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Abstract

Tumor microenvironment composition strongly coratis cancer growth and progression, acting not
only at cancer itself but also modifying its inteians with immune, endothelial and nervous cells.
Extracellular ATP and its receptors recently gaiimezmteasing attention in the oncological field. ATP
accumulates in cancer milieu through spontanedeage, tumor necrosis or chemotherapy exerting a
trophic activity on cancer cells, modulating thess talk among tumor, and surrounding tissues.
Accordingly, ATP gated P2X receptors emerged agraeplayers in tumor development, invasion,
progression and related symptoms. Indeed, P2X texsepre expressed and functional on tumor cells
itself-but also in immune-infiltrate and nearby rens. In this review, we summarize recent findings
on P2X receptors role in tumor cell differentiatiobioenergetics, angiogenesis, metastasis and
associated pain, giving an outline of the potengiati-neoplastic activity of receptor agonists and
antagonists.



I ntroduction

In recent years, a growing body of literature higjled the importance of extracellular ATP in cance
ATP is an abundant biochemical component of cameeroenvironment where it acts, through its own
receptors, as growth promoting factor, danger s$igmad represents the main source of the
immunosuppressant adenosine. Receptors for eltrlceATP belong to two subfamilies: seven
transmembrane domains, G-coupled P2Y receptorsPaXd ion channels. The growth promoting
activity of P2Y receptors in cancer is well knowmdahas been recently covered in excellent reviews
[1, 2]. Here we give an overview of P2X role in tomproliferation, progression and related pain and

discuss the potential of these receptors as thetiagargets in cancer.

P2X receptors (P2X1-7) are ATP gated ion chanmalsdiating the passage through the plasma
membrane of Na C&" and K [3]. Two transmembrane domains, an extracellwaplplus N and C
terminal intracellular tails form each receptor woih P2X subunits assemble into functional homo or
hetero-trimers showing diverse pharmacological ertiiggs and functional characteristics [4]. Crystal
structure resolution of P2X4 revealed a dolphie ligceptor subunit shape, extracellular loop btieg
body and transmembrane domains forming the taithef animal [5]. P2X7 receptor exposure to
millimolar concentrations of ATP causes the operoh@ large unselective membrane pore, that has
been associated to cytotoxicity [6]. Interestingbpre dilation is not a P2X7 exclusive as it isoals
activated by heteromeric P2X2/P2X5 receptors [FHe Hifferent activity and cellular expression of
P2X receptors is at the basis of their role in smveatho-physiological processes such as pain
sensation, inflammation and related diseases [8X Peceptors are key modulators of cancer-
associated immune responses, pain sensing andnargiag as central players of tumor proliferation,

vascularization and spreading.
ATP in the oncogenic milieu

ATP was isolated and identified as the main regulat endergonic cell reactions in the early ages o
20" century. Subsequently, the seminal work of Burtistalearly demonstrated that ATP also exerts
an important role in extracellular signaling [9]n€2 secreted in the extracellular space, ATP idyeas
degraded to ADP and adenosine by ubiquitous exluareectonucleotidases such as CD39 and CD73
[10]. Ectonucleotidases, adenosine and its rece i@ involved both in cancer proliferation andthos

immune system modulation [10]. Adenosinergic immsoppression mediated by A2 receptors is an
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established data [11] and plasma membrane enzyesg®nsible for its generation (i.e. CD39 and
CD73) are well known to favor carcinogenesis [1Z], Extracellular generation of adenosine requires
ATP, which accumulates in tumor microenvironmentmy cancer development [14hd is associated
to regulation of cancer cell metabolism and tummmune-cells cross-talk [15, 1@hterestingly, a
good candidate for ATP secretion in the extracatlidpace is the P2X7 receptor in its large pore
conformation [17, 18]. ATP can be released botimftamor or immune infiltrating cells via several
mechanisms, such as granule exocytosis and plasn@dbrane channels (i.e. ABC cassette proteins)
[1]. Stimuli causing ATP secretion from tumor cedlso include response to mechanical deformation,
hypoxia, necrosis and ischemia [19]. However, wiateis the source of extracellular ATP,
accumulating evidence confirms its high concerdrain tumor milieu [14, 20] and renders of great

interest the study of ATP receptors functions incea.
Role of ATP and P2X receptorsin immunogenic cell death

A peculiar type of cell death, associated to extatar ATP release, is immunogenic cell death (JCD
ICD is a form of cell death caused by chemotherapearytostatic agents such as oxaliplatin and
anthracyclines, or radiotherapy [21]. ICD of cancells can induce an antitumor immune response
against dead-cell antigens through activation ofddéc cells and a specific T cell response [22].
Immunogenic apoptosis of cancer cells displays thessical hallmarks of apoptosis such as
phosphatidylserine exposure, caspase activationnatawthondrial depolarization, but it differs from
this type of death in surface exposure or secreaifoamage-associated molecular patterns (DAMPS)
[23] and in the ability to cause an immune respoagainst tumor cells [21, 24]. DAMPs are
intracellular molecules that, when released, ate tbactivate an inflammatory response [25]. ASP i
an example of non-protein DAMP [26], while exampbésntracellular proteins that act as DAMPs are

heat-shock proteins [27], high-mobility group boj28] and calreticulin [29].

