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An exact solution for the 3D MHD stagnation-point flow of a micropolar
fluid

A. Borrelli1, G. Giantesio1, M.C. Patria1

aDipartimento di Matematica e Informatica, Università di Ferrara, via Machiavelli 35, 44121 Ferrara Italy

Abstract

The influence of a non-uniform external magnetic field on the steady three dimensional stagnation-point
flow of a micropolar fluid over a rigid uncharged dielectric at rest is studied. The total magnetic field is
parallel to the velocity at infinity. It is proved that this flow is possible only in the axisymmetric case. The
governing nonlinear partial differential equations are reduced to a system of ordinary differential equations
by a similarity transformation, before being solved numerically. The effects of the governing parameters on
the fluid flow and on the magnetic field are illustrated graphically and discussed.
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1. Introduction

The recent industrial processes are characterized by the use of new materials which cannot be described
by Newtonian fluids. Due to this reason, many non-Newtonian models have been proposed. Among these
models, the micropolar fluids have been introduced by Eringen [1] in order to take into consideration the
effects of local structure and micro-motions of the fluid particles which cannot be described by the classi-
cal models. The incompressible micropolar fluids represent liquids consisting of rigid, randomly oriented
spherical particles suspended in a viscous medium, where the deformation of fluid particles is ignored. The
related mathematical model is based on the introduction of a new vector field (the microrotation) which
describes the total angular velocity of the particles rotation. Hence a new equation is added representing the
principle of conservation of local angular momentum. Micropolar fluids describe the behavior of polymeric
fluids, exotic lubricants, biological liquids, microemulsions, alloys, colloidal suspensions, polymeric blends
and liquid crystals so that they have many applications in the chemical, pharmaceutical, engineering and
food industries. In parallel with practical applications ([2], [3], [4]), the theoretical aspects of the solution
have been investigated by many authors ([5], [6], [7], [8], [9], [10]).

A very vast amount of research on the effects of an electromagnetic field on the micropolar fluid flow
under different conditions and in the presence of various physical effects has been reported ([11], [12], [13],
[14], [15], [16], [17], [18], [9], [19]). These efforts have been made to study the MHD problems by many
physicists and mathematicians due to their relevant applications, complexity and mathematical challenges.
In particular, a relevant physical situation studied by several authors ([20], [21], [22] and the references
quoted herein) is when the flow and the magnetic field are aligned at infinity.

An important example of the mutual interaction between the fluid flow and the electromagnetic field
is the MHD stagnation-point flow. The orthogonal two-dimensional stagnation-point flow of a Newtonian
fluid on a flat plate first studied by Hiemenz ([23]) was extended to the three-dimensional case by Homman
([24]). From the mathematical point of view, stagnation-point flow is an important exact solution of the
Navier-Stokes equations which belongs to the similarity solutions class. By similarity transformations, the
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PDEs which govern the motion are reduced to a system of ODEs. Similarity solutions describe fundamental
physically relevant problems and are used as test for the accuracy of numerical methods. The stagnation-
point flow describes physically a jet of fluid which impinges on a rigid body. The problem of stagnation-point
flow was extended in numerous ways to include various physical effects ([25], [26], [27], [28]). In particular,
as far as the micropolar fluids are concerned, the plane stagnation-point flow was studied in [29], while the
three-dimensional one in [30]. Previously Ahmadi [31] obtained self-similar solutions of the boundary layer
equations for micropolar flow imposing a condition on the material parameters which make the equations
to contain only one parameter. This approach has been followed by several Authors (see for example [32],
[33], [34], [4]). We point out that in our research we have not required any condition so that three material
parameters appear in the dimensionless ODEs.

In this paper we study the influence of a non-uniform external magnetic field on the steady three dimen-
sional stagnation-point flow of a micropolar fluid. The only published result about this physical situation
can be found in [35] for the Newtonian fluids.

We examine the 3D stagnation-point flow of a micropolar fluid filling the half-space x2 ≥ 0 when the total
magnetic field H is parallel to the velocity at infinity. We search H depending on two sufficiently regular
unknown functions. The whole space is permeated by a non-uniform external magnetic field He while the
external electric field is absent. The expression of He assures that if we consider the 3D stagnation point
flow of an inviscid fluid (see [35]) we have that He coincides with the total magnetic field and it is parallel to
the fluid velocity in all the half space x2 > 0. Due to the no-slip condition for the velocity of the micropolar
fluid at x2 = 0, this alignment is disrupted near the boundary. However, as it is reasonable from the physical
point of view, the viscosity effects occur only in a boundary layer and so we require that the total magnetic
field and the fluid velocity are parallel at infinity. It is expected that this request is satisfied if the external
magnetic field is sufficiently weak.
The region occupied by the fluid is bordered by the boundary of a solid obstacle which is a rigid uncharged
dielectric at rest. We underline that many Authors ignore the details of the electromagnetic field in the
solid region but the relevance of the problem to any physical situation may be in doubt if we do not join
the solution in the fluid to a suitable solution in the solid. In [35] it is proved that the expression of the
electromagnetic field in the solid is formally the same independently of the fluid model over the solid.
In the first section we recall the results obtained in [35] when the fluid over the solid is inviscid. The analysis
of the inviscid case is very important because, as it is reasonable from the physical point of view, the viscosity
occurs only near the boundary. So we assume that at infinity the flow of the micropolar fluid approaches
the flow of an inviscid fluid for which the stagnation-point is shifted from the origin.

The goal of this paper is to prove that such steady 3D MHD stagnation-point flow of a micropolar fluid is
possible only if the flow is axisymmetric. The study of this problem leads to a non linear ordinary differential
problem which depends on three material parameters describing the micropolar nature (c1, c2, c3) and on
two parameters Rm (Reynolds number or magnetic Prandtl number) and βm (Alfvén number) related to the
magnetic nature of the flow. By solving numerically the problem, we find that, as usual in stagnation-point
flows, the influence of the viscosity appears only in layer lying the boundary whose thickness depends on
Rm and βm. More precisely, it increases as βm increases, while it decreases as Rm increases.
Some numerical examples and pictures are given in order to illustrate the effects due to the magnetic field
on the behavior of the solution. The numerical results are obtained by using the MATLAB routine bvp4c,
which is described in [36].

