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MONADIC DECOMPOSITIONS AND CLASSICAL LIE THEORY

ALESSANDRO ARDIZZONI, JOSÉ GÓMEZ-TORRECILLAS, AND CLAUDIA MENINI

Abstract. We show that the functor from bialgebras to vector spaces sending a bialgebra to
its subspace of primitives has monadic length at most 2.

Introduction

Given a functor R0 : A → B0 with left adjoint L0 : B0 → A we get, following [AHW, MS], and
under suitable hypotheses, a sequence of adjoint pairs of functors

A

R0

��

A

R1

��

IdAoo A

R2

��

IdAoo . . .
IdAoo

B0

L0

OO

B1

L1

OO

U0,1oo B2

L2

OO

U1,2oo . . .
U2,3oo

where for i ≥ 0, Bi+1 is the Eilenberg-Moore category of the monad (Li, Ri), Ri+1 is the comparison
functor, and Ui,i+1 is the corresponding forgetful functor. It is natural to inquire wether this process
stops, as was done in [AHW, MS]. To be more specific, the monadic length of R0 is the first N

such that UN,N+1 is an isomorphism of categories. In many basic examples, the functor R0 is
monadic and, therefore, it has monadic length at most 1. In this note, we show that the functor
P from bialgebras to vector spaces sending a bialgebra to its subspace of primitives has monadic
length 2 (Theorem 2.4).

Section 1 contains some remarks on the monadic decompositions of functors studied in [AHW,
MS] and their relationship with idempotent monads ([AT]). The basic case of the adjoint pair
encoded by a bimodule over unital rings is described in Remark 1.14, with an eye on descent
theory for modules. We also study the existence of comonadic decompositions under separability
conditions (Proposition 1.16).

Section 2 contains the aforementioned monadic decomposition of monadic length at most 2 of
the functor P from bialgebras to vector spaces.

1. Monadic decompositions

Consider categories A and B. Let (L : B → A, R : A → B) be an adjunction with unit η and
counit ǫ, and consider the monad (RL,RǫL, η) generated on B. By B1 we denote its Eilenberg-
Moore category of algebras. Hence we can consider the so-called comparison functor of the ad-
junction (L,R) i.e. the functor

K : A → B1, KX := (RX,RǫX) , Kf := Rf.

Recall that the functor R : A → B is called monadic (tripleable in Beck’s terminology [Be,
Definition 3’, page 8]) whenever the comparison functor K : A → B1 is an equivalence of categories.
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1.1. Idempotent monads and monadic decompositions. The notion of an idempotent monad
is, as we will see below, tightly connected with the monadic length of a functor.

Definition 1.1. [AT, page 231] A monad (Q,m, u) with multiplication m and unit u is called
idempotent whenever m is an isomorphism. An adjunction (L,R) is called idempotent whenever
the associated monad is idempotent.

There are several basic characterizations of idempotent adjunctions (see [AT, MS]). In partic-
ular, idempotency of an adjunction means equivalently that any of the four factors appearing in
the two triangular identities of the adjoint pair (L,R) is an isomorphism ([MS, Proposition 2.8]).

In the following we will denote by U : B1 → B the forgetful functor and by F : B → B1 the free
functor associated to an adjunction (L,R).

Remark 1.2. Note that the adjunctions (F,U) and (L,R) have the same associated monad so
that (L,R) is idempotent if and only if (F,U) is if and only if, by [MS, Proposition 2.8], one has
ηU is an isomorphism.

Proposition 1.3. For and adjunction (L : B → A, R : A → B) with unit η and counit ǫ, the fol-
lowing assertions are equivalent.

(a) (L,R) is idempotent,
(b) the structure map of every object in B1 is an isomorphism,
(c) LU is a left adjoint of the comparison functor K : A → B1 of (L,R), and ηU = Uη1, where

η1 is the unit of the new adjunction (being the new counit still ǫ).

Moreover, if one of these conditions holds, then LU is full and faithful.