ATP release from dying cells constitutes a “find”nsegnal for the recruitment of dendritic cells,
monocytes and macrophages [30]. ATP also acts@amftammatory molecule interacting with P2X7
receptor expressed by dendritic cells and macraggshagmd causing the activation of the NOD-like
receptor family, pyrin domain containing 3 (NLRR3flammasome [31]. In a recent work Martins and
colleagues, demonstrated the molecular mechanistATéf secretion during ICD, a process that
involves molecules central in autophagy (ATG5, AT&® BCN1), lysosomal exocytosis (LAMP1,
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VAMP1), apoptosis (caspases), membrane blebbingC{RID myosin II) and plasma membrane
permeabilization (PANX1) [32]. ATP is also releaskdlowing the treatment with antineoplastic
chemotherapeutics drugs, such as anthracyclinesxaliblatin, that induce ICD triggering anticancer
immune response [32]. Moreover, overexpressionhefdell surface ATP-degrading enzyme CD39
abolishes ICD, thus rendering cancer cells redistanchemotherapy [20, 33]. On the same line,
accumulating evidence suggest that the ATP-P2Xfweat which links the stress response and death
of cancer cells to T lymphocyte-mediated anticameenunity, is important also for a better efficignc

of chemotherapyn vivo. In fact, P2X7 null mice and mice lacking any bé tNLRP3 inflammasome
components or IL-1 receptor 1 do not respond tandikerapeutics inducing ICD [16]. Moreover,
anthracyclin-based adjuvant chemotherapy is inefiicin patients with breast cancer who express a
P2X7 loss of function allele [34]. These data swsygéhat ATP-dependent P2X7-mediated

inflammasome activation is relevant for a bettéicaty of anticancer therapies in patients [16, 31]
P2X receptors expression in cancer

P2X receptor expression, investigated by RT-PCRstéfa blotting or immunohistochemistry, has
been reported in several cancer cell lines or tudesived specimens [35]. Among different tumor
types, haemopoietic lymphoproliferative disordems showing the higher levels of P2X receptors and
were the first models in which an association betwg2X expression and oncogenesis was suggested
[36-39]. The earlier report on P2X7 expression iohBonic lymphocytic leukemia (B-CLL) dates back

to 1989 [40], since then different studies havdyaea P2X7 function and polymorphic expression in
this disease. In 2002, we related P2X7 overexpmessiith aggressive variants of B-CLL [38].
Subsequently, genetic linkage studies associatey A%13 A to C loss of function polymorphism
with B-CLL development in an Australian populati@i]. However, these data were not confirmed by
studies evaluating wider patients’ cohorts [42]. DB contrary, a gain of function variant of the

receptor was first identified in B-CLL patients [43

More recently, Chongt al. analysed mRNA expression of P2X receptors in €enpaediatric acute
leukemia reporting an over-expression of P2X1, B2R2X5 and P2X7 in patients versus healthy
controls [37]. Interestingly, P2X4 and P2X7 tendedbe contemporary overexpressed and their
increased levels associated with relapse of aeutkabmia [37]. P2X5 mRNA was up modulated in
several solid tumours [44] and in almost all herwagic malignancies [45, 46], B-CLL and B-ALL
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showing the highest expression of the receptor. [ftgrestingly, increase of P2X5 in cancer was
identified due to the properties of a polymorphishthe receptor in activating graft versus leukaemi
reaction. Graft versus leukaemia is a mechanisnag¢ ttcurs post allogeneic, HLA-identical,
transplantation of leukemic patients. Donor’'s cgki¢ T lymphocytes recognize some non-HLA
antigens on recipient leukemic cells and kill thefmpolymorphic variant of P2X5 was identified as
one of these antigens that are known as minordustpatibility antigens [45]. Although not a lot has
been reported on other P2Xs, several solid tumbare been shown to express the P2X7 receptor
those include breast [47], prostate [48], colon],[48nal [49], cervical cancers [50], neuroblastoma
[51], melanoma [52] and papillary thyroid carcinorfz8]. Interestingly, expression of P2X7 in
papillary thyroid carcinoma was associated with rppoognosis [54] and lymph node metastasis
formation [55]. A loss of function polymorphism dP2X7 was also associated to reduced
aggressiveness and metastatic dissemination inapeosancer [56]. Conversely to what observed in
other cancer types, P2X7 expression was down mtadlia adeno and cervical squamous carcinomas
[50, 57]. However, in the same type of cancer & lafsfunction splice variant of P2X7 (P2X7-j) was
reported to be over-expressed [58]. Therefore, ghesence of other truncated forms of P2X7