2. Preliminaries

Let us consider the steady three-dimensional MHD flow of a homogeneous, incompressible, electrically
conducting micropolar fluid near a stagnation-point filling the half-space S (see Figure 1), given by

S = {(x1, x2, x3) ∈ R3 : (x1, x3) ∈ R2, x2 > 0}. (1)

The coordinate axes are chosen in order to have that the stagnation-point coincides with the origin and the
canonical base of R3 is denoted by (e1, e2, e3). ∂S, i.e. the plane x2 = 0, is the boundary of a solid which
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is a rigid uncharged dielectric at rest occupying

S− = {(x1, x2, x3) ∈ R3 : (x1, x3) ∈ R2, x2 < 0}. (2)
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Figure 1: Description flow.

In the absence of free electric charges and external mechanical body forces and body couples, the MHD
equations for such a fluid are (see [6])

v · ∇v = −1
ρ
∇p + (ν + νr)4v + 2νr(∇×w) +

µe

ρ
(∇×H)×H,

∇ · v = 0,

Iv · ∇w = λ4w + λ0∇(∇ ·w)− 4νrw + 2νr(∇× v),

∇×H = σe(E + µev ×H),

∇×E = 0, ∇ ·E = 0, ∇ ·H = 0, in S , (3)

where v is the velocity field, w is the microrotation field, p is the pressure, E and H are the electric and
magnetic fields, ρ is the mass density, µe is the magnetic permeability, σe is the electrical conductivity, ν is
the kinematic newtonian viscosity coefficient, νr is the microrotation viscosity coefficient, λ, λ0 are material
parameters related to the coefficients of angular viscosity and I is the microinertia coefficient. The previous
parameters are positive constants.
We note that in [1] and in [5] equations (3) are slightly different because they are deduced as a special case
of a much more general model of microfluids. For the details we refer to [6], p.23.
Moreover we do not employ any condition on the parameters differently from what several Authors do ([31],
[33], [34], [4]).

As usual, we impose

v|x2=0 = 0, w|x2=0 = 0 (strict adherence condition), (4)

and we ask that the tangential components of H and E and the normal components of B = µe H and
D = εE (ε = dielectric constant) are continuous across the plane x2 = 0.

We assume that the external magnetic field

He = H∞ [x1e1 − (c + 1)x2e2 + cx3e3], H∞ = constant, (x1, x2, x3) ∈ R3, (5)
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permeates the whole physical space and that the external electric field Ee is absent. As it is easy to verify,
the non degenerate field lines of He belong to the Titeica surfaces x1x2x3 =constant which tend to the plane
x2 = 0 as |x1|, |x3| → +∞.
We chose the expression (5) for He because if we consider the 3D stagnation point flow of an inviscid fluid
(see [35]) we have that it coincides with the total magnetic field and it is parallel to the fluid velocity in all
the half space x2 > 0. Due to the no-slip condition for the velocity of the micropolar fluid at x2 = 0, this
alignment is disrupted near the boundary. However, as it is reasonable from the physical point of view, the
viscosity effects occur only in a boundary layer and so we require that the total magnetic field and the fluid
velocity are parallel at infinity. It is expected that this request is satisfied if the external magnetic field is
sufficiently weak. The alignment of the velocity and the magnetic field has been studied in several physical
situations ([20], [21], [22] and the references quoted herein).

The three-dimensional stagnation-point flow is determined by v, w in the following form

v1 = ax1f
′(x2), v2 = −a[f(x2) + cg(x2)], v3 = acx3g

′(x2),

w1 = −cx3F (x2), w2 = 0, w3 = x1G(x2), (x1, x3) ∈ R2, x2 ∈ R+, (6)

where f, g, F, G are sufficiently regular unknown functions and a, c are some constants. We recall that
(6)1,2,3 generalize the velocity of an inviscid fluid whose flow is the three dimensional stagnation-point flow
pointed to x2 = 0 ([25]). For this reason, we suppose a > 0, c 6= 0 and we exclude the case c ≤ −1,
because the inviscid fluid moves towards the wall x2 = 0. The dimensionless parameter c is a measure of
the three-dimensionality of the motion because the plane orthogonal stagnation-point flow can be obtained
by putting c = 0.

To satisfy conditions (4) we ask

f(0) = 0, f ′(0) = 0, g(0) = 0, g′(0) = 0,

F (0) = 0, G(0) = 0. (7)

We seek the total magnetic fields in the fluid and in the solid as

H = H∞ [x1h
′(x2)e1 − [h(x2) + ck(x2)]e2 + cx3k

′(x2)e3], x2 ≥ 0, and

Hs = H∞ [x1h
′
s(x2)e1 − [hs(x2) + cks(x2)]e2 + cx3k

′
s(x2)e3], x2 ≤ 0, (8)

respectively, where h, k, hs, ks are sufficiently regular unknown functions to be determined.
As far as the electromagnetic field in the solid is concerned, in [35] it is proved that if if Hs is not uniform

and its non-degenerate field lines belong to surfaces which asymptote to the plane x2 = 0 as |x1|, |x3| → +∞,
then Es = 0 and

Hs = H∞ [h′(0)x1e1 − (h′(0) + ck′(0))x2e2 + ck′(0)x3e3], x2 ≤ 0, (9)

where h(x2), k(x2) are the unknown functions in (8)1.

Thanks to the continuity of the normal component of B across the boundary x2 = 0, from (9) we deduce

h(0) + ck(0) = 0, ∀c ∈ (−1, +∞), c 6= 0,

from which follows

h(0) = 0, k(0) = 0. (10)

As far as the magnetic field in the fluid is concerned, as it is reasonable from the physical point of view,
we assume that at infinity the flow of the micropolar fluid approaches the flow of an inviscid fluid whose
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stagnation-point is shifted from the origin and it is (0, C, 0). Therefore we impose (see [35])

Condition P. The MHD three-dimensional stagnation-point flow of a micropolar fluid approaches at
infinity the flow of an inviscid fluid whose velocity, pressure and magnetic field are given by

v = a[x1e1 − (c + 1)(x2 − C)e2 + cx3e3],

p = −1
2
ρa2[x2

1 + (c + 1)2(x2 − C)2 + c2x2
3] + p0,

H = H∞ [x1e1 − (c + 1)(x2 − C)e2 + cx3e3], (x1, x3) ∈ R2, x2 ≥ C, (11)

where C and p0 are constants.