Proof. (a) ⇒ (b). By [MS, Proposition 2.8], we have that ηRL = RLη. Now, for any algebra
(X,µ) ∈ B1, we have that µ ◦ ηX = 1X . Moreover, by naturality of η, we know that ηX ◦ µ =
RLµ ◦ ηRLX = RLµ ◦RLηX = 1RLX . Therefore, µ is an isomorphism.

(b) ⇒ (c). If (X,µ) is an algebra over RL, then µ : RLX → X is an homomorphism of RL–
algebras. Now, if µ is an isomorphism, then, necessarily, µ = (ηX)−1. We get easily that ηX is a
morphism in B1. Therefore, η will serve as the unit for an adjunction (LU,K) (being the counit
ǫ).

(c) ⇒ (a). Given an object Y of A, consider its free RL–algebra (RY,RǫY ). Since, by assump-
tion, ηRY is a homomorphism of RL–algebras, we get the identity RǫLRY ◦RLηRY = ηRY ◦RǫY ,
which implies, by the triangular identities for the adjunction (L,R), that ηRY ◦ RǫY = 1RLRY ,
whence RǫY is an isomorphism. With Y = LX for any object X of B, one obtains that RǫLX is
an isomorphism. Hence, (L,R) is idempotent.

Let us prove the last part of the statement. By Remark 1.2, condition (a) is equivalent to ηU

isomorphism. From ηU = Uη1 and the fact that U reflects isomorphisms we deduce that η1 is an
isomorphism so that LU is full and faithful. �

Remark 1.4. By [MS, Proposition 2.8], if L is full and faithful, then the adjunction (L,R) is
idempotent. On the other hand, since the units of the adjunctions (L,R) and (F,U) are equal, we
get from Proposition 1.3 that L is full and faithful if and only if U is an isomorphism of categories
if and only if U is an equivalence of categories.

Before defining monadic decompositions and monadic length, we derive the following conse-
quence of Proposition 1.3, which is interpreted in the classical setting of epimorphisms of rings in
Example 1.6.

Proposition 1.5. Let (L,R) be an adjunction. The following are equivalent.

(1) R is full and faithful.
(2) (L,R) is idempotent and R is monadic.

Proof. Let η be the unit and ǫ be the counit of the adjunction (L,R).
(1) ⇒ (2). By assumption ǫ is an isomorphism so that RǫL is an isomorphism i.e. (L,R) is

idempotent. By Proposition 1.3, we know that Λ := LU is a left adjoint of the comparison functor
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K : A → B1 of (L,R). Moreover Λ is full and faithful and ǫA = ǫ1A where ǫ1 is the counit of
the adjunction (Λ,K) . Thus ǫ1 is an isomorphism i.e. K is full and faithful too. Hence K is an
equivalence.

(2) ⇒ (1). Since (L,R) is idempotent, by Proposition 1.3, we get ǫA = ǫ1A. Since R is monadic,
the comparison functor is an equivalence and hence ǫ1A is an isomorphism. Hence ǫA is an
isomorphism so that R is full and faithful. �

Example 1.6. Let us consider a morphism of rings π : B → A, and its canonical associated
adjunction

L : Mod-B → Mod-A, R : Mod-A → Mod-B.

By [St, Proposition 1.2, page 226], π is an epimorphism if and only if the counit of the adjunction
is an isomorphism. This is equivalent to say that R is full and faithful. Thus, by Proposition 1.5,
π is an epimorphism if and only if (L,R) is idempotent and R is monadic. Note that L needs not
to be full and faithful. Thus, when π is an epimorphism, since R is monadic, it has a monadic
decomposition of monadic length 1 in the sense of Definition 1.7 but a monadic decomposition of
(essential) length 0 in the sense of [AHW, Definition 2.1].

