$$

where Ω_j , j = 0, 1, ..., m are bounded domains with connected boundaries such that $\Omega_i \Subset \Omega_0$, i = 1, ..., m and $\Omega_i \cap \Omega_j = \emptyset$, $i \neq j \neq 0$. Moreover, set

$$\mathcal{F} = \frac{1}{8\pi} \sum_{i=1}^{m} \left| \int\limits_{\partial\Omega_i} \boldsymbol{a} \cdot \boldsymbol{n} \right| \left(\max_{\partial\Omega} \frac{1}{|x-x_i|} - \min_{\partial\Omega} \frac{1}{|x-x_i|} \right),$$

where x_i is an assigned point in Ω_i . The solution \boldsymbol{z} to (7) satisfies the estimates

$$\|\nabla z\|_{L^{3}(\Omega)} \le c_{\ell} \|\varphi\|_{L^{3/2}(\Omega)}.$$
(12)

The main result of the present paper is to generalize those of [17] by proving the following

Theorem 1. Let the domain (11) be Lipschitz, let $\mathbf{f} \in W^{s-2,q}(\Omega)$, with sq > 1 and q(1+s) = 3, and let $\mathbf{a} \in L^2(\partial\Omega)$ satisfies (2). If

$$\mathcal{F} < \nu,$$
 (13)

then (10) has a very weak solution $\mathbf{u} \in L^3(\Omega)$. It is unique in the ball $\{ \|\mathbf{u}\|_{L^3_{\sigma}(\Omega)} < \nu/(2c_{\ell}) \}$. If Ω is of class $C^{1,1}$, then we can assume $\mathbf{a} \in W^{-1/3,3}(\partial\Omega)$.

Theorem 1 is proved in Sections 3. In the next section we collect the main tools we shall need to get our results and that have some interest in themselves.

2 Preliminary results

The fundamental solution to

$$\nu \Delta \boldsymbol{u} - \nabla p = \boldsymbol{0},$$

div $\boldsymbol{u} = 0,$ (14)

in \mathbb{R}^3 writes

$$\begin{aligned} \mathcal{U}_{ij}(x-y) &= \frac{1}{8\pi\nu|x-y|} \left\{ \delta_{ij} + \frac{(x_i - y_i)(x_j - y_j)}{|x-y|^2} \right\}, \\ \varpi_i(x-y) &= \frac{x_i - y_i}{4\pi|x-y|^3}. \end{aligned}$$
(15)

The Stokes simple layer potential with density $\boldsymbol{\psi} \in L^q(\partial \Omega)$ is defined by

$$v_{i}[\boldsymbol{\psi}](x) = \int_{\partial\Omega} \mathcal{U}_{ij}(x-\xi) \cdot \psi_{j}(\xi) \mathrm{da}_{\xi},$$

$$P[\boldsymbol{\psi}](x) = \int_{\partial\Omega} \varpi_{j}(x-\xi) \psi_{j}(\xi) \mathrm{da}_{\xi}.$$
(16)

It is a solution to (14) in $\mathbb{R}^3 \setminus \partial \Omega$. The trace of (48)₁ on $\partial \Omega$ defines a map

$$\mathcal{S}: L^q(\partial\Omega) \to W^{1,q}(\partial\Omega).$$
 (17)

which is continuous for every $q \in (1, +\infty)$ and Fredholm with index zero for q = 2 [14], [17]. Moreover,

$$\operatorname{Kern} \mathcal{S} = \operatorname{Kern} \mathcal{S}' = \operatorname{spn} \{ \boldsymbol{n}_i \}_{i=1,\dots,m},$$
(18)

where

$$oldsymbol{n}_i(\xi) = egin{cases} oldsymbol{n}_i(\xi), & \xi\in\partial\Omega_i, \ oldsymbol{0}, & \xi\in\partial\Omega\setminus\partial\Omega_i, \ \end{pmatrix}$$

and

$$S': W^{-1,2}(\partial\Omega) \to L^2(\partial\Omega) \tag{19}$$

is the adjoint of \mathcal{S}^4 . Since $\partial\Omega$ is Lipschitz, there is a finite cone Γ such that a conguent cone Γ_{ξ} to Γ with vertex at ξ is contained in $\mathbb{R}^3 \setminus \Omega$ for every $\xi \in \partial\Omega$. The simple layer potential $\boldsymbol{v}[\boldsymbol{\psi}]$, with $\boldsymbol{\psi} \in W^{-1,q}(\partial\Omega)$ takes the value $\mathcal{S}'[\boldsymbol{\psi}]$ in the sense of *nontangential convergence*:

$$\lim_{x(\in\Gamma_{\xi})\to\xi} \boldsymbol{v}[\boldsymbol{\psi}](x) = \mathcal{S}'[\boldsymbol{\psi}](\xi)$$
(20)

for almost all $\xi\in\partial\Omega.$ Moreover, the following estimates hold

$$\|\boldsymbol{v}[\boldsymbol{\psi}]\|_{W^{1/2,2}(\Omega)} \leq \|\boldsymbol{\psi}\|_{W^{-1,2}(\partial\Omega)}, \\ \|\boldsymbol{v}[\boldsymbol{\psi}]\|_{W^{3/2,2}(\Omega)} \leq \|\boldsymbol{\psi}\|_{L^{2}(\partial\Omega)}.$$
(21)

If Ω is of class $C^{1,1}(\partial \Omega)$, then

$$\mathcal{S}: W^{1-1/q,q}(\partial\Omega) \to W^{2-1/q,q}(\partial\Omega)$$

is is Fredholm with index zero and (18) holds, where $\mathcal{S}': W^{-1-1/q,q}(\partial\Omega) \to W^{-1/q,q}(\partial\Omega), q \in (1, +\infty)$. Also,

$$\|\boldsymbol{v}[\boldsymbol{\psi}]\|_{L^{q}(\Omega)} \leq \|\boldsymbol{\psi}\|_{W^{-1-1/q,q}(\partial\Omega)}.$$
(22)

 $^{^4\}mathrm{In}$ such a case (16) has to be understood as the value of the functional ψ at $\mathfrak U$.