So we append to (3) the following conditions

lim
x2→+∞

f ′(x2) = 1, lim
x2→+∞

g′(x2) = 1,

lim
x2→+∞

F (x2) = 0, lim
x2→+∞

G(x2) = 0, (12)

lim
x2→+∞

h′(x2) = 1, lim
x2→+∞

k′(x2) = 1. (13)

The asymptotic behavior of the functions f , g, h and k at infinity depends on the constant C in (11) as

lim
x2→+∞

[f(x2)− x2] = −A, lim
x2→+∞

[g(x2)− x2] = −B, (14)

lim
x2→+∞

[h(x2)− x2] = −A, lim
x2→+∞

[k(x2)− x2] = −B, (15)

lim
x2→+∞

[f(x2) + cg(x2)− (c + 1)x2] = −(c + 1)C,

lim
x2→+∞

[h(x2) + ck(x2)− (c + 1)x2] = −(c + 1)C, (16)

so that
C =

A + cB

c + 1
= displacement thickness.

The constants A,B, C are not assigned a priori, but their values can be found by solving numerically the
problem.

We underline that (14) and (15) imply

v ×H = 0 at infinity. (17)

As it is proved in the Appendix, under the no-restrictive hypothesis that

(i) h′ vanishes at most at isolated points,

the following theorem holds

Theorem 1. Let a homogeneous, incompressible, electrically conducting micropolar fluid occupy the half-
space S embedded in the external electromagnetic field He = H∞ [x1e1 − (c + 1)x2e2 + cx3e3], Ee = 0. If
the total magnetic field in the solid is (9) and the hypothesis (i) is satisfied, under the assumption F, G ∈
L1([0, +∞)), then the steady three-dimensional MHD stagnation-point flow of such a fluid is possible only
if the flow is axisymmetric (i.e. c = 1, f = g, h = k, F = G in (6) and (8)1). Moreover E = 0 and

p =− ρ
a2

2
[x2

1 + 4f2(x2) + 4x2
3]− 2ρa(ν + νr)f ′(x2)− 4νrρ

∫ x2

0

F (s)ds

− µe

H2
∞

2
(x2

1 + 4x2
3)[h

′2(x2)− 1] + p0, (x1, x3) ∈ R2, x2 ∈ R+.
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Therefore

v =a[x1f
′(x2)e1 − 2f(x2)e2 + x3f

′(x2)e3], w = F (x2)(−x3e1 + x1e3),

H =H∞ [x1h
′(x2)e1 − 2h(x2)e2 + x3h

′(x2)e3], (x1, x3) ∈ R2, x2 ∈ R+, (18)

with (f, h, F ) solution of the problem

ν + νr

a
f ′′′ + 2ff ′′ − f ′2 + 1 + 2

νr

a
F ′ − µe

ρ

H2
∞

a2
(2hh′′ − h′2 + 1) = 0,

λF ′′ + Ia(2F ′f − Ff ′)− 2νr(2F + af ′′) = 0,

h′′ + 2σeµea(fh′ − hf ′) = 0,

f(0) = 0, f ′(0) = 0, F (0) = 0, h(0) = 0,

lim
x2→+∞

f ′(x2) = 1, lim
x2→+∞

F ′(x2) = 0, lim
x2→+∞

h′(x2) = 1. (19)

This theorem also furnishes
A = B = C.

It is now convenient to rewrite the previous boundary value problem in dimensionless form in order to reduce
the number of the material parameters. To this end we put

η =
x2

L
, L =

√
ν + νr

a
, ϕ(η) =

f(Lη)
L

, Φ(η) =
2νr

a2

F (Lη)
L

, Ψ(η) =
h(Lη)

L
; (20)

so problem (19) becomes

ϕ′′′ + 2ϕϕ′′ − ϕ′2 + 1 + Φ′ − βm(2ΨΨ′′ −Ψ′2 + 1) = 0,

Φ′′ + 2c3Φ′ϕ− Φ(c3ϕ
′ + c2)− c1ϕ

′′ = 0,

Ψ′′ + 2Rm(ϕΨ′ −Ψϕ′) = 0,

ϕ(0) = 0, ϕ′(0) = 0, Φ(0) = 0, Ψ(0) = 0,

lim
η→+∞

ϕ′(η) = 1, lim
η→+∞

Φ(η) = 0, lim
η→+∞

Ψ′(η) = 1, (21)

where c1, c2, c3, βm, Rm are given by

c1 =
4ν2

r

λa
, c2 =

4νr(ν + νr)
λa

, c3 =
I

λ
(ν + νr),

βm =
µe

ρ

H2
∞

a2
(Alfvén number), Rm = (ν + νr)σeµe (Reynolds number). (22)

We recall that this particular Reynolds number is also known in the literature as the magnetic Prandtl
number.

3. Discussion of the flow

As we can see from problem (21), the flow depends on the choice of several parameters: c1, c2, c3

describing the micropolar nature of the fluid, Rm characterizing the electromagnetic and viscosity properties
of the fluid and βm related to the magnetic permeability and to the strength of the external magnetic field.
The aim of this Section is to solve numerically problem (21) and to show the influence of the previous
parameters on the flow.

6



  

The values of Rm and βm are chosen according to [20]. As far as the value of βm is concerned, we have that
βm has to be less than 1 in order to preserve the parallelism of H and v at infinity, as it will be underlined
in the sequel ([35], [20]). The values of c1, c2, c3 are chosen according to [30].

