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ABSTRACT
We study the nonlinear almost compressible 2D Oberbeck-Boussinesq system, characterized by an extra buoyancy term where the density
depends on the pressure, and a corresponding dimensionless parameter β, proportional to the (positive) compressibility factor β0. The local
in time existence of the perturbation to the conductive solution is proved for any “size” of the initial data. However, unlike the classical
problem where β0 = 0, a smallness condition on the initial data is needed for global in time existence, along with smallness of the Rayleigh
number. Removing this condition appears quite challenging, and we leave it as an open question.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5102063

I. INTRODUCTION
In modeling convective phenomena, almost all available results of existence and stability are achieved in the Oberbeck-Boussinesq

(O-B) approximation.1,7,8,11,15,17,18 As is well known, in spite of the need of compressibility to produce convection, the peculiarity of this
approximation consists in keeping the incompressibility hypothesis ∇ ⋅ v⃗ = 0 (with v⃗ velocity field of the fluid), while allowing for (lin-
ear) variation of density with temperature only in the term involving the external force (gravity). It must be noted that the O-B model
is pretty accurate even for gas flow although the corresponding instability prediction occurs at a threshold lower than that suggested by
experiments.

However, in the recent paper,9,10 it was shown that the O-B model presents some basic drawbacks. In the first place, it was noted that any
change in the density would be at odds with the Gibbs law if dependence on p was not taken into account; in addition, such a dependence was
also necessary in order to avoid instability in wave propagation.

Thus, in order to make the O-B model more “natural” and accurate, in Ref. 9, among other things, it was proposed a rather general
approach, consistent with thermodynamical principles, that includes an extra buoyancy term depending on the pressure field. In other words,
the variation of the density, ρ, in the gravity force has the following expression:

ρ = ρ0(1 − α0(T − T0) + β0(p − p0)),

where T and p are the temperature and pressure fields, respectively. Moreover, ρ0, T0, and p0 are (constant) gauge density, tem-
perature, and pressure, respectively, while α0 and β0 are, respectively, the thermal expansion coefficient and the compressibility. We
assume that they are positive constants depending on the material. The classical O-B approximation is then reobtained by setting
β0 = 0.

One important consequence of this more comprehensive scheme is that the well-posedness of the associated mathematical problem
requires now the pressure field to be treated as an independent unknown, satisfying a suitable elliptic problem and subject to Robin boundary
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conditions (see Ref. 3),

∇p ⋅ n⃗ + β0p = 0, on ∂Ω,

where n⃗ is the outer normal.
It is just this feature that makes the problem particularly interesting and more difficult than the classical one.4,6

In order to test some significant aspects of the generalized model, in the joint paper,16 the second author has investigated its stability
predictions in the simple physical setting of the classical Bénard problem of a horizontal layer of fluid heated from below. Here, the basic state
s0 = (v⃗, T, p)0 consists of the fluid at rest, subject to a constant temperature gradient and a suitable corresponding pressure distribution. More
precisely, denoting by z the vertical coordinate, h the thickness of the layer, g the gravity, and T0 and T0 − δT < T0 the temperatures at the
bottom and the top of the layer, we have that s0 is characterized by

v⃗ ≡ 0, T(z) = T0 −
δT
h

z

p(z) = p0 + pb e−ρ0gβ0z +
1
β2

0

α0δT
ρ0gh

(1 − e−ρ0gβ0z
) −

1
β0
(
α0δT

h
z + 1 − e−ρ0gβ0z

),
(1.1)

where the constant p0 is a gauge pressure, while pb is a prescribed value arising from the appropriate boundary condition on p. Note that this
basic solution is peculiar of the new model and reduces to that of the O-B one formally taking β0: the first bracket tends asymptotically to
the first term of the second bracket. The main result proved in Ref. 3 states that, in the linear stability framework, convective rolls set in at
a Rayleigh number (basically, temperature gradient) less than the critical value predicted by the classical model. This result is shown under
“stress-free” boundary conditions on v⃗, which we shall also adopt throughout this paper.

The main objective of this article is to perform a nonlinear analysis of the stability of the basic flow (1.1) and, as a necessary requirement,
to investigate the well-posedness of the associated initial-boundary value problem for the perturbation fields. We shall be concerned with 2D
perturbations. The reason of this choice is because, unlike the analogous problem for the classical O-B model, this case already presents an
unusual feature. More precisely, the proof of global existence of strong solutions can be seemingly obtained only by restricting the size of the
energy—namely, the L2-norm—of the initial data (and, of course, of the relevant dimensionless parameters). As a matter of fact, even the
existence of weak solutions appears difficult to establish because of the lack of a uniform bound of the energy on a time interval of arbitrary
length. The reason for this unexpected, somehow, situation is due to the fact, mentioned earlier on, that the pressure is now an independent
unknown satisfying a suitable elliptic problem under Robin boundary conditions. More importantly, it enters the linear momentum equation
no longer just in a gradient form [see (2.1)2]. We leave it as an interesting open question whether global weak and/or strong solutions can be
obtained without restricting the size of the initial data. In fact, it would be of some interest to find out whether smallness of the initial energy
is just a mathematical requirement or else a necessary physical property.