associated to increased cell proliferation [18]nmrbe excluded.

P2X receptorsin cell proliferation and cancer cell metabolisms

One of the characteristics acquired by tumor cellsich is central in the early stages of tumor
formation, is the ability to proliferate in unfawarle conditions such as growth factors and nusient
deprivation [59]. Although the P2X7 receptor wagyimially identified as a pro-apoptotic cytotoxic
receptor [6], its involvement in cell proliferatiomas soon evident [60, 61]. Indeed, P2X7 transbecti
was shown to confer a growth promoting activitys@rum starvation to various cell types including B-
lymphocytes, pro-myelocytes and human embryoniadydcells [61, 62]. In these models, P2X7-
mediated proliferation was dependent on spontamgowdseased ATP, as administration of the
nucleotide degrading enzyme apyrase reverted Heagiype [61, 62].

The first cell type in which P2X7 activation hassherelated to growth is lymphocytes. In a seminal
paper, Baricordiet al. showed that ATP acting at P2X7 was able to inere@slymphocytes
proliferation after T cell receptor activation [6@Jollowing studies confirmed these data, showiraj t
P2X7 receptor triggers the activation of the maathways involved in lymphocytes proliferation,
including FAK and IL-2 secretion [63], and that P2Khibitor oxidized ATP hampers the expansion
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of effector T cells [64]. On the same line, Jun@ged colleagues reported that T cell receptor
stimulation causes release of extracellular ATRdileg to P2X7-dependent nuclear factor of activated
T cells (NFAT) activation and IL-2 secretion [65jtriguingly, in this model ATP release seemedéo b
sustained by P2X1 and P2X4, more than P2X7 it€8]. [NFAT is a key player in P2X mediated
proliferation also in non-lymphocytes cells [18, 49-69] and this is not surprising given that NFAT
activated by calcium flux, mediated by the openaid®2X channels. Interestingly, NFAT activation
seems to be at the basis of P2X7 mediated prdiberalso in osteoblasts [69]. The altered bone
phenotype of P2X7 null mice [70] prompted a seridsinvestigations to define P2X7 role in
osteoblasts-osteoclasts biology (for recent revisges[71, 72]). While the role of P2X7 in osteotlas
activation is still controversial, a clear role ofie receptor in osteoblast proliferation and
osteodeposition emerged [73, 74]. Moreover, inadtest like MC3T3-E1 cell line, P2X7 activation
triggered, via PI3K, both lactate release and eed glucose metabolism [74]. Numerous nervous
system cell types showed P2X7 dependent prolifardtiose include different neuroblastoma cell lines
[49, 51, 75].

Several studies have described P2X7-dependent ghiedror glial cell proliferation [76-79]. On the
contrary, P2X4 receptor seems to have a pro-apoptoie in activated microglia, as its blockade
prevents microglial loss due to neuro-inflammati@®]. Accordingly, P2X7 was reported to be
expressed on both glioma cells [81] and infiltrgtmicroglia [82], while P2X4 expression was limited
to microglial cells [83]. Proof of concept of thevolvement of P2X7 receptor in tumor growth was
given in 2012 when in am vivo study we clearly demonstrated a connection betW24y expression
and tumor growth [49]. Transfection of P2X7 in sethat naturally does not express it, such as
HEK293 human embryonic kidney cells or CT26 colancthoma cells caused an increase in tumor
engraftment and growth. Consequently, silencingh@rmacological blockade of the receptor in P2X7-
endogenously-expressing murine models of neurabfestand melanoma caused tumor regression
[49].