Definition 1.7. (See [AHW, Definition 2.1] and [MS, Definitions 2.10 and 2.14]) Fix a N ∈ N.
We say that a functor R has a monadic decomposition of monadic length N whenever there exists
a sequence (Rn)n≤N of functors Rn such that

1) R0 = R;
2) for 0 ≤ n ≤ N , the functor Rn has a left adjoint functor Ln;
3) for 0 ≤ n ≤ N − 1, the functor Rn+1 is the comparison functor induced by the adjunction

(Ln, Rn) with respect to its associated monad;
4) LN is full and faithful while Ln is not full and faithful for 0 ≤ n ≤ N − 1.
Compare with the construction performed in [Ma, 1.5.5, page 49].
Note that for functor R : A → B having a monadic decomposition of monadic length N , we

have a diagram

(1) A

R0

��

A

R1

��

IdAoo A

R2

��

IdAoo · · · · · ·
IdAoo A

RN

��

IdAoo

B0

L0

OO

B1

L1

OO

U0,1oo B2

L2

OO

U1,2oo · · · · · ·
U2,3oo BN

LN

OO

UN−1,Noo

where B0 = B and, for 1 ≤ n ≤ N,

• Bn is the category of (Rn−1Ln−1)-modules Rn−1Ln−1
B
n−1

;

• Un−1,n : Bn → Bn−1 is the forgetful functor Rn−1Ln−1
U .

We will denote by ηn : IdBn
→ RnLn and ǫn : LnRn → IdA the unit and counit of the

adjunction (Ln, Rn) respectively for 0 ≤ n ≤ N . Note that one can introduce the forgetful functor
Um,n : Bn → Bm for all m ≤ n with 0 ≤ m,n ≤ N .

Remarks 1.8. 1) Assume that R fits into a diagram such as (1). If RN−1 is monadic i.e. RN is a
category equivalence, then obviously LN is full and faithful so that R0 has a monadic decomposition
of monadic length at most N . Nevertheless if R0 has monadic length N , then RN needs not to be
an equivalence.

2) The notion of comonadic decomposition of comonadic length N can be easily introduced. In
this case we will use the notations (Ln, Rn)n∈N

with superscripts and require that RN is full and
faithful.

Proposition 1.9. Let (L : B → A, R : A → B) be an idempotent adjunction. Then R : A → B
has a monadic decomposition of monadic length at most 1.

Proof. By Proposition 1.3, L1 = L0U0,1 is full and faithful. �
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Remark 1.10. It follows from Remark 1.4 that condition 4) in Definition 1.7 is equivalent to the
requirement that the forgetful functor UN,N+1 : BN+1 → BN is an isomorphism of categories.
Thus, if R : A → B has a monadic decomposition of monadic length N ∈ N, then we can consider
the comparison functor RN+1 : A → BN+1 of (LN , RN ) . Moreover, still by Remark 1.4, LN

full and faithful implies that the adjunction (LN , RN ) is idempotent. Hence, by Proposition 1.3,
LN+1 := LNUN,N+1 is a left adjoint of RN+1 (and LN+1 is full and faithful too). Note that the
fact that RN+1 is a right adjoint is assumed from the very beginning in [AHW, Definition 2.1].
By Proposition 1.3 again, we deduce that ηNUN,N+1 = UN,N+1ηN+1 and ǫNA = ǫN+1A where
ηn is the unit and ǫn is the counit of the adjunction (Ln, Rn) for all n ≤ N + 1. Iterating this
process we get that for all M ≥ N, the tower in (1) can be extended with adjoints (LM , RM )
where LM is full and faithful so that UM,M+1 : BM+1 → BM is a category isomorphism. Moreover
ηMUM,M+1 = UM,M+1ηM+1 and ǫMA = ǫM+1A. By the foregoing we have that

R = R0 = U0,1 ◦ U1,2 ◦ · · · ◦ UN−1,N ◦RN

where U0,1, U1,2, · · · , UN−1,N are monadic functors but not category isomorphisms. Moreover this
is a maximal decomposition of this form. This is essentially [AHW, Remarks 2.2].

Remark 1.11. If R : A → B has a monadic decomposition of length N , then, since LN : BN → A
is full and faithful, the dual of Proposition 1.5 gives that LN is a comonadic functor and (LN , RN )
is coidempotent. Thus, the comparison functor C : BN → AN , where AN denotes the category of
LNRN–coalgebras, is an equivalence of categories.