The Stokes volume potential with density $\boldsymbol{f} \in C_0^{\infty}(\Omega)$ is the pair

$$\mathcal{V}[\boldsymbol{f}](x) = \int_{\Omega} \mathcal{U}(x-y) \cdot \boldsymbol{f}(y) dv_y,$$

$$p[\boldsymbol{f}](x) = \int_{\Omega} \boldsymbol{\varpi}(x-y) \cdot \boldsymbol{f}(y) dv_y.$$
(23)

By classical theorems about integral transforms (see, e.g., [24]), \mathcal{V} maps boundedly $W^{s-2,q}(\Omega)$ into $W^{s,q}(\Omega)$. Hence, if $\mathbf{f} \in W^{s-2,q}(\Omega)$ and sq > 1, then by the trace theorem tr_{$|\partial\Omega$} $\mathcal{V}[\mathbf{f}] \in W^{s-1/q,q} \subset L^{2q/(3-sq)}(\partial\Omega)$.

From the above results and Fredholm theory it follows

Theorem 2. Let the domain (11) be Lipschitz and let $\operatorname{tr}_{|\partial\Omega} \mathcal{V}[f] \in L^2(\partial\Omega)$. If $\mathbf{a} \in L^2(\partial\Omega)$ satisfies (2), then (5) has a unique very weak solution expressed by

$$u_s(x) = v[\psi] + \sigma(x) + \mathcal{V}[f](x),$$

$$p_s(x) = P[\psi](x) + p[f],$$
(24)

for some $\boldsymbol{\psi} \in W^{-1,2}(\partial \Omega)$, where

$$\boldsymbol{\sigma}(x) = \frac{1}{4\pi} \sum_{i=1}^{m} \frac{x_i - x}{|x - x_i|^3} \int\limits_{\partial \Omega_i} \boldsymbol{a} \cdot \boldsymbol{n},$$

with x_i fixed point in Ω_i . Moreover [22],

- (i) if $\operatorname{tr}_{|\partial\Omega} \mathcal{V}[f]$ and $\boldsymbol{a} \in L^q(\partial\Omega)$, then $\boldsymbol{u} \in W^{1/q,q}_{\operatorname{loc}}(\overline{\Omega})$.
- (ii) There is a positive ϵ such that if $\operatorname{tr}_{|\partial\Omega} \mathcal{V}[\mathbf{f}]$, $\mathbf{a} \in W^{1,q}(\partial\Omega)$, $q \in [2, 2+\epsilon)$, then $\mathbf{u} \in W^{1+1/q,q}_{\operatorname{loc}}(\overline{\Omega})$; if Ω is of class C^1 , then we can take $q \in [2, +\infty)$.
- (iii) There is a positive μ_0 such that if $\operatorname{tr}_{|\partial\Omega} \mathcal{V}[\mathbf{f}]$, $\mathbf{a} \in C^{0,\mu}(\partial\Omega)$, $\mu \in [0,\mu_0)$, then $\mathbf{u} \in C^{0,\mu}_{\operatorname{loc}}(\overline{\Omega})$; if Ω is of class C^1 , then we can take $\mu_0 = 1$.

If
$$\Omega$$
 is of class $C^{1,1}$ and $\operatorname{tr}_{\mid \partial \Omega} \mathcal{V}[f]$, $\boldsymbol{a} \in W^{-1/q,q}(\partial \Omega)$, then $\boldsymbol{\psi} \in W^{-1-1/q,q}(\partial \Omega)$

For $\boldsymbol{u} \in L^q_{\sigma}(\Omega)$, $q \geq 3$, denote by $\mathcal{L}[\boldsymbol{u}]$ the solution to (5) with boundary datum $-\operatorname{tr}_{|\partial\Omega} \mathcal{V}[\boldsymbol{u} \cdot \nabla \boldsymbol{u}]$. The field $\mathcal{N}[\boldsymbol{u}] = \mathcal{V}[\boldsymbol{u} \cdot \nabla \boldsymbol{u}] + \mathcal{L}[\boldsymbol{u}] \in W^{1,q/2}_{\sigma}(\Omega)$ is the weak solution to the equations

$$\Delta \boldsymbol{v} - \nabla \boldsymbol{p} - \boldsymbol{u} \cdot \nabla \boldsymbol{u} = \boldsymbol{0} \quad \text{in } \Omega,$$

div $\boldsymbol{v} = 0 \quad \text{in } \Omega,$
 $\boldsymbol{v} = \boldsymbol{0} \quad \text{on } \partial \Omega.$ (25)

for a suitable pressure $p \in L^{3/2}(\Omega)$. Taking into account that well–known estimates about integral transform and the trace theorem

