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Abstract: This paper presents an overview of fatigue testing systems in high-cycle regime for metals
subjected to uniaxial and multiaxial random loadings. The different testing systems are critically
discussed, highlighting advantages and possible limitations. By identifying relevant features, the
testing systems are classified in terms of type of machine (servo-hydraulic or shaker tables), specimen
geometry and applied constraints, number of load or acceleration inputs needed to perform the test,
type of loading acting on the specimen and resulting state of stress. Specimens with plate, cylindrical
and more elaborated geometry are also considered as a further classification criterion. This review
also discusses the relationship between the applied input and the resulting local state of stress in the
specimen. Since a general criterion to classify fatigue testing systems for random loadings seems not
to exist, the present review—by emphasizing analogies and differences among various layouts—may
provide the reader with a guideline to classify future equipment.
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1. Introduction

Mechanical components are often subjected to random loadings during their service
life. Due to these loads, components may be exposed to a local random stress, which can
be uniaxial (i.e., only one stress component) or multiaxial (i.e., two or more stress compo-
nents). To estimate the component life, engineers usually perform a structural durability
assessment in the predesign stage, often with the aid of a finite element (FE) analysis.

If the nodal random stress is uniaxial, the approach commonly followed makes use
of rainflow counting and the Palmgren–Miner rule to compute the damage of the nodal
stress output, based on uniaxial strength data given as an S–N curve. This analysis can be
developed in time domain or, equivalently, in frequency domain [1].

If, instead, the nodal stress in the FE model is multiaxial, the analysis requires the use
of a multiaxial fatigue criterion, which can also be formulated in time domain or frequency
domain [2]. By analyzing all nodal results of a FE model (e.g., hundreds of thousands),
the computation time is very long using a time-domain criterion. In addition, it may
become impracticable when a huge number of planes have to be scanned in the whole
three-dimensional FE model in the case of multiaxial fatigue criteria using the critical plane
concept [3–5]. In general, for both the uniaxial and multiaxial cases, frequency domain
solutions are several orders of magnitude faster than time domain simulations [6–9].

Methods for durability analysis, either in time domain or frequency domain, have to
rely on material strength data obtained by experimental laboratory tests. Such tests are
performed by applying loadings on a specimen, where cracks nucleate and grow until the
specimen breaks. Tests with simple loadings (e.g., axial, bending and torsion) are carried
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out to estimate the material fatigue strength data in the uniaxial case. These uniaxial tests
yield an S–N curve in high-cycle fatigue regime, which characterizes the material strength
behavior in terms of amplitudes versus number of cycles to failure. Uniaxial test data are
also necessary for calibrating a multiaxial criterion. Once calibration has been carried out,
specific tests with multiaxial loadings (e.g., bending and torsion) are also performed to
gather the necessary data for validating the multiaxial criterion. It is, nevertheless, clear
that systems and methodologies for fatigue testing play a paramount role in the durability
analysis of both uniaxial and multiaxial states of stress.

Fatigue testing methodologies may vary, for instance, in terms of type of machine used.
Two different types (servo-hydraulic or electrodynamic shaker tables) are usually adopted
in laboratories. Although, in general, servo-hydraulic machines can be used with both
plate and cylindrical specimens, they are normally employed with cylindrical specimens
in the random fatigue testing methodologies addressed in this paper. By contrast, shaker
tables also adopt specimen geometries other than cylindrical, for example, plate or more
elaborated ones.

Various specimen geometries and layouts are considered in fatigue tests, too. While
the use of servo-hydraulic machines or shaker tables sometimes leads to rather simple
testing layouts or state of stress (e.g., uniaxial), in some cases, the testing systems are all but
obvious. As an example, a widely used system layout is that considering a cantilever plate
specimen with rectangular shape [10–14]. Mounted on shaker tables and excited at its base,
this system produces a bending random loading, which results in a near uniaxial state of
stress in the critical location (e.g., notch or hole). However, using a different system with
a cantilever cylindrical specimen, it is possible to reach a biaxial state of stress with both
normal and shear stresses [15]. Applying loads at the free end of the specimen by a uniaxial
shaker allows the system only to develop a coupled bending–torsion random loading. To
overcome this limitation, bending and torsion can be applied by two independent uniaxial
shakers [15]. In this case, not only coupled (correlated) but also uncoupled (uncorrelated)
bending–torsion random loadings are achieved.

Another interesting system with a cantilever cylindrical specimen is that using two
masses of different weights fixed at the free end [16]. Excited by a uniaxial shaker at its
base, this specimen experiences a bending–torsion loading that produces coupled normal
and shear stress components. Inspired by this layout, a new testing system was designed to
apply only bending or torsion, as well as coupled or uncoupled bending–torsion loadings
by a tri-axis shaker [17–19]. This system permits the intensity and phase shift of bending
and torsion loadings to be controlled independently, which results in local normal and shear
stresses with any degree of correlation. Experimental and numerical analyses confirmed
the system’s behavior.

A more elaborated specimen with Y-shaped geometry was also proposed not only to
accelerate fatigue tests by means of shaker tables but also to simulate a real-world scenario
of complex structures [20–25]. Although this special Y-shaped system is excited by two
uncoupled random loadings (in vertical and horizontal directions), it develops a biaxial
state of stress at the critical location in terms of normal stresses.

