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TWO-PHASE FLOW IN POROUS MEDIA WITH HYSTERESIS

ANDREA CORLI AND HAITAO FAN

Abstract. Two-phase flow through a porous medium with hysteresis effects is
considered. The model consists of a system of two coupled nonlinear equations: a
transport equation for the water saturation and an evolution equation for the hys-
teresis variable. The latter is not in conservation form and contains discontinuous
functions of the two unknown variables as coefficients. Some qualitative properties
of piecewise smooth solutions of the system are proved. In particular, we show
that the hysteresis variable satisfies a maximum principle, and its total variation is
bounded by the total variation of its initial value. The traveling waves are investi-
gated under the assumption that the convective term is convex. Riemann solvers
for the inviscid system are constructed. Non-uniqueness due to hysteresis loops is
finally discussed; several solutions are discarded by the maximum principle for the
hysteresis variable.

Keywords: Hysteresis, porous media, traveling waves, Riemann solvers.

AMS Subject Classification: 76S05, 76T99, 35C07.

1. Introduction

Hysteresis is a complex physical phenomenon occurring in continuum mechanics,

ferromagnetism and filtration through porous media, with phase transitions involved

sometimes. The mathematical literature on this subject is very wide and applies to

several phenomena by exploiting different models and techniques; we quote for in-

stance [10, 14]. This paper focuses on a very simple model arising in oil recovery that

was proposed in [13]. Such a model does not certainly aim at describing accurately

the complex dynamics of the problem but rather to highlight some mathematical

issues that characterize it.

More precisely, we consider a fluid flow through a porous medium, which is con-

stituted by an aqueous phase, here formed by water, and a liquid phase, formed by

oil. The flow is modeled by the diffusive equation

(1.1) st + fx = εsxx,

where s is the water saturation, f the water fractional flow and ε the capillarity-

induced diffusion coefficient. Both s and f are valued in [0, 1]. Hysteresis comes into

play through the flow f , which depends not only on s but also on its history and

current trend. Roughly speaking, f can be thought as a multi-valued function. For
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2 ANDREA CORLI AND HAITAO FAN

s fixed, these multiple values are parametrized by a new variable π, which encodes

the behavior of s in the past and the actual increasing or decreasing of s. As a

consequence, an equation for π is introduced. A more precise description of the

model is provided in the following section.

In the case ε = 0, the Riemann problem for equation (1.1) was briefly studied in

[5]. A sketch of the construction is reported in [13]. The solution to such problem is

far from being unique, not only because many combination of waves are possible for

the same initial data, but in particular because hysteresis loops appear. For constant

ε > 0, a relaxation approximation for the equation of π is introduced in [13] and

the authors determined which shock waves have a diffusive-relaxation profile. The

drawback of that relaxation construction is that the relaxation’s physical meaning is

unknown, and that the flux function needs to be extended outside its natural domain,

as well as the solutions. Such an approximation violates the famous subcharacteristic

condition [12]; indeed, the failure of this condition is balanced by the presence of the

diffusion term, and the whole effect is to allow the hysteresis loops.

More complicated flows have been considered in this framework. For instance, in

[7] a three-component, two-phase flow is proposed, where polymer is added to the

aqueous phase to increase the viscosity of this phase to enhance the extraction of oil

from the porous medium. To take into account the presence of gas, which is common

in porous rocks, authors of [5] introduced a three-component, three-phase flow.

The equation (1.1) is also used to model CO2 plume migration in CO2 sequestration

[8], where the flux f(u) = σ
(
sign(ut)

)
g(u) is discontinuous. In particular, σ(r) =

1 − ε if r < 0 and σ(r) = 1 if r > 0, for ε ∈ (0, 1]. In [1], the authors introduced

cross-hatch characteristics, and used them to investigate the structure of shock and

rarefaction waves and the result of binary wave interactions. The difference between

the equation studied in [1, 8] and the one studied in this paper is that the flux

considered here is not of binary type, but has scanning curves joining the imbibition

and drainage modes.

The plan of the paper is the following. In Section 2 we give precise details on

the model and formulate the governing system of equations, which turns out to be

nonlinear and nonconservative. This is a very difficult issue. On the one hand, the

regularity of solutions cannot be much better than Lipschitz; on the other hand, the

usual formulation for weak solutions does not apply. As a consequence, we mean

solutions of the inviscid system as the vanishing viscosity limits of solutions to the

viscous system. In preparation to prove the maximum principle for the hysteresis
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variable, we introduce a localized distributional way to look at the sign of a distri-

bution and its evolution, in order to pinpoint the location and sign of concentrated

masses. In Section 3, we show that the hysteresis variable satisfies the maximum

principle and that its number of oscillations is nonincreasing as time t increases;

hence, its total variation at time t > 0 is bounded by that at t = 0. In Section 4

we show the existence and uniqueness of viscous profiles; in this section and in the

following one we require for simplicity that the convective term f is convex. Indeed,

the physical case when f has an inflection point can be dealt analogously; difficulties

are only technical. A complete set of Riemann solvers is constructed in Section 5.

Often, these Riemann solvers are not unique, as discovered in earlier papers. How-

ever, using our result that the number of oscillations of the hysteresis variable in a

viscous solution is nonincreasing, we can exclude many of them.

2. The model

In this section we explain the model presented in the Introduction and formulate

our main assumptions; we refer to [13] for more details.

2.1. The physical phenomenon. As we mentioned above, the flux f in (1.1) de-

pends not only on s but also on its history and current trend. For a given s, the range

of f is a closed interval, whose maximum and minimum are denoted by fD(s) and

f I(s), respectively; see Figure 2.1(a). Below, we plot fD and f I as convex functions

only for making pictures clearer: we stress that the model and all the results in Sec-

tion 3 require no convexity assumptions. Convexity is only required (for simplicity)

in Sections 4 and 5.

Let x ∈ R be fixed in the following discussion. Suppose that at the point x and

time t0 we have f = f I(s) and the saturation s increases as t increases. Then the

flux f keeps the values f = f I(s) as long as s increases, and the fluid is said to be in

imbibition mode. Analogously, if at (x, t0) the flux f takes on the value fD(s) and

s decreases as t increases, then f continues to take the value fD(s) as s decreases,

and the fluid is said to be in drainage mode. As a consequence, we have

(2.1)
in imbibition mode: st(x, ·) > 0 and f = f I(s),

in drainage mode: st(x, ·) < 0 and f = fD(s),

where the meaning of these inequalities will be made clear in Definition 2.2.

Now, suppose that the flow is in imbibition mode at (x, t), for t1− τ < t < t1 with

τ > 0, so that sign st(x, t) = 1 for those t; we label the point (s, f)(x, t1) by A in

Figure 2.1(a). As t increases from t1 − τ to t1, the saturation s(x, t) increases and

(s, f) moves along f = f I(s) towards the point A. Moreover, we assume that st(x, ·)
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Figure 2.1. (a): The fluxes fD = fD(s), f I = f I(s) and f =
fS(s, π). The parameter π is constant along the graph of s 7→ f(s, π)
from A to B and from C to D. (b): the same loop in the plane (s, π).

reverses its sign at t1 so that sign st(x, t) = −1 for t1 < t < t1 + τ . At these latter

times the flux f does not follow f = f I(s) as s decreases, but rather takes another

curve f = fS(s, π), located between f I(s) and fD(s), which intersects f = f I(s) at

s(x, t1). Here, π is a parameter that characterizes such fS curves by being constant

along each of them. In this case the fluid is said to be in scanning mode and the

curve s 7→ fS(s, π) is called a scanning curve. An example of parametrization is

π = s, where s is the s-coordinate of the point of intersection of f = fS(s, π) and

f = f I(s); this choice dictates 0 ≤ π ≤ 1. Without loss of generality, in this paper

we use this parametrization and then π ∈ [0, 1].

Let π1 be the π-value of the scanning curve through A. As s(x, t) decreases from

s(x, t1) as t increases, the flux changes according to the law f = fS(s, π1) until

this curve meets the curve f = fD(s) at the point labeled by B in Figure 2.1(a).

A further decrease of s forces the fluid into drainage mode where the flux changes

according to the law f = fD(s). Assume now that the fluid at x is in drainage

mode until t increases to t2 > t1 where the sign of st(x, ·) reverses again, so that

st(x, t) > 0 for t2 < t < t2 + τ ; the corresponding point in Figure 2.1(a) is labeled as

C. Then the fluid enters into scanning mode again and the flux is governed by the

law f = fS(s, π2), where the curve f = fS(s, π2) intersects the curve f = fD(s) at

C.

If subsequently s increases, then the flux follows the curve f = fS(s, π2) until it

meets the imbibition curve at the point D. Further increases of s beyond this point
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bring the fluid to imbibition mode and the flux to be governed by the law f = f I(s)

again.

Suppose that the flow at (x, t) is in scanning mode and hence the flux takes the

form f = fS(s, π) for some π value. If f I(s) < fS(s, π) < fD(s), then s(x, ·) can

either increase or decrease while f = f(s, π) for the same π. In other words, the flow

can go both ways in scanning mode, unlike in imbibition or drainage modes where

s(x, ·) can only increase or decrease, respectively.

From the above discussion, we see that the parameter π(x, t), which records the

the parameter π to be used if the fluid at (x, t) is in scanning mode, influences s(x, t).

The state of the flow is described by (s, π)(x, t) and hence a governing law for π must

be specified to make (1.1) closed.

2.2. The mathematical model. Now, we state more precisely our assumptions.

The imbibition and drainage flux-functions f I and fD are smooth in [0, 1] and satisfy

fD(0) = f I(0) = 0, fD(1) = f I(1) = 1,(2.2)

fD(s) > f I(s), fD > f I , fDs > 0, f Is > 0, in (0, 1),(2.3)

Assumptions (2.2) and (2.3) are standard when studying conservation laws. We

also assume that there exists a family of curves
{

(s, fS(s, π))
}
π∈[0,1] providing a

transversal foliation of the region located between fD(s) and f I(s). This means that

at every point on f = f I(s), with s ∈ (0, 1), there is a scanning curve (a leaf of the

foliation) intersecting transversally f = f I(s) at that point and lying above it at

the left of the intersection point; the same curve intersects transversally f = fD(s)

at the other end point and lies below it at the right of the intersection point. We

denote the abscissas of the points of intersection of f = fS(s, π) and f = f I(s) or

f = fD(s) as sI(π) and sD(π), respectively; we have sD(π) < sI(π) for π ∈ (0, 1)

because of (2.3). Thus, the physically feasible states (s, π) should satisfy

(2.4) sD(π) ≤ s ≤ sI(π).

We define

ΩI =
{

(s, π) ∈ [0, 1]× [0, 1] : s = sI(π)
}
,

ΩD =
{

(s, π) ∈ [0, 1]× [0, 1] : s = sD(π)
}
,

ΩS =
{

(s, π) ∈ (0, 1)× (0, 1) : sD(π) < s < sI(π)
}
,
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and finally Ω = ΩD ∪ ΩS ∪ ΩI , see Figure 2.1(b). We assume that fS is defined and

smooth in ΩS and satisfies

fSs (s, π) > 0, fSπ (s, π) > 0, for (s, π) ∈ ΩS,(2.5)

fSs
(
sI(π), π

)
< f Is

(
sD(π)

)
, fSs

(
sD(π), π

)
< fDs

(
sD(π)

)
, for π ∈ (0, 1),(2.6)

Assumption fSπ > 0 in (2.5) is needed in order that the scanning curves do not

intersect for different values of π, so that form a foliation. For future reference in

the paper we gather the previous conditions under a single name.