1.2. Essentially surjective. The following result determines the objects which are images of
right adjoint functors under suitable assumptions. This can be regarded as a sort of descent theory
for these functors.

Notation 1.12. Let R : A → B. We will denote by ImR the full subcategory of B consisting of
those objects B ∈ B such that there is an object A ∈ A and an isomorphism B ∼= RA in B.

Recall that a functor R : A → B is essentially surjective if ImR = B.

Proposition 1.13. Suppose that R : A → B has a monadic decomposition of monadic length
N ∈ N. Let n ∈ {0, . . . , N}. Then

1) ImR ⊆ ImU0,n.

2) ImR = ImU0,n whenever Rn is essentially surjective.
3) ImR = ImU0,N .

Proof. It follows from the equalities U0,nRn = R0 = R. �

Remark 1.14. Proposition 1.13 can be considered as a “general dual descent theory” result. In
fact the theorem states that the objects of B = B0 which are isomorphic to objects of the form
RA, for some A ∈ A, are exactly those of the form U0,NBN where BN ∈ BN . In particular, when
N = 1, i.e. L1 is full and faithful, we have that the objects of B which are isomorphic to objects
of the form RA, for some A ∈ A, are exactly those of the form U0,1B1 where B1 ∈ B1. This is
exactly the dual form of classical descent theory for (bi)modules. In fact, let S, T be rings and let

SMT be a bimodule. Consider the following adjunction

L : MS → MT , R : MT → MS

LX = X ⊗S M, RY = HomT (M,Y ) ,

between the category MS of right S-modules and the category MT of right T -modules. The cate-
gory MT has (co)equalizers. By (dual) Beck’s Theorem [Be, Proof of Theorem 1], the comparison
functors R1 and L1 have a left adjoint L1 and a right adjoint R1 respectively.

Assume that M is flat as a left S-module. Then L = L0 is exact so that, the dual of Beck’s
Theorem ensures that R1 is full and faithful. Therefore, L admits a comonadic decomposition of
comonadic length at most 1. Thus we have that the objects of MT which are isomorphic to objects
of the form LX , for some X ∈ MS , are exactly those of the form U0,1X1 where X1 is an object

of the category of LR–coalgebras (MT )
1
. Hence the category (MT )

1
solves the descent problem

for modules. When MT is finitely generated and projective, we have an isomorphism of comonads
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LR ∼= −⊗T M∗ ⊗S M where M∗ ⊗S M is the comatrix coring associated to SMT (see [EGT], and
[GT, GTV] for more general bimodules). Coalgebras over LR are precisely the comodules over the
T –coring M∗ ⊗S M .

Assume that M is projective as a right T -module. Then R = R0 is exact so that, Beck’s
Theorem ensures that L1 is full and faithful, and R has a comonadic decomposition of length at
most 1.

1.3. Separability. Let (Q,m, u) be a monad on a category B, with multiplication m and unit
u. A right module functor on (Q,m, u) is a pair (W,µ) where W : B → A is a functor and
µ : WQ → W is a natural transformation such that

µ ◦ µQ = µ ◦Wm and µ ◦Wu = IdQ.

Amorphism f : (W,µ) → (W ′, µ′) of right module functors is a natural transformation f : W → W ′

such that µ′ ◦ fQ = f ◦ µ.
It is clear that (WQ,Wm) is a right module functor on (Q,m, u) and that µ : (WQ,Wm) →

(W,µ) is morphism of right module functors. We will say that (W,µ) is relatively projective
whenever µ : (WQ,Wm) → (W,µ) splits as a morphism of right module functors. Explicitly
this means that there is a morphism γ : (W,µ) → (WQ,Wm) of right module functors such that
µ ◦ γ = Id(W,µ) i.e. that there is a natural transformation γ : W → WQ such that µ ◦ γ = IdW
and Wm ◦ γQ = γ ◦ µ.

Let (L : B → A, R : A → B) be an adjunction with unit η and counit ǫ. Then (L, ǫL) is a right
module functor on (RL,RǫL, η) . In fact ǫL ◦ ǫLRL = ǫL ◦ LRǫL and ǫL ◦ Lη = IdRL.