As may be expected, and perhaps become more apparent in the following sections,
performing tests with a uniaxial stress is much easier than executing tests with a biaxial
stress, even if one makes use of a bending–torsion servo-hydraulic machine. The degree
of complexity of the testing system increases the most when the biaxial state of stress is
random. While a uniaxial stress can be achieved simply by a servo-hydraulic machine with
axially loaded specimens, or by a uniaxial shaker table with a cantilever specimen, fatigue
tests in a biaxial random state of stress require one or more machines (e.g., one tri-axis
shaker or two uniaxial shakers), one or more types of input as force/torque or acceleration,
a specific testing layout and/or a particular shape of specimen. Although it is true that
carrying out a fatigue test with a biaxial state of stress is not as simple as executing a test
with uniaxial stress, the interest in biaxial random fatigue tests has increased in the last
decade in the scientific community [15,17–25].
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By considering this increased interest, the present paper aims to review the random
loading fatigue testing systems available in the literature. The different testing systems are
critically discussed, highlighting advantages and possible disadvantages. Some general
features are also identified, which allow testing systems to be classified and grouped
in terms of type of testing machine, specimen geometry, applied constraints, type and
among of input needed to carry out a fatigue test, type of random loadings acting on
the specimen and the resulting local state of stress. Regarding the loadings applied on
specimens in fatigue tests, this paper focuses on axial, bending, torsion, axial-torsion and
bending–torsion loadings. Specimens subjected to such loadings yield a uniaxial or a
biaxial state of stress, which is also discussed hereafter.

Finally, it must be emphasized that, although testing systems for fatigue random
loading are reviewed in detail throughout the text, the relationship between experimental
results and estimations by various multiaxial fatigue criteria—though interesting—is not
the scope of the present paper. For a discussion on this topic, the reader may refer to [26,27].

2. Common Random Loadings in Fatigue Tests and Resulting State of Stress

A multiaxial state of stress at a critical point of a mechanical component is represented
by a tensor σ(t), which in the most general case has six independent stress components [28].
For this reason, the six independent stress components are conveniently arranged into a
six-dimensional vector s(t) =

[
σxx(t), σyy(t), σzz(t), τxy(t), τyz(t), τzx(t)

]
, where σxx(t),

σyy(t) and σzz(t) are normal stresses and τxy(t), τyz(t) and τzx(t) are the shear stresses in
an X–Y–Z cartesian coordinate system.

Usually, fatigue cracks nucleate at the surface of mechanical components, where the
local state of stress is biaxial or even uniaxial. Therefore, in laboratory fatigue tests, the
aim is to replicate in a specimen the same biaxial or uniaxial state of stress, in which only
two or less normal stress components are nonzero [26,28]. While, in plane stress, a biaxial
stress may have up to three nonzero components, σxx(t), σyy(t) and τxy(t), special cases
often employed in laboratory tests consider one normal σxx(t) and one shear τxy(t) stress,
or nonzero normal stresses in two directions σxx(t), σyy(t). The uniaxial cases frequently
adopted refer to a pure normal stress σxx(t) or shear stress τxy(t); see Figure 1.

Metals 2021, 11, x FOR PEER REVIEW 3 of 16 
 

 

test with uniaxial stress, the interest in biaxial random fatigue tests has increased in the 
last decade in the scientific community [15,17–25]. 

By considering this increased interest, the present paper aims to review the random 
loading fatigue testing systems available in the literature. The different testing systems 
are critically discussed, highlighting advantages and possible disadvantages. Some gen-
eral features are also identified, which allow testing systems to be classified and grouped 
in terms of type of testing machine, specimen geometry, applied constraints, type and 
among of input needed to carry out a fatigue test, type of random loadings acting on the 
specimen and the resulting local state of stress. Regarding the loadings applied on speci-
mens in fatigue tests, this paper focuses on axial, bending, torsion, axial-torsion and bend-
ing–torsion loadings. Specimens subjected to such loadings yield a uniaxial or a biaxial 
state of stress, which is also discussed hereafter. 

Finally, it must be emphasized that, although testing systems for fatigue random 
loading are reviewed in detail throughout the text, the relationship between experimental 
results and estimations by various multiaxial fatigue criteria—though interesting—is not 
the scope of the present paper. For a discussion on this topic, the reader may refer to 
[26,27]. 

2. Common Random Loadings in Fatigue Tests and Resulting State of Stress 
A multiaxial state of stress at a critical point of a mechanical component is repre-

sented by a tensor 𝝈(𝑡), which in the most general case has six independent stress com-
ponents [28]. For this reason, the six independent stress components are conveniently ar-
ranged into a six-dimensional vector 𝒔(𝑡) = 𝜎 (𝑡), 𝜎 (𝑡), 𝜎 (𝑡), 𝜏 (𝑡), 𝜏 (𝑡), 𝜏 (𝑡) , 
where 𝜎 (𝑡), 𝜎 (𝑡) and 𝜎 (𝑡) are normal stresses and 𝜏 (𝑡), 𝜏 (𝑡) and 𝜏 (𝑡) are 
the shear stresses in an X–Y–Z cartesian coordinate system. 