Assumption (I). We require conditions (2.2), (2.3), (2.5) and (2.6).

Lemma 2.1. Assume (I). Then the functions sI(π) and sD(π) are strictly increasing

in [0, 1].

Proof. The function s = sI(π) solves the equation fS(s, π)− f I(s) = 0. By (2.6), we

have fSs (s, π)− f Is (s) < 0 at s = sI(π). By the Implicit Function Theorem it follows

that sI is smooth and by (2.5) we have

sIπ(π) =
−fSπ

(
sI(π), π

)
fSs
(
sI(π), π

)
− f Is

(
sI(π)

) > 0. �

Because of Lemma 2.1, both sI and sD are invertible in [0, 1]; we denote by πI(s)

and πD(s) their inverse functions, which are strictly increasing in [0, 1]. The definition

of πI(s) and πD(s) implies that

(2.7) f I(s) = fS
(
s, πI(s)

)
and fD(s) = fS

(
s, πD(s)

)
, for s ∈ [0, 1].

Combining the behavior of the flux in different modes, the flux f in (1.1) can be

written in [0, 1]× [0, 1] as

(2.8) f = F (s, π) :=


fD(s) if s ≤ sD(π),

fS(s, π) if sD(π) ≤ s ≤ sI(π),

f I(s) if s ≥ sI(π),

see Figure 2.2(a). Notice that, even if the physical flow is only defined in the domain

Ω ⊂ [0, 1]× [0, 1], the function f has been extended in a trivial way to the whole of

[0, 1]× [0, 1]. This will be needed, for instance, in the proof of the following Theorem

4.2. However, we show in Theorem 3.6 that the inequality sD(π) ≤ s ≤ sI(π) is

indeed enforced by the flow’s governing system of equations; then, the extension in

(2.8) does not alter solutions. We intentionally allow overlaps at s = sD(π) and

s = sI(π) in definition (2.8) to emphasize that the scanning mode can occur when

sD(π) ≤ s ≤ sI(π), as we shall see just below. By the definition of sI(π) and sD(π),

the function F (s, π) is differentiable in [0, 1]×[0, 1] except along the curves s = sD(π)
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and s = sI(π), where it is continuous; it is then Lipschitz-continuous in [0, 1]× [0, 1].

At any fixed π the graph of F (·, π) is provided in Figure 2.2(b).
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Figure 2.2. (a): the function F . (b): graph of the function s 7→
F (s, π) at π fixed.

In scanning mode, the pair (s, f) can move in either directions along the graph

of f = fS(·, π), for a fixed π. Since π(x, t) records the value of π of the scanning

flux to use if the fluid at (x, t) is in scanning mode, then πt = 0 when the fluid is in

scanning mode. The value π(x, t) changes if and only if the fluid at x is in imbibition

or drainage mode at time t; when this happens, then π(x, t) is updated as πI
(
s(x, t)

)
and πD

(
s(x, t)

)
, respectively. For given piecewise-continuous functions s = s(x, t)

and π = π(x, t) defined in R × [0, T ] and valued in [0, 1], we introduce the boolean

variables I, D and S, depending on (x, t), as

I =
{
s = sI(π), s < 1 and st > 0

}
,

D =
{
s = sD(π) s > 0 and st < 0

}
,

S =
{
sD(π) < s < sI(π)

}
∨
{
s ∈ {0, 1} and st = 0

}
∨
{
s = sI(π), 0 < s < 1 and st ≤ 0

}
∨
{
s = sD(π), 0 < s < 1 and st ≥ 0

}
.

Notice the particular care in handling the points (0, 0) and (1, 1) in the (s, π)-plane to

avoid contradictions. Also notice that the cases when s = 1, st > 0 and s = 0, st < 0

are missing, as it is clear from a physical point of view. Indeed, we shall prove in
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Corollary 3.7 that our equations prevent such cases. We also define the domains

(2.9)

DI =
{

(x, t) ∈ R× [0, T ] : I(x, t) = true
}
,

DD =
{

(x, t) ∈ R× [0, T ] : D(x, t) = true
}
,

DS =
{

(x, t) ∈ R× [0, T ] : S(x, t) = true
}
.

From a physical point of view we must have R × [0, T ] = DI ∪ DS ∪ DD. We shall

prove, see Lemma 3.6, that the equations we propose below, see (2.16), indeed show

that this is the case.

Since s typically has discontinuities, then the inequalities st < 0 (≤ 0) and st > 0

(≥ 0) are meant in the following distributional sense. The definition below differs

from the usual definition of positivity/negativity of a distribution [9, page 38], which

is given in open sets: our aim here is to pinpoint the sign of a distribution (indeed,

of an atomic measure) at a point. To this aim we introduce the function space

Ψ :=

{
ψ ∈ C∞0 (R) : ψ(x) ≥ 0, ψ(0) > 0, sptψ ⊂ [−1, 1],

∫ 1

−1
ψ(x)dx = 1

}
and denote for ψ ∈ Ψ its rescaled function

(2.10) ψµ(x) =
1

µ
ψ

(
x

µ

)
.

In the following we use the notation

(2.11) ψ(k)(ξ) :=
dk

dξk
ψ(ξ) and hence

dk

dxk
ψµ(x) =

1

µk
ψ(k)
µ (x),

where ψ
(k)
µ (x) is the function ψ(k)(x) rescaled as in (2.10). The action of a distribution

u ∈ D′(R) on a test function φ ∈ C∞0 (R) is denoted as

(2.12) 〈u(x), φ(x)〉 =:

∫
R
u(x)φ(x)dx.

We also use this notation for distributions v(x, t) and test functions φ(x, t) that

are compactly supported in R× [0, T ], for some T > 0:

〈v(x, t), φ(x, t)〉 =:

∫∫
R×[0,T ]

v(x, t)φ(x, t) dxdt.(2.13)

Moreover, recall that by the Schwartz kernel Theorem [9, Th. 5.2.1] if v ∈ D′(R ×
[0, T ]) and φ(x), ψ(t) are test functions, then the expression 〈ṽ(φ), ψ〉 := 〈v, φ(x)ψ(t)〉
defines a a linear map ṽ : C∞0 (R)→ D′([0, T ]) which is continuous in the sense that

ṽ(φj) → 0 in D′([0, T ]) if φj → 0 in C∞0 (R) (and conversely). In the following we

need to slightly extend this definition to the case of a function φ also depending on

t and we define

〈v(x, t), φ(x, t)〉x =:

∫
R
v(x, t)φ(x, t) dx,(2.14)
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Then 〈v(x, t), φ(x, t)〉x is a distribution in D′([0, T ]). An analogous notation is used

when v operates on test functions depending on the variable t.

Definition 2.1. Consider g ∈ D′(E) for E ⊆ R and let x0 ∈ E. We say that

g(x0) > 0 (or g(x0) ≥ 0) in the sense of distributions if

lim inf
µ→0+

〈g(x), ψµ(x− x0)〉 > 0 (or ≥ 0),

for any test function ψ ∈ Ψ. Similarly, we say that g(x0) < 0 (or g(x0) ≤ 0) in the

sense of distributions if for any test function ψ ∈ Ψ

lim sup
µ→0+

〈g(x), ψµ(x− x0)〉 < 0 (or ≤ 0).

Notice that the actual value of g(x0) as a distribution (if it exists) does not affect

the sign of g(x0) in the above sense. Clearly, if a distribution is non-negative in a

neighborhood of x0 according to the usual definition, then it is non-negative at x0

according to Definition 2.1. We remark that the lim inf and lim sup above can be ∞
or −∞, respectively.

Example 2.2. The Heaviside function H satisfies H(0) > 0 in the sense of Defini-

tion 2.1, independently of how it is defined at x = 0. Definition 2.1 does not require

〈H,ψµ〉 to be bounded away from 0 uniformly with respect to ψ. Analogously, the

function sign(x) has no sign at 0.

By integration by parts one easily proves that if f(x) = 1+sin(1/x), then f(0) > 0

because 〈sin(1/x), ψµ〉 → 0 as µ → 0+. In the case f(x) = δ(x) we find that

lim infµ→0+〈δ, ψµ〉 =∞ for any ψ ∈ Ψ and then δ(0) > 0 according to Definition 2.1.

We also define the boolean characteristic function

χ(A) =

{
1 if A is true,

0 else.

Then the equation for πt is

(2.15) πt = χ(I)πI(s)t + χ(D)πD(s)t.

We notice that (2.15) is fully nonlinear because the functions χ(I) and χ(D) are

nonlinear discontinuous functions of both s and st. At last, it is not in conservation

form, which is expected because π is not a conserved quantity.

As the flow at a fixed x moves through states A,B,C,D in Figure 2.1 continuously,

equation (2.15) forces π(x, t) = πI
(
s(x, t)

)
when the fluid at (x, t) is in imbibition

mode, and π(x, t) = πD
(
s(x, t)

)
if the fluid is in drainage mode.
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Therefore, by taking into account the hysteresis variable π, the complete system

for (1.1) is the combination of (1.1), (2.8) and (2.15):

(2.16)

{
st + F (s, π)x = ε

(
A(s, π)sx

)
x
,

πt = χ(I)πI(s)t + χ(D)πD(s)t,

where A is smooth, bounded away from 0 and ε > 0 is a constant. Although we

know of no papers stating the dependence of A on π, we just allowed it here in order

to keep generality. It is unphysical to have a diffusion term in the second equation.

We also consider the inviscid case of (2.16), namely,

(2.17)

{
st + F (s, π)x = 0,

πt = χ(I)πI(s)t + χ(D)πD(s)t.

Equation (2.17)2 presents the classical mathematical challenge of giving a meaning

to the product of distributions, in particular the meaning of the product of a step

function and δ(x). Dal Maso, LeFloch and Murat [4] defined L∞ ∩ BVloc solutions

of nonconservative systems of quasilinear PDEs in the sense of Borel measures asso-

ciated to a family of paths joining ends of approximate jumps of solutions. A direct

application of the results of [4] requires χ(I) to be continuous, among other condi-

tions, which system (2.17) fails to satisfy. Another possibility would be to study this

problem in the framework of Colombeau’s generalized functions [2] but we prefer a

simpler and more physical approach.

Definition 2.2. Consider system (2.16) and initial data

(2.18)
(
s(x, 0), π(x, 0)

)
=
(
s0(x), π0(x)

)
satisfying

(2.19)
(
s0(x), π0(x)

)
∈ [0, 1]× [0, 1] and sD

(
π0(x)

)
≤ s0(x) ≤ sI

(
π0(x)

)
.

Assume that problem (2.16)-(2.18) has a solution
(
sεk , πεk

)
, for each ε in a sequence

{εk > 0}k∈N where εk → 0+ as k →∞. If the sequence
(
sεk , πεk

)
is weakly convergent

to some (s, π), then we say that (s, π) is a solution of (2.17)-(2.18).