The numerical solution of the problem is computed through the bvp4c MATLAB routine. Such a rou-
tine is a finite difference code that implements the three-stage Lobatto IIIa formula. This is a collocation
formula and here the collocation polynomial provides a C1-continuous solution that is fourth-order accurate
uniformly in [0, 5]. Mesh selection and error control are based on the residual of the continuous solution.
We set the relative and the absolute tolerance equal to 10−7. The method was used and described in [36].
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Figure 2: The first figure shows the velocity (ϕ, ϕ′, ϕ′′), the second the microrotation (Φ, Φ′) and the third the total magnetic
field (Ψ, Ψ′).

In Figure 21 we plot the profiles ϕ,ϕ′, ϕ′′ when c1 = 0.5, c2 = 3.0, c3 = 0.5, Rm = 1 and βm = 0.5, while
Figure 22 shows the behavior of Φ,Φ′ for the same values of the parameters. The trend of Ψ,Ψ′ is given in
Figure 23.
We recall that these functions has a relevant physical meaning:
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• ϕ describes the velocity

v = a[x1ϕ
′(η)e1 − 2Lϕ(η)e2 + x3ϕ

′(η)e3];

• Φ characterizes the microrotation

w =
a2L

2νr
Φ(η)(−x3e1 + x1e3);

• Ψ determines the total magnetic field

H = H∞ [x1Ψ′(η)e1 − 2LΨ(η)e2 + x3Ψ′(η)e3].

Hence Figure 2 represents the behavior of the velocity, the microrotation and the total magnetic field.
We have plotted the profiles of ϕ, ϕ′, ϕ′′, Φ, Φ′, Ψ, Ψ′ only for these values of the parameters because

they have an analogous behavior for c1 6= 0.5, c2 6= 3.0, c3 6= 0.5, Rm 6= 1 and βm 6= 0.5.
As one can see from Figure 2, the numerical solution (ϕ, Φ, Ψ) of problem (21) satisfies

lim
η→+∞

[ϕ(η)− η] = −α, lim
η→+∞

Φ(η) = 0, lim
η→+∞

[Ψ(η)− η] = −α, with α =
A

L
.

The parameter α is proportional to the displacement thickness which represents the quote of the plane
towards which the inviscid fluid, whose flow is approached at infnity by the micropolar fluid, is pointed. We
denote by

• ηϕ the value of η such that if η > ηϕ then ϕ ∼= η − α;

• ηΦ the value of η such that if η > ηΦ, then Φ ∼= 0.

The values of ηϕ and ηΦ are computed numerically by requiring an accuracy of at least 99%.
Thanks to these notations, the influence of the viscosity on the velocity and on the microrotation appears
only in a layer lining the boundary whose thickness is ηϕ for the velocity and ηΦ for the microrotation. The
thickness δ of the boundary layer for the flow is defined as

δ := max(ηϕ, ηΦ).

As it can be expected from the physical point of view, beyond the boundary layer the fluid behaves as an
inviscid one.

In order to study the influence of the parameters c1, c2, c3, βm and Rm on the motion we provide Table
1. Actually, this Table shows the values of ϕ′′(0), Ψ′(0), Φ′(0), α, ηϕ, ηΦ, δ. These quantities are important
from a physical point of view:

• ϕ′′(0) and Φ′(0) furnish the skin friction (τ0) and the skin couple friction (γ0) at x2 = 0:

τ0 = ρa2Lϕ′′(0)(x1e1 + x3e3),

γ0 = −ρλ
a2

2νr
Φ′(0)(x3e1 − x1e3);

• Ψ′(0) determines the magnetic field on the boundary of the obstacle:

H|η=0 = H∞Ψ′(0)(x1e1 + x3e3); (23)

• α is proportional to the displacement thickness C;

• ηϕ, ηΦ, δ are related to the thickness of the boundary layer.
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Table 1: Descriptive quantities of the motion for several values of c1, c2, c3, Rm and βm.

Rm βm c1 c2 c3 ϕ′′(0) Ψ′(0) Φ′(0) α ηϕ ηΦ δ

1 0.20 0.10 1.50 0.10 1.1706 0.5311 -0.0523 0.6646 2.4608 1.5755 2.4608
0.50 1.1723 0.5313 -0.0497 0.6648 2.4775 1.2271 2.4775

3.00 0.10 1.1737 0.5313 -0.0436 0.6652 2.4775 0.9920 2.4775
0.50 1.1745 0.5314 -0.0425 0.6653 2.4858 0.7886 2.4858

0.50 1.50 0.10 1.1275 0.5311 -0.2615 0.6527 2.2941 2.8560 2.8560
0.50 1.1364 0.5321 -0.2491 0.6536 2.3691 2.2341 2.3691

3.00 0.10 1.1436 0.5319 -0.2181 0.6560 2.3791 2.3391 2.3791
0.50 1.1474 0.5323 -0.2127 0.6564 2.4141 2.0090 2.4141

0.50 0.10 1.50 0.10 0.9267 0.4717 -0.0447 0.9255 3.5362 1.8356 3.5362
0.50 0.9284 0.4720 -0.0427 0.9256 3.5545 1.3821 3.5545

3.00 0.10 0.9301 0.4719 -0.0365 0.9265 3.5545 0.8903 3.5545
0.50 0.9308 0.4720 -0.0357 0.9266 3.5612 0.6852 3.5612

0.50 1.50 0.10 0.8845 0.4712 -0.2234 0.9084 3.3628 3.4478 3.4478
0.50 0.8934 0.4726 -0.2138 0.9089 3.4578 2.7376 3.4578

3.00 0.10 0.9020 0.4723 -0.1825 0.9134 3.4595 2.8826 3.4595
0.50 0.9056 0.4729 -0.1787 0.9136 3.4962 2.4658 3.4962

100 0.20 0.10 1.50 0.10 1.1604 0.1608 -0.0528 0.6346 2.1290 1.5672 2.1290
0.50 1.1621 0.1609 -0.0502 0.6348 2.1424 1.2371 2.1424

3.00 0.10 1.1635 0.1610 -0.0440 0.6353 2.1474 1.0353 2.1474
0.50 1.1643 0.1611 -0.0429 0.6354 2.1541 0.8419 2.1541