Usually, fatigue cracks nucleate at the surface of mechanical components, where the 
local state of stress is biaxial or even uniaxial. Therefore, in laboratory fatigue tests, the 
aim is to replicate in a specimen the same biaxial or uniaxial state of stress, in which only 
two or less normal stress components are nonzero [26,28]. While, in plane stress, a biaxial 
stress may have up to three nonzero components, 𝜎 (𝑡) , 𝜎 (𝑡)  and 𝜏 (𝑡) , special 
cases often employed in laboratory tests consider one normal 𝜎 (𝑡)  and one shear 𝜏 (𝑡) stress, or nonzero normal stresses in two directions 𝜎 (𝑡), 𝜎 (𝑡). The uniaxial 
cases frequently adopted refer to a pure normal stress 𝜎 (𝑡) or shear stress 𝜏 (𝑡); see 
Figure 1. 

 
Figure 1. Common state of stress in fatigue testing: biaxial (e.g., normal and shear stresses or nor-
mal stresses in two directions); uniaxial (e.g., pure normal stress or pure shear stress). 

In tests with constant amplitude loadings, it is common to use harmonic (sinusoidal) 
functions. For example, a biaxial normal shear stress with zero-mean is: 𝜎 (𝑡) = 𝜎 , sin(𝜔𝑡) , 𝜏 (𝑡) = 𝜏 , sin(𝜔𝑡 − 𝜑) (1) 

where 𝜔 is the angular frequency and 𝜎 ,  and 𝜏 ,  are the stress amplitudes. 
For this biaxial state of stress (as, in fact, in any multiaxial case), the magnitude of 

stress components may change proportionally (in-phase) or nonproportionally (out-of-
phase) with time. In particular, the ratio between normal and shear stresses, 

𝑦
𝑥

UniaxialBiaxial

𝜎𝜎𝜏
𝜏

𝜎𝜎
𝜎

𝜎
𝜎𝜎 𝜏

𝜏
Figure 1. Common state of stress in fatigue testing: biaxial (e.g., normal and shear stresses or normal stresses in two
directions); uniaxial (e.g., pure normal stress or pure shear stress).

In tests with constant amplitude loadings, it is common to use harmonic (sinusoidal)
functions. For example, a biaxial normal shear stress with zero-mean is:

σxx(t) = σxx,a sin(ωt), τxy(t) = τxy,a sin(ωt− ϕ) (1)

where ω is the angular frequency and σxx,a and τxy,a are the stress amplitudes.
For this biaxial state of stress (as, in fact, in any multiaxial case), the magnitude of

stress components may change proportionally (in-phase) or nonproportionally (out-of-
phase) with time. In particular, the ratio between normal and shear stresses, σxx(t)/τxy(t),
at any time instant does not vary if ϕ = 0, and both stresses follow two in-phase harmonic
functions. Instead, the ratio varies with time if ϕ 6= 0 and the two harmonic functions are
out-of-phase. Additionally, the orientation of principal stress directions may change or
not, depending on the value of ϕ: for in-phase stresses, they remain fixed; for out-of-phase
stress, they change with time.
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For harmonic stresses with the same frequency, the phase shift ϕ provides a simple
measure of the degree of nonproportionality. This definition cannot be extended to random
stresses, as they can be viewed as a superposition of many harmonic functions with different
frequencies and phase shifts. In the random case, a statistical approach is needed to express
the concepts of “fully correlated”, “partially correlated” or “not correlated” (uncorrelated)
signals. To this end, one introduces the so-called correlation coefficient between two
random stresses, which is defined as the covariance normalized to the standard deviation
(see below).

In tests with multiaxial random loadings, each stress component is a zero-mean
stationary Gaussian process, which can be characterized in the frequency domain by a
Power Spectral Density (PSD) matrix. For a biaxial random stress, σxx(t), σyy(t) and τxy(t),
the PSD matrix takes the form [9,29]:

S(ω) =

 Sxx,xx(ω) Sxx,yy(ω) Sxx,xy(ω)
S∗xx,yy(ω) Syy,yy(ω) Syy,xy(ω)

S∗xx,xy(ω) S∗yy,xy(ω) Sxy,xy(ω)

, Sij(ω) =
∫ ∞

−∞
Rij(δ)e−iωδ dδ (2)

in which Rij(δ) is the autocorrelation (for i = j) and cross-correlation (for i 6= j) function in
time-domain, and δ is a time lag. The diagonal terms of S(ω) are the auto-PSDs Sxx,xx(ω),
Syy,yy(ω) and Sxy,xy(ω), whereas the out-of-diagonal terms are the cross-PSDs S∗xx,yy(ω),
S∗xx,xy(ω) and S∗yy,xy(ω), where the superscript * denotes the complex conjugate. Hence,
the cross-PSDs are the summation of a real and an imaginary part. The real part is an
even function of ω (coincident spectrum or co-spectrum), and the imaginary part is an odd
function of ω (quadrature spectrum or quad-spectrum). The PSD matrix in Equation (2)
is Hermitian.