It is worth remarking that the extension of our result to the 3D case, under analogous restrictions on the initial data, does not present
conceptual difficulties and will be treated elsewhere.14

The plan of this paper is as follows: In Sec. II, we formulate the nonlinear stability problem; moreover, we recall some previous findings
and prove a number of basic properties for the pressure field. In particular, we show unique solvability for the pressure equation, on a condition
that the material constant β is less than 2π. Note that such a restriction was also needed in the linear analysis.3 In Sec. III, we devote our effort
to the proof of existence for the nonlinear perturbation problem. We exploit the usual techniques of functional analysis applied to the study of
these types of questions.2,7,12,13 In particular, we derive several a priori “energy” estimates and couple them with the classical Gälerkin method
with a special basis to prove the existence of solutions. For all Rayleigh numbers and initial data of arbitrary “size,” it is shown that a strong
solution (in the sense of Ladyzhenskaya; see, e.g., Ref. 12) does exist for some time interval [0, T), where T can be estimated in terms of the
initial data. However, if only the L2-norm of these data is sufficiently small and the Rayleigh number is below a certain constant, then we can
take T =∞. Furthermore, we show that, in such a case, all solutions must decay to zero, as time increases, exponentially fast, thus also proving
the nonlinear stability of the state (1.1).

II. PRELIMINARY RESULTS
We begin to introduce some notation. We recall that the layer is bounded in the z (vertical) direction and unbounded and invariant in

the x-direction. The observed convective rolls are also invariant in the y-direction and can be described by x-periodic functions. Then, the
relevant region of flow can be written in nondimensional variables as

Ω ∶= {(x, y, z) ∈ R3 : z ∈ (0, 1)}.

Since we are interested in 2D flow, we restrict the spatial domain to the periodicity cell Ω0 = {(x, z) ∈ (0, 1) × (0, 1)}.

Definition 2.1. (Mean value of f)

⟨ f ⟩ =
1
∣Ω0∣
∫
Ω0

f (x, z, t) dx dz
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For the derivates, we write ∂ξϕ ∶=
∂ϕ
∂ξ (∶= ϕξ) for any variable ξ ∈ {x, z, t} and analogously for higher order derivates. We denote the

material derivate by d
dt or by a superposed dot.The starting point of our analysis is the (nondimensional) system governing the evolution of

the perturbation (v⃗, τ, P) to the basic state (1.1) (see Ref. 3, p. 5),

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

∇ ⋅ v⃗ = 0,
1
Pr(

∂v⃗
∂t + v⃗ ⋅ ∇v⃗) = −∇P − βPk⃗ + Δv⃗ + Raτk⃗,

∂τ
∂t + v⃗ ⋅ ∇τ − Δτ = v⃗ ⋅ k⃗,

(2.1)

where k⃗ is the upward unit vector and P = p − p(z), with p(z) given in (1.1). Moreover, Pr ∶= ν
D and Ra ∶= α0gδTh3

νD are Prandtl and Rayleigh
numbers, and D is the diffusivity, while β ∶= ρ0gβ0h.

We endow the above system with stress-free boundary conditions for the velocity field v⃗ and (homogeneous) the Dirichlet boundary
condition for τ. Thus, we obtain the following set of side requirements:

vz(x, 0, t) = vz(x, 1, t) = 0, (2.2)

vx
z (x, 0, t) = vx

z (x, 1, t) = 0, (2.3)

τ(x, 0, t) = τ(x, 1, t) = 0. (2.4)

By taking the divergence of (2.1)2, one necessarily get an equation for P as unknown

ΔP + βPz = −
1

Pr
∇ ⋅ (v⃗ ⋅ ∇v⃗) + Raτz , (2.5)

with Robin’s boundary conditions
Pz(x, 0, t) + βP(x, 0, t) = Pz(x, 1, t) + βP(x, 1, t) = 0. (2.6)

Herein, we are going to show that the existence of a solution P for this problem is also sufficient to solve (2.1). To this end, as done in Ref. 3,
we set Π = Peβz and face the system

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

ΔΠ − βΠz = −
1

Pr eβz
∇ ⋅ (v⃗ ⋅ ∇v⃗) + Raeβzτz ,

1
Pr(

∂v⃗
∂t + v⃗ ⋅ ∇v⃗) − Δv⃗ = −∇(e−βzΠ) − βe−βzΠk⃗ + Raτk⃗,

∂τ
∂t + v⃗ ⋅ ∇τ − Δτ = v⃗ ⋅ k⃗,

(2.7)

still with conditions (2.9), (2.2), and (2.4) and with Neumann conditions for Π on ∂Ω,

Πz(x, 0, t) = Πz(x, 1, t) = 0. (2.8)

We underline that one cannot get rid of (2.5) in the present context, which is a full coupling context, so that (2.5) has to be inserted in system
(2.1). Note that t is just a parameter for the elliptic problem given by (2.7)1 and (2.8) for data (v⃗, τ).

In addition, we shall assume periodicity in the x-direction. Finally, we append the initial conditions

(v⃗(x, z, 0), τ(x, z, 0)) = (v⃗0(x, z), τ0(x, z)). (2.9)

We are going to prove the existence for Π in

F ∶= {p ∈ L2(Ω0) : ⟨p⟩ = 0, periodic in x, ∂zΠ = 0 in z = 0, 1}.

In F for (m, n) ∈ N0 ×N0, we have the basis

ϕi
mn(x, z) = { cos(2πmx) cos(πnz), if i = 1,

sin(2πmx) cos(πnz), if i = −1. (2.10)

Remark 2.1. All the functions in this basis have mean value zero.

For the “temperature” field τ and the stream function φ, associated with v⃗ by

vx
= −φz vz

= φx,
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we can use

ξi
mn(x, z) = {

cos(2πmx) sin(πnz), if i = 1,
sin(2πmx) sin(πnz), if i = −1.