Condition (2.19) is added to ensure consistency with the physical requirement

(2.4). Note that different sequences {εk} could possibly provide different limits. It is

known that for evolution equations not in conservation form, whose solutions have

jump discontinuities, the two ends of a jump discontinuity are usually sensitive to

the form of the vanishing viscosity terms, see [11]. We shall see that all results of

existence of viscous profiles in Section 4, Theorem 4.2 to Theorem 4.5, show that

the end states of viscous profiles of solutions of (2.17) are independent from the

diffusivity A in (2.16).
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Remark 2.1. Since the flux F takes on different forms when the fluid is in different

modes, there could be possibilities for self-contradiction. For example, suppose that

π = πI(s) holds near a point x at time t; then, the fluid is in scanning mode if

st ≤ 0, or in imbibition mode if st > 0. If the equation st + fS(s, π)x = 0 yields

st > 0 while st+f
I(s)x = 0 shows st ≤ 0, then we have a self-contradiction. To avoid

such self-contradictions, the signs of st = −f Is (s)sx and st = −fSs (s)sx must coincide

when π = πI(s). Similar considerations are valid also when π = πD(s). Thus, the

following compatibility conditions,

sign f Is (s) = sign fSs (s, π) when π = πI(s),

sign fDs (s) = sign fSs (s, π) when π = πD(s).

should be required. Indeed, these conditions are already included in assumptions

(2.3) and (2.5), where all the above signs are positive.

Now we formally discuss the implications of Definition 2.2 at the possible points

of jump discontinuity of solutions (s, π) of system (2.17). Assume that a solution of

(2.16) has a solution (s, π) with a discontinuity at (x0, t0) propagating with constant

speed σ. In a neighborhood of (x0, t0) we introduce the change of variables

ξ =
x− x0 − σ(t− t0)

ε
, τ = t,

and denote
(
s̄(ξ, τ), π̄(ξ, τ)

)
=
(
s(x, t), π(x, t)

)
, F̄ (s̄, π̄) = F (s, π) and so on. Since

sx = 1
ε
s̄ξ, st = s̄τ − σ

ε
s̄ξ, and analogously for π, system (2.16) becomes

(2.20)

{
εs̄τ − σs̄ξ + F̄ (s̄, π̄)ξ =

(
Ā(s̄, π̄)s̄ξ

)
ξ
,

επ̄τ − σπ̄ξ = εχ(Ī)π̄I(s̄)τ − σχ(Ī)π̄I(s̄)ξ + εχ(Ī)π̄D(s̄)τ − σχ(D̄)π̄D(s̄)ξ.

Notice that both (s, π) and (s̄, π̄) depend on ε and (s̄, π̄) (ξ, τ0) = (s, π) (x0 + εξ, t0).

If (s, π) → (S,Π) and (s̄, π̄) → (S̄, Π̄) as ε = εk → 0 in the sense of distributions,

then formally S has a jump discontinuity at x0 while (S̄, Π̄) become functions of the

single variable ξ and satisfy

(2.21)

{
−σS̄ξ + F̄ (S̄, Π̄)ξ =

(
Ā(S̄, Π̄)S̄ξ

)
ξ
,

−σΠ̄ξ = −σ
[
χ(Ī)Π̄I(S̄)ξ + χ(D̄)Π̄D(s̄)ξ

]
,

with boundary conditions

(S̄, Π̄)(±∞)
.
= (S̄±, Π̄±) = (s, π)(x0±, t0) and (S̄ ′, Π̄′)(±∞) = (0, 0).

By integrating in ξ we find

(2.22)


σ
(
S̄+ − S̄−

)
= F̄+ − F̄−,

σ(Π+ − Π−) = σ

[∫ ∞
−∞

χ(Ī) dπI(s̄) +

∫ ∞
−∞

χ(D̄) dπD(s̄)

]
.
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These equations can be understood as the Rankine-Hugoniot equations correspond-

ing to discontinuities of system (2.17), see [4].

3. The Maximum Principle for the Viscous System (2.16)

In this section we deal with piecewise smooth solutions (s, π) of the viscous system

(2.16) and prove that π satisfies the maximum principle. Furthermore, we prove that

TV
(
π(·, t)

)
≤ TV

(
π(·, 0)

)
.

Clearly πt suffers a jump discontinuity at every mode boundary because equation

(2.16)2 is discontinuous there; so, at best we expect πt to be piecewise smooth. If π

has a jump in x, then the left-hand side of (2.16)1 contains a Dirac mass; this forces

the term sx in the right-hand side to be have a jump; as a consequence, s must be

at least continuous. Indeed, if s has a jump in x then the equations are difficult to

match. Then, we expect that s is continuous. We introduce the notation

S
(
R× [0, T ]

)
:=

=
{

(s, π) : R× [0, T ] 7→ R2 : s ∈ C(R× [0, T ];R) s, π ∈ PC2(R× [0, T ];R)
}
,

where PCk(R×[0, T ];R), k = 0, 1, . . ., denotes the collection of piecewise Ck functions

u : R × [0, T ] 7→ R. Here piecewise Ck means that R × [0, T ] can be partitioned

locally into finitely many simply connected regions, with piecewise C1 boundaries

with finitely many pieces locally; the function u(x, t) is Ck in the interior of each

region and can be extended as a Ck function to the closure of each of them. The set

for initial data is defined as

S (R) :=

=
{

(s, π) : R 7→ [0, 1]2 : s ∈ C(R; [0, 1]) s, π ∈ PC2(R; [0, 1]2) and (2.19) holds
}
.

We shall consider solutions (s, π) ∈ S
(
R× [0, T ]

)
and initial data (s0, π0) ∈ S (R).

Lemma 3.1. Assume (I). If (s, π) ∈ S
(
R× [0, T ]

)
is a solution of system (2.16),

then π(x±, t) is continuous in t for every x ∈ R.

Proof. For a function g ∈ S the functions g(x±, t), g(x±, t)t and g(x±, t)tt, are well

defined almost everywhere and are locally bounded. Thus, we can pass the limit

through the integral as

lim
x→x0±

∫ t0+h2

t0−h1
gt(x, t)dt =

∫ t0+h2

t0−h1
gt(x±, t)dt.

Fix x0 ∈ R and assume, for contradiction, that π(x0+, ·) (or π(x0−, ·)) is discontin-

uous at t = t0. Since (s, π) ∈ PC2(R× [0, T ]), there is no other point of discontinuity
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for π(x0+, ·) in the interval [t0 − h1, t0 + h2] if h1 > 0 and h2 > 0 are sufficiently

small. Then (s, π)(x0+, ·) is C2 over the interval [t0 − h1, t0]. By integrating (2.16)2

we get

(3.1)

π(x0+, t0 + h2)− π(x0+, t0 − h1)

=

∫ t0+h2

t0−h1

[
χ(I)πI

(
s(x0+, t)

)
t
+ χ(D)πD

(
s(x0+, t)

)
t

]
dt =: I + J .

The open set

E1 :=
{
t ∈ [0, T ] : st(x0+, t) > 0

}
∩ (t0 − h1, t0)

is the union of at most countably many disjoint open subintervals, i.e.,

E1 =
N⋃
j=0

(τ2j, τ2j+1),

where N ≤ ∞ and τi < τi+1 for all 0 ≤ i ≤ 2N + 1. Then we deduce∫ t0

t0−h1
χ(I)πI

(
s(x0+, t)

)
t
dt =

∫
E1

πI
(
s(x0+, t)

)
t
dt

=
N∑
j=0

[
πI
(
s(x0+, τ2j+1)

)
− πI

(
s(x0+, τ2j)

)]
= O(1)h1,

because s(x, ·) is continuous and st is bounded a.e. in a neighborhood of t = t0.

Similarly, we have

(3.2)

∫ t0+h2

t0

χ(I)πI
(
s(x0+, t)

)
t
dt = O(1)h2.

Because s(·, t) is continuous, the item I in (3.1) becomes

(3.3) I =

(∫ t0

t0−h1
+

∫ t0+h2

t0

)
χ(I)

(
s(x0+, t)

)
t
dt.

The estimates above then show that

(3.4) I = O(1)(h1 + h2).

Analogously, we can prove that

(3.5) J =

∫ t0+h2

t0−h1
χ(D)πD

(
s(x0+, t)

)
t
dt = O(1)(h1 + h2).

The continuity of π(x0+, ·) at t0 follows from (3.1), (3.4) and (3.5). �

If (s, π) ∈ S
(
R× [0, T ]

)
then 〈st, ψµ(x − x0)〉x is in D′(R), see the discussion

following (2.13). The following lemma, which will be used in the proof of Proposition

3.3, states that if (s, π) are solutions to (2.16) then 〈st, ψµ(x − x0)〉x is indeed a

continuous function. However, we need the following assumption on the form of the

viscosity term.
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Assumption (II). The viscosity term in (2.16) only depends on s, i.e., A(s, π) =

A(s).

Lemma 3.2. Assume (I) and (II); let (s, π) ∈ S
(
R× [0, T ]

)
be a solution of system

(2.16). Then the expression 〈st, ψµ(x− x0)〉x is continuous in t.

Proof. Since (s, π) is a solution of (2.16), then

(3.6) 〈st, ψµ(x− x0)〉x =

∫ [
F (s, π)ψµ(x− x0)x + εA(s)ψµ(x− x0)xx

]
dx.

The right hand side of (3.6) is continuous with respect to t because s is so by

assumption and π by Lemma 3.1. �

Remark 3.1. Lemma 3.2 implies that the integral∫ µ

−µ
st(y, t)ψµ(y − x0) dy

is well defined for t ∈ [0, T ] as the pointwise value of a continuous function. In this

case we slightly extend Definition 2.1 to mean st(x, t0) ≤ 0 at x = x0 as

(3.7) lim sup
µ→0+

∫ µ

−µ
st(y, t0)ψµ(y − x0) dy ≤ 0,

for every ψ ∈ Ψ.

Dealing with extrema of a piecewise discontinuous function may be difficult be-

cause of the value assumed by such a function at a discontinuity point. Con-

sider f ∈ PC0(R;R); a point x0 ∈ R is said an essential local-maximum point

if max
{
f(x0+), f(x0−)

}
≥ f(x) for every x in a neighborhood of x0; the value

max
{
f(x0+), f(x0−)

}
is called an essential local maximum. An analogous defini-

tion holds for the minimum. In the case f is continuous at x0 we recover the usual

definitions.

Proposition 3.3. Assume (I) and (II). Let (s, π) ∈ S
(
R× [0, T ]

)
be a solution of

system (2.16) and (x0, t0) ∈ R× (0, T ). If x0 is an essential local maximum point of

both s(·, t0) and π(·, t0) satisfying max
{
π(x0+, t0), π(x0−, t0)

}
= πI

(
s(x0, t0)

)
, then

π(·, t0) is continuous at x = x0.

Furthermore, st(x, t0) ≤ 0 holds at x = x0 in the sense of Definition 2.1.