$$\begin{split} \| \boldsymbol{\mathcal{V}}[\boldsymbol{u}_{1} \cdot \nabla \boldsymbol{u}_{1}] - \boldsymbol{\mathcal{V}}[\boldsymbol{u}_{2} \cdot \nabla \boldsymbol{u}_{2}] \|_{L^{q}(\Omega)} &\leq \| \boldsymbol{\mathcal{V}}[(\boldsymbol{u}_{1} - \boldsymbol{u}_{2}) \cdot \nabla \boldsymbol{u}_{1}] \|_{L^{q}(\Omega)} \\ &+ \| \boldsymbol{\mathcal{V}}[\boldsymbol{u}_{2} \cdot \nabla(\boldsymbol{u}_{1} - \boldsymbol{u}_{2})] \|_{L^{q}(\Omega)} \leq c_{q} \| \boldsymbol{u}_{1} - \boldsymbol{u}_{2} \|_{L^{q}(\Omega)} \| \boldsymbol{u}_{1} \|_{L^{q}(\Omega)} \\ &+ c_{q} \| \boldsymbol{u}_{1} - \boldsymbol{u}_{2} \|_{L^{q}(\Omega)} \| \boldsymbol{u}_{2} \|_{L^{q}(\Omega)} \leq c_{q} \| \boldsymbol{u}_{1} - \boldsymbol{u}_{2} \|_{L^{q}(\Omega)} (\| \boldsymbol{u}_{1} \|_{L^{q}(\Omega)} + \| \boldsymbol{u}_{2} \|_{L^{q}(\Omega)}), \end{split}$$

and

 $\|\mathcal{L}[\boldsymbol{u}]\|_{W^{1-2/q,q/2}(\partial\Omega)} \leq c \|\mathcal{V}[\boldsymbol{u}\cdot\nabla\boldsymbol{u}]\|_{L^q(\Omega)} \leq c \|\boldsymbol{u}\|_{L^q(\Omega)}^2,$

we have that there is a positive constant c_q such that

$$\|\mathbf{N}[\mathbf{u}_1] - \mathbf{N}[\mathbf{u}_2]\|_{L^q(\Omega)} \le c_q \|\mathbf{u}_1 - \mathbf{u}_2\|_{L^q(\Omega)} (\|\mathbf{u}_1\|_{L^q(\Omega)} + \|\mathbf{u}_2\|_{L^q(\Omega)}).$$

for every $\boldsymbol{u}_1, \boldsymbol{u}_2 \in L^q(\Omega)$. Therefore, if

$$\|\boldsymbol{u}_s'\|_{L^q(\Omega)} < \frac{1}{2c_q},\tag{26}$$

then the map

$$\boldsymbol{u}' = \boldsymbol{u}_s + \boldsymbol{\mathcal{N}}[\boldsymbol{u}], \tag{27}$$

where \boldsymbol{u}_s is a very weak solution to (5), is a contraction in $L^3_{\sigma}(\Omega)$ and its (unique) fixed point is a very weak solution to (1).

If (u',Q') is another very weak solution to (1), then

$$u \int\limits_{\Omega} oldsymbol{w} \cdot oldsymbol{arphi} = \int\limits_{\Omega} [oldsymbol{u}' \cdot
abla oldsymbol{z} \cdot oldsymbol{w} + oldsymbol{w} \cdot
abla oldsymbol{z} \cdot oldsymbol{u}].$$

By Hölder's inequality we have

$$\begin{split} \nu \left| \int_{\Omega} \boldsymbol{w} \cdot \boldsymbol{\varphi} \right| &\leq \left\{ \| \boldsymbol{u}' \|_{L^{q}(\Omega)} + \| \boldsymbol{u} \|_{L^{3}(\Omega)} \right\} \| \boldsymbol{w} \|_{L^{3}(\Omega)} \| \nabla \boldsymbol{z} \|_{L^{3}(\Omega)} \\ &\leq c_{\ell} \left\{ \| \boldsymbol{u}' \|_{L^{3}(\Omega)} + \| \boldsymbol{u} \|_{L^{3}(\Omega)} \right\} \| \boldsymbol{w} \|_{L^{3}(\Omega)} \| \boldsymbol{\varphi} \|_{L^{3/2}(\Omega)} \end{split}$$

for every $\boldsymbol{\varphi} \in C_0^{\infty}(\Omega)$, so that

$$\nu \|\boldsymbol{w}\|_{L^{3}(\Omega)} \leq c_{\ell} \left\{ \|\boldsymbol{u}'\|_{L^{3}(\Omega)} + \|\boldsymbol{u}\|_{L^{3}(\Omega)} \right\} \|\boldsymbol{w}\|_{L^{3}(\Omega)}.$$

Therefore, in the ball $\|\boldsymbol{v}\|_{L^{3}(\Omega)} < \nu/(2c_{\ell})$ a very weak solution to (1) is unique. If $q \geq 6$, then writing $\boldsymbol{u} = \boldsymbol{u}_{s} + \boldsymbol{w}$, (10) a simple computation yields

$$\nu \int_{\Omega} |\nabla \boldsymbol{w}|^2 = -\int_{\Omega} \boldsymbol{u}_s \cdot \nabla \boldsymbol{w} \cdot (\boldsymbol{u}_s + \boldsymbol{w}).$$
(28)