(2.11)

In the periodicity cell, which is bounded, we use the Lebesgue and Sobolev spaces which are denoted by Lq (with the norm ∥.∥q) and W l,q

(with the norm ∥.∥l,q).
We construct Sobolev spaces starting from bases (2.10) and (2.11). We define Wk,2

N (Ω0), k = 0, 1, 2 as the closure with respect to the
Wk,2(Ω0)-norm of finite combinations of elements of the basis (2.10). We denote by Wk,2

D the subspace generated by the closure of the linear
hull of (2.11) in the Wk,2(Ω0)-norm, for k = 0, 1, 2. Analogously, we denote by Wk,2

D (Ω0) with k = 0, 1, 2 the linear hull of the vectorial
divergence-free functions obtained from (2.11) taken as stream functions and afterward closed by the Wk,2(Ω0)-norm for k = 0, 1, 2. If k = 0,
we denote these spaces as HD(Ω0) and HD(Ω0), respectively.

As customary, in L2(Ω0), we use the scalar product

(u, v) ∶= ∫
Ω0

uv dx dz.

We recall the Bochner spaces Lq((0, T); Wm,p(Ω0)), i.e., Lq functions on the interval (0, T) defined in the Sobolev space Wm,p(Ω0) with norm

∣u∣q,m,p ∶= (∫

T

0
∥u(t)∥q

m,p dx)
1
q

,

∣u∣∞,m,p ∶= ess sup
t∈[0,T]

∥u(t)∥m,p.

We also recall some inequalities, holding true in Ω0: the Poincaré inequality (Ref. 3, p. 12) for Π,

∥Π∥2 ≤
1

2π
∥∇Π∥2,

the Poincaré inequality for the vectorial field v⃗, which can be found in Ref. 5,

∥v⃗∥2 ≤ ∥∇v⃗∥2,

and for τ (see Ref. 3),

∥τ∥2 ≤
1
√

5π
∥∇τ∥2.

Moreover, in order to deal with the nonlinearities in two dimensions, use will be made of Ladyzhenskaya’s inequality (see Ref. 5),

∥v⃗∥4 ≤ (
1
√

2
)

1
2

∥v⃗∥
1
2
2 ∥∇v⃗∥

1
2
2 .

Moreover, we know that the norms of ∂xx, ∂yy are equivalent to the full set of the second derivatives. In particular,

1
16
∥Δv⃗∥2 ≤ ∥D2v⃗∥2 ≤

1
4
∥Δv⃗∥2, (2.12)

and the same for τ. The proof can be found in Ref. 3.
Still in Ref. 3, the reduced system,

⎧⎪⎪
⎨
⎪⎪⎩

ΔΠ − βΠz = eβz f in Ω0,
Πz(x, 0) = Πz(x, 1) = 0 for x ∈ R,

(2.13)

allows for zero mean value periodic solutions in W2,2
N (Ω0) if ⟨ f ⟩ = 0; in this way, the linear differential operator is invertible. We give here a

shorter proof under more general conditions than in Ref. 3.

Theorem 2.1. Let f ∈ L2(Ω0), and assume 0 ≤ β < 2π. Then, problem (2.13) with homogeneous Neumann conditions has a unique x-periodic
solution Π ∈W2,2(Ω0) such that ⟨Π⟩ = 0 and the following estimates hold true:

∥∇Π∥2 ≤
1

2π − β
∥eβz f ∥2, ∥ΔΠ∥2 ≤

2π
2π − β

∥eβz f ∥2. (2.14)
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Proof. We introduce the test function space

H ∶= {φ ∈W1,2(Ω0) : ∫
Ω0

φ = 0}.

By multiplying both sides (2.13)1 by φ ∈ H, integrating by parts over Ω (x-periodicity) and taking into accounts the boundary conditions, we
formally obtain

a(Π,φ) ∶= (∇Π,∇φ) + β(Πz ,φ) = −(eβ̂z f ,φ) for all φ ∈ H. (2.15)

This is a weak form of (2.13), and a(Π, φ) is a bounded bilinear form because

(∇Π,∇φ) + β(Πz ,φ) ≤ ∥∇Π∥2∥∇φ∥2 + β∥∇Π∥2∥φ∥ ≤ C∥Π∥1,2∥φ∥1,2.

Furthermore, by Cauchy-Schwarz and Poincaré inequalities,

a(Π,Π) = (∇Π,∇Π) + β(Πz ,Π) ≥ (∇Π,∇Π) − β(Πz ,Π), (2.16)

≥ ∥∇Π∥2
2 −

β
2π
∥∇Π∥2

2 = (1 −
β

2π
)∥∇Π∥2

2.

Existence and uniqueness then come from (2.16) by the Lax-Milgram theorem if β < 2π. □

In Sec. III, to construct the solution of the full system, we need an explicit expression of the solution Π of problem (2.13) and we can use
the corresponding coefficients of the basis functions (2.10) as given in Ref. 3 since the data verify the condition ⟨ f ⟩ = 0. Actually, the property
holds true because if the data of (2.13) are taken from the full system, then from the boundary conditions one sees

⟨ f ⟩ = −
1

Pr
⟨∇ ⋅ (v⃗ ⋅ ∇v⃗)⟩ + Ra⟨τz⟩ = 0. (2.17)

Now, we prove a further estimate as follows:

Lemma 2.1. Assume β < 2π and let Π ∈W2,2(Ω0) be the unique zero mean value solution of

ΔΠ − βΠz = eβz
∇ ⋅ w⃗, (2.18)

with Neumann conditions at z = 0, 1 and x−periodic conditions: if w⃗ ⋅ n⃗ = 0 and w⃗ ∈W1,2(Ω0), then

∥Π∥2 ≤ c(β)∥w⃗∥2, (2.19)

where c(β) is a constant increasing with β and bounded from below.