Although the mechanisms underlying P2X7 mediateddifpration are far to be uncovered we know
that they include an alteration of cell metaboliSthe need for a reorganization of metabolic patrsvay
in cancer cells depends on the increased requitenfidiosynthetic intermediates often in the absenc
of a constant supply of oxygen and metabolites.[B®#]L930s Otto Warburg described a link between
mitochondrial dysfunction and tumorigenesis [84¢ ébserved a significant increase in glycolysis and

lactate production in the presence of oxygen witlaosubstantial increase in oxidative phosphoryfati
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[84]. Since then, aerobic glycolysis (also known"@&rburg effect”) is known to be the preferred
metabolic pathway adopted by cancer cells, in mEsef oxygen. However, recent studies suggest
that aerobic glycolysis and mitochondrial oxidatpeosphorylation are both at the basis of energy
production in cancer [84]. As described by Warbuagrobic glycolysis needs a large amount of
glucose as substrate for glycolytic enzymes [8b} &so the most abundant free amino acid in human
body L-glutamine has long been known to be esddotizancer cell growth [86]. These nutrients are
so important to cancer cells that they over-expghssose and glutamine transporters [87]. Glutamine
and glucose provides the carbon skeletons, NADRH,ATP to build new cancer cells. We recently
investigated the metabolic effects of the P2X7 peme showing that its expression favors cells
proliferation not only in the absence of serumhe tulture medium but also in glucose deprivation
[15]. According with Warburg, P2X7-expressing cedflsowed a higher lactate output, they over-
expressed several of the key glycolytic enzymes G3PDH, PFK, PKM2, PDH and PDHK-1) and the
ubiquitous glucose transporter Glut-1. MoreoverXPpositive cells exhibited larger depots of the
glucose substitute glycogen [15]. Interestingly.e tipreviously demonstrated P2X7-dependent
mitochondrial-efficiency increase [62] was main&rin glucose deprivation [15]. Thus, P2X7 confers
to cancer cells adaptability to unfavorable mileanditions via up-regulation of glycolytic enzymes
and a more efficient use of intracellular glycogeares. A study by Estrella and colleagues further
elucidated the role that lactate, ATP and adenosmag have in tumor microenvironment [88].
According with them, the acidic microenvironmentaédished thanks to P2X7-dependent release of

lactate, ATP derived adenosine will drive extradall matrix invasion and tumor metastasis [88].

P2X in angiogenesis

Tumor growth and metastasis formation are angiogjertdependent processes [89]. As tumor develops
and augments its size, distance between cances asll blood vessels progressively increases,
compromising exchange of oxygen, nutrients and evasbducts. To overcome this tough condition,
tumor needs to stimulate the formation of new viesdéoreover, without new vasculature cancer cells
cannot metastasize to another organ.

Angiogenesis is a complex multistep phenomenong¢hvhonsists of endothelial cell proliferation and
migration, degradation of extracellular matrix amdorphogenesis/capillary tube formation of
endothelial cells [90, 91]. A key angiogenic molecthat promotes all these processes is vascular



endothelial growth factor (VEGF) [92, 93]. VEGF getnanscription is activated by hypoxia-inducible
factor 1 (HIF-1), in case of marked reduction indblevel of oxygen (hypoxia) [94].

Involvement of P2X receptor in vessel formatiodaiggely unknown. It was reported that P2X2 and
P2X4 are up regulated by hypoxia in hippocampadiuces [95]. Moreover, P2X2 is overexpressed by
neonatal mouse retina after oxygen-induced retithgpa model for retinal neovascularization [96].
Based on actual knowledge, among P2X receptors7 P2¥e only one that mediates VEGF secretion.
P2X7-dependent VEGF release was documented inrgiffeancer cell lines [49, 81, 97] as well as in
primary human monocytes [98] and human embryordady fibroblasts (HEK293) transfected with
P2X7 [49]. Experimentaln vivo studies showed that P2X7 expressing tumors hddck vascular
network and stained positive for VEGF [49, 97]. Phacological blockade or silencing of P2X7
reduced VEGF release and vessel formation [49]s ttonfirming receptor participation in tumor
associated angiogenesis.

Furthermore, silencing of HIFel a subunit of the nuclear transcription factor W#GF gene, down-
modulates P2X7 expression in cancer cells [99]R2X¥7 feeds back on HIFelas overexpressing the
receptor up-modulates HIFe1[15, 100].

We can conclude that P2X7 is the main P2X receptalved in tumor angiogenesis. P2X7 sustains
vessel formation mediating VEGF secretion by ogles that are closely related to generation of tumo

vasculature, which is endothelial cells, cancelsagdelf and probably tumor associated macrophages
(Fig.1).

P2X in cell migration and cancer metastasis

Cell migration is an important process involveddifferent events, from embryonic development to
wound healing and immune responses. Ability to mioem one site to another is also a propriety that
cancer cells use to colonize different tissues @gans, giving rise to metastatic foci. Understagdi
the mechanisms implicated in cell migration is theilevant to improve pharmacological treatment of
metastatic tumors and so clinical outcome of pé&tigrith high invasive cancers.