Proof. First, we prove that π(·, t0) is continuous at x0. Indeed, assume that x0 is an

essential local maximum point for π(·, t0). Then, in a neighborhood of x0 we have

πI
(
s(x, t0)

)
≤ π(x, t0) ≤ max

{
π(x0+, t0), π(x0−, t0)

}
= πI

(
s(x0, t0)

)
.(3.8)

Since s is continuous, the claim follows by passing to the limit for x→ x0.
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Second, we must show (3.7). We test equation (2.16)1 with function ψµ(x − x0),
for ψ ∈ Ψ; by the change of variables y := x− x0 we obtain∫ µ

−µ
st(y + x0, t)ψµ(y)dy =

1

µ

∫ µ

−µ
F (s, π)(y + x0, t)ψ

′
µ(y)dy

− ε

µ

∫ µ

−µ
A(s, π)(y + x0, t0)sx(y + x0, t0)ψ

′
µ(y) dy.(3.9)

Consider the first summand in the right-hand side of (3.9) at t = t0; we have

1

µ

∫ µ

−µ
F (s, π)(y+x0, t0)ψ

′
µ(y)dy =

1

µ

∫ µ

−µ
[F (s, π)(y+x0, t0)−F (s, π)(x0, t0)]ψ

′
µ(y)dy,

beacuse
∫ µ
−µ ψ

′(y)dy = 0. Moreover,

1

µ

∣∣∣∣∣
∫ µ

−µ
F (s, π)(y + x0, t0)ψ

′
µ(y)dy

∣∣∣∣∣
≤ 1

µ

∫ µ

−µ

[
F (s, π)(x0, t0)− F (s, π)(y + x0, t0)

]
|ψ′µ(y)|dy.(3.10)

We proved in (3.8) that π(x0, t0) = πI
(
s(x0, t0)

)
; moreover, we always have π(x, t) ≥

πI
(
s(x, t)

)
. Then we obtain

1

µ

∣∣∣∣∣
∫ µ

−µ
F (s, π)(y + x0, t0)ψ

′
µ(y)dy

∣∣∣∣∣
≤ 1

µ

∫ µ

−µ

[
F
(
s, πI(s)

)
(x0, t0)− F

(
s, πI(s)

)
(y + x0, t0)

]
|ψ′µ(y)|dy

=
1

µ

∫ µ

−µ

[
f I
(
s(x0, t0)

)
− f I

(
s(y + x0, t0)

)]
|ψ′µ(y)|dy

=
O(1)

µ

∫ µ

−µ

[
s(x0, t0)− s(y + x0, t0)

]
|ψ′µ(y)|dy,(3.11)

where O(1) only depends on f . Since s ∈ S
(
R× [0, T ]

)
, and in particular s is

continuous, then it has the Taylor expansion

(3.12) s(y+x0, t0) = s(x0, t0)+sx(x0±, t0)y+
1

2
sxx(x0±, t0)y2+o(1)y2, for ±y > 0.

For brevity of notation we write in the following∫ µ

−µ
sx(x0±, t0)g(y) dy :=

∫ 0

−µ
sx(x0−, t0)g(y) dy +

∫ µ

0

sx(x0+, t0)g(y) dy,
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for some function g = g(y) and so on. Then (3.9), (3.11) and (3.12) lead to∫ µ

−µ
st(y + x0, t0)ψµ(y)dy

=
O(1)

µ

∫ µ

−µ

[
sx(x0±, t0)y +

1

2
sxx(x0±, t0)y2 + o(1)y2

]
|ψ′µ(y)|dy

− ε

µ

∫ µ

−µ
A(s, π)(y + x0, t0)

[
sx(x0±, t0) + sxx(x0±, t0)y + o(1)y

]
ψ′µ(y) dy.

(3.13)

There are two possibilities.

(a) Case sx(x0−, t0) = sx(x0+, t0). Since x0 is a local maximum point of s(x, t0),

then sx(x0, t0) = 0 and sxx(x0±, t0) ≤ 0. If sxx(x0+, t0) = sxx(x0−, t0) < 0, then

the conclusion is obvious. Otherwise we have two subcases.

(a1) If sxx(x0+, t0) = sxx(x0−, t0) = 0, then (3.13) equals (µ+ ε) o(1), where

o(1) tends to 0 as µ → 0+. This, together with the Bounded Convergence

Theorem, proves (3.7) in this case.

(a2) If sxx(x0+, t0) 6= sxx(x0−, t0), then at least one is < 0 and the other is

≤ 0. By (3.13) we deduce

(3.14)

∫ µ

−µ
st(y + x0, t0)ψµ(y)dy

≤ O(1)
µ

2

∫ µ

−µ

[
sxx(x0±, t0)

y2

µ2
+ o(1)

y2

µ2

]
|ψ′µ(y)|dy

− ε
∫ µ

−µ
A(s, π)(y + x0, t0)

[
sxx(x0±, t0)

y

µ
+ o(1)

y

µ

]
ψ′µ(y) dy.

By making the change of variables ζ = y/µ, it is easy to show that the first

summand contributes for O(1)µ and then tends to 0 as µ → 0+. The second

integral is dealt in the same way and contributes

−ε
∫ 1

−1
A(s, π)(x0 + µζ, t0)

[
sxx(x0±, t0) + o(1)

]
ζψ′(ζ)dζ,

where o(1)→ 0 and A(s, π)(x0+µζ, t0)→ A(s, π)(x0, t0) as µ→ 0+. Recall that

we proved earlier in this proof that (s, π)(x, t0) is continuous at x = x0. Since

−
∫ 0

−1
ζψ′(ζ) dζ =

∫ 0

−1
ψ(ζ) dζ > 0 and −

∫ 1

0

ζψ′(ζ) dζ =

∫ 1

0

ψ(ζ) dζ > 0,

we deduce that the second summand is strictly negative in the limit µ → 0+.

This proves (3.7) in this case.

(b) Case sx(x0−, t0) 6= sx(x0+, t0). Then, sx(x0−, t0) ≥ 0 and sx(x0+, t0) ≤ 0 and

at least one of them is not 0, implying sx(x0+, t0)−sx(x0−, t0) < 0. In this case,



TWO-PHASE FLOW IN POROUS MEDIA WITH HYSTERESIS 17

estimate (3.13) can be further processed to yield∫ µ

−µ
st(y, t0)ψµ(y)dy ≤ O(1) +O(1)µ

+
ε

µ
A(s, π)(x0, t0)

[(
sx(x0+, t0)− sx(x0−, t0)

)
ψ(0) +O(1)µ

]
→ −∞(3.15)

as µ→ 0+. This proves (3.7) in this case and then the proposition.

�

The following result is proved analogously to Proposition 3.3.

Proposition 3.4. Assume (I) and (II). Let (s, π) ∈ S
(
R× (0, T )

)
be a solution

of (2.16) and (x0, t0) ∈ R × (0, T ). If x0 is an essential local-minimum point of

both s and π satisfying min
{
π(x0+, t0), π(x0−, t0)

}
= πD

(
s(x0, t0)

)
, then π(·, t0) is

continuous at x = x0. Furthermore, we have st(x, t0) ≥ 0 when x = x0 in the sense

of Definition 2.1.

For 0 < m < M < 1 we denote, see Figure 3.1,

ΩM
m :=

{
(s, π) ∈ [0, 1]× [0, 1] : sD(π) ≤ s ≤ sI(π), m ≤ π ≤M

}
.

Now we show that ΩM
m is an invariant domain for any 0 < m < M < 1.

s

f

1
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.1 . . . . . . . . . . . . . . . . . . . .

fD
f I

A
B

C
D

fS(·,M)

fS(·,m)

(a)
s

π

1

1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.. . . . . . . . . . . . . . . . . . . . .

sIsD

ΩM
m

Ã
B̃

C̃
D̃

. . . . . . . . .M

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

M

. . .m

(b)

Figure 3.1. The set ΩM
m . (a): in the (s, f)-plane; (b): in the (s, π)-

plane, with the flow directions at points Ã, . . . , D̃.

Proposition 3.5. Assume (I), (II) and 0 < m < M < 1. If (s0, π0) ∈ S(R) are

valued in ΩM
m , then any solution (s, π) ∈ S

(
R× [0, T ]

)
of (2.16)-(2.18) satisfies

(3.16) (s, π)(x, t) ∈ ΩM
m , (x, t) ∈ R× [0, T ],

unless (3.16) is violated at x→ ±∞ for some t ∈ [0, T ) first.
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Proof. It suffices to prove that if we have both lim supx→±∞(s, π)(x, t±) ∈ ΩM
m and

lim infx→±∞(s, π)(x, t±) ∈ ΩM
m , then (s, π)(x, t±) ∈ ΩM

m . In other words, it suffices

to prove that (s, π)(x, t±) ∈ ΩM
m cannot fail at x ∈ (−∞,∞) at a time t1 > 0 without

it fails at x =∞ or −∞ at an earlier time 0 < t0 < t1.

Consider the set ΩM
m depicted in Figure 3.1. In the proof we exploit several times

the continuity of s and π(x, ·).

(a) First, we claim that a solution cannot exit ΩM
m through the corner point Ã.

Assume the contrary; then there is (x0, t0) such that
(
s(x0, t0), π(x0±, t0)

)
= Ã,

(s, π)(x, t0) ∈ ΩM
m for every x ∈ R and, for some number γ > 0,

(3.17) π(x±, t) > M = π(x0, t0) for some (x, t) ∈ Bγ(x0, t0) ∩ {t > t0}.

Here and in the following the symbol “±” is understood as “either + or −” and

Bγ(x0, t0) is the closed ball in R2 with radius γ and center (x0, t0). Since the point

x = x0 is an essential local-maximum point of both s(·, t0) and π(·, t0), by Proposition

3.3 we deduce π(x0−, t0) = π(x0+, t0) = πI
(
s(x0, t0)

)
. Then (x0, t0) is indeed a local

maximum point and so

(3.18) (s, π)(x0, t0) = Ã, (s, π)(x, t0) ∈ ΩM
m for x ∈ R.

Proposition 3.3 also states that st(x0, t0) ≤ 0. Since (s, π) ∈ S
(
R× [0, T ]

)
, then

(s, π) satisfies one of the following possibilities:

(i) (s, π) ∈ C2
(
Bγ(x0, t0)

)
, for a small enough γ > 0;

(ii) (s, π) is not C2 at (x, t) = (x0, t0).

Recall that π increases in time only when s increases in imbibition mode.

In case (i), assumption (3.17) implies that both functions π(·, t) and s(·, t) have

a local (and global) maximum point in B+
γ (x0, t0) := Bγ(x0, t0) ∩ {t > t0}, for

γ > 0 small enough. These points satisfy π(x, t) = πI
(
s(x, t)

)
; moreover, there is

(x1, t1) ∈ B+
γ (x0, t0) such that s(x1, t1) > M . By (3.17) we cannot have st ≤ 0 for all

t0 < t < t1 at global maximum points in B+
γ (x0, t0); hence, we have st > 0 at some

local maximum point. This is in contradiction with Proposition 3.3 and then case

(i) cannot occur.

Consider case (ii). Pick a small enough constant δ > 0. For each fixed t ∈
[t0, t0 + δ], we denote a global maximum point of s(·, t) (for −∞ < x < ∞) in

Bγ(x0, t0)∩{t ≥ t0} as x = x0(t). Then, we have x0(t0) = x0. We are only interested

in those x0(t)’s that increase π to make (3.17) true. Hence it is necessary that

π
(
x0(t)+, t

)
= πI

(
s(x0(t), t)

)
= π

(
x0(t)−, t

)
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by the discussion following (3.17). Remark that there maybe several of such x0(t)

points for each fixed t. We just select any one of them, maintaining continuity if

possible, to make a path x = x0(t). We note that the path x = x0(t) may be

discontinuous, but the maximum value s
(
x0(t), t

)
is continuous because s(x, t) is

continuous in t and hence its global maximum value cannot jump as t increases.

Now, it suffices to show that s
(
x0(t), t

)
does not increase along none of these paths

x = x0(t) to arrive at the desired contradiction to (3.17).