0.50 1.50 0.10 1.1170 0.1587 -0.2645 0.6219 1.9607 2.7409 2.7409
0.50 1.1260 0.1594 -0.2515 0.6231 2.0123 2.1507 2.1507

3.00 0.10 1.1330 0.1597 -0.2202 0.6255 2.0340 2.2491 2.2491
0.50 1.1370 0.1601 -0.2146 0.6261 2.0640 1.9440 2.0640

0.50 0.10 1.50 0.10 0.9114 0.1386 -0.0465 0.8048 2.6942 1.8123 2.6942
0.50 0.9133 0.1388 -0.0442 0.8052 2.7192 1.4205 2.7192

3.00 0.10 0.9149 0.1389 -0.0378 0.8061 2.7226 1.1320 2.7226
0.50 0.9156 0.1389 -0.0369 0.8063 2.7326 0.8853 2.7326

0.50 1.50 0.10 0.8683 0.1363 -0.2329 0.7835 2.4441 3.0610 3.0610
0.50 0.8778 0.1371 -0.2218 0.7856 2.5442 2.4375 2.5442

3.00 0.10 0.8858 0.1375 -0.1892 0.7904 2.5675 2.5642 2.5675
0.50 0.8898 0.1379 -0.1848 0.7914 2.6175 2.2241 2.6175
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From Table 1 we can make some considerations on the influence of the parameters on these quantities.
First of all, we see that if we fix two parameters among c1, c2, c3, then the values of α, ϕ′′(0), Φ′(0)

• increase as c2 or c3 increases;

• decrease as c1 increases.

Figures from 3 to 5 elucidate the dependence of the functions ϕ′, Φ on the parameters c1, c2, c3. We can
see that the function which appears most influenced by c1, c2, c3 is Φ, in other words the microrotation.
More precisely, the profile of Φ rises as c2 or c3 increases and c1 decreases; c1 is the parameter that most
influences the microrotation. The other function, ϕ′, does not show considerable variations as c1, c2, c3

assume different values. This behavior is the same as in the absence of the electromagnetic field or when
the electromagnetic field is uniform ([30], [13]).
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Figure 3: ϕ′, Φ profiles when c1 changes.
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ϕ′ c2 =1.5 →

Rm =1, βm =0.5, c1 =0.5, c3 =0.5.
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η

Φ
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c2 =3 →

Figure 4: ϕ′, Φ profiles when c2 changes.

As far as the dependence on Rm and βm is concerned, from Table 1 we have that:

• if βm increases, then α and Φ′(0) increase, while ϕ′′(0) and Ψ′(0) decrease;
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Figure 5: ϕ′, Φ profiles when c3 changes.

• if Rm increases, then α, ϕ′′(0), |Φ′(0)| and Ψ′(0) decrease.

Table 1 underlines that the thickness of the boundary layer depends on Rm and βm. As in the Newtonian
case ([35]), it increases when βm increases (as is easy to see in Figures 61 and 62), while it decreases when
Rm increases (as is easy to see in Figures 63 and 64). This behavior is not surprising because βm is a
measure of the strength of the applied magnetic field and as it is underlined in [20] when the magnetic field
is strong the disturbances are no longer contained within a boundary layer along the wall. This means that
boundary conditions can no longer be prescribed at infinity. In particular, in [20] it is proved that in a
perfectly conducting fluid the displacement thickness becomes infinite as βm goes to 1−.

To compare the thickness of the boundary layer in different physical situations, we provide Table 2.

Table 2: Boundary layer in the plane orthogonal (δorth) and in the three-dimensional (δ) stagnation-point flow.

Rm βm c1 c2 c3 δorth δ

1 0.20 0.10 1.50 0.10 3.0960 2.4608
0.50 3.00 0.50 3.0310 2.4141

0.50 0.10 1.50 0.10 4.2831 3.5362
0.50 3.00 0.50 4.2431 3.4962

100 0.20 0.10 1.50 0.10 2.5992 2.1290
0.50 3.00 0.50 2.5042 2.0640

0.50 0.10 1.50 0.10 3.2894 2.6942
0.50 3.00 0.50 3.1761 2.6175

More precisely, in Table 2 we have listed the values of the thickness of the boundary layer in the plane
orthogonal ([14]) and three dimensional flow when the magnetic field is aligned to the velocity at infinity.
As one can see, in the present case (3D) δ is slightly smaller than δorth. We recall that in the absence of the
electromagnetic field ([13]), δ is 1.9071 (c = 1, c1 = c3 = 0.1, c2 = 1.5) and 1.8464 (c = 1, c1 = c3 = 0.5,
c2 = 3.0). These numerical results show that the magnetic field (18)3 increases the thickness of the boundary
layer.
In [13] it is also been studied the influence of a uniform magnetic field on the 3D flow and it has been
underlined that the strength of the magnetic field reduces δ, differently from the present study.

Moreover, as in [13], it is possible to classify the stagnation-point as nodal or saddle point and as
attachment or separation point. Since ϕ′′(0) is positive, the origin is always a nodal point of attachment.

Finally, we notice that the micropolar nature of the fluid reduces all the descriptive quantities of the
motion in comparison to those of the Newtonian fluid, especially the thickness of the boundary layer for the
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Figure 6: Plots showing the thickness of the boundary layer for different Rm and βm, respectively.
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velocity ([35]).

4. Conclusions

In this paper we study the MHD three-dimensional stagnation-point flow of a micropolar fluid when
the total magnetic field is aligned to the velocity at infinity. The region where the fluid motion occurs is
bordered by the boundary of a solid obstacle which is a rigid uncharged dielectric at rest. By means of
similarity transformations, we reduce the MHD PDEs to a nonlinear system of ODEs which depends on
three material parameters c1, c2, c3 describing the micropolar nature of the flow and on two parameters
Rm (Reynolds or magnetic Prandtl number) and βm (Alfvén number) related to the magnetic effects. This
system has been numerically integrated.
The results obtained show that

• The total magnetic field is parallel to the velocity at infinity only if the flow is axisymmetric.

• The thickness of the layer where the viscosity effects appear (boundary layer) depends in a relevant
way on Rm and βm and it is smaller than that in the Newtonian case ([35]).