For tumor migration to occur, cancer cells musabke to digest the extracellular matrix and to Isgoa
tight junctions among non-cancerous cells. Protamlydisruption of tumor surrounding tissue is mad
by extracellular proteases like matrix metallopimdses and cysteine cathepsins [101, 102]. P2X7
receptor activation has been involved in the spnggof tumor cells from primary tumor site [18, 103

In fact, P2X7 promotes cell release of differenbtpolytic enzymes such as cathepsins and matrix
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metalloproteinases [103-106] (Fig.1). In glial sellP2X7 dependent activation of extracellular
proteases proceeds from lysosomal release of catise extracellular degradation of tissue inlibit

of metalloproteases, leading to matrix metallopnatee 9-dependent migration of these cells [107].
Recently, it was reported that P2X7 activation ewled breast and lung cancer cells invasiveness,
through not only protease release but also actimytaskeletal remodeling [103, 108, 109]. In human
lung cancer cells, P2X7 mediates TGF beta-dependetii reorganization and migration [108].
Moreover, P2X7 pharmacological blockade impairsabrecancer cell dissemination in a zebra-fish
model of metastasis [103, 109]. These findings yntpht P2X7 receptor not only promotes tumor
growth but is also involved in metastases develogme€hus, P2X7 blocking drugs could be also

employed as anti-metastatic agents, as suggestgddayresults oin vivo experimental models [109].

Expression and function of P2X receptorsin stem cells

Recently, the cancer stem cell (CSC) theory hasrgegdeas an attractive hypothesis for tumor
development and progression. The theory suggests tthmors consist of subsets of cells with
functional heterogeneity and that only a small stlo$ these cells (CSC) within tumor bulk exhibits
the capacity to initiate and sustain tumor growtkiasion, metastasis and recurrence [110]. CSCs hav
been identified in both hematological malignancéesl solid tumors, including multiple myeloma
[111], liver [112], brain [113], colorectal [114yng [115], and pancreatic cancers [116]. CSCs have
the characteristics of stem cells as they are daplboth self-renewal and differentiation intvelise
cancer cells [110].

Thus, investigating the molecular signaling invalva cell plasticity and differentiation in stemlice
would be of help not only in the regenerative medidield but also in cancer as deregulation in the
balance between proliferation/differentiation oftaggers tumor transformation.

Purinergic signaling is already present at theyesthges of embryogenesis, being involved in cell
proliferation, migration and the differentiation @fwide variety of structures [117, 118]. Accumingt
evidence suggest an influence of ATP, through P@iXnprgic receptors, on embryonic stem cells (ES)
[119, 120]. Mouse ES cells (E14TG2a) expressed stlralb members of the ionotropic family P2X,
which are P2X2, P2X3, P2X4, P2X5 and P2X7 [119-128] these cells, ATP promotes cell
proliferation, acting at P2X3 and P2X4 [119]. Moren a P2X7 antagonist reduced colony forming
ability of ES cellgn vitro, suggesting that P2X7 receptor is required toeiase their staminal potential

and survival [120]. P2X receptor activity is invety in hippocampal neurogenesis by inducing
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proliferation of hippocampal progenitor cells [128hd participating in the formation of neuronal
networks [124]. Accordingly, in cultured hippocarhpaurons P2X7 receptor promotes axonal growth
and branching [125]. On the contrary, P2X7 fundiodecrease or silencing was associated to
differentiation of neuroblastoma cells [126, 127].

Also in the olfactory epithelium (OE) purinergicgealing acts as a paracrine signal regulating
neurogenesis [128]. OE is an epithelium unusualitoremarkable regenerative capacity and that
sustains neurogenesis of olfactory receptor neufd®8]. Basal cells of adult mouse OE express
functional P2X receptors (P2X1, P2X2, and P2X3j #ra responsible for injury-induced proliferation
of these cells [128].

The role of P2X receptors in proliferation and eli#intiation has been investigated also in
hematopoietic stem cells (HSCs). Human HSCs ardifceel by the expression of CD34 antigen, a cell
membrane phosphoglycoprotein present on human bwareow, peripheral blood and cord blood
progenitors [130]. Lemoli and colleagues showed B#Xs (P2X1-7) are expressed and functionally
active on CD32 hematopoietic progenitors, in lineage-negative €D&ogenitors, as well as in
CD34 -derived long-term culture-initiating cells [131Moreover, HSCs release ATP from
intracellular compartments that positively influeac proliferation and differentiation of these
hematopoietic progenitors via activation of P2X# &2X4 [132].