The notion of a separable functor was introduced in [NVV]. This concept is motivated by
various examples, being perhaps the most fundamental the following. Given a homomorphism of
rings R → S, then the restriction of scalars functor MS → MR is separable in the sense of [NVV]
if and only if the extension R → S is separable (i.e., the multiplication map S ⊗R S → S splits as
an S–bimodule epimorphism). In general, if (L,R) is an adjunction, then R is a separable functor
if and only if its counit is a split natural epimorphism ([Ra, Theorem 1.2]).

Lemma 1.15. Let (L : B → A, R : A → B) be an adjunction. If R is separable, then (L, ǫL) is
relatively projective as a right module functor on (RL,RǫL, η)

Proof. By assumption, there is a natural transformation σ : IdA → LR such that ǫ ◦ σ = IdIdA
.

Set γ := σL. Then γ is a natural transformation such that ǫL ◦ γ = IdL and LRǫL ◦ γRL = γ ◦ ǫL.
Then ǫL : (LRL,LRǫL)→ (L, ǫL) splits as a morphism of right module functors. �

In the following result, part 3) may be compared, in its dual version, with [Me, Proposition
3.16] and the results quoted therein.

Proposition 1.16. Let (L : B → A, R : A → B) be an adjunction with unit η and counit ǫ.
1) If R is a separable functor then the comparison functor R1 : A → B1 is full and faithful.
2) Suppose that the comparison functor R1 : A → B1 has a left adjoint L1. If (L, ǫL) is relatively

projective as a right module functor on (RL,RǫL, η) , then L1 is full and faithful.
3) Suppose that the comparison functor R1 : A → B1 has a left adjoint L1. If R is a separable

functor, then R is monadic.

Proof. 1) By assumption there is a natural transformation σ : IdA → LR such that ǫ ◦ σ = IdIdA
.

Let f, g : X → Y morphisms in A such that R1f = R1g. Since R = UR1, we get

σY ◦ f = LRf ◦ σX = LRg ◦ σX = σY ◦ g

Now, σY is a monomorphism, whence f = g. Thus, R1 is faithful. To check that R1 is full,
consider a morphism h : R1X → R1Y in B1, and put h′ = ǫY ◦ Lh ◦ σX . Since h is a morphism
of algebras, we get

Rh′ = RǫY ◦RLh ◦RσX
h∈B1= h ◦RǫX ◦RσX = h.
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2) By [Be, Proof of Theorem 1], since L1 exists, there exists a morphism π such that

(2) LRLB
Lµ

⇒
ǫLB

LB
π

−→ L1 (B, µ)

is a coequalizer for all (B, µ) ∈ B1. Moreover L1 is full and faithful whenever

RLRLB
RLµ

⇒
RǫLB

RLB
Rπ
−→ RL1 (B, µ)

is a coequalizer too. By assumption there is a natural transformation γ : L → LRL such that
ǫL ◦ γ = IdL and LRǫL ◦ γRL = γ ◦ ǫL. Clearly, we have ǫLB ◦ γB = IdLB. Moreover

(Lµ ◦ γB) ◦ Lµ = Lµ ◦ γB ◦ Lµ
nat γ
= Lµ ◦ LRLµ ◦ γRLB

= Lµ ◦ (LRǫLB ◦ γRLB)

= Lµ ◦ (γB ◦ ǫLB)

= (Lµ ◦ γB) ◦ ǫLB

so that there is a unique morphism p : L1 (B, µ) → LB such that p ◦ π = Lµ ◦ γB. We have

π ◦ p ◦ π = π ◦ Lµ ◦ γB = π ◦ ǫLB ◦ γB = π

so that, since π is an epimorphism, we get π ◦ p = IdL1(B,µ). We have so proved that (2) is a
contractible coequalizer. Thus it is preserved by any functor, in particular by R. Thus L1 is full
and faithful too.