Since by Hölder's inequality

$$\begin{vmatrix} \int_{\Omega} \boldsymbol{u}_{s} \cdot \nabla \boldsymbol{w} \cdot \boldsymbol{w} \end{vmatrix} \leq \|\boldsymbol{u}_{s}\|_{L^{3}(\Omega)} \|\boldsymbol{w}\|_{L^{6}(\Omega)} \|\nabla \boldsymbol{w}\|_{L^{2}(\Omega)} \leq c_{s} \|\boldsymbol{u}_{s}\|_{L^{3}(\Omega)} \|\nabla \boldsymbol{w}\|_{L^{2}(\Omega)}^{2}, \\ \left| \int_{\Omega} \boldsymbol{u}_{s} \cdot \nabla \boldsymbol{w} \cdot \boldsymbol{u}_{s} \right| \leq \|\boldsymbol{u}_{s}\|_{L^{3}(\Omega)} \|\boldsymbol{w}\|_{L^{6}(\Omega)} \|\nabla \boldsymbol{w}\|_{L^{2}(\Omega)} \leq \|\boldsymbol{u}_{s}\|_{L^{4}(\Omega)}^{2} \|\nabla \boldsymbol{w}\|_{L^{2}(\Omega)}, \end{aligned}$$

(28) yields

$$(\nu - c_s \| \boldsymbol{u}_s \|_{L^3(\Omega)}) \| \nabla \boldsymbol{w} \|_{L^2(\Omega)} \le \| \boldsymbol{u}_s \|_{L^4(\Omega)}^2.$$
(29)

Taking into account that

$$\|\boldsymbol{w}\|_{L^{3}(\Omega)} \leq |\Omega|^{1/6} \|\boldsymbol{w}\|_{L^{6}(\Omega)} \leq c_{s} |\Omega|^{1/6} \|\nabla \boldsymbol{w}\|_{L^{2}(\Omega)}$$

for $c_s \|\boldsymbol{u}_s\|_{L^3(\Omega)} < \nu$, (29) implies

$$\|m{u}\|_{L^{3}(\Omega)} \leq \|m{u}_{s}\|_{L^{3}(\Omega)} + \|m{w}\|_{L^{3}(\Omega)} \leq \|m{u}_{s}\|_{L^{3}(\Omega)} + rac{c_{s}|\Omega|^{1/6}\|m{u}_{s}\|_{L^{4}(\Omega)}^{2}}{
u - c_{s}\|m{u}_{s}\|_{L^{3}(\Omega)}}$$

Therefore, we can then collect the above results in the following existence and uniqueness theorem for small data.

Theorem 3. Let the domain (11) be Lipschitz. If (26) holds, then the Navier–Stokes problem (1) has a very weak solution in $L^q(\Omega)$. It is unique in the ball $\|\mathbf{u}\|_{L^q(\Omega)} < \nu/(2c_\ell)$ and, if $q \ge 6$, for

$$c_{s} \|\boldsymbol{u}_{s}\|_{L^{3}(\Omega)} < \nu, \quad \|\boldsymbol{u}_{s}\|_{L^{3}(\Omega)} + \frac{c_{s} |\Omega|^{1/6} \|\boldsymbol{u}_{s}\|_{L^{4}(\Omega)}^{2}}{\nu - c_{s} \|\boldsymbol{u}_{s}\|_{L^{3}(\Omega)}} < \frac{1}{2c_{\ell}}.$$
 (30)

3 Proof of Theorem 1

Following [13], for $\epsilon > 0$ denote by $\boldsymbol{a}_{\epsilon}$ and $\boldsymbol{f}_{\epsilon}$ regular fields on $\partial\Omega$ and Ω respectively such that

$$\|\boldsymbol{a} - \boldsymbol{a}_{\epsilon}\|_{L^{2}(\partial\Omega)} + \|\boldsymbol{f} - \boldsymbol{f}_{\epsilon}\|_{W^{s-2,q}(\Omega)} < \epsilon.$$

Clearly,

$$\sum_{i=1}^{m} \left| \int_{\partial \Omega_i} (\boldsymbol{a} - \boldsymbol{a}_{\epsilon}) \cdot \boldsymbol{n} \right| \le c\epsilon.$$
(31)

By Theorem 3 for ϵ sufficiently small the equations

$$\nu \Delta \boldsymbol{u} - \boldsymbol{u} \cdot \nabla \boldsymbol{u} - \nabla p + \boldsymbol{f} - \boldsymbol{f}_{\epsilon} = 0 \qquad \text{in } \Omega,$$

div $\boldsymbol{u} = 0 \qquad \text{in } \Omega,$
 $\boldsymbol{u} = \boldsymbol{a} - \boldsymbol{a}_{\epsilon} \quad \text{on } \partial \Omega$ (32)

has a solution $\boldsymbol{u}_{\epsilon} \in L^{3}_{\sigma}(\Omega)$ such that

$$\|\boldsymbol{u}_{\epsilon}\|_{L^{3}(\Omega)} \leq c\epsilon. \tag{33}$$

If we show that the equations

$$\nu \Delta \boldsymbol{v} - \boldsymbol{v} \cdot \nabla \boldsymbol{v} - \boldsymbol{v} \cdot \nabla \boldsymbol{u}_{\epsilon} - \boldsymbol{u}_{\epsilon} \cdot \nabla \boldsymbol{v} - \nabla \boldsymbol{p} + \boldsymbol{f}_{\epsilon} = \boldsymbol{0} \quad \text{in } \Omega,$$

div $\boldsymbol{u} = 0 \quad \text{in } \Omega,$ (34)
 $\boldsymbol{u} = \boldsymbol{a}_{\epsilon} \quad \text{on } \partial \Omega$