As we have reported here, P2Xs are expressed leyatgrogenitor cells, like MSCs, neural precursor
cells and HSCs and their expressions vary witreckfftiation toward different lineages.

P2X receptors are thus involved in stem cell ptagti commitment and might be implicated in the
early phases of carcinogenesis, when deregulatigoidliferation/differentiation balance gives rige

malignant cells and CSCs (Fig.1).

Thepivotal role of ATP and P2X receptorsin cancer pain

Pain is an unpleasant sensation common to cantien{sa During course of cancer, pain sensation is
present at any time, with different frequency antknsity, and it is progressively increasing in the
advanced stages [133]. Pain sensations experidncpdtients depend upon cancer type [134], site of
primary and metastatic cancer development andlyirad treatment, i.e. chemotherapy, radiotherapy
[135-137] or surgery [138]. The three classical etypof pain, i.e. neuropathic [139, 140],

somatic/nociceptive [137] and inflammatory, canidentified in all cancer phases [136, 141]. In fact
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cancer expansion generate nerve pain caused bsupeesn nerves [142] or the spinal cord [143], as
well as soft tissue pain [144].

Normally the onset of cancer related pain is charaed by intermittent episodes, rapidly transfedn
into continuous chronic sensations [145, 146]. kemrhore, anti-cancer treatments or surgical cancer
removal cause mainly nociceptive and neuropathin [E36]. Indeed, patients undergoing surgery
could be affected by phantom pain [147]: a paisein a part of the body that has been removed.
When classifying cancer pain, not only the sourceamatomical localization of cancer has to be
considered, but also the severity. The pain patiexperience can be divided in three classes:, mild
moderate and severe [148, 149]. Indeed, duringecgmogression, there is also a developing of pain
from acute to chronic [150] persisting even in caseomplete eradication of cancer. The necessity t
eradicate not only cancer but also to manage caaeiis an open clinical challenge [151-153].

The role of ATP and its receptors in pain sensatipostulated by Burnstock in 1996 [154], has been
extensively proved [155, 156]. The main P2X receptovolved in pain signaling are P2X3, P2X2/3,
P2X4 and P2X7 [155, 156]; which are involved in @ampain too [2]. P2X3 and P2X2/3, receptors
abundant in dorsal root (DRG) and trigeminal gaorgliocalized on small-to-medium diameter C-fiber
and Ad sensory neurons, have a crucial role in nociceptransmission and mechano-sensory
transduction [157]. The well-known contribution BRG neurons in cancer bone hyperalgesia [158]
was also characterized by P2X3 receptor up-regmand increased pain sensation in murine models
of bone pain [159, 160]. Increased P2X3-P2X2/3 esgion in DRG neurons was also confirmed in
melanoma-bearing mice [161], were spontaneoushghavior induced by the tumor was alleviated by
P2X receptor antagonists [161] (Fig.2).

The involvement of P2X4 and P2X7 receptor in cam@@n have to be considered more “indirect” in
comparison to that of P2X2/3 receptors [160]. Ict,f&2X4 and P2X7 are expressed mainly on non-
neuronal cells surrounding the neurons involvegham perception [162, 163]. However, P2X4 and
P2X7 play a critical role in inflammatory and nepathic pain, participating and supporting the
function of P2X2 and P2X3 on DRG neurons [163-1@5p.2). P2X4 receptor is up-regulated in
tumor associated macrophages and microglia [88hably playing a function also in the development
of cancer pain. P2X7 has been speculated respens$ibl hypersensitivity in neuropathic and
inflammatory pain states [166]. In fact, recentlyafget al. [167] demonstrated a function for P2X7

receptor in the induction and maintenance of baarecer painn vivo, using antagonist and siRNA

12



strategies. Nevertheless, different reports unaedllicontrasting information using different P2X7l nu
mice strains. Chessel and colleagues showed ama@bhs# responsiveness to noxious thermal or
mechanical stimuli in C57BL/6 of2x7"~ mice [168], confirmed by anti-nociceptive role B2X7
receptor antagonists [168-17Yjce versa, BALBcJ P2X7-deficient mice demonstrated a susb#iby

to cancer-induced bone pain [172]. Discrepant tesabtained in different mice strains are possibly
ascribable to different P2X7 polymorphism expredsedC57BL/6 and BalbcJ mice that would affect
pain related phenotypes of WT counterparts of P2%Z mice [160, 166, 171, 173].