Thanks to the relationship between covariance terms and the zero-order spectral
moments, Cij = λ0,ij, the covariance matrix can be defined as [29]:

C =

 Cxx,xx Cxx,yy Cxx,xy
Cyy,xx Cyy,yy Cyy,xy
Cxy,xx Cxy,yy Cxy,xy

, Cij =
∫ ∞

−∞
Sij(ω) dω (3)

Equation (3) is a symmetric matrix. The main diagonal terms are the variance of each
stress component, Cxx,xx = Var(σxx(t)), Cyy,yy = Var

(
σyy(t)

)
and Cxy,xy = Var

(
τxy(t)

)
; the

out-of-diagonal terms are the covariance of two components, Cxx,yy = Cov
(
σxx(t), σyy(t)

)
,

Cxx,xy = Cov
(
σxx(t), τxy(t)

)
and Cyy,xy = Cov

(
σyy(t), τxy(t)

)
. The covariances are used to

define the correlation coefficient rij = Cij/
√

CiiCjj between stress components i and j. This
coefficient is close to unity when two components are “fully correlated” (proportional); it
tends to zero when they are “uncorrelated” (nonproportional) [29].

In some testing layouts, the type of local random stress in the specimen (e.g., biaxial
normal and shear stresses σxx(t), τxy(t)) closely depends on the type of machine, specimen
geometry, constrains, and type of excitation. For example, a cantilever cylindrical specimen
with a circumferential notch can be subjected to various independent types of loadings
applied at the free end, see Figure 2. In the most general case, they are axial load P(t);
torsion MT(t); and two bending moments, MB,x(t) and MB,y(t),, in two orthogonal planes.
For this specimen geometry, the maximum stresses are located on the surface at the center
of the notch.

Assuming a bending–torsion loading, MB,x(t) and MT(t), without P(t) and MB,y(t),
the cylindrical specimen experiences a biaxial normal and shear stress at the critical location.
By contrast, the specimen under the two bending moments MB,x(t) and MB,y(t) develops
a uniaxial normal stress at the notch surface. The location of the maximum normal stress
changes or not, depending on whether the instantaneous value MB,y(t)/MB,x(t) varies
or not.
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moments, MB,x(t) and MB,y(t), applied at the free end.

If the cylindrical specimen in Figure 2 undergoes bending MB,x(t) and torsion MT(t)
moments, it is straightforward to determine the elastic peak normal and shear stresses as [30]:

σz,p(t) =
32 MB,x(t)

πd3 Kt,B, τxy,p(t) =
16 MT(t)

πd3 Kt,T (4)

where d is the specimen diameter in the smallest section, and Kt,B and Kt,T are the stress
concentration factors in bending and torsion. Equation (4) makes apparent how the local
stress is directly proportional to the applied loadings. Moreover, it also highlights the role
of the stress concentration factors, Kt,B and Kt,T , in increasing the local stress.

Another common layout often exploited in fatigue tests is that in which the specimen
is excited at its base. Figure 3 illustrates a cantilever cylindrical specimen, subjected to
two orthogonal accelerations,

..
y(t) and

..
x(t), at the clamped end. Both accelerations make

the specimen vibrate in bending. In most cases, though, only the vertical acceleration
is applied.
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Figure 3. Notched cantilever cylindrical specimen subjected to orthogonal base accelerations
..
y(t)

and
..
x(t).

In this testing layout, a modal analysis is normally carried out to identify the modes of
vibration and the natural frequencies of the specimen [9]. Usually, the input acceleration is
tuned at the first specimen natural frequency. Based on the harmonic analysis, the dynamic
response (e.g., stress) of the system is associated to the excitation (e.g., force or acceleration);
here, special care is required for kinematic excitation as the natural dynamics changes if
compared to the force/dynamics excitation [9].

Assuming a time-invariant linear system, simple relationships exist between the input
acceleration and the resulting local stress. For example, for a harmonic vertical acceleration
..
y(t) = ay cos(ω) with amplitude ay and frequency ω centered on the first resonance
frequency of the specimen, the corresponding peak stress is also harmonic with same
frequency and amplitude: (

σz,p
)

a = |Hσ(ω)|·ay (5)
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where Hσ(ω) is the frequency transfer function for bending. Similar relations hold for
other nonzero stress components, if present. For example, an eccentric (off-set) tip mass
mounted on the specimen in Figure 3 would also determine a torsional deformation of
the specimen, with a corresponding shear stress at the notch. The amplitude of the peak
shear stress then would be

(
τxy,p

)
a = |Hτ(ω)|·ay, where Hτ(ω) is the frequency transfer

function in torsion.
The previous relations can be generalized to the case of a specimen under random

base accelerations:
S(ω) = H(ω)Sa(ω)H∗T(ω) (6)

where Sa(ω) is the PSD matrix of the input accelerations, H(ω) the frequency transfer
function matrix characterizing the system, and S(ω) is the PSD matrix of the stress, defined
in Equation (2). The matrix Sa(ω) specifies the frequency content and correlations of the
random accelerations applied to the specimen, in terms of auto- and cross-PSDs.