has a solution (\boldsymbol{v}, Q) , then the pair $(\boldsymbol{u}_{\epsilon} + \boldsymbol{v}, p_{\epsilon} + Q)$ is a solution to (1). Write $\boldsymbol{v} = \boldsymbol{w} + \boldsymbol{v}_s$, where \boldsymbol{v}_s is the solution to the Stokes equations

$$\nu \Delta \boldsymbol{v}_s - \nabla p_s + \boldsymbol{f}_{\epsilon} = \boldsymbol{0} \quad \text{in } \Omega,$$
$$\operatorname{div} \boldsymbol{v}_s = \boldsymbol{0} \quad \text{in } \Omega,$$
$$\boldsymbol{v} = \boldsymbol{a}_{\epsilon} \quad \text{on } \partial \Omega,$$

expressed by

$$\boldsymbol{v}_s = \bar{\boldsymbol{v}} + \boldsymbol{\sigma}_{\epsilon},\tag{35}$$

with $ar{m{v}} = m{v}[m{\psi}] + m{\mathcal{V}}[\operatorname{div}m{G}_\epsilon]$ and

$$\boldsymbol{\sigma}_{\epsilon}(x) = \frac{1}{4\pi} \sum_{i=1}^{m} \frac{x_i - x}{|x - x_i|^3} \int_{\partial \Omega} \boldsymbol{a}_{\epsilon} \cdot \boldsymbol{n}.$$
 (36)

The field \boldsymbol{w} is a solution to the equations

$$-\nu\Delta \boldsymbol{w} + \operatorname{div}\left[(\boldsymbol{v}_s + \boldsymbol{w}) \otimes (\boldsymbol{v}_s + \boldsymbol{w} + \boldsymbol{u}_\epsilon) + \boldsymbol{u}_\epsilon \otimes (\boldsymbol{v}_s + \boldsymbol{w})\right] + \nabla p = \boldsymbol{0} \quad \text{in } \Omega,$$

$$\operatorname{div} \boldsymbol{u} = 0 \quad \text{in } \Omega,$$

$$\boldsymbol{u} = \boldsymbol{a}_\epsilon \quad \text{on } \partial\Omega.$$

(37)

If we show that there is a positive constant c such that

$$\int_{\Omega} |\nabla \boldsymbol{w}|^2 \le c,\tag{38}$$

for every solution $\boldsymbol{w} \in W_0^{1,2}(\Omega)$, then classical methods (see, e, g., [4], [11], [26]) ensure that (34) has a solution $\boldsymbol{w} \in W_0^{1,2}(\Omega)$. To get (38) we follow a classical argument of J. Leray [12] and O.A. Ladyzhenskaia [11]. If (38) were not true, then a sequence $\boldsymbol{w}_k \in W_{\sigma,0}^{1,2}(\Omega)$ should exist such that

$$\nu \int_{\Omega} \nabla \boldsymbol{w}_{k} \cdot \nabla \boldsymbol{\varphi} = -\int_{\Omega} (\boldsymbol{v}_{s} + \boldsymbol{w}_{k}) \cdot \nabla \boldsymbol{\varphi} \cdot (\boldsymbol{v}_{s} + \boldsymbol{w}_{k} + \boldsymbol{u}_{\epsilon}) -\int_{\Omega} [\boldsymbol{u}_{\epsilon} \cdot \nabla \boldsymbol{\varphi} \cdot (\boldsymbol{v}_{s} + \boldsymbol{w}_{k})$$
(39)

	r	`
٠	L	
	•	-
	t.	,

 $\lim_{k \to +\infty} J_k^2 = \lim_{k \to +\infty} \int_{\Omega} |\nabla \boldsymbol{w}_k|^2 = +\infty.$

Thus, the field

$$\boldsymbol{w}_{k}^{\prime} = \frac{\boldsymbol{w}_{k}}{J_{k}} \tag{40}$$

satisfies

$$\frac{1}{J_k} \int_{\Omega} \nabla \boldsymbol{w}'_k \cdot \nabla \boldsymbol{\varphi} = -\int_{\Omega} \boldsymbol{w}'_k \cdot \nabla \boldsymbol{w}'_k \cdot \boldsymbol{\varphi} + \frac{1}{J_k} \int_{\Omega} \boldsymbol{w}'_k \cdot \nabla \boldsymbol{\varphi} \cdot (\boldsymbol{v}_s + \boldsymbol{u}_{\epsilon}) \\
+ \frac{1}{J_k} \int_{\Omega} (\boldsymbol{v}_s + \boldsymbol{u}_{\epsilon}) \cdot \nabla \boldsymbol{\varphi} \cdot \boldsymbol{w}'_k + \frac{1}{J_k^2} \int_{\Omega} [\boldsymbol{v}_s \cdot \nabla \boldsymbol{\varphi} \cdot (\boldsymbol{v}_s + \boldsymbol{u}_{\epsilon}) + \boldsymbol{u}_{\epsilon} \cdot \nabla \boldsymbol{\varphi} \cdot \boldsymbol{v}_s].$$
(41)