P2X pharmacological strategy against cancer

In the 80s Burnstock and Kennedy proposed theidivisf P2 receptors in P2X and P2Y subgroups on
the basis of their pharmacological behavior [9]itHarmore, specific agonists and antagonists are
characterized for the different P2X1-7 receptork Bpecificity and efficacy of the different P2X
receptors blockers has been covered by differemwes [8, 174, 175] and other dedicated manuscripts
in this special issue. Here, we focus our attentionthe possible application of P2X agonists,
antagonists and inhibitors to eradicate or redwmecer progression and cancer related symptoms

(Fig.2).

P2X antagonist/inhibitor strategy

Various P2X antagonists have been tested in ammaalels with different purposes: reducing cancer
growth and cancer pain. The main class of P2X amiag tested for their ability to ease cancer pain
acts at P2X2/3 receptors. The P2X2/3 specific amtist) A-317491 [176], was tested in both rat and
mice models of bone cancer pain, showing respégtar€ontinuous [159, 177] or transient analgesic
action [177]. Differences reported seem to be bhable to poor central nervous system (CNS)
penetration of this antagonist thus limiting itenidal use [178]. AF-353, another P2X2/3 and P2X3
antagonist characterized by oral bioavailabilityd a@NS penetration, attenuates bone cancer pain
[178]. Interestingly, Suramin, an unspecific P2Xagonist administered in phase Il clinical trigéds
patients of prostate cancer significantly improteeir quality of life by reducing pain sensatiorrgl.
Similarly, different P2X7 antagonists are in preydal or clinical trial phases for the treatmerit o
neuropathic and inflammatory pain, with promisiegults [174, 180]. Among these compounds, A-
740003, a specific P2X7 antagonist, showed antieeptive effects in neuropathic pain models [181]

but it was not tested in cancer models. Tiheivo andin vitro anti-nociception effects of another
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selective P2X7 receptor antagonist, A-438079, vedraracterized [169] but this compound fails to
alleviate bone cancer pain-related behaviors [1TB|s incongruity could be ascribed to the cancer
animal models used in different reports [173, 1&Xally, a role of P2X7 receptor in cancer pairswa
demonstrated in rat bone cancer models were P2X{J isgulated in the rostral ventromedial medullar
activated glial cells [167]. In this cancer boned®lp administration of P2X7 antagonist brillianuél

G (BBG) induced a down-modulation of P2X7, acconpaioy a down-regulation of pain perceptions
[167]. P2X7 antagonist not only reduce cancer phirt, even more important, can inhibit tumor
growth and dissemination. Different compounds dfectve against distinct cancer types. P2X7
receptor antagonism promotes host survival in neiasmodels [183] as well as reducing tumor
growth [49]. P2X7 receptor inhibitors have the saffect on primary tumors: oxidized ATP (0ATP)
administration reduce B16 melanoma [184] and CT@@rc carcinoma [49] tumor growth. On the
other hand, contrasting reports showed both fatiih [185] and a reduction [186] of experimental
glioma growth, after the administration of BBG. Mower, the different antagonist/inhibitor effects o
cell metabolism and differentiation have to be takeaccount [126, 187]. Interestingly, ATP and P2X
receptors contribution in cancer progression, gir@ctly proved also by the efficacy of not-P2X-
specific anti-cancer compounds such as the traditicChinese medicine compound Emodin that
inhibits P2X7-mediated cancer cell migration [109ther drugs that exert an anti-tumor action trough
P2X7 are statins. Statins are commonly used clestddbwering drugs [188], that exhibit antitumor
effects both experimental models and treated sthj&89]. Interestingly, Mistafet al. [190] proposed
that statins would induce tumor growth blockadeotigh P2X7 activation [190]. The authors
demonstrated that, in pancreatic cancer cell ligidins, acting at P2X7 receptor, inhibits cetivgth
increasing the effect of chemotherapeutic drugeréstingly, prolonged exposure of lung cancerscell
A549 to the statin atrovastin caused an increade27 expression accompanied by a reduction in
P2X4 protein levels [191].