3) It follows from 1), 2) and Lemma 1.15 that both L1 and R1 are full and faithful. �

2. Examples

Let us fix a field k. Vector spaces and algebras are meant to be over k. From any vector space
V we can construct its tensor algebra TV = k ⊕ V ⊕ V ⊗2 ⊕ · · · . In fact, this is the object part
of a functor T : V ectk → Algk from the category V ectk of vector spaces to the category Algk of
(associative and unital) algebras. By Ω : Algk → V ectk we denote the forgetful functor.

2.1. Vector spaces and algebras.

Example 2.1. If A is an algebra, and V a vector space, then the universal property of TV gives
a bijection

(3) Algk(TV,A) ∼= V ectk(V,ΩA),

which is natural in both variables. In other words, the functor T : V ectk → Algk is left adjoint to
the forgetful functor Ω : Algk → V ectk. It is very well-known that Ω is a monadic functor (cf. [Bo,
Proposition 4.6.2]). Next, we check that T is a comonadic functor.

In fact, given V ∈ V ectk, consider the canonical projection π = πV : ΩTV → V on degree one.
Let us check that it is natural in V. Let f : V → V ′ be a morphism in V ectk. For all z ∈ V ⊗n with
n 6= 1,

(πV ′ ◦ ΩTf) (z) = πV ′
(

f⊗n (z)
)

= 0 = (f ◦ πV ) (z) .

For v ∈ V, we have

(πV ′ ◦ ΩTf) (v) = πV ′ (f (v)) = f (v) = (f ◦ πV ) (v) .

so that πV ′ ◦ ΩTf = f ◦ πV and πV is natural in V . Moreover, we have πV ◦ iV = IdV , where
iV : V → ΩTV is the canonical inclusion map for every V ∈ V ectk. Since iV gives the unit of the
adjunction at V , we can apply Rafael’s Theorem [Ra, Theorem 1.2], to obtain that T is a separable
functor. By the dual version of Proposition 1.16, in order to prove that T is comonadic it suffices
to check that T 1 has a right adjoint. This follows by Beck’s Theorem [Be, Proof of Theorem 1] as
V ectk has equalizers.



MONADIC DECOMPOSITIONS AND CLASSICAL LIE THEORY 7

2.2. Vector spaces and bialgebras.

Example 2.2. Let Bialgk be the category of bialgebras and Ω : Bialgk → V ectkbe the forgetful
functor. By P : Bialgk → V ectk we denote the functor that sends a bialgebra A to its space PA of
primitive elements. Obviously, P is a subfunctor of Ω, let j : P → Ω denote the inclusion natural
transformation. We know that the tensor algebra TV of a vector space V is already a bialgebra.
Therefore, the bijection (3) gives, by restriction, a bijection

Bialgk(TV,A) ∼= V ectk(V, PA)

which, of course, is natural.
In this way, we see that T is left adjoint to P . We will prove that P has a monadic decomposition

of monadic length at most 2. First we need to prove a technical result.

Lemma 2.3. Let (L : B → A, R : A → B) be an adjunction and let (B, µ) ∈ B1. Let ζ : B → Z be
a morphism in B. Then

ζ ◦ Lµ = ζ ◦ ǫLB ⇔ Rζ ◦ ηB ◦ µ = Rζ.

Proof. Consider the canonical isomorphism Φ (X,Y ) : HomA (LX, Y ) → HomB (X,RY ) defined
by Φ (X,Y ) f = Rf ◦ ηX. Then

ζ ◦ Lµ = ζ ◦ ǫLB ⇔

Φ (RLB,Z) [ζ ◦ Lµ] = Φ (RLB,Z) [ζ ◦ ǫLB] ⇔

R [ζ ◦ Lµ] ◦ ηRLB = R [ζ ◦ ǫLB] ◦ ηRLB ⇔

Rζ ◦RLµ ◦ ηRLB = Rζ ◦RǫLB ◦ ηRLB ⇔

Rζ ◦ ηB ◦ µ = Rζ.

�

Theorem 2.4. The functor P has a monadic decomposition of monadic length at most 2. Keep
the notations of Definition 1.7 (so, in particular, B0 = V ectk, R0 = P , and L0 = T ).