If the curve x0(t) is away from division boundaries of PC2 at some time t0 < t1 <

t0+δ, then we are in case (i), with t0 replaced by t1. There, we proved that s
(
x0(t), t

)
cannot increase at t = t1. Thus, we can assume that x = x0(t), t0 < t < t0 + δ lies on

a piece of division boundary of PC2. Since division boundaries of PC2 are piecewise

C1 with locally finitely many pieces, we can assume that x = x0(t) is C1 over

t0 < t < t0 + δ for sufficiently small δ > 0. If the local maximum value s
(
x0(t), t

)
exceeds M as t increases over the interval [t0, t0 + δ), then d

dt
s
(
x0(t)±, t+

)
> 0 at

some point t1 ∈ [t0, t0 + δ). Here we used the fact that s is C1 up to the boundary.

Without loss of generality, we assume, by re-assigning the notation for t0 if necessary,

that t1 = t0. Because s, being in PC2, is C2 on either sides of x = x0(t) with locally

bounded second derivatives on either side of the division curve x = x0(t), the chain

rule applies to either sides of x = x0(t) to yield

(3.19)
d

dt
s
(
x0(t)±, t

)
= sx

(
x0(t)±, t

)
x′0(t) + st

(
x0(t)±, t

)
.

Since s(x, t) is continuous in x, and x = x0(t) is a local maximum point of s(·, t),
then sx

(
x0(t)+, t

)
≤ 0 and sx

(
x0(t)−, t

)
≥ 0 must hold. If x′0(t) ≥ 0, then (3.19)

implies that st(x0(t)+, t) > 0 holds; if else x′0(t) < 0, then st(x0(t)−, t) > 0. Either

way, at least one of st
(
x0(t)±, t

)
must be positive. However, we claim that this leads

to a contradiction.

To prove this claim, assume for definiteness that st(x0+, t0) > 0. Take a test

function ψ ∈ Ψ with

|st(x0−, t0)|
∫ 0

−1
ψ(y)dy <

1

2
st(x0+, t0)

∫ 1

0

ψ(y)dy.

Since s is Lipschitz continuous, then

lim
h→0+

〈st(x0 + y, t0), ψh(y)〉 = st(x0−, t0)
∫ 0

−1
ψ(y)dy + st(x0+, t0)

∫ 1

0

ψ(y)dy > 0,

violating Proposition 3.3 that states st(x0, t0) ≤ 0 in the sense of Definition 2.1. This

proves our claim.
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Then, a solution cannot exit ΩM
m through the corner point Ã. Similarly, the solution

cannot exit ΩM
m through the corner point C̃ either.

(b) Now, we prove that the solution cannot exit ΩM
m through the side curves joining

Ã with D̃ and B̃ with C̃. Assume that the pair (s, π) lies at a point on π = πI(s);

then we are either in imbibition or in scanning mode. In the former case we have

πt = πI(s)t and st > 0; as a consequence, the pair (s, π) keeps on moving along the

imbibition curve π = πI(s) and does not move outside ΩM
m . In the latter case we

have πt = 0 and st ≤ 0 (otherwise we are in imbibition mode) and then (s, π) moves

toward the interior of ΩM
m . The proof in case (s, π) lies on π = πD(s) is analogous.

(c) Next, we claim that the solution cannot exit ΩM
m through the top open line

sD(M) < s < sI(M), π = M , or the bottom line sD(m) < s < sI(m), π = m. To

this end, assume that for some (x0, t0) we have

π(x0+, t0) = ess sup
x∈R

π(x, t0) = M, with sD(M) < s(x0, t0) < sI(M),

the case π(x0−, t0) = M being completely analogous. Then (s, π) is in scanning

mode on an interval (x0, x0 + γ) × {t = t0}, for some small γ > 0, because s is

continuous. About the x = x0− side, there are three possibilities.

-) If the side x = x0− is in scanning mode, then (s, π)(x, t0) is in scanning

mode on both sides of x0. Equation (2.16)2 states πt = 0 and hence π

cannot exceed M in a neighborhood of (x0, t0).

-) If the side x = x0− is in imbibition mode, then π(x0−, t0) = πI
(
s(x0, t0)

)
<

πI
(
sI(M)

)
= M . The continuity of π(x, ·), by Lemma 3.1, implies that

π(x0−, t) cannot exceed M for t near t0.

-) The remaining case where the x = x0− side is in drainage mode can-

not occur because that would require M = π(x0−, t0) = πD
(
s(x0, t0)

)
>

πD
(
sD(M)

)
= M , which is a contradiction.

The above arguments show that the solution cannot exit ΩM
m through the top open

lines sD(M) < s < sI(M), π = M . Similarly, it can be proved that the solution

cannot exit ΩM
m through the bottom open line sD(m) < s < sI(m), π = m.

(d) At last, we show that the solution cannot exit ΩM
m through the corner points

B̃ or D̃. This case is much easier than case (a) because in that case the evolution of

s (for Ã we have st > 0 in imbibition mode, for C̃ we have st < 0 in drainage mode)

could possibly move s outside ΩM
m . For B̃ and D̃ the situation is opposite. Consider

for instance the case of B̃. The solution is either in drainage or in scanning mode. In

the former case we have st < 0 and the solution decreases along the drainage curve.
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In the latter case the solution stays on the scanning curve. In any case, the solution

does not exit ΩM
m . �

The well-known Tychonov’s counter-example [6] shows that the uniqueness of so-

lutions and the maximum principle for the Cauchy problem of the heat equation

cannot hold without imposing a growth condition at |x| → ∞. For system (2.16),

being non-strict parabolic, we expect a similar phenomenon. Thus, we have to restrict

to a set of functions relevant to the physical background of (2.16) when searching

for solutions. For studying Riemann problem in later sections, we are interested in

solutions, if any, of (2.16) in the class

(3.20) X
(
R× [0, T ]

)
:=

{
(s, π) ∈ S

(
R× [0, T ]

)
: lim
x→±∞

s(x) = s±

}
,

where 0 < s± < 1 are constants1. To be consistent, the initial data must belong to

the space

(3.21) X (R) :=

{
(s, π) ∈ S (R) : lim

x→±∞
s(x, t) = s±

}
.

Theorem 3.6. Assume (I), (II) and 0 < m < M < 1. If the initial data (s0, π0) ∈
X(R) are valued in ΩM

m , then any solution in X
(
R× [0, T ]

)
of the equation (2.16)

is also valued in ΩM
m .

Proof. Because π cannot change without s changes, the condition limx±∞ s(x, t) = s±

prevents π to exceed the range [m,M ] at x → ±∞. Then Proposition 3.5 prevents

(s, π)(x, t) to exit ΩM
m as t increases from 0. �

Here follows a maximum-principle result about π. It is a straightforward conse-

quence of Theorem 3.6.

Corollary 3.7. Assume (I), (II) and (s0, π0) ∈ X(R). Then any solution (s, π) ∈
X
(
R× (0, T )

)
of the initial-value problem (2.16) with initial data (s0, π0) satisfies

(3.22) ess inf
x∈R

π(x, 0) ≤ π(x, t) ≤ ess sup
x∈R

π(x, 0) a.e.

Remark 3.2. We cannot expect that s satisfies an analogous maximum principle.

This is due to the fact that t = 0 is an artificial choice of time, while the actual

history of s, including the history of s for times t ≤ 0, is encoded in π. Thus, s

can be expected to stay inside a region decided by π(x, 0), as stated in Theorem 3.6,

but cannot be bounded by a region decided by s(x, 0) alone. Whether the invariant

region described in Theorem 3.6 may be further reduced is left for future research.

1The strict inequalities 0 < s± < 1 are added to avoid the need of extending f = F (s, π) outside
of [0, 1]× [0, 1].
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Similarly, we also have the following two theorems as immediate consequences of

Proposition 3.5. The first one concerns the initial-boundary value problem for (2.16)

over a bounded region of x; the second one deals with the initial-value problem

for (2.16) under periodic initial and boundary conditions. Both problems avoid

the possibility of the invariant region being reached as x → ±∞. Below, the sets

S
(
[−L,L]× [0, T ]

)
and S

(
[−L,L]

)
are defined analogously to S

(
R× [0, T ]

)
and

S (R), with R replaced by the interval [−L,L].

Theorem 3.8. Assume (I), (II) and 0 < m < M < 1. Let (s, π) ∈ S
(
[−L,L]× [0, T ]

)
be a solution of system (2.16) in [−L,L] × [0, T ] that satisfies the initial-boundary

conditions

(3.23)

{
(s, π)(x, 0) = (s0, π0)(x) if − L < x < L,

(s, π)(±L, t) = (s±, π±)(t) if 0 < t < T.

Here (s0, π0) ∈ S([−L,L]), s± ∈ C
(
[0, T ]; [0, 1]

)
∩ PC2

(
[0, T ]; [0, 1]

)
and π(±L, t) is

determined by (2.16)2. If both (s0, π0) and (s±, π±) are valued in ΩM
m , then (s, π) is

also valued in ΩM
m .

Theorem 3.9. Assume (I), (II) and let 0 < m < M < 1. Let (s, π) ∈ S
(
R× [0, T ]

)
be a periodic solution of system (2.16) over R × [0, T ], namely, (s, π)(x + L, t) =

(s, π)(x, t) for t ∈ [0, T ], with initial data

(3.24) (s, π)(x, 0) = (s0, π0)(x).

If (s0, π0) ∈ S(R) is valued in ΩM
m , then (s, π) is also valued in ΩM

m .

In the remaining part of this section we assume for simplicity that piecewise con-

tinuous functions in PC0(R) are continuous on the left.

Definition 3.1. Let g ∈ PC0(R). An increasing stretch for g is an interval [a, b]

such that

(i) if a < b, then

(a) g(x1−) ≤ g(x2−) if x1 < x2, for x1 ∈ (a, b], x2 ∈ (a, b];

(b) g(x−) ≤ g(x+) for every x ∈ (a, b);

(ii) if a = b, then g(a−) < g(a+);

(iii) the interval [a, b] is maximal with respect to the properties above.

A decreasing stretch for g is an interval [a, b] such that

(i) if a < b, then

(a) g(x1−) ≥ g(x2−) if x1 < x2, for x1 ∈ (a, b], x2 ∈ (a, b];

(b) g(x−) ≥ g(x+) for every x ∈ (a, b);
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(ii) if a = b, then g(a−) > g(a+);

(iii) the interval [a, b] is maximal with respect to the properties above.

A stretch of monotonicity for g is either an increasing or a decreasing stretch for g.

An increasing and a decreasing stretch may overlap (for instance if g is constant in

an interval); for g ∈ PC0(R), the number of monotone stretches Ng is counted by

meaning a possibly overlapping interval as being part of the monotone stretch on the

left.

In this way, if g ∈ PC0(R), then the set R is covered by an at most countable

number of monotone stretches for g. We refer to Figure 3.2 for some examples.

1

(a)

1

(b)

.

.

.

1

(c)

.

.

.
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.
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.
.
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(f)

.

.
3

(g)

.
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.

.

.

.

5

(h)

Figure 3.2. Monotone stretches of a function and their numbers.

Our next result aims at showing a monotonicity property of π. For brevity we de-

note by N(t) := Nπ(·,t) the number of monotone stretches of π(·, t), which is assumed

to be continuous on the left. As an example, we collect in Figure 3.3 some sketches of

evolution patterns of the function π(·, t), with respect to t, that are either (possibly)

allowed or disallowed by Propositions 3.3, 3.4 and Corollary 3.7. For instance, con-

sider Figure 3.3(a) at time t0 and denote by x0 the corresponding minimum point. If

we are in scanning mode, then that local pattern does not change for short times. If

we are in imbibition mode, then π increases with time and this confirms the figure.