Before carrying out the tests, one has to carefully establish the relationship between
the type and number of random loadings applied to a specimen and the resulting state
of stress at the critical point. Not always does a multiaxial input determine a multiaxial
state of stress. In some circumstances, a testing system under a multiaxial input develops a
uniaxial stress [31,32]. An alternative to verify the state of stress evaluated theoretically or
numerically (e.g., results obtained by FE analysis) is by means of strain gages. Although
some specimens have a complex notched geometry that makes it difficult, if not impossible,
to attach strain gages directly at the notch, they allow the local stress to be assessed
indirectly through strains measured in other points of either the specimen or the testing
system [17–19].

In addition to the external random loadings and the state of stress of interest, the
choice of the testing machine also offers advantages and disadvantages when performing
the fatigue tests; they are discussed in the next section.

3. Fatigue Testing Machines

Two different types of testing machines are usually adopted in mechanical laboratories
to perform fatigue tests with random loading. They are known as servo-hydraulic, Figure 4a,
and electrodynamic shaker tables, Figure 4b. Servo-hydraulic machines impose a force
and/or torque as the input excitation, while electrodynamic shakers apply a force to the
vibrating table (where the acceleration is usually controlled with a closed-loop control).
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Electrodynamic shakers have a great advantage in that they allow their table to be
driven at high frequencies. Consequently, fatigue tests by shaker tables take much less time
than tests by servo-hydraulic machines. On the other hand, in servo-hydraulic machines,
the force or torque applied to the specimen is controlled directly by the control system;
this permits the local state of stress in the specimen to be related directly to the applied
loadings, see, for example, Equation (4). With electrodynamic shakers, instead, the local
state of stress depends on the dynamic response of the test specimen. Carrying out a
dynamic analysis to estimate the local stress in the specimen is, therefore, of considerable
importance before performing fatigue tests with shaker tables.

With a uniaxial electrodynamic shaker, a specimen can easily be subjected to a random
bending when excited by a vertical base acceleration; see Figure 3. However, by an
appropriate setup [17–19], electrodynamic shakers can also be used for tests with bending–
torsion random loadings, which result into biaxial normal and shear stresses, σxx(t) and
τxy(t). This type of bending–torsion loading is not commonly found in tests with a servo-
hydraulic machine. In fact, biaxial servo-hydraulic machines can normally apply axial-
torsion loading to produce a biaxial state of stress σxx(t), τxy(t).

Servo-hydraulic machines, on the other hand, have a greater flexibility in controlling
the amplitude and phase of axial-torsion loadings. In the case of fatigue testing with shaker
tables, bending–torsion loadings are reached by a more complex system configuration,
and their values are not controlled directly by the system. This restriction may pose some
difficulty in determining the actual values of the local state of stress that is obtained in
the specimen. For this reason, in applications with shaker tables, it is also important to
monitor accelerations and strains. Accelerometers are often used to control the acceleration
imposed on the table and the dynamic response of the system. Strain gages are employed
for measuring and controlling strain at the point of maximum stress, or nearby in case it is
not directly accessible. Strain gages are attached on the specimen close to a notch or hole,
or on the clamping system to provide an indirect measure of the stress in the specimen.

In electrodynamic shaker tests, the fixation of the sample to the shaker armature or to
the shaker table is critical; it is required that the fixation of the specimen should not have
any natural frequencies in the frequency range of testing. Usually, the base acceleration of
the fixation is controlled in a closed loop. Experimental transfer functions are usually based
on sine-sweep, impact or random excitation and can be compared to the results obtained
by using the finite element model. Proper dynamic analysis usually requires Experimental
Modal Analysis (EMA) [9].

The following section makes a critical analysis of the various testing methodologies
encountered in the literature, which differ not only in terms of machines but also of
specimen geometries, external loads and state of stress in the critical location. Throughout
the text, the terms “testing method” and “testing system” define a specific combination of
testing machine, specimen geometry and load set used to perform a fatigue test.

4. Fatigue Testing Systems

Various fatigue testing systems are proposed in the literature, often with significant
differences. Some systems apply deterministic (harmonic) loads, and others apply random
loadings. While reviewing the systems described in the literature, this section emphasizes
several important features related to fatigue testing. These features include the type of
machine, specimen geometries, imposed constrains, number of input needed in terms of
force and/or torque and acceleration, random loadings acting on the specimen (e.g., axial,
bending, torsion, bending–torsion and tension–torsion loadings) and resulting state of
stress in the critical location (e.g., uniaxial and biaxial). All these features constitute the
general classification criterion adopted to classify the testing systems; see Table 1. The
table groups the various systems based on common or different characteristics. It also
points out whether the multiaxial state of stress applied by the system is correlated or
not. Additionally, mentioned in Table 1 is the distinction of the type of specimen (i.e.,
plate, cylindrical and more elaborated), which is discussed in more detail later on. The
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classification criterion of Table 1 may represent a useful guideline to classify any new
testing system.

Table 1. Classification of fatigue testing systems (C = correlated stress components; UC = uncorrelated stress components).

Machine Specimen Number of
Inputs

Random Loading Applied to Specimen 1 STATE OF STRESS IN
Specimen Ref.