Proof. We choose test functions such that
(ΔΠ − βΠz ,ψ) = (Π,Δψ + βψz). (2.20)

Actually,

(ΔΠ,ψ) − β(Πz ,ψ) = (2.21)

∫
Ω0

[∇ ⋅ (ψ∇Π −Π∇ψ) − β
∂(Πψ)
∂z
] + (Π,Δψ) + β(Π,ψz). (2.22)

Once the Neumann conditions on Π are stated, then the boundary term vanishes in two cases: if ψ verify Robin’s conditions

∇ψ ⋅ n⃗ + βψ = 0, z = 0, 1,

on both boundaries and if ψ is constant, this last possibility is irrelevant: actually if we want to estimate the L2-norm of a zero mean value
function by the Riesz theorem, then constant test functions give no contribution since they lie in the kernel of the functional.

Therefore, we just need to show that R(β) > 0 exists such that

∥Π∥2 = sup
∥φ∥2≤1

∣(Π,φ)∣ = sup
∥φ∥2≤1

∣(Π,φ − ⟨φ⟩)∣ = sup
∥ψ∥2,2≤R

∣(Π,Δψ + βψz)∣ (2.23)

because (Π, ⟨φ⟩) = ⟨φ⟩⟨Π⟩ = 0. Hence, let us look for ψ verifying Δψ + βψz ∶= φ − ⟨φ⟩ with Robin’s boundary condition. If we make the
substitution ψ = e−βzψ, by Ref. 3, the equation above with Robin’s condition is equivalent to (2.13) with Neumann conditions. Hence, from
Theorem 2.1, a mean value zero solution ψ exists and is unique. In this way, we proved (2.23): for all φ, we can write ψ = eβzψ.
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Now, we want to estimate the left-hand side of (2.20) by the right-hand side of Eq. (2.18) tested by ψ ∈W2,2(Ω0),

(ΔΠ − βΠz ,ψ) = (∇ ⋅ (eβzw⃗) − βeβzwz , ψ)

= ∫
Ω0

∇ ⋅ (ψeβzw⃗) dΩ0 − (eβzw⃗,∇ψ) − (βeβzwz , ψ).

≤ eβ(1 + β)∥w⃗∥2∥ψ∥1,2.

Here, the boundary term vanishes by the hypothesis on w⃗.
Finally, we can write

∥Π∥2 = sup
∥ψ∥2,2≤R

∣(Π,Δψ + βψz)∣ ≤ sup
∥ψ∥2,2≤R

eβ(1 + β)∥w⃗∥2∥ψ∥1,2 ≤ eβ(1 + β)R∥w⃗∥2. (2.24)

□

Remark 2.2. If the right-hand side of (2.18) contains terms of the kind w⃗ = v⃗ ⋅ ∇v⃗ with stress-free and impermeability conditions on v⃗
(besides of the periodicity in x), their inner product with ψ ∈W2,2(Ω0) allows several applications of the Gauss theorem with boundary integrals
each time vanishing. One easily sees

∫
Ω0

eβz
∇ ⋅ (v⃗ ⋅ ∇v⃗)ψ = −∫

Ω0

eβzβ∇ ⋅ (vzv⃗)ψ +∇ ⋅ (v⃗ ⊗ v⃗) ⋅ ∇ψ] =

= ∫
Ω0

eβz
[β(vz)2ψ + 2βvzv⃗ ⋅ ∇ψ + v⃗ ⋅ (D2ψ) ⋅ v⃗]

≤ eβ(β + 1)2
∥v⃗∥2

4∥ψ∥2,2. (2.25)

The estimate so obtained is the generalization of the classical one

∥p∥2 ≤ c∥v⃗∥2
4

holding at β = 0 for the classical O-B approximation. This is due to the particular boundary conditions and the particular domain (bounded in
one direction and with flat boundaries).

Finally, estimate (2.14) too can slightly be changed by considering f = ∇ ⋅ w⃗ with w⃗ ⋅ n⃗ = 0 at the boundary,

∥∇Π∥2 ≤
c(β)

2π − β
∥w⃗∥2. (2.26)

Remark 2.3. In Ref. 3, it was observed that system (2.1) with the boundary conditions (2.2) and (2.3) is satisfied if v⃗ = c⃗i, τ = 0, and Π = 0
so that for all c > 0, it is the basic solution. The constant c is an arbitrary real number so that this class of solutions corresponds to the Galilean
invariance of the equation, and we can call it null solution (although it is not exactly the rest state).

In fact, if we define a subspace by the condition Πx = 0, v⃗x = 0 and τx = 0, the full-system projects in such a subspace since it becomes
linear. For any size of the dimensionless parameters and of the initial data, one can find particular solutions of (2.1) in the form (Π, v⃗, τ)
= (G(z, t),A(z, t)⃗i, T (z, t)). Such solutions have to verify

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

∂2G
∂z2 − β∂G

∂z = Raeβz ∂T
∂z

1
Pr

∂A
∂t −

d2A
dz2 = 0

∂T
∂t −

∂2T
∂z2 = 0.

(2.27)

Actually, for any Ra, Pr, and β positive, problem (2.1) with arbitrary f, g ∈Wm,2(0, 1) and m ∈ N,

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

vx(x, z, 0) = f (z),

vz(x, z, 0) = 0,

τ(x, z, 0) = g(z),
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has a unique global solution
v⃗ ∈ L∞((0,∞); Wm,2(0, 1)),

τ ∈ L2
((0,∞); Wm,2(0, 1)).