If we are in drainage mode, then π(x0, t0) = πD
(
s(x0, t0)

)
and (x0, t0) also is be a

local minimum point for s(·, t0); Proposition 3.4 implies st(x0, t0) ≥ 0 and then π

increases again with t.

Theorem 3.10. Assume (I) and (II). Let (s, π) ∈ S
(
R× [0, T ]

)
be a solution of

(2.16), (2.18) and suppose N(0) <∞. Then N(t) is nonincreasing as t increases.
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(a) (b) (c)

.

.

.

.

(d)

Figure 3.3. Allowed evolution patterns of π(·, t). Arrows denote the
possible evolutions for a short interval of time. The converse evolution
is disallowed.

Proof. Since the function N(t) is integer valued, it can only change through jump

discontinuities. For N(t) to increase across a point t = t0 there are two possibilities

(recall that π(·, t) is assumed to be continuous on the left):

(i) a new local essential-maximum point x = x0(t) of π(·, t) is created as t increases

across t = t0 where either π(x0−, t) or π(x0+, t) (or both) is increasing at t = t0;

(ii) a new local essential-minimum point x = x0(t) of π(·, t) is created as t increases

across t = t0 where π(x0−, t) or π(x0+, t) (or both) is decreasing at t = t0.

However, both cases are disallowed by Propositions 3.3 and 3.4. In fact, consider

for instance case (i) and assume that π(x0−, t) (or π(x0+, t)) increases with t. By

Proposition 3.3 we have π(x0±, t) = π(x0, t) = πI
(
s(x0, t)

)
and (x0, t0) is also a local

maximum point for s(·, t0). Then st(x0, t0) ≤ 0, which implies that π(x0, ·) cannot

increase at t = t0, a contradiction.

Thus, N(t) cannot increase as t increases. The boundedness of the total variation

of π(·, t) then follows from N(t) ≤ N(0) and Corollary 3.7. �

Corollary 3.11. Assume (I) and (II). Let (s, π) ∈ X
(
R× [0, T ]

)
be a solution of

(2.16) with initial data in X(R). If N(0) < ∞, then the total variation of π(·, t) is

bounded for every t ∈ [0.T ].

4. Shock Profiles and Rarefaction Waves

In this section we study the viscous profiles of solutions to (2.16). Rewrite the

system of equations (2.21) for shock profiles as

(4.1)


A(s, π)s′ = −σ(s− s−) + F (s, π)− F (s−, π−),

σπ′ = σ
[
χ(I)πI(s)′ + χ(D)πD(s)′

]
,

(s, π)(±∞) = (s±, π±), (s′, π′)(±∞) = (0, 0)

where we denoted ′ = d
dξ

and by

(4.2) σ =
F (s+, π+)− F (s−, π−)

s+ − s−
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the speed of the shock. Recall that the scaled viscosity A > 0 is assumed to be

bounded from 0. With the traveling wave coordinate ξ, the definition of the boolean

variables gives

(4.3) I =
{
σs′ < 0

}
∧
{
s = sI(π)

}
, D =

{
σs′ > 0

}
∧
{
s = sD(π)

}
.

In the following, when a profile or a wave are valued in just one mode, then we call

them single-mode profiles or single-mode waves, respectively. We recall the relation

(4.4) sign(st) = −σ sign(s′),

which, together with (2.9), is fundamental to determine the mode of a profile.

From (4.1), it is clear that if (s, π) is bounded and measurable, then s is continuous.

If σ 6= 0, then π′ is also bounded and measurable and hence π is continuous. This

further improves the regularity of s to C1. Because of the presence of characteristic

functions χ(I) and χ(D) in the equation for π′, the best possible regularity for π

is piecewise C1 and uniform Lipschitz. However, if σ = 0, then there is not much

restriction on π(ξ), except the physical restrictions such as being bounded. In this

case, the function s is Lipschitz. In the rest of this section, we show the existence

and uniqueness of solutions of (4.1) in the class of continuous functions.

Lemma 4.1. Assume (I) and consider σ 6= 0. If (4.1) has a continuous solution

(s, π) and s− 6= s+, then s′ is continuous and never vanishes. Therefore s(ξ) is

strictly monotone. Furthermore, the function π is Lipschitz continuous and mono-

tone with the same type of monotonicity of s.

Proof. It is clear from (4.1)1 that s′ is continuous. Then, π′ is bounded and hence

π(ξ) is Lipschitz. Assume, by contradiction, that there is a point ξ0 where s′(ξ0) =

0, implying π′(ξ0) = 0 by (4.1)2. Therefore system (4.1) has a constant solution(
s(ξ0), π(ξ0)

)
. We claim that this constant solution is the only solution. This requires

a proof since the standard uniqueness results do not apply since the right-hand side

of (4.1)2 is discontinuous. Indeed, because of s′(ξ0) = 0, equations (4.1)1,2 can be

rewritten as

(4.5)

A(s, π)(s− s0)′ = −σ(s− s0) + F (s, π)− F (s0, π0),

(π − π0)′ =
[
χ(I)(πI(s)− πI(s0))′ + χ(D)(πD(s)− πD(s0))

′
]
,

where (s0, π0) :=
(
s(ξ0), π(ξ0)

)
. Assume that (s, π)(ξ) is another solution of (4.1)

with (s, π)(ξ0) = (s0, π0) but (s, π)(ξ) 6= (s0, π0) for some ξ 6= ξ0, for contradiction.

Because s′ is continuous and not identically 0, then the set {ξ ∈ R : s′ 6= 0} is open

and non-empty. Thus, we can assume without loss of generality that s′(ξ) 6= 0 for

ξ ∈ (ξ0, ξ0 + δ) for a sufficient small constant δ > 0. Then either one of I(ξ) = true
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and D(ξ) = true holds for ξ ∈ (ξ0, ξ0 + δ), or both I = D = false. For the former

case, (4.5)2 yields

(4.6) π(ξ)− π0 = O(1)(s− s0).

For the latter case, the identity

(4.7) π(ξ)− π0 = 0

holds for ξ ∈ (ξ0, ξ0 + δ). Combining (4.6) and (4.7) with the integral of the (4.5)1,

we obtain that for every ξ ∈ [ξ0, ξ0 + δ] we have

min{|A|} |s(ξ)− s0| ≤ O(1)

∫ ξ

ξ0

(
|s(ζ)− s0|+ |π(ζ)− π0|

)
dζ

≤ O(1)δ max
ζ∈[ξ0,ξ]

|s(ζ)− s0|.

This implies
(
s(ξ), π

)
≡ (s0, π0) in [ξ0, ξ0 + δ] for sufficiently small δ > 0. Then

the constant solution is the only solution. However, this violates the requirement

(s, π)(±∞) = (s±, π±). Thus s′ cannot change sign and hence s is monotone.

Moreover, by (4.1)2, it follows that if s′ > 0 then π′ ≥ 0 while if s′ < 0 then π′ ≤ 0,

for all ξ ∈ R. Thus, π is monotone with the same type of monotonicity of s. �

Though experimental data show that both functions fD and f I usually have a

unique inflection point in (0, 1), see [7, 13], we require here, for simplicity, the fol-

lowing convexity assumption to reduce the number of possible types of waves and

simplify the structure of Riemann solvers.

Assumption (III). We assume

fDss(s) > 0, f Iss(s) > 0, for s ∈ (0, 1),(4.8)

fSss(s, π) > 0, for (s, π) ∈ ΩS.(4.9)

Scanning-to-imbibition shocks. A scanning-to-imbibition shock (briefly, SIS)

is a shock connecting
(
s− = sI(π−), π−

)
to (s+, π+) in scanning mode. Then we have

sD(π+) < s+ < sI(π+). The following theorem states when such shock waves have

viscous profiles; indeed, for future reference, we treat as well the cases s+ = sD(π+)

and s+ = sI(π+). The case π− = π+ concerns scanning waves and is not considered

here.

Theorem 4.2. Assume (I) and (III). Let (s±, π±) ∈ Ω satisfy s− = sI(π−) and

sD(π+) ≤ s+ ≤ sI(π+).

(i) If π+ < π−, then (4.1) has a solution (s, π)(ξ) which is unique up to a shift.

Furthermore, s is C1 and π is Lipschitz.
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Figure 4.1. (a): a scanning-to-imbibition shock. (b): for the proof
of Theorem 4.2.

(ii) If π+ > π−, then (4.1) has no solution if σ 6= 0.

Proof. We divide the proof into two steps and refer to Figure 4.1.

(i) Since π+ < π−, by Lemma 2.1 we have

(4.10) s+ ≤ sI(π+) < sI(π−) = s−.

As a consequence, by (2.8) we have

(4.11) F (s−, π+) = F (s−, π−),

see Figure 4.1(b); indeed, the extension of F was just done to this aim. Notice that

F (·, π+) is convex for s ∈ (s+, s−). By (4.10) it follows that σ > 0. Consider the

equation

(4.12) A(s, π)s′ = (s− s−)

(
−σ +

F (s, π+)− F (s−, π+)

s− s−

)
,

where σ is given by (4.2) and π(ξ) is defined as

(4.13) π(ξ) :=

{
π+ if s(ξ) < sI(π+),

πI
(
s(ξ)

)
if s(ξ) ≥ sI(π+).

By (4.10) and the convexity assumptions (4.8), (4.9) (see also Figure 2.2(b)), we see

that

−σ +
F (s, π+)− F (s−, π+)

s− s−
> 0

for s ∈ (s+, s−). Pick any s0 ∈ (s+, s−) as initial point s(0); the solution s = s(ξ) of

the corresponding initial-value problem for equation (4.12) (with (4.13)) is strictly
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decreasing and it is easily seen that it can be extended to the whole of R. We claim

that

(4.14)
(
s(ξ), π(ξ)

)
:=

{(
s(ξ), π+

)
if s(ξ) < sI(π+),(

s(ξ), πI(s(ξ))
)

if s(ξ) ≥ sI(π+),

solves (4.1).

To prove this claim, consider first the case when s+ = sI(π+). In this case we have(
s(ξ), π(ξ)

)
=
(
s(ξ), πI(s(ξ))

)
by (4.13) and (4.12) becomes

A
(
s, πI(s)

)
s′ = −σ(s− s−) + f I(s)− f I(s−)

= −σ(s− s−) + F
(
s, πI(s)

)
− F

(
s−, π

I(s−)
)
,

which is (4.1)1. Equation (4.1)2 is trivially satisfied. So (4.14) solves (4.1)1 in this

case.

When s+ < sI(π+), since s(ξ) is continuous and decreasing, there is a point ξ0

such that sD(π+) < s(ξ) < sI(π+) for ξ > ξ0 and s(ξ) ≥ sI(π+) for ξ ≤ ξ0. In the

zone ξ > ξ0 we have S = true, and hence (4.14) satisfies (4.1). In the ξ ≤ ξ0 side,

I = true holds for the function (4.14) and equation (4.1)2 is satisfied; thus, the pair

in (4.14), being continuous, solves (4.1)2. It remains to show that (4.14) solves (4.1)1.