Ax Be To Ax-To Be-To Uniaxial Biaxial 2 Biaxial 3

Servo-
hydraulic

Plate 2 x σxx C [33]

Cylindrical 1 or 2 x x x σxx or τxy C or UC [34]

Shaker
tables

Plate
1 x σxx [10–14]

1 x σxx C [35–37]

Cylindrical

1 x x x σxx or τxy C [15]

2 x x x σxx or τxy C or UC [15]

1 x x σxx C [16]

1 or 2 x x x σxx or τxy C or UC [17–
19,38,39]

More
elaborated 1 or 2 x σxx UC [20–25]

1 Ax = axial; Be = bending; To = torsion; Ax-To = axial-torsion; Be-To = bending–torsion. 2 Biaxial with two normal stresses, σxx and σyy.
3 Biaxial with normal stress, σxx , and shear stress, τxy.

Electrodynamic shakers seem to be the most used machine, at least for the systems
considered in Table 1. A possible reason for this is that the time to perform fatigue
tests in high-cycle regime with random loadings is significantly shorter with shakers
than servo-hydraulic machines. Another reason is that accelerated vibration tests in the
automotive and aerospace industry are defined for electrodynamic shakers. Table 1 shows
that the maximum number of excitations is two (e.g., vertical and horizontal accelerations),
although some shakers allow three independent excitations to be applied simultaneously
(e.g., vertical, horizontal and longitudinal acceleration)—in fact, only two of them are the
active channels. Note also that servo-hydraulic machines in Table 1 are used to apply
axial, torsion or axial-torsion loading, whereas shaker tables can apply bending, torsion or
bending–torsion loadings. The type of state of stress in the specimen varies widely from
one system to the other. However, cylindrical specimens can produce a pure shear stress,
or combined normal and shear stresses, whereas the other specimen geometries cannot.
Details of each type of specimen are described in the following sections.

4.1. Plate Specimens

Thin plate specimens with rectangular or square shape, excited at the base in vertical
direction, represent the simplest and most convenient layout to produce a uniaxial state of
stress in notches or holes; see [10–14] in Table 1. These systems are usually mounted on
shaker tables and then excited by harmonic acceleration centered on the specimen resonant
frequency. Harmonic acceleration has the advantage of easily obtaining the harmonic
transfer function as the ratio between accelerations at two measurement positions. In fact,
two accelerometers can be used [10–12], one attached on the base of the shaker and the
second one attached at the free end of the specimen. A few accelerometers positioned
along the entire length of the specimen are also observed in some applications [40,41] with
the aim to obtain the modes of vibration at resonance frequencies. Although harmonic
loadings allow the harmonic transfer function of the system to be determined, and they
can also be used for constant amplitude fatigue tests, the random acceleration is the type
of excitation most used in fatigue tests with shaker tables, so as to replicate the random
loadings commonly found in engineering applications.

It is important to underline that plate specimens with rectangular or square shape,
mounted on shaker tables and excited at the base, cannot produce a biaxial state of stress
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at critical location, but rather a uniaxial stress state. This circumstance occurs even if the
specimen is excited by a multiaxial input along more than one direction, for example,
vertical and horizontal accelerations, each of which can produce a bending loading. Indeed,
these plate specimens of thin thickness are usually subjected to bending loadings that lead
to a uniaxial state of stress in the critical location.

Plate specimens with circular shape are also employed for tests with shaker tables [35,36].
As depicted in Figure 5, such specimens are fixed at the center and then excited by a
vertical random acceleration, which produces a biaxial state of stress with the critical
location outside the center. The intensity of stress components can be controlled by varying
the diameter or thickness of the specimen. However, the nonzero stress components are
only the radial and circumferential ones. Plate specimens with a circular shape then do not
develop shear stress components at the critical point; see [35,36].
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Plate specimens with cruciform geometry, excited by random loadings, are encoun-
tered in some fatigue tests using a servo-hydraulic machine; see [33,42] in Table 1. More
often, this type of specimen is used in constant amplitude low cycle fatigue tests [43],
whereas it seems not to be used in low cycle regime with random loadings.

When loaded by axial loadings applied to its two orthogonal arms (see Figure 6), the
cruciform specimen can develop in the critical location a biaxial stress with two normal
stress components, similarly to the circular plate specimen.
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Other plate specimen shapes (e.g., a particular wing shape) can be considered in tests
if a biaxial stress is to be obtained by means of shaker tables; see [37] in Table 1. Though
a plate specimen can develop a biaxial state of stress with two normal stresses, it cannot
generate a biaxial state with normal and shear stresses. To obtain this stress, a cylindrical
specimen is required.

4.2. Cylindrical Specimens

Cylindrical specimens, with or without notches, can be loaded in bending if excited
by a vertical acceleration imposed by a shaker table. The acceleration can be harmonic or
random, and the bending loading accordingly. In the typical layout, the specimen has one
end free and the other fixed to the shaker table. The system may be instrumented by two
or more accelerometers to measure accelerations at different points, and by strain gages
attached on notches to control the strain [44].