• The alignment of the magnetic field and of the velocity increases the thickness of the boundary layer
in comparison to the case in the absence of the magnetic field and when a uniform magnetic field is
applied ([13]).

• The displacement thickness increases as c2, c3, βm increase and c1, Rm decrease.

• The total magnetic field on the boundary of the solid obstacle increases as βm, Rm decrease and it is
not influenced by the micropolar parameter c1, c2, c3.

• The skin friction increases as c2, c3 increase and c1, βm, Rm decrease.

• The strength of the skin couple friction increases as c1 increase and c2, c3, βm, Rm decrease.

• Among the three micropolar parameters c1, c2, c3, the parameter c1 is the one which influences most
the motion.

• The micropolar nature of the fluid reduces all the descriptive quantities of the flow in comparison to
the Newtonian case.
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5. Appendix

Proof of Theorem 1:
Let E = E1e1+E2e2+E3e3 be the total electric field. Then the transmission conditions across the boundary
and the fact that S− is occupied by a rigid uncharged dielectric at rest require that

E1 = 0, E3 = 0 at x2 = 0. (24)

From (3)5 follows that

E = −∇ψ, (with ψ ∈ C2(S) electrostatic potential),
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and equation (3)4 furnishes

∂ψ

∂x1
= −H∞

σe
cx3{k′′(x2) + σeµea[(f(x2) + cg(x2))k′(x2)− (h(x2) + ck(x2))g′(x2)]},

∂ψ

∂x2
= H∞µeacx1x3[h′(x2)g′(x2)− k′(x2)f ′(x2)],

∂ψ

∂x3
= −H∞

σe
x1{−h′′(x2)− σeµea[(f(x2) + cg(x2))h′(x2)− (h(x2) + ck(x2))f ′(x2)]}. (25)

Since E is divergence free, from (25)2, we get

[h′(x2)g′(x2)− k′(x2)f ′(x2)]′ = 0, x2 ∈ R+,

which due to the conditions at infinity (12)1,2 and (13), gives

h′(x2)g′(x2) = k′(x2)f ′(x2), ∀x2 ∈ R+. (26)

The previous equality implies the following relationships of proportionality

k′(x2) = l(x2)h′(x2), g′(x2) = l(x2)f ′(x2), (27)

where l = l(x2) is a sufficiently regular unknown function satisfying the condition

lim
x2→+∞

l(x2) = 1. (28)

From (26) we have ψ = ψ(x1, x3). Then from (25)1,3 and from the behavior at infinity ((12)1,2, (13), (14),
(15)) we deduce

k′′(x2) + σeµea[(f(x2) + cg(x2))k′(x2)− (h(x2) + ck(x2))g′(x2)] = 0,

h′′(x2) + σeµea[(f(x2) + cg(x2))h′(x2)− (h(x2) + ck(x2))f ′(x2)] = 0. (29)

Hence
E = 0.

If we substitute (27) into (29)1, then we obtain

lh′′ + l′h′ + σeµea[(f + cg)lh′ − (h + ck)lf ′] = 0, (30)

which by virtue of (29)2 reduces to

l′(x2)h′(x2) = 0, ∀x2 ∈ R+. (31)

From relation (31), hypothesis (i) and (28), we find

l(x2) ≡ 1, ∀x2 ∈ R+,

so that the relationships (27) are reduced to

k′(x2) = h′(x2), g′(x2) = f ′(x2). (32)

Thanks to (10) and (32), we have

k(x2) = h(x2), g(x2) = f(x2), ∀x2 ∈ R+, and A = B = C. (33)

On substituting (32) into (29), we find that h has to satisfy

h′′(x2) + σeµea(c + 1)[f(x2)h′(x2)− h(x2)f ′(x2)] = 0. (34)
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In order to determine p, f, F, G, we substitute (33), and (6) into (3)1,3 so that we have

ax1

[
(ν + νr)f ′′′ + a(c + 1)ff ′′ − af ′2 +

2νr

a
G′ − µe

ρa
H2
∞(c + 1)hh′′

]
=

1
ρ

∂p

∂x1
,

(ν + νr)a(c + 1)f ′′ + a2(c + 1)2ff ′ + 2νr(cF + G) +
µe

ρ
H2
∞ [x2

1 + c2x2
3]h

′h′′ = −1
ρ

∂p

∂x2
,

acx3

[
(ν + νr)f ′′′ + a(c + 1)ff ′′ − acf ′2 +

2νr

a
F ′ − µe

ρa
H2
∞(c + 1)hh′′

]
=

1
ρ

∂p

∂x3
,

λF ′′ + Ia[F ′(f + cg)− cFg′]− 2νr(2F + ag′′) = 0,

λG′′ + Ia[G′(f + cg)−Gf ′]− 2νr(2G + af ′′) = 0. (35)

By integrating (35)2 and supposing that, far from the wall, the pressure p has the same behavior as for
an inviscid fluid, whose pressure is given by (11)2, we find

p =− ρ
a2

2
[x2

1 + (c + 1)2f2(x2) + c2x2
3]− ρa(ν + νr)(c + 1)f ′(x2)

− 2νrρ

∫ x2

0

[cF (s) + G(s)]ds− µe

H2
∞

2
(x2

1 + c2x2
3)[h

′2(x2)− 1] + p0. (36)

So by (35)1,3, we obtain

ν + νr

a
f ′′′ + (c + 1)ff ′′ − f ′2 + 1 +

2νr

a2
G′ − µe

ρ

H2
∞

a2
[(c + 1)hh′′ − h′2 + 1] = 0,

ν + νr

a
f ′′′ + (c + 1)ff ′′ − cf ′2 + c +

2νr

a2
F ′ − µe

ρ

H2
∞

a2
[(c + 1)hh′′ − ch′2 + c] = 0. (37)