1) The functor L1 is given, for all (V0, µ0) ∈ B1, by

L1 (V0, µ0) =
L0V0

(Im (IdR0L0V0
− η0V0 ◦ µ0))

.

2) The adjunction (L1, R1) is idempotent.
4) For all V2 := ((V0, µ0) , µ1) ∈ B2, we have the following cases.

– chark = 0. Then, for all x, y ∈ V0 we have that xy − yx ∈ R0L0V0. Define a map
[−,−] : V0⊗V0 → V0 by setting [x, y] := µ0 (xy − yx) . Then (V0, [−,−]) is an ordinary
Lie algebra and L2V2 is the universal enveloping algebra

UV0 :=
TV0

(xy − yx− [x, y] | x, y ∈ V0)
.

– chark = p, a prime. Then, for all x, y ∈ V0 we have that xy−yx, xp ∈ R0L0V0. Define
two maps [−,−] : V0 ⊗ V0 → V0 and −[p] : V0 → V0 by setting [x, y] := µ0 (xy − yx)
and x[p] := µ0 (x

p) . Then
(

V0, [−,−] ,−[p]
)

is a restricted Lie algebra and L2V2 is the
restricted enveloping algebra

uV0 :=
TV0

(

xy − yx− [x, y] , xp − x[p] | x, y ∈ V0

) .

Proof. Note that A = Bialgk has coequalizers (see e.g. [Ag, page 1478]). Thus, using the notations
of Definition 1.7, by Beck’s Theorem [Be, Proof of Theorem 1], the functors L1 and L2 exist. By
construction, for every V1 := (V0, µ0 : R0L0V0 → V0) ∈ B1 we have that L1V1 is given by the
coequalizer in A of the diagram

L0R0L0V0

L0µ0

⇒
ǫ0L0V0

L0V0.
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We want to compute explicitly this coequalizer. To this aim, we set

T1V1 :=
L0V0

(S)
,

where S := Im (IdR0L0V0
− η0V0 ◦ µ0) , and let us check it is a bialgebra. It is enough to check that

∆L0V0
S ⊆ (S)⊗ L0V0 + L0V0 ⊗ (S) ,

εL0V0
S = 0.

Both equalities follow trivially since S ⊆ R0L0V0 = PTV. Hence T1V1 ∈ A. Let us check that

L0R0L0V0

L0µ0

⇒
ǫ0L0V0

L0V0
π

−→ T1V1

is a coequalizer in A, where π is the canonical projection. Let ζ : L0V0 → Z be a morphism in A.
By Lemma 2.3

ζ ◦ L0µ0 = ζ ◦ ǫ0L0V0 ⇔ R0ζ ◦ η0V0 ◦ µ0 = R0ζ ⇔ ζ vanishes on S.

Hence we can take L1V1 := T1V1.

We need to describe L1V1 in a different way for every V1 := (V0, µ0) ∈ B1. Note that R0L0V0 =
V0⊕EV0 where EV0 denotes the subspace of ΩL0V0 spanned by primitive elements of homogeneous
degree greater than one. Let x1 = η0V0 : V0 → R0L0V0 and x2 : EV0 → R0L0V0 be the canonical
injections and set b := µ0 ◦ x2 : EV0 → V0. Let c : V0 ⊗ V0 → V0 ⊗V0 be the canonical flip. Then b

is a bracket for the braided vector space (V0, c) in the sense of [Ar1, Definition 3.2]. We compute

(IdR0L0V0
− η0V0 ◦ µ0) ◦ x1 = x1 − η0V0 ◦ µ0 ◦ x1 = η0V0 − η0V0 ◦ µ0 ◦ η0V0 = 0

so that

S = Im (IdR0L0V0
− η0V0 ◦ µ0) = Im [(IdR0L0V0

− η0V0 ◦ µ0) ◦ x2] = Im (x2 − η0V0 ◦ b)

and hence

L1V1 =
L0V0

(S)
=

L0V0

(Im (x2 − η0V0 ◦ b))
=

L0V0

(z − b (z) | z ∈ EV0)
.