Such solutions are clearly

A = 2
∞
∑
n=1
(∫

1

0
f (s) cos(nπs) ds) cos(nπz)e−Prn2π2t .

For T and G, we can write as in Ref. 16

T = 2
∞
∑
n=1
(∫

1

0
g(s) sin(nπs) ds) sin(nπz)e−n2π2t .

G = e−βzψ, where
∂ψ
∂z
= RaeβzT

so that

G = G0 + 2Ra
∞
∑
n=1

e−n2π2t

n2π2 + β2 (∫

1

0
g(s) sin(nπs) ds)(β sin(nπz) + nπ(e−βz

− cos nπz)), (2.28)

where G0 is a constant.

III. BASIC APRIORI ESTIMATES
A. First a priori estimate

This estimate leads, as we prove in Sec. III B, to a solution such that

Π ∈ L2(0, T; L2(0, T)),

v⃗ ∈ L∞(0, T;H(Ω0)) ∩ L2(0, T;W1,2
D (Ω0)),

τ ∈ L∞(0, T; H(Ω0)) ∩ L2(0, T; W1,2
D (Ω0)),

for bounded T which becomes unbounded as β goes to 0.
From the estimate (2.19) and by the Remark 2.2, we have

∥Π∥2 ≤ C(β)[
1
Pr
∥v⃗∥2

4 + Ra∥τ∥2], (3.1)

where we denote by C(β) any, possibly different, function of β such that lim
β→0

C(β) = c ∈ R+.

As customary, we introduce the energy

E(t) ∶=
1
2
(
∥v⃗∥2

2

Pr
+ Ra∥τ∥2

2).

Now, we formally test (2.1) with (v⃗, τ), and then, we multiply the third equation by Ra; we use Ladyzhenskaya and Poincaré inequalities and
sum

d
dt

E(t) + ∥∇v⃗∥2
2 + Ra∥∇τ∥2

2 = −β(e−βzΠ, vz) + 2Ra(τ, vz)

≤ β∥Π∥2∥v⃗∥2 + 2Ra∥τ∥2∥v⃗∥2

≤
βC(β)

Pr
∥v⃗∥2

4∥v⃗∥2 + Ra(βC(β) + 2)∥τ∥2∥v⃗∥2

≤
β2C2(β)

2Pr2 ∥v⃗∥
4
2 +
∥∇v⃗∥2

2

2
+ (βC(β) + 2)Ra(

∥v⃗∥2
2

2
+
∥τ∥2

2

2
).

Finally,
dE(t)

dt
+
∥∇v⃗∥2

2

2
+ Ra∥∇τ∥2

2 ≤ C(E2(t) + E(t)), (3.2)
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where
C = max{β2C2(β), (βC(β) + 2) max{PrRa, 1}}. (3.3)

Now, choosing a positive ϵ < 1 and disregarding the positive definite functions on the left-hand side, we can integrate the inequality and the
outcome is

E(t)(E(0) + 1)
E(0)(E(t) + 1)

≤ eCt .

It follows

1 − eCt E(0)
E(0) + 1

≤
1

E(t) + 1
,

E(t) ≤
eCtE(0)

1 + E(0)(1 − eCt)
∀t < 2T ∶= log [(

E(0) + 1
E(0)

)]

1/C
. (3.4)

Now, E(t) is bounded as follows:

E(t) ≤
√

E(0)(E(0) + 1)
1 + E(0) −

√
E(0)(E(0) + 1)

∶=M(E(0)) ∀t ∈ [0, T]. (3.5)

Then, by inserting (3.5) in (3.2) and integrating in [0, T],

∫

T

0
(∥∇v⃗∥2

2 + ∥∇τ∥2
2) dt <

2C
min{Ra, 1/2}

(M2 + M) log [(
E(0) + 1

E(0)
)]

1
2C

+ E(0) ∶=M1, (3.6)

where we put T as defined in (3.4), M is as in (3.5) and tends to 0 if E(0) does.

B. Second a priori estimate
This estimate gives further regularity to any solution verifying the first one. In particular,

Π ∈ L2((0, T); L2(0, T)),

v⃗ ∈ L∞((0, T);W1,2
D (Ω0)) ∩ L2((0, T);W2,2

D (Ω0)),

τ ∈ L∞((0, T); W1,2
D (Ω0)) ∩ L2((0, T); W2,2

D (Ω0)).

Now, we test with Δv⃗ and Δτ and we again insert (3.1),

1
2Pr

d
dt
∥∇v⃗∥2

2 + ∥Δv⃗∥2
2 =

1
Pr

(v⃗ ⋅ ∇v⃗,Δv⃗) − β(e−βzΠk⃗,Δv⃗) − Ra(τk⃗,Δv⃗), (3.7)

1
2

d
dt
∥∇τ∥2

2 + ∥Δτ∥2
2 = (v⃗ ⋅ ∇τ,Δτ) − (vz ,Δτ). (3.8)

Next, we focus on the nonlinear terms; for arbitrary positive ε, one can write

(v⃗ ⋅ ∇v⃗,Δv⃗) ≤ ∥v⃗∥4∥∇v⃗∥4∥Δv⃗∥2 ≤
1
√

2
∥v⃗∥

1/2
2 ∥∇v⃗∥2∥Δv⃗∥3/2

2

≤
∥v⃗∥2

2∥∇v⃗∥
4
2

4
√

2ε4
+

3
4
√

2
ε4/3
∥Δv⃗∥2

2,

(v⃗ ⋅ ∇τ,Δτ) ≤ ∥v⃗∥4∥∇τ∥4∥Δτ∥2 ≤
1
√

2
∥v⃗∥

1/2
2 ∥∇v⃗∥

1/2
2 ∥∇τ∥

1/2
2 ∥Δτ∥

3/2
2

≤
∥v⃗∥2

2∥∇v⃗∥
2
2∥∇τ∥2

2

4
√

2ε4
+

3
4
√

2
ε4/3
∥Δτ∥2

2.
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Let us set

D(t) =
∥∇v⃗∥2

2

2Pr
+ Ra
∥∇τ∥2

2

2
.