In some applications, the above system is excited simultaneously by tri-axis excita-
tions centered on specimen resonance frequencies [31,32]. Although the random loadings
correspond to axial and to bending loadings in two planes, the state of stress remains
uniaxial in the critical location of interest. Indeed, it is only the maximum stress position
that changes, depending on the intensity and phase shift of the excitations. Therefore,
the use of a tri-axial shaker does not assure that a biaxial state of stress be obtained on a
cantilever cylindrical specimen. This example emphasizes that a different configuration of
the test system is needed to reach a biaxial state of stress in cylindrical specimens.

To this end, a possible solution is to exploit a uniaxial shaker with a rotary table
structure and a lever [15]. In one side, the cantilever cylindrical specimen is fixed to
the holder structure; in the other side, it is attached to the lever. By rotating the lever
arm with an arbitrary angle in the range 0 ≤ α ≤ π/2, the shaker excites the lever by
imposing simultaneous bending and torsion moments to the specimen. Due to its layout,
this system can only develop a coupled (correlated) bending–torsion loading, i.e., it is
limited to proportional loadings. Accordingly, in Table 1, this system is listed in the fifth
row (ref. [15], with one input). Choosing either of the two limit angular values, the system
can apply a pure bending when the lever is parallel to the specimen axis (α = 0), or a pure
torsion when the lever is perpendicular to the specimen axis (α = π/2). Strain gages are
also attached on the lever to measure the strain and to control the value of normal stress
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in the specimen. According to the imposed angle α, it is straightforward to calculate the
value of stress in any system configuration, i.e., biaxial normal and shear stresses when
0 < α < π/2, uniaxial pure normal stress when α = π/2 and uniaxial pure shear stress
when α = 0.

By adopting a similar system layout, fatigue tests can also be performed with uncou-
pled (uncorrelated) bending–torsion loadings [15]. In contrast to the system described
so far, now two uniaxial shakers are controlled independently. They are mounted on a
table in order to excite two arms positioned perpendicularly; see Figure 7. In this case,
not only coupled but also uncoupled bending–torsion random loadings can be achieved.
Accordingly, in Table 1, this system is listed in the sixth row (ref. [15], with two inputs).
This system yields a pure bending loading when only the arm parallel to specimen axis
is excited by a uniaxial shaker. Instead, if the excitation is only imposed by the other
shaker (arm perpendicular to the specimen), the specimen is subjected to torsion load-
ing, without bending. Of course, this testing system layout needs two uniaxial shakers.
Furthermore, it requires an input/output system to control the accelerations in the two
shakers simultaneously.

By adding two tip masses of different weight at the free end of a cylindrical specimen
excited by a uniaxial shaker table, it is possible to obtain a bending–torsion loading in
the specimen; see [16] in Table 1. This layout shows that a specimen excited by a base
vertical random acceleration experiences a normal and shear biaxial stress. In this layout,
however, both stress components are always coupled. Their relative magnitude can be
controlled by increasing or decreasing the weight ratio of the two tip masses. A pure
bending loading results by selecting the same weight for both tip masses. However,
obtaining the opposite loading case (only torsion) is not possible—indeed, torsion is always
coupled with bending. Another aspect to mention is that this layout seems not to have
been verified by experimental tests, but only by numerical simulations [16].
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A way to decouple the bending and torsion loadings—and thus improve the capa-
bilities of the testing system in [16]—is to use a tri-axis shaker, which can apply up to
three independent excitations along three orthogonal directions. Inspired by [16], a special
holder structure (see Figure 8) has been designed to allow the bending and torsion random
loadings to be controlled independently; see [17–19] in Table 1. In the system in Figure 8,
a U-notched cylindrical specimen is fixed to a T-clamp at one end. At the other end, the
specimen mounts a cantilever arm with two equal masses, and it is also constrained by a
thin and flexible plate.
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This thin and flexible plate constraints any horizontal movement but allows the
rotation of the specimen end. The plate thus prevents the specimen from being subjected to
bending in horizontal direction, but it is very thin to allow the specimen to rotate around
its axis when subjected to torsion. Therefore, when the specimen is excited by a vertical
base acceleration, Figure 9a, it vibrates in the vertical plane (only bending loading). When,
instead, it is excited by a horizontal base acceleration, Figure 9b, it vibrates in the horizontal
plane (only torsion loading caused by the oscillation of the two eccentric masses).
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The testing system has accelerometers to monitor the accelerations of the shaker table
in closed-loop control, and the acceleration of the extremity of the specimen and cantilever
arm. As it is not possible to use strain gages to measure the strains directly at the specimen
notch (being it too small), an indirect measure it performed. Strain gages are indeed glued
onto the lateral faces of the T-clamp, so as to provide a measure of the bending moments
there and, indirectly, of the bending and torsion loadings and, accordingly, of the resulting
normal and shear stress at the specimen notch.

Note that the tri-axis shaker cannot excite only one single axis or two axes at a time,
keeping the others at rest. All three axes need to be active simultaneously, which appears
to be a small limitation if tests with two, or even only one, accelerations need to be carried
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out. However, this circumstance can easily be overcome by setting a very low level of
acceleration on the “secondary” axes that, theoretically, should not be activated.