(41) Since the sequence $\{\boldsymbol{w}'_k\}_{k\in\mathbb{N}}$ is bounded in $W^{1,2}(\Omega)$, we can extract a subsequence from it, denoted by the same symbol, such that \boldsymbol{w}'_k converges weakly in $W^{1,2}(\Omega)$ and strongly in $L^q(\Omega), q < 6$, to a field $\boldsymbol{w}' \in W^{1,2}_{\sigma,0}(\Omega)$, with $\|\nabla \boldsymbol{w}'\|_{L^2(\Omega)} \leq 1$. Therefore, choosing $\boldsymbol{\varphi} \in C^{\infty}0_{\sigma}(\Omega)$ and letting $k \to +\infty$ in (41), we see that \boldsymbol{w}' is a weak solution to the Euler equations

for some $Q' \in W^{1,3/2}(\Omega)$ constant on each $\partial \Omega_i$ possibly with different values (say Q_i on $\partial \Omega_i$) [6]. Choosing $\varphi = w_k$ in (41), we have

$$\nu = \int_{\Omega} \boldsymbol{w}_{k}' \cdot \nabla \boldsymbol{w}_{k}' \cdot (\boldsymbol{v}_{s} + \boldsymbol{u}_{\epsilon}) + \frac{1}{J_{k}} \int_{\Omega} \left[\boldsymbol{v}_{s} \cdot \nabla \boldsymbol{w}_{k}' \cdot (\boldsymbol{v}_{s} + \boldsymbol{u}_{\epsilon}) + \boldsymbol{u}_{\epsilon} \cdot \nabla \boldsymbol{w}_{k}' \cdot \boldsymbol{v}_{s} \right].$$

$$(43)$$

By Hölder's inequality, Sobolev's inequality and (33)

w

$$\begin{aligned} \left| \int_{\Omega} [\boldsymbol{w}'_{k} \cdot \nabla \boldsymbol{w}'_{k} \cdot \boldsymbol{u}_{\epsilon} \right| &\leq \|\boldsymbol{u}_{\epsilon}\|_{L^{3}(\Omega)} \|\boldsymbol{w}'_{k}\|_{L^{6}(\Omega)} \|\nabla \boldsymbol{w}'_{k}\|_{L^{2}(\Omega)} \leq c\epsilon \|\nabla \boldsymbol{w}'_{k}\|_{L^{2}(\Omega)}^{2} \\ \left| \int_{\Omega} |\boldsymbol{v}_{s} \cdot \nabla \boldsymbol{w}'_{k} \cdot (\boldsymbol{v}_{s} + \boldsymbol{u}_{\epsilon}) \right| &\leq \|\boldsymbol{v}_{s}\|_{L^{6}(\Omega)} \|\boldsymbol{v}_{s} + \boldsymbol{u}_{\epsilon}\|_{L^{3}(\Omega)} \|\nabla \boldsymbol{w}'_{k}\|_{L^{2}(\Omega)} \\ \left| \int_{\Omega} |\boldsymbol{u}_{\epsilon} \cdot \nabla \boldsymbol{w}'_{k} \cdot \boldsymbol{v}_{s} \right| &\leq \|\boldsymbol{v}_{s}\|_{L^{6}(\Omega)} \|\boldsymbol{u}_{\epsilon}\|_{L^{3}(\Omega)} \|\nabla \boldsymbol{w}'_{k}\|_{L^{2}(\Omega)}. \end{aligned}$$

10

and

$$\begin{split} \left| \int_{\Omega} \left[\boldsymbol{w}_{k}' \cdot \nabla \boldsymbol{w}_{k}' - \boldsymbol{w}' \cdot \nabla \boldsymbol{w}' \right] \cdot \boldsymbol{v}_{s} \right| &\leq \left| \int_{\Omega} \left(\boldsymbol{w}_{k}' - \boldsymbol{w}' \right) \cdot \nabla \boldsymbol{w}_{k}' \cdot \boldsymbol{v}_{s} \right| \\ &+ \left| \int_{\Omega} \boldsymbol{w}' \cdot \left(\nabla \boldsymbol{w}_{k}' - \nabla \boldsymbol{w}' \right) \cdot \boldsymbol{v}_{s} \right| \leq \| \boldsymbol{v}_{s} \|_{L^{6}(\Omega)} \| \boldsymbol{w}_{k}' - \boldsymbol{w}' \|_{L^{3}(\Omega)} \| \nabla \boldsymbol{w}_{k}' \|_{L^{2}(\Omega)} \\ &+ \left| \int_{\Omega} \boldsymbol{w}' \cdot \left(\nabla \boldsymbol{w}_{k}' - \nabla \boldsymbol{w}' \right) \cdot \boldsymbol{v}_{s} \right| \end{split}$$

Therefore, letting $k \to +\infty$ in (43) and taking into account that

$$\int_{\Omega} \boldsymbol{w}' \cdot \nabla \boldsymbol{w}' \cdot \bar{\boldsymbol{v}} = -\int_{\Omega} \bar{\boldsymbol{v}} \cdot \nabla Q = -\sum_{i=0}^{m} Q_{i} \int_{\partial \Omega_{i}} \bar{\boldsymbol{v}} \cdot \boldsymbol{n} = 0$$

and that by (31)

$$\left|\int_{\Omega} \boldsymbol{w}' \cdot \nabla \boldsymbol{w}' \cdot (\boldsymbol{\sigma}_{\epsilon} - \boldsymbol{\sigma})\right| \leq c\epsilon,$$

we have

$$(\nu - c\epsilon) \leq \int_{\Omega} \boldsymbol{w}' \cdot \nabla \boldsymbol{w}' \cdot \boldsymbol{\sigma} = \frac{1}{4\pi} \left| \sum_{i=1}^{m} \left(\int_{\partial \Omega_{i}} \boldsymbol{a} \cdot \boldsymbol{n} \right) \int_{\Omega} \frac{\nabla \boldsymbol{w}' \cdot \nabla \boldsymbol{w}'^{\top}}{|\boldsymbol{x} - \boldsymbol{x}_{i}|} \right|.$$
(44)