We can write
d
dt

D(t) + (1 −
3

4
√

2Pr
ε4/3
− ε2
)∥Δv⃗∥2

2 + +(1 −
3

4
√

2
ε4/3
)Ra∥Δτ∥2

2 ≤ C2∥v⃗∥
2
2D2(t) + C3D(t), (3.9)

where the last two terms on the left-hand side are positive provided ε is sufficiently small, while C2 depends on β, Pr, ε, and C3 depends on Ra,
Pr, β, ε.

By (3.5), we know that ∥v⃗∥2
2 is uniformly bounded in [0, T], and by (3.6), one also has D(t) ∈ L2(0, T). As a consequence, by using a

generalized Gronwall argument,

d
dt

D(t) ≤ C2MD2(t) + C3D(t) ∶=M2(D2(t) + D(t)), (3.10)

where M2 depends on Pr, Ra, β, and E(0). As we did to get (3.5), we obtain

D(t) ≤
√

D(0)(D(0) + 1)
1 + D(0) −

√
D(0)(D(0) + 1)

∶=M3(D(0)). (3.11)

We put (3.11) in (3.9), and after integration we also achieve

∫

T

0
(∥Δτ∥2

2 + ∥Δv⃗∥2
2) dt < C4(M2

2 + M2) log [(
E(0) + 1

E(0)
)]

1
2C

+ D(0) ∶=M4, (3.12)

where C4 depends on Ra, Pr, β,ε, and E(0).

C. Third a priori estimate
Here, we show that the solution is in fact a Ladyzhenskaya solution. One gets

v⃗t ∈ L2((0, T);HD(Ω0)),

τt ∈ L2((0, T); HD(Ω0)),

which implies, as a consequence,

v⃗ ⋅ ∇v⃗ ∈ L2(0, T; L2(Ω0)) so that Π ∈ L2(0, T; W1,2
N (Ω0)).

In order to prove this, we test (2.1)2 with ∂v⃗
∂t and the nonlinear convective term vanishes by the boundary condition. Next, we apply Cauchy-

Schwarz and Ladyzhenskaya inequalities (when using (3.1) for the pressure) and get

∥v⃗2
t ∥2 ≤ C2(∥Δv⃗∥2

2 + ∥v⃗∥2
2∥∇v⃗∥

2
2 + ∥τ∥2

2), (3.13)

where C depends on Ra, Pr, and β. Analogously, for τt , we simply have

∥τt∥
2
2 ≤ 2(∥Δτ∥2

2 + ∥v⃗∥2
2).

Now, since the norms on the right-hand side are bounded or integrable, we integrate the inequality in t ∈ [0, T] so getting

∫

T

0
(∥v⃗t∥

2
2 + ∥τt∥

2
2) dt < C2

(M4 + MM1 + M log(
E(0) + 1

E(0)
)

1
2C
).

Finally, we prove two further energy inequalities allowing the existence of a global in time regular and stable solution for Ra and initial data
sufficiently small.
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Let us formally test (2.1) with (v⃗, τ), and then, we multiply the third equation by Ra; we use Ladyzhenskaya and Poincaré inequalities and
sum to get

1
2

d
dt

E(t) + ∥∇v⃗∥2
2 + Ra∥∇τ∥2

2 ≤
β2C2(β)

Pr2 ∥v⃗∥2∥∇v⃗∥
2
2 + Ra(βC(β) + 2)(

ε2

2
∥τ∥2

2 +
∥v⃗∥2

2

2ε2 ).

In comparison with the first estimate, here we have just changed what comes from the Π-term, i.e.,

∥v⃗∥2
4∥v⃗∥2 ≤

1
√

2
∥v⃗∥2∥∇v⃗∥2∥v⃗∥2 ≤

1
√

2
∥v⃗∥2∥∇v⃗∥

2
2.

At the end, for ε ∈ (0, 1), we obtain

dE(t)
dt

+ (1 −
βC(β)

Pr

√
E(t) −

Ra(βC(β) + 2)
2ε2 )∥∇v⃗∥2

2 + Ra(1 −
ε2(βC(β) + 2)

2
)∥∇τ∥2

2 ≤ 0. (3.14)

Now, we can prove

Lemma 3.1. Let the initial data for (2.7) belong to L2(Ω0), β < 2π, Ra < 1
(βC(β)+2)2 , and E(0) < Pr2

16β2C2(β) , then one has

E(t) ≤ e−C0tE(0),

C0 ∫
+∞

0
(∥∇v⃗∥2

2 + Ra∥∇τ∥2
2) dt < E(0), (3.15)

where C0 = min{ Pr
2 − 2βC(β)

√
E(0), 1}.