The P2X agonist strategy

As previously described, tumor cells show high levef P2X7 receptor thus due to receptor’'s
cytotoxic properties; also application of P2X agbnsuch as ATP can be considered a strategy to
inhibit tumor growth. In order to reach the millitao concentrations of ATP required for nucleotide-
dependent cytotoxicity and to maintain these comma@ans, following ecto-nucleotidases action, very

high doses of ATP have to be injected. Administratof ATP or synthetic analogs at high dosage
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caused an arrest in tumor growth in case of hormmefractory prostate cancer [192] and in colon
cancer models [193]. Clinical trials with intraversoinjection of ATP were performed in patients with
advanced non-small-cell lung cancer, showing anravgment in the quality of life and reducing
cachexia effects [194]. However, in a following dgu the administration of reduced ATP doses
through shorter infusions failed to improve thelgyaf life of pre-terminal patients of differetimor
types [195]. Furthermore, oral administration of ATin enteric-coated pellets, was ineffective in
increasing patients’ quality of life, and did noagaented plasma levels of ATP itself or other
bioactive metabolites (i.e. ADP, AMP, adenosinesrade), with the exception of uric acid.
Interestingly, ATP release and P2X7 receptor exgpoescan be enhanced by irradiation [196]. This
phenomenon facilitates a positive feedback looATi# release and P2X7 receptor expression [197].
Gehring et al. [82] demonstrated that this phenomenon happerts ialgadioresistant glioma, an
additive ATP administration enhance pro-apoptotiaction, inducing tumor cell death [82]. The
beneficial effects of ATP could be also enhancadswaggested by Ghiringhe#t al. [198], blocking
ectonucleotidases or adenosine receptors, in todarep the extracellular levels of ATP at a cytato
concentration.

Even chemotherapeutic compounds induce the praducti ATP by tumor cells [199], and the pore
conformation assumed by P2X7 receptor when expésedigh ATP concentration, facilitate the
passage of hydrophilic chemotherapeutic agents, [20@, 201]. The synergic effects of chemotherapy
drugs and ATP seems another promising strategy [28]

Summarizing, accumulating evidence strongly sugtnestlinical relevance of ATP and P2X receptors
in anti-cancer therapeutic approaches. The adeqmiteancer strategy, P2X agonists or antagonists,
depends on multiple factors, including: genetiche patients [202], different cancer types andrthei
site of onset, P2X7 receptor tumor expression [2834 cancer-related pain sensations.

The final goal of ATP as therapeutic approach igthuce cellular death in tumor, and act in synergy
with chemotherapy or radiotherapy. However, in otdeobtain good results, the treated tumor has to
be characterized by an endogenous high P2X7 racepgfwmession. Moreover, the delicate balance
between beneficial and detrimental ATP (and adem)seffect for cancer and for innate immune
responses have to be taken in account, as receh#sacterized in neuroblastoma model [204].
Furthermore, the effect of high ATP dose adminigirs in patients affected by cancer pain remains

unclear.
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Based on all these different factors, it is tengptio speculate that a therapy based on P2X agonists
administration will expose patients to more risks. (pain development, immune system deregulation)
than another one based on P2X antagonist/inhibiMoseover, joint administration of different P2X

blocking drugs will allow the simultaneous blockaggumor progression and cancer related pain.

Figurelegends

Figure 1. P2X receptors role in cancer growth and progression. P2X receptors pattern expression
varies along cell differentiation influencing stemell fate. Altered imbalance between
proliferation/differentiation give rise to canceells. Cancer cell P2X receptors sustain tumor
proliferation and progression enhancing metabolthways and consequently cell growth. P2X7
receptor mediates itself ATP secretion. P2X7 pr@wmamnetastasis by favoring new blood vessel
formation (via VEGF), extracellular matrix degradat (via protease secretion) and tumor cell

migration spreading.

Figure 2. Effect of phar macological modulation of P2X receptorsin cancer.

P2X receptors involvement in pharmacological treattmof tumors occurs at different levels. Some
classes of chemotherapeutics, such as anthracyclare able to elicit immunogenic cell death of
cancer cells. ATP released during this event, gctin P2X receptors, stimulates immune cells to
eradicate tumor. P2X receptors themselves are goerdpeutic targets for cancer treatment. P2X2,
P2X3, P2X4 and P2X7 antagonists reduce cancer pahile P2X7 antagonist inhibits cell
proliferation. High concentrations of ATP, acting B2X7 agonist cause cancer cells death through

receptor’s cytotoxic function.

List of abbreviations:

ALL: Acute lymphoblastic leukemia; ATP: Adenosingphosphate; BBG: brilliant blue G; CLL:
chronic lymphocytic leukemia; CNS: central nerveystem; CSC: cancer stem cell; DAMP: damage-
associated molecular patterns; DRG: Dorsal rootglyam ES: embryonic stem cells; ICD:
immunogenic cell death; HIF-1: hypoxia-induciblecttar 1; HSC: hematopoietic stem cells; IL:
interleukin; NFAT: nuclear factor of activated Tllse NLRP3: NACHT, LRR and PYD domains-
containing protein 3; OE: olfactory epithelium; pBBRAPK: p38 mitogen-activated protein kinases;
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