Taking into account that $|\nabla \boldsymbol{w}'|^2 = |\hat{\nabla} \boldsymbol{w}'|^2 + |\tilde{\nabla} \boldsymbol{w}'|^2$, with $\hat{\nabla} \boldsymbol{w}'$ and $\tilde{\nabla} \boldsymbol{w}'$ symmetric and skew parts of $\nabla \boldsymbol{w}'$ respectively, and

$$2\int_{\Omega}|\hat{\nabla}\boldsymbol{w}'|^2 = 2\int_{\Omega}|\tilde{\nabla}\boldsymbol{w}'|^2 = \int_{\Omega}|\nabla\boldsymbol{w}'|^2,$$

(44) implies

$$\nu - c\epsilon - \mathcal{F} \le 0 \tag{45}$$

Since for sufficiently small ϵ (45) contradicts assumption (13), we conclude that (38) holds and the theorem is proved.

4 Some remarks on a more general system

The methods of the above sections can be used to deal with the more general systems considered, e.g., in [1] and [5]

$$\nu \Delta \boldsymbol{u} - \nabla \boldsymbol{p} + \boldsymbol{f} = \boldsymbol{0} \quad \text{in } \Omega,$$

div $\boldsymbol{u} + \gamma = 0 \quad \text{in } \Omega,$
 $\boldsymbol{u} = \boldsymbol{a} \quad \text{on } \partial \Omega$ (46)

$$\nu \Delta \boldsymbol{u} - \boldsymbol{u} \cdot \nabla \boldsymbol{u} - \nabla \boldsymbol{p} + \boldsymbol{f} = \boldsymbol{0} \quad \text{in } \Omega,$$

div $\boldsymbol{u} + \gamma = 0 \quad \text{in } \Omega,$
 $\boldsymbol{u} = \boldsymbol{a} \quad \text{on } \partial \Omega.$ (47)

Let

and

$$\mathcal{V}[\gamma](x) = \int_{\Omega} \frac{\gamma(y)dv_y}{|x-y|} \tag{48}$$

be the harmonic volume potentials. Clearly, the field $\nabla \mathcal{V}[\gamma]$ is a solution to $(47)_2$. Therefore, if Ω is Lipschitz, \boldsymbol{f}, γ are such that $\operatorname{tr}_{|\partial\Omega} \mathcal{V}[\boldsymbol{f}], \operatorname{tr}_{|\partial\Omega} \mathcal{V}[\gamma] \in L^2(\partial\Omega)$ and $\boldsymbol{a} \in L^2(\Omega)$ satisfies

$$\int_{\partial\Omega} \boldsymbol{a} \cdot \boldsymbol{n} = -\langle \gamma, 1 \rangle \tag{49}$$

a solution to (46) is expressed by

$$u_s(x) = v[\psi] + \sigma(x) + \nabla \mathcal{V}[\gamma](x) + \mathcal{V}[f](x),$$

$$p_s(x) = P[\psi](x) + \mathcal{V}[\gamma](x) + p[f](x),$$
(50)

for some $\boldsymbol{\psi} \in W^{-1,2}(\partial \Omega)$ solution to the equation

$$\mathcal{S}[\boldsymbol{\psi}](\boldsymbol{\xi}) = (\boldsymbol{a} - \boldsymbol{\sigma} - \nabla \mathcal{V}[\boldsymbol{\gamma}](\boldsymbol{x}) - \mathcal{V}[\boldsymbol{f}])(\boldsymbol{\xi}),$$

for almost all $\xi\in\partial\Omega.$ Starting from these results and taking into account that

$$\left| \int_{\Omega} \boldsymbol{w} \cdot \nabla \boldsymbol{w} \cdot \nabla \mathcal{V}[\boldsymbol{\gamma}] \right| \leq c_s \| \nabla \mathcal{V}[\boldsymbol{\gamma}] \|_{L^3(\Omega)} \| \nabla \boldsymbol{w} \|_{L^2(\Omega)}^2, \quad \forall \boldsymbol{w} \in W_0^{1,2}(\Omega),$$

and for $\gamma \in C(\overline{\Omega})$

$$\left|\int_{\Omega} \gamma \nabla \boldsymbol{w} \cdot \nabla \boldsymbol{w}^{\top}\right| \leq \frac{1}{2} \left(\max_{\Omega} \gamma - \min_{\Omega} \gamma\right) \int_{\Omega} |\nabla \boldsymbol{w}|^{2}, \quad \forall \boldsymbol{w} \in W^{1,2}_{0}(\Omega),$$

we can repeat *ad litteram* the argument in the proof of Theorem 1 with obvious modification, to get the following theorem which improve results obtained in [1], [5].

Theorem 4. Let the domain (11) be Lipschitz, let $\mathbf{f} \in W^{s-2,q}(\Omega)$, $\gamma \in W^{t-1,r}(\Omega)$, with sq > 1, rt > and q(1 + s) = r(1 + t) = 3, and let $\mathbf{a} \in L^2(\partial\Omega)$ satisfies (49). If

$$\mathcal{F} + c_s \|\nabla \mathcal{V}[\gamma]\|_{L^3(\Omega)} < \nu,$$

or for $\gamma \in C(\overline{\Omega})$

$$\mathcal{F} + \frac{1}{2} \left(\max_{\Omega} \gamma - \min_{\Omega} \gamma \right) < \nu,$$

then (47) has a very weak solution $\mathbf{u} \in L^3(\Omega)$. If Ω is of class $C^{1,1}$, then we can assume $\mathbf{a} \in W^{-1/3,3}(\partial\Omega)$ and $\gamma \in W^{-1/2,2}(\Omega)$.