Proof. By the Poincaré inequality (since 1 < 5π2), for ε ∈ (0, 1), from (3.14), we get

dE(t)
dt

+ (Pr − βC(β)
√

E(t) −
PrRa(βC(β) + 2)

2ε2 )
∥v⃗∥2

2

Pr
+ (2 − ε2(βC(β) + 2))

Ra
2
∥τ∥2

2 ≤ 0. (3.16)

By taking Ra sufficiently small to have

Pr −
RaPr(βC(β) + 2)

2ε2 =
Pr
2ε2 (2ε

2
− Ra(βC(β) + 2)) >

Pr
2

,

we achieve
dE(t)

dt
+ (

Pr
2
− 2βC(β)

√
E(t))

∥v⃗∥2
2

2Pr
+ (2 − ε2(βC(β) + 2))

Ra
2
∥τ∥2

2 ≤ 0. (3.17)

Just to fix the ideas, ε = 1/
√

(βC(β) + 2) is compatible with all the previous restrictions and implies 2 − ε2(βC(β) + 2) = 1. If moreover

2βC(β)
√

E(0) <
Pr
2

, (3.18)

then

C(t) ∶= min{
Pr
2
− 2βC(β)

√
E(t), 1}

is such that C(0) > 0. Therefore, by continuity, a maximal t∗ > 0 exists such that C(t) is non-negative for t ∈ (0, t∗). Inequality (3.17) now reads

dE
dt

+ C(t)E(t) ≤ 0 (3.19)

and implies that for t ∈ (0, t∗),

E(t) ≤ E(0). (3.20)
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By definition, if t∗ is a finite number, then C(t∗) = 0; this means that

βC(β)
√

E(t∗) =
Pr
2

. (3.21)

If we put (3.21) in (3.18), we obtain

E(t∗) > E(0),

which is an absurdum since one could at most have E(t∗) = E(0). We have so proved that since C(t) is bounded from below as

0 <
Pr
2
− 2βC(β)

√
E(0) ≤

Pr
2
− 2βC(β)

√
E(t),

then for all t > 0,
dE
dt

+ C0E(t) ≤ 0, (3.22)

where C0 = C(0) is the minimum of C(t). Hence, the exponential decay follows and can finally be used to integrate (3.14) in (0,∞) so getting
(3.15). □

Remark 3.1. If β = 0, which is the classic O-B Bénard problem, the restriction on the initial data E(0) is unnecessary to get the exponential
decay.

Remark 3.2. Note that the rate of decay decreases as β increases.

We are now going to prove a last inequality by still making use of a positive arbitrary ε together with the previous results. In order to do
this, we need the following:

Remark 3.3. The present boundary conditions imply a Poincaré-like inequality with the gradients bounded by the Laplacians. Actually,

∥∇v⃗∥2
2 = −(v⃗,Δv⃗) ≤ ∥v⃗∥2∥Δv⃗∥2 ≤ ∥∇v⃗∥2∥Δv⃗∥2, (3.23)

and analogously for τ,

∥∇τ∥2
2 = −(τ,Δτ) ≤ ∥τ∥2∥Δτ∥2 ≤

1
√

5π
∥∇τ∥2∥Δτ∥2. (3.24)

Hence, (3.23) and (3.24) are Poincaré inequalities for the gradients.

Lemma 3.2. Let the initial data for (2.7) belong to W1,2(Ω0), β < 2π, and E(0) < Pr2

16β2C2(β) , then if Ra < min{ 1
(βC(β)+2)2 , 25π4

64(25π4+1)(β2C2(β)+1)},
it follows that T∗ and C6 > 0 exist, only depending on Pr, such that

D(t) ≤ e
C5
C0

E2(0)D(0), (3.25)

D(t) ≤ e−C6tD(T∗), ∀t > T∗, (3.26)

where C5 depends on Ra, Pr, and β.

C7∫

+∞

0
(∥Δv⃗∥2

2 + Ra∥Δτ∥2
2) dt < D(0), (3.27)

where C7 depends on E(0), Pr, Ra, β, D(0), and T∗.

Proof. We prove (3.25) by starting from an inequality which is the analogous of (3.9): we get it by just applying Poincaré inequality to
the gradients which is possible because of remark 3.3,
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d
dt

D(t) + (1 −
3

4
√

2Pr
ε4/3
− (β2C2(β) + 1)

Ra
ε2 )∥Δv⃗∥

2
2 + (1 −

3
4
√

2
ε4/3
− (1 +

1
25π4 )ε

2
)Ra∥Δτ∥2

2

≤ C2∥v⃗∥
2
2D2(t). (3.28)

We first note that if ε <min{1, Pr3/4},

1 −
3

4
√

2Pr
ε4/3
>

8 − 3
√

2
8

>
1
4

,

1 −
3

4
√

2
ε4/3
>

8 − 3
√

2
8

>
1
4

,

and so (3.28) also implies

d
dt

D(t) + (
1
4
− (β2C2(β) + 1)

Ra
ε2 )∥Δv⃗∥

2
2 + (

1
4
− (1 +

1
25π4 )ε

2
)Ra∥Δτ∥2

2 < C2∥v⃗∥
2
2D2(t). (3.29)

Next, if we also impose ε2
< 25π4

8(25π4+1) , then (3.29) implies

d
dt

D(t) + (
1
4
− (β2C2(β) + 1)

Ra
ε2 )∥Δv⃗∥

2
2 +

1
8

Ra∥Δτ∥2
2 ≤ C2∥v⃗∥

2
2D2(t). (3.30)

Just for simplicity, we choose ε2
= 25π4

8(25π4+1) , and so if Ra < 25π4

32(25π4+1)(β2C2(β)+1) and by Lemma 3.1, we get

dD
dt
< C2E(0)D2(t) ∀t ∈ (0,∞).

Then, from (3.15) by using the same Gronwall arguments as for (3.12), we have

D(t) < eC2∫ ∞0 E(0)D(t) dtD(0) < e
C5
C0

E2(0)D(0).