Therefore L1V1 = U (V0, c, b) in the sense of [Ar1, Definition 3.5].
Let now V2 := (V1, µ1) ∈ B2. Then V1 is of the form (V0, µ0). By construction, the unit of the

adjunction is the unique map η1V1 : V1 → R1L1V1 such that

U0,1η1V1 = R0π ◦ η0V0.

Consider the canonical map iU : V0 → U (V0, c, b) i.e.

iU = Ωπ ◦ jL0V0 ◦ η0V0 = jL1V1 ◦R0π ◦ η0V0 = jL1V1 ◦ U0,1η1V1

so that iU corestricts to U0,1η1V1. Now

U0,1µ1 ◦ U0,1η1V1 = U0,1 (µ1 ◦ η1V1) = IdV0

so that U0,1η1V1 is injective. Therefore iU is injective. This means that (V0, c, b) is a braided Lie
algebra in the sense of [Ar1, Definition 4.1]. Let S denote the class of braided vector spaces of
combinatorial rank at most one. Then (V0, c) ∈ S

(see [Ar2, Example 6.10], if char (k) = 0, and [Ar3, Example 3.13], if char (k) 6= 0).
By [Ar1, Corollary 5.5], we have that U0,1η1V1 is an isomorphism. Since U0,1 reflects isomor-

phism, we get that η1V1 is an isomorphism. We have so proved that η1U1,2 is an isomorphism. By
Remark 1.2, we have that the adjunction (L1, R1) is idempotent. By Proposition 1.9, the functor
R1 has a monadic decomposition of monadic length at most 1 so that R has monadic decomposition
of monadic length at most 2.

We have observed that (V0, c, b) is a braided Lie algebra in the sense of [Ar1, Definition 4.1].
The last part of the statement follows by [Ar1, Remark 6.4] in case chark = 0 and by the same

argument as in [Ar3, Example 3.13] in case chark = p. �
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Remark 2.5. In the setting of Theorem 2.4, R = P : A → B has a monadic decomposition of
monadic length at most 2. Thus, by Theorem 1.13, we have that

ImR = ImU0,2.

Note, since (L1, R1) is idempotent, we can apply Proposition 1.3 to get that an object in ImU0,2

is isomorphic to an object of the form U0,2 (V1, µ1) = U0,1V1 for some V1 ∈ B1 such that η1V1 is an
isomorphism.

Remark 2.6. Let (L,R) be the adjunction considered in 2.2. For a moment let L′ denote the left
adjoint L of Example 2.1. Let W be the forgetful functor from the category of bialgebras to the
category of algebras. Then W ◦L = L′. Hence, in view of [NVV, Lemma 1.1], from separability of
L′ we deduce separability of L. Since B has all equalizers, by the dual version of Beck’s Theorem
[Be, Proof of Theorem 1], we have that the comparison functor L1 : B → A1 has a right adjoint
R1. Thus, by the dual version of Proposition 1.16, we have that L is comonadic.

Now, as observed in [Ag, Theorem 2.3], in view of [Sw, page 134], the functor W has a right
adjoint, say Γ. Explicitly ΓA is the cofree bialgebra associated to A, for any algebra A. Now
(WL,RΓ) is an adjunction as composition of adjunctions. Since W ◦ L = L′ and (L′, R′) is an
adjunction, we deduce that RΓ is functorially isomorphic to R′.

2.3. Pretorsion theories.

Example 2.7. Let A be a ring and let T be a full subcategory of Mod-A closed under submodules,
quotients and direct sums i.e. T is an hereditary pretorsion class. Let t : Mod-A → T be the
associated left exact preradical ([St, Corollary 1.8 page 138]). Then R = t is a right adjoint of
the inclusion functor L = i : T → Mod-A. Note that RL = IdT and η = IdIdT

so that L is full
and faithful. Hence, R has a monadic decomposition of monadic length 0. By Remark 1.11, the
comparison functor C : T → (Mod-A)1 is a category equivalence.

As a particular example we consider the case when A = C∗ for some coalgebra C over a
field k and T is the class of rational right C∗-modules i.e. the image of the canonical functor
C-CoMod → Mod-C∗.
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