If ξ < ξ0, this is true for the same reason given above for the case s+ = sI(π+); if

ξ > ξ0, this follows by (4.11), since equation (4.1)1 coincide with (4.12). At ξ = ξ0,

the function (s, π) is continuous by the construction (4.14); thus, (4.14) solves (4.1)1.

Since s is decreasing, we have s(ξ) → s±, the equilibrium points of (4.12), as

ξ → ±∞. Thus, (4.1)3 is also satisfied. This proves our claim that (4.14) solves

(4.1).

Now, we prove that the solution of (4.1) is unique up to a shift. To see this, let

(s1, π1)(ξ) be another continuous solution to (4.1). Since s1 is continuous, it can be

shifted so that s1(0) = s0, where s0 can be chosen by (4.10) so that

(4.15) sI(π+) < s0 < s−,

see Figure 4.1 (b). We claim that

(4.16) π1(0) = πI(s0).

If we take (4.16) for granted, then this solution and the previous one constructed in

(4.14), with a shift if necessary, have the same initial value (s, π)(0) = (s1, π1)(0) =(
s0, π

I(s0)
)
.

We claim that these two solutions must coincide. Indeed, as ξ increases from 0,

because s′1 < 0 as required by Lemma 4.1, then s1(ξ) will move from s0 towards

sI(π+) ≤ s0. If it was in S mode at some ξ = ξ1 with sI(π+) < s1(ξ1) ≤ s0,
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then the pair (s1(ξ), π1(ξ)) would move into scanning zone and π1(ξ1) ≡ π1(ξ) > π+

would stay true until (s1(ξ), π1(ξ)) meets the the drainage curve (s, π = πD(s)), say

at ξ = ξ2 > ξ1. As ξ increases from ξ2, the function π1(ξ) cannot decrease to π+

because π1 can decrease only in I-mode. Thus, (s1, π1)(ξ) must stay in I-mode as ξ

increases from 0 until ξ = ξ1 > 0 where s1(ξ1) = sI(π+). After ξ1, S = true must

hold because, if else, then π1(ξ1+o(1)) < π+ would be true, making π non-monotone,

in contradiction with Lemma 4.1. Therefore, the solution (s1, π1) coincides with the

solution (4.14).

Thus, a proof of (4.16) will complete the proof of this theorem. To this end, assume

by contradiction that π1(0) 6= πI(s0). Since πI(s) ≤ π ≤ πD(s) for any s ∈ [0, 1],

then we have πI(s0) < π1(0) ≤ πD(s0). We recall that by Lemma 4.1 we have either

s′1(0) > 0 or s′1(0) < 0.

If s′1(0) < 0, then the inequality πI(s0) < π1(0) implies that the fluid at ξ = 0 is

in scanning mode because of (4.3) and σ > 0. As a consequence, we have that both

π′1(ξ) = 0 and s′1(ξ) < 0 hold as ξ increases until (s1, π1)(ξ) enters into an equilibrium

point of (4.1), which is the point of intersection between the secant line in Figure

4.1 (b) and f = F
(
s, π1(0)

)
. This violates the requirement that π1(∞) = π+.

If s′1(0) > 0, then s′1(ξ) > 0 for all ξ ∈ R by Lemma 4.1. On the other hand, by

(4.15) it follows that s0 > s+. This excludes the possibility that s1(∞) = s+. This

proves (4.16) and thus the uniqueness.

(ii) Consider now the case π+ > π−. When s+ < s−, there is no solution for

(4.1) because by Lemma 4.1, when σ 6= 0, s and π are either both increasing or

both decreasing. If s− = s+, then problem (4.1) has not yet a solution, because the

monotonicity of s(ξ) dictates s(ξ) ≡ s− and hence, by (4.1)1, that π(ξ) ≡ π−, making

π+ > π− impossible to satisfy. It remains to show that (4.1) has no solution when

s+ > s−.

When s+ > s−, we have s′(ξ) > 0 and σ > 0 from (4.2); by (4.3) we deduce

χ(I) = 0 for all ξ. Near ξ = −∞, we have s ∼ s− = sI(π−) and hence χ(D) = 0.

Thus, as ξ increases from −∞, we have π(ξ) = π− while s(ξ) increases and hence

s(ξ) > s− = sI
(
π(ξ)

)
. This makes χ(D) = 1 impossible to reach as ξ increases and

hence π(ξ) ≡ π−. Therefore, in this case, π(∞) = π+ is impossible. �

Remark 4.1. Under the assumptions of Theorem 4.2(i), at a point x >> 1 and t = 0,

i.e., for ξ ∼ ∞, we have
(
s(ξ), π(ξ)

)
∼ (s+, π+) and then the solution

(
s(x, t), π(x, t)

)
is in scanning mode. As t increases, the wave (4.14) travels to the right, while the

function s(x, ·) increases and eventually goes into imbibition mode. For this reason,

we call such shock a scanning-to-imbibition shock.



30 ANDREA CORLI AND HAITAO FAN

Remark 4.2. A special case of Theorem 4.2 is when (s+, π+) satisfies π+ = πI(s+).

In this case, the profile is entirely in imbibition mode, i.e., π(ξ) = πI
(
s(ξ)

)
for

all ξ ∈ R. Although it is a single mode shock, it is also the limit of scanning-to-

imbibition shocks where the limiting process is s+ → sI(π+)−. For simplicity, we

still call this shock a scanning-to-imbibition shock to reduce the number of cases of

Riemann solvers in next section.

Another special case of Theorem 4.2 is when (s+, π+) satisfies π+ = πD(s+). Since

−σs′ > 0 near ξ = ∞, then (s+, π+) is in scanning mode. Thus, the shock is a

scanning-to-imbibition shock.

Single-mode rarefaction waves. Consider potential solutions of the Riemann

problem of the form (s, π)(x, t) = (s, π)(x/t) =: (s, π)(ζ), where ζ = x/t. This leads

to the system

(4.17)

{
−ζs′ + F (s, π)′ = 0,

ζπ′ = ζ
(
χ(I)πI(s)′ + χ(D)πD(s)′

)
,

with the boundary condition

(4.18) (s, π)(−∞) = (sl, πl), (s, π)(∞) = (sr, πr),

where I = {s = sI(π) and ζs′ < 0} and D = {s = sD(π) and ζs′ > 0}. Rarefaction

waves are smooth solutions (s, π)(ζ) of (4.17) that are inside a single mode. For

imbibition- and drainage-mode rarefaction waves, the equations for Riemann problem

(4.17) are reduced to

(4.19)

{
−ζs′ + f I(s)′ = 0,

ζπ′ = ζπI(s)′,

and

(4.20)

{
−ζs′ + fD(s)′ = 0,

ζπ′ = ζπD(s)′,

respectively.

In the case of imbibition mode, a rarefaction wave is determined by ζ = f I
′
(s).

Since f I(s) is convex by (4.8), the rarefaction wave satisfies s′ > 0. Furthermore,

since f I is increasing by (2.3), then I =false. This shows that there are no rarefaction

waves in imbibition mode. On the contrary, there are shock waves in imbibition mode

(IS) if s+ < s−, as stated in Remark 4.2.

In the case of drainage mode, analogous considerations lead to exclude shock waves;

only rarefaction waves in drainage mode (DR) are possible.

In scanning mode, scanning shocks (SS) and scanning rarefaction waves (SR) are

the ordinary shocks and rarefaction waves of (2.17) with π = constant, and hence
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we need π− = π+. In this case, (2.17) reduces to the scalar conservation law st +

fS(s, π±)x = 0. As above, by (4.9), scanning shocks exist if and only if s− > s+, and

scanning rarefaction waves exist if and only if s− < s+.
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Figure 4.2. (a): a drainage and a scanning rarefaction wave. (b): a
scanning-to-drainage shock wave.

A rarefaction wave containing a mode boundary, if such wave exists, can be con-

sidered as two single-mode rarefaction waves glued together. Thus there is no need

to study such kind of waves.

Scanning-to-drainage shocks. A scanning-to-drainage shock (SDS) connects(
s− = sD(π−), π−

)
in drainage mode to (s+, π+) in scanning mode.

Theorem 4.3. Assume (I) and (III). Let (s±, π±) ∈ Ω with s− = sD(π−) and

sD(π+) ≤ s+ ≤ sI(π+).

(i) If π− < π+, then (4.1) has a solution if and only if condition

(4.21)
F (s+, π+)− F (s−, π+)

s+ − s−
<
F (s, π+)− F (s−, π+)

s− s−
for all s− < s < s+

is satisfied. In this case the solution is unique up to a shift.

(ii) If π− > π+ and σ 6= 0, then (4.1) has no solution.

Remark 4.3. In case (i), since π− < π+, by Lemma 2.1 we have s− = sD(π−) <

sD(π+) ≤ s+. Then the chord condition (4.21) is the usual Oleinik E-condition [3,

8.4.3] for the nonconvex flux s→ F (s, π+), see Figure 2.2(b). Here it states that the

line joining the points
(
s±, F (s±, π+)

)
lies below the graph of F (s, π+) in the interval

(s−, s+).
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Proof of Theorem 4.3. We split the proof into two cases and refer to Figure 4.2.

(i) We assume π− < π+; as a consequence, by (2.8) we have

(4.22) F (s−, π+) = F (s−, π−),

see Figure 4.2(b). Therefore σ coincides with the left-hand side of (4.21). The end

states s± are equilibrium points of the equation

(4.23) A(s, π)s′ = (s− s−)

(
−σ +

F (s, π+)− F (s−, π+)

s− s−

)
,

where π is defined as

(4.24) π(ξ) :=

{
π+ if s(ξ) > sD(π+),

πD
(
s(ξ)

)
if s(ξ) ≤ sD(π+),

and σ is given by (4.2). As a consequence of condition (4.21) we have

(4.25) fDs (s−) ≥ σ ≥ fSs (s+, π+).

Assume first that (4.25) holds with strict inequalities, namely,

(4.26) fDs (s−) > σ > fSs (s+, π+).

In this case the point s− is an unstable equilibrium while s+ is a stable equilibrium

of (4.23). An unstable trajectory of s− entering the s > s− side will increase as ξ

increases and enter the first stable equilibrium point on the right side of s−, which

is s+.

If (4.26) fails, then some equalities replace the strict inequalities: this means that

the line joining the points
(
s±, F (s±, π±)

)
, whose slope is σ by (4.22), is tangent to

the graph of s 7→ F (s, π+) either at the point of abscissa s− or at that of abscissa

s+, possibly at both. In this case, we consider the straight line which is parallel

to the line joining the points
(
s±, F (s±, π±)

)
but that is µ > 0 higher than it in

the (s, f)-plane. Then the chord condition (4.21) is satisfied with (s±, π±) replaced

by two points of intersections of the line and the graph of F , say (sµ±, π
µ
±), which

reestablish (4.25). Reconsider equation (4.23) with (s−, π−) and (s+, π+) replaced by

(sµ−, π
µ
−) :=

(
sµ−, π

D(sµ−)
)

and (sµ+, π
µ
+) := (sµ+, π+), respectively; we denote by (4.23)µ

this equation. Notice that σ is not affected by this replacement. Again by (4.8) and

(4.9), condition (4.26) is true for (sµ±, π
µ
±). Then, there is a solution sµ(ξ) for (4.23)µ

and we can shift it in such a way that sµ(0) = (s+ + s−)/2. Since
{
sµ(ξ), πµ(ξ)

}
is

monotone in ξ and uniformly bounded between (s±, π±), there is a sequence µk so

that the pointwise limit
(
s(ξ), π(ξ)

)
:= limµk→0+

(
sµk(ξ), πµk(ξ)

)
exists. This limit

must be a weak solution of (4.23), and hence a strong solution of (4.23). The datum

sµk(0) = (s+ + s−)/2 translates into s(0) = (s+ + s−)/2 and implies that s(ξ) is not
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a constant function, since (s+ + s−)/2 is not an equilibrium point of (4.23). Then

s(±∞) = s± follows. This proves that, under assumption (4.21), equation (4.23) has

a solution s(ξ) with s(±∞) = s±. As in the proof of Theorem 4.2, we can then prove

that
(
s(ξ), π(ξ)

)
solves (4.1).