References

- C. AMROUCHE AND M.A. RODRÍGUEZ-BELLIDO: Stationary Stokes, Oseen and Navier–Stokes equations with singular data, Arch. Rational Mech. Anal. 199 (2011), 597–651. 2, 11, 12
- [2] R. FARWIG, G.P. GALDI AND H. SOHR: A New class of weak solutions of the Navier–Stokes equa- tions with nonhomogeneous data, J. Math. Fluid. Mech. 8 (2006), 423–444. 2
- [3] R. FARWIG AND H. SOHR: Existence, uniqueness and regularity of stationary solutions to inhomogeneous Navier-Stokes equations in ℝⁿ, Czechoslovak Math. J. 59 (2009), 61-79 2
- [4] G.P. GALDI: An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-state problems, Springer (2011).
 1, 2, 3, 9
- [5] G. P. GALDI, C. G. SIMADER AND H. SOHR: A class of solutions to stationary Stokes and Navier-Stokes equations with boundary data in $W^{-1/q,q}$, Math. Ann. **331** (2005), 41–74. 2, 11, 12
- [6] L.V. KAPITANSKII AND K. PILECKAS, On spaces of solenoidal vector fields and boundary value problems for the Navier-Stokes equations in domains with noncompact boundaries, *Trudy Mat. Inst. Steklov*, **159** (1983), 5–36. English Transl.: *Proc. Math. Inst. Steklov*, **159** (1984), 3–34. 10
- H. KIM, Existence and Regularity of Very Weak Solutions of the Stationary Navier–Stokes Equations, Arch. Rational Mech. Anal. 193 (2009), 117–152. ERRATUM, Arch. Rational Mech. Anal. 196 (2010), 1079–1080.
- [8] M.V. KOROBKOV, K. PILECKAS AND R. RUSSO: On the flux problem in the theory of steady Navier–Stokes equations with nonhomogeneous boundary, Arch. Rational Mech. Anal. 207 (2013), 185–213.
- [9] M.V. KOROBKOV, K. PILECKAS AND R. RUSSO: Solution of Leray?s problem for stationary Navier-Stokes equations in plane and axially symmetric spatial domains, Ann. Math. 181 (2015), 769–807. 2

- [10] M.V. KOROBKOV, K. PILECKAS AND R. RUSSO: The existence theorem for steady Navier-Stokes equations in the axially symmetric case, Ann. Scuola Norm. Sup. Pisa Cl. Sci (5) 14 (2015), 233–262.
- [11] O.A. LADYZHENSKAIA: The Mathematical theory of viscous incompressible fluid, Gordon and Breach (1969). 1, 9
- [12] J. LERAY: Étude de diverses équations intégrales non linéaire et de quelques problèmes que pose l'hydrodynamique, J. Math. Pures Appl. 12 (1933), 1–82. 9
- [13] E. MARUŠIĆ-PALOKA, Solvability of the Navier-Stokes system with L^2 boundary data, Appl. Math. Optimization **41** (2000), 365-375 . 2, 4, 8
- [14] M. MITREA AND M. TAYLOR: Navier–Stokes equations on Lipschitz domains in Riemannian manifolds, Math. Ann. 321 (2001), 955–987.
- [15] J. NEČAS: Direct Methods in the Theory of Elliptic Equations, Springer (2012). 2
- [16] R. RUSSO: On the existence of solutions to the stationary Navier– Stokes equations. *Ricerche Mat.* 52 (2003), 285–348. 4
- [17] R. RUSSO: On Stokes' problem, in Advances in Mathematica Fluid Mechanics, Eds. R. Rannacher and A. Sequeira, p. 473–511, Springer–Verlag Berlin Heidelberg (2010). 2, 3, 4, 5
- [18] A. RUSSO AND G. STARITA: On the existence of steady-state solutions to the Navier-Stokes equations for large fluxes, Ann. Scuola Norm. Sup. Pisa Cl. Sci (5) 7 (2008), 171–180. 2
- [19] A. RUSSO AND A. TARTAGLIONE: On the Stokes problem with data in L^1 , ZAMP **64** (2013), 1327–1336 2, 4
- [20] K. SCHUMACHER: Very weak solutions to the stationary Stokes and Stokes resolvent problem in weighted function spaces, Ann. Univ. Ferrara 54 (2008), 123–144. 2
- [21] D. SERRE: Équations de Navier–Stokes stationnaires avec données peu régulières, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 10 (1983), 543–559. 2
- [22] Z. SHEN: A note on the Dirichlet problem for the Stokes system in Lipschitz domains, Proc. Amer. Math. Soc. 123 (1995), 801–811.
- [23] H. SOHR: The Navier-Stokes equations. An elementary functional analytic approach, Birkhuser Verlag (2001).
- [24] E. STEIN: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press (1993). 6

- [25] A. TARTAGLIONE: On the Stokes and Oseen problems with singular data, J. Math. Fluid Mech. 16 (2014), 407–417. 2
- [26] R. TEMAM: Navier-Stokes equations, North-Holland (1977). 1, 3, 9