It is finally worth to mention that the system layout described so far, as shown in
Figure 8, has been adopted in [38,39], though with two lateral thin plates instead of one, to
perform bending–torsion fatigue tests.

Hollow cylindrical specimens subjected to axial, torsion and internal pressure perhaps
represent the most versatile testing system in terms of the state of stress achievable. Indeed,
this system allows a three-dimensional stress state (two normal stresses and one shear
stress) to be obtained by servo-hydraulic machines and pressure chambers [45,46]. On
the other hand, it may be presumed that loading a hollow specimen in axial, torsion and
simultaneously with an internal pressure, requires special-purpose equipment that is likely
to be more expensive than the usual testing machines found in laboratories.

A hollow cylindrical specimen with a small hole perpendicular to its axis, loaded by a
servo-hydraulic machine, may be subjected to an uncoupled biaxial state of stress; see [34]
in Table 1. This specimen is fixed at both ends, where the servo-hydraulic machine applies
an axial-torsion random loading. The biaxial state of stress at the hole can be monitored
with minimal difficulty by controlling the input force and/or torque and relating it to
the corresponding stress components. Once again, this system configuration emphasizes
how servo-hydraulic machines offer a greater simplicity over shaker tables in the direct
control of both the intensity and phase shift between axial-torsion loading actions on
cylindrical specimens. Instead, cantilever cylindrical specimens excited by shakers require
the dynamic response of the specimen fixed on the holder system to be determined in order
to evaluate the normal and shear stress values at the critical location.

4.3. More Elaborated Specimens

More elaborated specimens are developed with the aim to perform accelerated fatigue
tests using shaker tables and simulate a real-world scenario of complex structures. A
Y-shaped specimen with a central hole and two masses at the free ends has been proposed;
see Figure 10. The Y-shaped specimen is made by three rectangular cross-sections arranged
at 120◦ around the hole and has in the frequency range up to 2 kHz several natural
frequencies that can be vibration fatigued. The attached masses can be used to adjust the
frequencies of particular natural frequencies [21]. In [22], it was shown that the internal
damping has a significant influence on the fatigue damage. In [20], multiaxial loads were
achieved by exciting two mode shapes (one in the vertical and one in the horizontal
direction). In vibration fatigue, the specimen is typically considered as broken when
the natural frequency drops by 2–5% (different values are used in different studies); see
e.g., [9]. Fatigue parameters (fatigue strength and inverse slope of S–N curve) need to be
experimentally identified using the specimen; see e.g., [23], where 10 specimens were used.
It may finally be presumed that manufacturing several specimens with more elaborated
geometry has a cost slightly higher than producing specimens with simpler shapes.
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Figure 10. Testing system including Y-shaped specimen with a central hole and two masses at the
free ends subjected to horizontal force and vertical acceleration (reprinted with permission from
ref. [23]. Copyright 2016 Elsevier).

In [20], two electrodynamic shakers were used: one for vertical random excitation (for
the excitation of first natural frequency) and one for horizontal excitation (for the second
natural frequency). Masses attached to the Y-sample allowed modal frequencies to be
adjusted to the needs. The test system is instrumented with accelerometers positioned at
different points and a strain gage attached in the critical region. The accelerometers are
used to monitor in real time the dynamic response of system, which in turn updates the
FE model. The vertical excitations are controlled in a closed loop with measurements of
accelerometers. Another excitation is applied perpendicular to the shaker vertical axis. It is
imposed close to the specimen hole and monitored by a force transducer.

This special Y-shaped system is excited by two uncoupled random loadings (along
vertical and horizontal directions); see [20–25] in Table 1. The system can develop an
uncoupled biaxial state of stress at the critical location in terms of normal stress components.

5. Conclusions

This paper presented an overview of the various fatigue testing systems used for
subjecting metals to random loadings, as they are described in relevant articles from the
literature. The presented overview of relevant works compared the different testing systems
in terms of several characteristics, namely, the type of machine (e.g., servo-hydraulic and
shaker tables), specimen geometry, number of inputs needed to carry out a fatigue test,
random loadings acting on the specimen and resulting local state of stress. For each of the
above characteristics, Table 2 summarizes the specific features adopted for classifying the
various systems. Based on the specific features in Table 2, all the analyzed testing systems
were also classified into a more comprehensive table (named Table 1 in the text), which
allowed the analogies, differences, advantages and possible limitations to be emphasized
in a clear way. Both tables also summarize the main criteria that may be used, in the future,
as a guideline to classify new equipment.

Table 2. Characteristics and specific features used to classify fatigue testing systems.

Machine Specimen Geometry Random Loading 1 State of Stress

Servo-hydraulic orshaker table
Plate,

cylindrical or
more elaborated

Ax, Be, To,
Ax-To or

Be-To

Uniaxial,
biaxial with σxx and σyy or biaxial

with σxx and τxy

1 Ax = axial; Be = bending; To = torsion; Ax-To = axial-torsion; Be-To = bending–torsion.
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22. Palmieri, M.; Česnik, M.; Slavič, J.; Cianetti, F.; Boltežar, M. Non-Gaussianity and non-stationarity in vibration fatigue. Int. J.
Fatigue 2017, 97, 9–19. [CrossRef]
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