Similarly, the uniqueness also follows as in that theorem: in this case we choose

s− < s0 < sD(π+). If π(0) 6= πD(s0), then πI(s0) ≤ π0 < πD(s0). If s′(0) > 0 we are

in scanning mode; if s′(0) < 0 then we are either in scanning or in imbibition mode.

In neither case the end state s+ can be reached.

The above shows the existence and uniqueness of solutions of (4.1) when the chord

condition (4.21) holds. It remains to show that when (4.21) fails, there is no solution

for (4.1). Indeed, if (4.21) fails, then according to (4.1)1, we have s′(ξ0) < 0 for some

s(ξ0) ∈ (s−, s+), hence s(ξ) cannot be monotone. This contradicts Lemma 4.1.

(ii) The proof is similar to that of Theorem 4.2. It is omitted. �

Stationary shocks (ST). Although the jump conditions (2.22) do not need shock

profiles when ζ0 = 0, nevertheless the existence or non-existence of such profiles is

still interesting. The Rankine-Hugoniot condition for stationary shocks (ST) is

F (s+, π+)− F (s−, π−) = 0.

These shocks are Lax contact discontinuities corresponding to the eigenvalue λ0 = 0

of the scanning system. A possible pair (s±, π±) of states giving rise to a stationary

shock is shown in Figure 4.3.
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Figure 4.3. (a): a stationary shock wave. (b): the function ψ in the
proof of Theorem 4.4.
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Theorem 4.4. Assume (I) and (III). Let (s±, π±) ∈ Ω with (s−, π−) 6= (s+, π+)

and assume F (s−, π−) = F (s+, π+). Then, system (4.1) has infinitely many solution(
s(ξ), π(ξ)

)
with σ = 0.

Proof. We assume s− > s+ for definiteness; the proof of the other case is similar.

Since Fs > 0 and Fπ > 0 by (2.5), conditions F (s−, π−) = F (s+, π+) and s− > s+

imply π− < π+ and F (s+, π−) < F (s−, π−), as shown in Figure 4.3. Consider the

solution s0 = s0(ξ) of (4.1) when σ = 0, i.e.,

(4.27)

{
A(s, π)s′ = F (s, π)− F (s−, π−),

(s, π)(±∞) = (s±, π±).

For brevity we dropped the condition (s′, π′)(±∞) = (0, 0). Pick any smooth function

ψ(s) satisfying

(4.28) F (s, π−) < ψ(s) < F (s−, π−)

for s ∈ (s+, s−) and ψ(s±) = F (s±, π±), see Figure 4.3 (b).

Because Fπ > 0, there is a unique π = π(s) so that F
(
s, π(s)

)
= ψ(s); moreover,

the function π(s) is also differentiable. Furthermore, we have π(s±) = π± because of

ψ(s±) = F (s±, π±). Then (4.27) with this choice of π becomes

(4.29)

{
A
(
s, π(s)

)
s′ = ψ(s)− F (s−, π−),

s(±∞) = s±.

Equation (4.29)1 has two equilibrium points s± and s′ < 0 for s ∈ (s+, s−). Thus, it

has a solution s(ξ), resulting in a solution
(
s(ξ), π

(
s(ξ)

))
for the stationary-profile

system (4.27). Since there are infinitely many choices of ψ(s), and s(ξ) obviously

depends on ψ as indicated by (4.29), there are infinitely many solutions for (4.27).

The case s− < s+ is similar, with (4.28) changed to F (s, π−) > ψ(s) > F (s−, π−)

for s ∈ (s−, s+). �

Theorem 4.5. Assume (I) and (III). Let (s±, π±) ∈ ΩS and assume F (s−, π−) =

F (s+, π+). Then, system (4.1) has a solution
(
s(ξ), π(ξ)

)
with σ = 0, where sξ(ξ)

has a jump discontinuity and π(ξ) is a step function.

Proof. We assume s− > s+ for definiteness; the proof of the other case is similar.

Since Fs > 0 and Fπ > 0 by (2.5) conditions F (s−, π−) = F (s+, π+) and s− > s+

imply π− < π+ and F (s+, π−) < F (s−, π−). Consider the solution s0 = s0(ξ) of

(4.30)

{
A(s, π−)s′ = F (s, π−)− F (s−, π−) for −∞ < x < 0,
s(0) = s+.

Since π− < π+ and sD(π+) ≤ s+ ≤ sI(π+), the monotonicity of the function sD(π)

implies the chain of inequalities sD(π−) < sD(π+) ≤ s+ < s− ≤ sI(π−), see the
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scanning curves in Figure 4.3. As ξ decreases from 0 to −∞, the function s0(ξ)

increases from s+ to s−; moreover, (s, π)(ξ) =
(
s0(ξ), π−

)
is in scanning mode, hence

π(ξ) = π− is consistent with (4.1)2 for ξ < 0. It is straightforward to check that the

function (s, π)(ξ) defined by

(4.31)
(
s(ξ), π(ξ)

)
:=

{(
s0(ξ), π−

)
if −∞ < ξ < 0,

(s+, π+) else,

is a solution of (4.1) with σ = 0 in the sense of distributions. �

Remark 4.4. When σ = 0, according to (4.1), there is not much constraint on π(ξ).

This provides the opportunity for infinitely solutions of (4.1) to exist for the same

end states, as show in the last two theorems. Which one will appear in Riemann

solvers? Our numerical experiments, which use upwinding schemes, indicate that

it appears the one with a jump discontinuity in π given in Theorem 4.5. Systems

(2.16) and (2.17) do not provide a smoothing mechanism for π in x direction if π has

a stationary discontinuity. This leads to the possibility of stationary wave profiles

with π discontinuous in x.

5. Solutions to Riemann Problems and Nonuniqueness

In this section, under Assumptions (I) and (III), we construct Riemann solvers by

“gluing” the basic waves listed in Section 4. Although the Riemann problem (4.17),

(4.18) has already been briefly studied in [13], here we list the Riemann solutions in

full detail. In the following we use the notation (s−, π−), (s+, π+) for (sl, πl), (sr, πr),

respectively.

We introduce the notation F± := F (s±, π±). Let sD− and sI− denote the solutions of

the equations F− = fD(s) and F− = f I(s), respectively; the points sD− and sI− exist

and are unique because the functions fD and f I are strictly increasing by (2.3). We

also denote πD− := πD(sD−) and πI− := πI(sI−); see Figure 5.1. We point out that the

points (sD− , π
D
− ) and (sI−, π

I
−) are the intersection of the locus F (s, π) = F− with the

graphs of the functions sD(π) and sI(π), respectively, see Figure 5.1(a). The locus

F (s, π) = F− in ΩS implicitly defines a function π = π(s); it satisfies dπ
ds
< 0, due to

(2.5).

About the possible solutions of the Riemann problem (4.17)-(4.18), we consider

several cases. They are classified first by the position of π− and then by that of π+.

Case 1. π− = πI− and hence F (s−, π−) = f I(s−) by (2.8).

Case 1(a). π+ ≤ π− = πI−. A solution is a scanning-to-imbibition shock provided

by Theorem 4.2. See Figure 4.1 (a).
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Figure 5.1. (a): the points sD− and sI−. (b): Case 1(b): When πI− =
π− < π+ ≤ πD− , the solution depicted is a piecewise constant function

(s, π)(ξ) with constants being (s−, π−)
ST−→ (sM , π+)

SW−−→ (s+, π+) in
the order of increasing ξ ∈ R. Here ST stands for stationary shock
given by Theorem 4.5, while SW for a scanning rarefaction wave or
scanning shock.

The rest of Case 1 and Case 2, where (s−, π−) is in the scanning zone, are shown

in Figures 5.2 and 5.3, respectively.

Case 3. When π− = πD− , solutions are similar to those depicted in Figure 5.2 and

Figure 5.3 (a), except that s− is moved to the drainage curve.

This concludes the analysis of the solutions of the Riemann problem; under As-

sumptions (I) and (III) we proved that for any two pairs of states (s−, π−) and

(s+, π+) in Ω the Riemann problem (4.17), (4.18) has a solution. Moreover, the com-

ponents π in Riemann solvers listed above are all monotone. On the other hand, due

to the requirements in imbibition and drainage modes, the s component of solutions

cannot be monotone in general.

In most cases listed above, however, there are infinitely many solutions, [13]. For

example, in Case 1(c), the part of the solution corresponding to

(5.1) (s−, π−)
ST−→ (sD− , π

D
− )

can replaced by

(5.2) (s−, π−)
SIS−−→

(
sL, πD(sL)

)
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Figure 5.2. (a): Case 1(c1). A solution when πD− < π+ and the
chord condition

F (s+, π+)− F (sD− , π+)

s+ − sD−
<
F (s, π+)− F (sD− , π+)

s− s−
is satisfied for all s− < s < s+. (b): Case 1(c2). A solution for the
case when πD− < π+ and the chord condition in (a) fails. If the chord
condition cannot be true from

(
sM , πD(sM)

)
to (s+, π+), then there

exists sM such that the tangent line of f = fD(s) at s = sM is also
tangent to the scanning curve π = π+ at some point

(
sN , f(sN , π+)

)
.

Then, the shock joining sM to s+ in the figure is replaced with a shock
from sM to sN followed by a scanning wave to s+.

with sL < sD− as long as
(
F− − fD(sL)

)
/(s− − sL) < fDs (sL). The results are still

solutions to the same Riemann problem. Similar constructions can be done for most

of other cases listed above to result in nonuniqueness.

However, under the further Assumption (II), since Riemann initial data for π

are monotone by Theorem 3.10, then π(ξ) must also be monotone. Therefore, no

Riemann solvers with non-monotone π can be limits of viscosity solutions and should

be excluded.

Example 5.1. The maximum principle stated in Corollary 3.7 can exclude some

Riemann solvers. In [13] the authors discovered that there are infinitely many Rie-

mann solutions for some Riemann initial data. An example is that there are many

loop solutions, which are not constant solutions, for the same constant initial data.

The maximum principle for the viscous system (2.16) states that only the constant
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Figure 5.3. Case 2. sD(π−) < s− < sI(π−). (a): A solution when
π+ < πI−. (b): A solution when πI− ≤ π+ ≤ πD− . This is just like Case
1(b) depicted in Figure 5.1(b) except that (s−, π−) is moved from the
imbibition curve into the scanning zone. For the remaining case when
π+ > πD− , a solution is almost the same as in case 1(c) shown in Figure
5.2 except that now (s−, π−) is in the interior of the scanning zone.

solution for this initial data is the “good” solution from the vanishing viscosity point

of view.
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[9] L. Hörmander. The analysis of linear partial differential operators. I. Springer-Verlag, Berlin,
second edition, 1990.
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