If we use the transformations (20) and we put Γ(η) =
2νr

a2

G(Lη)
L

, then (37), (35)4,5, (34) can be written
in dimensionless form as

ϕ′′′ + (c + 1)ϕϕ′′ − ϕ′2 + 1 + Γ′ − βm[(c + 1)ΨΨ′′ −Ψ′2 + 1] = 0,

ϕ′′′ + (c + 1)ϕϕ′′ − cϕ′2 + c + Φ′ − βm[(c + 1)ΨΨ′′ − cΨ′2 + c] = 0,

Φ′′ + c3(c + 1)Φ′ϕ− Φ(cc3ϕ
′ + c2)− c1ϕ

′′ = 0,

Γ′′ + c3(c + 1)Γ′ϕ− Γ(c3ϕ
′ + c2)− c1ϕ

′′ = 0,

Ψ′′ + Rm(c + 1)(ϕΨ′ −Ψϕ′) = 0, (38)

where c1, c2, c3, βm, Rm are given by (22).
The boundary conditions (7), (12), (13) and (10) in dimensionless form become:

ϕ(0) = 0, ϕ′(0) = 0, Φ(0) = 0, Γ(0) = 0, Ψ(0) = 0,

lim
η→+∞

ϕ′(η) = 1, lim
η→+∞

Φ(η) = 0, lim
η→+∞

Γ(η) = 0, lim
η→+∞

Ψ′(η) = 1. (39)

We note that the equations (38)1,2 are compatible if, and only if,

(c− 1)[ϕ′2 − 1− βm(Ψ′2 − 1)] + Γ′ − Φ′ = 0. (40)

We now show that c = 1.
By contradiction, suppose c 6= 1.
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Computing (40), (38) at η = 0 gives

Φ′(0)− Γ′(0) = (c− 1)[−βmΨ′2(0) + βm − 1],

Γ′(0) = βm[1−Ψ′2(0)]− ϕ′′′(0)− 1,

Φ′(0) = cβm[1−Ψ′2(0)]− ϕ′′′(0)− c,

Φ′′(0) = c1ϕ
′′(0) = Γ′′(0), Ψ′′(0) = 0. (41)

If we differentiate (38)3,4, then it follows

Γ′′′(0) = −c2[βmΨ′2(0) + 1− βm] + (c1 − c2)ϕ′′′(0),

Φ′′′(0)− Γ′′′(0) = −c2(c− 1)[βmΨ′2(0) + 1− βm], (42)

where we have used (41)1,2.
Differentiating (38)5 and (40) furnishes

Ψ′′′(0) = 0, Φ′′′(0)− Γ′′′(0) = 2(c− 1)ϕ′′2(0). (43)

By equating (42)2 and (43)2, since c 6= 1 we get

Ψ′2(0) =
1

βm

[
− 2

c2
ϕ′′2(0) + βm − 1

]
, (44)

which gives the absurdum if βm < 1.

We now turn to the case βm ≥ 1.
On substituting (44) into (41)2,3, we obtain

Γ′(0) =
2
c2

ϕ′′2(0)− ϕ′′′(0), Φ′(0) =
2c

c2
ϕ′′2(0)− ϕ′′′(0). (45)

The twice differentiation of (38)3,4 together with (45) and (41)4 gives

ΦIV (0)− ΓIV (0) = 2c3(c− 1)ϕ′′(0)
[
(c + 1)

c2
ϕ′′2(0)− ϕ′′′(0)

]
. (46)

Evaluating in η = 0 the twice differentiation of (38)5 and (40) furnishes

ΨIV (0) = Rm(c + 1)Ψ′(0)ϕ′′(0),

ΦIV (0)− ΓIV (0) = 2(c− 1)ϕ′′(0)
[
3ϕ′′′(0) + Rm(c + 1)

(
2
c2

ϕ′′2(0) + 1− βm

)]
. (47)

If we equate (46) and (47)2, taking into account that c 6= 1, we arrive at
[
(3 + c3)ϕ′′′(0) +

(c + 1)
c2

(2Rm − c3)ϕ′′
2(0) + Rm(c + 1)(1− βm)

]
ϕ′′(0) = 0. (48)

From the last equation, the proof falls naturally into two cases

(A) ϕ′′(0) 6= 0 and

ϕ′′′(0) = − c + 1
3 + c3

[
2Rm − c3

c2
ϕ′′2(0) + Rm(1− βm)

]
; (49)
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(B) ϕ′′(0) = 0.

We first consider case (A).
Differentiating three times of (38)3 gives

ΦV (0)− ΓV (0) =(c− 1)
{

(3c3c1 + 2c2)ϕ′′
2(0) + c3

[ 4
c2

(c + 1)ϕ′′2(0)− 3ϕ′′′(0)
]
ϕ′′′(0)

}
, (50)

where we used (43)2, (41)4, (45).
If we differentiate (38)1 and we use (41)4,5, than we have

ϕIV (0) = −c1ϕ
′′(0). (51)

Thanks to (44) and (51), from another differentiation of (38)5 and (40), we get

ΨV (0) = 2Rm(c + 1)[Ψ′(0)ϕ′′′(0)],

ΦV (0)− ΓV (0) =2(c− 1)
{

3ϕ′′′2(0) + 2Rm(c + 1)
[ 2
c2

ϕ′′2(0) + 1− βm

]
ϕ′′′(0)− 4c1ϕ

′′2(0)
}

. (52)

Matching (50) and (52)2, since c 6= 1, it holds

3(2 + c3)ϕ′′′
2(0) + 4(c + 1)

[
2Rm − c3

c2
ϕ′′2(0) + Rm(1− βm)

]
ϕ′′′(0)− (8c1 + 3c1c3 + 2c2)ϕ′′

2(0) = 0. (53)

Substituting (49) into (53), we get the absurdum

ϕ′′′2(0) = −8c1 + 3c1c3 + 2c2

6 + c3
ϕ′′2(0), (54)

because c1, c2, c3 are positive constants and ϕ′′(0) 6= 0 by assumption.

We now proceed with case (B).
The hypothesis ϕ′′(0) = 0 simplifies the previous relationships in the following way

ϕIV (0) = 0, Ψ′2(0) =
βm − 1

βm
, ΨIV (0) = 0,

Φ′(0) = Γ′(0) = −ϕ′′′(0), Φ′′(0) = Γ′′(0) = 0,

Φ′′′(0) = Γ′′′(0) = (c1 − c2)ϕ′′′(0), ΦIV (0) = ΓIV (0) = 0. (55)

Equation (53) reduces to

[3(2 + c3)ϕ′′′(0) + 4(c + 1)Rm(1− βm)]ϕ′′′(0) = 0, (56)

which gives rise to two subcases:

(B1) ϕ′′′(0) 6= 0, βm > 1 and

ϕ′′′(0) =
4Rm(c + 1)(βm − 1)

3(2 + c3)
; (57)

(B2) ϕ′′′(0) = 0.
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We now analyze case (B1).
If we differentiate twice (38)1, then in η = 0 we have

ϕV (0) = (c2 − c1)ϕ′′′(0). (58)

Moreover another differentiation of (38)3,4 gives

ΦV I(0)− ΓV I(0) = 0. (59)

By differentiating (38)5 and (40), we get

ΨV I(0) = 0, ΦV I(0)− ΓV I(0) = 0, (60)

and, by differentiating once again, it follows

ΦV II(0)− ΓV II(0) =(c− 1){[15(c1 − c2)c3 + 6c2]ϕ′′′(0) + 4Rmc2(c + 1)(1− βm)}ϕ′′′(0). (61)

If we evaluate in η = 0 the fifth differentiation of (38)5 and of (40), by virtue of (58), (43) then we deduce

ΨV II(0) = −4Rm(c + 1)(c1 − c2)ϕ′′′(0)Ψ′(0),

ΦV II(0)− ΓV II(0) = 2(c− 1)(c1 − c2)[−15ϕ′′′(0) + 4Rm(βm − 1)(c + 1)]ϕ′′′(0). (62)

Equating (61) and (62)2, we find

[15(2 + c3)(c1 − c2) + 6c2]ϕ′′′(0) = 4Rm(c + 1)(βm − 1)(2c1 − c2). (63)

If we take into account (57) and (22)1,2, we obtain

c3 = −
24

ννr

λa

c2 + 12
ννr

λa

, (64)

which gives the absurdum c3 < 0.

To conclude the proof it remains to analyze case (B2).
The hypotheses ϕ′′(0) = ϕ′′′(0) = 0 furnish

Φ′(0) = 0, Γ′(0) = 0. (65)

Taking into account (40), system (38) reduces to

ϕ′′′ + (c + 1)ϕϕ′′ +
cΓ′ − Φ′

c− 1
− βm(c + 1)ΨΨ′′ = 0,

Φ′′ + c3(c + 1)Φ′ϕ− Φ(cc3ϕ
′ + c2)− c1ϕ

′′ = 0,

Γ′′ + c3(c + 1)Γ′ϕ− Γ(c3ϕ
′ + c2)− c1ϕ

′′ = 0,

Ψ′′ + Rm(c + 1)(ϕΨ′ −Ψϕ′) = 0. (66)

If we consider the Cauchy problem obtained by adding to (66) the initial conditions

ϕ(0) = 0, ϕ′(0) = 0, ϕ′′(0) = 0, Φ(0) = 0, Φ′(0) = 0,

Γ(0) = 0, Γ′(0) = 0, Ψ(0) = 0, Ψ′(0) = ±
√

βm − 1
βm

, (67)

then its unique solution is given by

ϕ(η) = 0, Φ(η) = 0, Γ(η) = 0, Ψ(η) = ±
√

βm − 1
βm

η, ∀η ∈ R+, (68)

which is clearly absurdum because boundary conditions (39)6,9 are not satisfied.
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HIGHLIGHTS (FOR REVIEW)

Ferrara, April, 11th, 2014

Subject: SUBMISSION OF A REVISED ORIGINAL ARTICLE

Dear Review,
we send you our revised manuscript: ”An exact solution for the 3D MHD
stagnation-point flow of a micropolar fluid” for possible publication on Commu-
nications in Nonlinear Science and Numerical Simulation.

We have followed your valuable comments on our paper and we have made
every change that we have been asked by you.

We recall that in the paper we obtain an exact solution for the steady MHD
3D stagnation-point flow of a homogeneous, incompressible, electrically con-
ducting micropolar fluid. The space is permeated by a not uniform external
magnetic field and the total magnetic field in the fluid is parallel to the velocity
at infinity. The region where the fluid motion occurs is bordered by the bound-
ary of a solid obstacle which is a rigid uncharged dielectric at rest. In a previous
paper we proved that the expression of the electromagnetic field in the solid is
formally the same independently of the fluid model over the solid.

By means of similarity transformations, we reduce the MHD PDEs to a
nonlinear system of ODEs which depends on three material parameters c1, c2,
c3 describing the micropolar nature of the flow and on two parameters Rm

(Reynolds number) and βm (Alfvén number) characterizing the magnetic effects.
This system has been numerically integrated and discussed.

The results obtained show that

• The total magnetic field is parallel to the velocity at infinity only if the
flow is axisymmetric.

• The thickness of the layer where the viscosity effects appear (boundary
layer) depends in a relevant way on Rm and βm and it is smaller than that
in the Newtonian case ([35]).

• The alignment of the magnetic field and of the velocity increases the thick-
ness of the boundary layer in comparison to the case in the absence of the
magnetic field and when a uniform magnetic field is applied ([13]).

• The displacement thickness increases as c2, c3, βm increase and c1, Rm de-
crease.

• The total magnetic field on the boundary of the solid obstacle increases
as βm, Rm decrease and it is not influenced by the micropolar parameter
c1, c2, c3.

• The skin friction increases as c2, c3 increase and c1, βm, Rm decrease.

• The strength of the skin couple friction increases as c1 increase and c2, c3, βm, Rm

decrease.
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• Among the three micropolar parameters c1, c2, c3, the parameter c1 is the
one which influences most the motion.

• The micropolar nature of the fluid reduces all the descriptive quantities
of the flow in comparison to the Newtonian case.

Thank you very much for your consideration.
Sincerely yours,

Prof. Alessandra Borrelli, Dott. Giulia Giantesio, Prof. Maria Cristina Patria.
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