Next, since E(0) and Ra satisfy the hypotheses of Lemma 3.1 and since by Remark 3.3, one can use Poincaré inequality on the left-hand
side of (3.30), we can write

d
dt

D(t) + c1(t)∥Δv⃗∥2
2 + c2(t)Ra∥Δτ∥2

2 < 0, (3.31)

where with the further restriction Ra < 25π4

64(25π4+1)(β2C2(β)+1) ,

c1(t) ∶=
1
8
− C2E(0)D(0)e−C0t

and

c2(t) ∶=
1
8
− C2PrE(0)D(0)e−C0t .

We wish to prove that for sufficiently large t, both c1(t) and c2(t) are bounded from below by positive constants.
Since

lim
t→+∞

c1(t) = lim
t→+∞

c2(t) =
1
8

,

by continuity, T∗ exists such that for t > T∗, both c1(t) and c2(t) are positive. Furthermore,

sup
t∈(0,∞)

c1(t) = sup
t∈(0,∞)

c2(t) =
1
8

.

As a consequence, for t > T∗, we have the following inequality:

d
dt

D(t) +
5π2

8
(∥∇v⃗∥2

2 + Ra∥∇τ∥2
2) <

d
dt

D(t) +
1
8
(∥Δv⃗∥2

2 + Ra∥Δτ∥2
2) < 0.
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Thus, on the one side,
D(t) ≤ e−C6tD(T∗),

where C6 =
5π2

4 min{Pr, 1}; on the other side, by integrating from T∗ to∞,

1
8∫

+∞

T∗
(∥Δv⃗∥2

2 + Ra∥Δτ∥2
2) dt < D(T∗). (3.32)

In (0, T∗), we do not know about the sign of c1 and c2. However, we come back to (3.30) and use (3.25) (showing the boundedness of D)
together with Lemma 3.1,

∫

T∗

0

d
dt

D(t)dt +
1
8∫

T∗

0
(∥Δv⃗∥2

2 + Ra∥Δτ∥2
2)dt ≤ C2∫

T∗

0
∥v⃗∥2

2D2(t)dt,

D(T∗) +
1
8∫

T∗

0
(∥Δv⃗∥2

2 + Ra∥Δτ∥2
2)dt ≤ C2∫

T∗

0
e−C0tE(0)c2

4D2(0)dt + D(0), (3.33)

where c4 = e
2C5
C0

E2(0). By summing (3.33) and (3.32), then (3.27) follows. □

IV. EXISTENCE RESULTS FOR THE FULL NONLINEAR SYSTEM
Actually, we apply the operator∇× to (2.1); from the identity∇ × ∇ = 0, we get

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ΔΠ − βΠz = −
2eβz

Pr [(φzx)2
− φxxφzz] + Ra eβzτz ,

1
Pr(

∂Δφ
∂t − det(∇φ,∇Δφ)) − Δ2φ = −βe−βzΠx + Ra τx,

∂τ
∂t + det(∇φ,∇τ) − Δτ = φx.

(4.1)

In order to get equivalent problems, the initial conditions

{
φ(x, z, 0) = φ0(x, z),
τ(x, z, 0) = τ0(x, z), (x, z) ∈ Ω (4.2)

must be of the kind φ0 ∈W2,2
D (Ω0) and τ0 ∈W1,2

N (Ω0). The full set of boundary conditions associated with (4.1) becomes

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

Πz(x, 0, t) = Πz(x, 1, t) = 0,

Δφ(x, 0, t) = Δφ(x, 1, t) = 0,

τ(x, 0, t) = τ(x, 1, t) = 0,

for (x, t) ∈ R × (0,∞). (4.3)

Theorem 4.1. Let β < 2π, Ra, and Pr be arbitrary. If v⃗0 ∈W1,2
D (Ω0) and τ0 ∈W1,2

D (Ω0), then a finite T > 0 exists such that system (2.1) is
fulfilled a.e. in space-time by a unique solution,

Π ∈ L1(0, T; W1,2
N (Ω0)),

v⃗ ∈ L∞(0, T;W1,2
D (Ω0)) ∩ L2(0, T;W2,2

D (Ω0)),

τ ∈ L∞(0, T; W1,2
D (Ω0)) ∩ L2(0, T; W2,2

D (Ω0)).

If moreover Ra and the initial data ∥v⃗0∥2, ∥τ0∥2 fulfill the conditions in Lemma 3.2, then the solution exists for all t in the class,

Π ∈ L1(0,∞; W1,2
N (Ω0)),

v⃗ ∈ L∞(0,∞;W1,2
D (Ω0)) ∩ L2(0,∞;W2,2

D (Ω0)),

τ ∈ L∞(0,∞; W1,2
D (Ω0)) ∩ L2(0,∞; W2,2

D (Ω0)),

and decays exponentially fast in the norm of W1,2(Ω0).
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Proof. The statement simply follows by proving the existence of a weak solution by the first estimate, and then the other properties are
an easy consequence of Lemmas 3.1 and 3.3.

For weak solution, we mean that (Π, v⃗, τ) has to verify

(∇Π,∇%) + β(Πz , %) =
1
Pr
[−(eβzv⃗ ⋅ ∇v⃗,∇%) − β(eβzv⃗ ⋅ ∇vz , %)] − Ra(eβ zτz , %)

1
Pr
(
∂v⃗

∂t
+ v⃗ ⋅ ∇v⃗, ψ⃗) + (∇v⃗,∇ψ⃗) = −β(e−βzΠ, ψ⃗) + Ra(τ, ψ⃗),

(
∂τ
∂t

, ϑ) + (v⃗ ⋅ ∇τ, ϑ) + (∇τ,∇ϑ) = (vz , ϑ), (4.4)

for all % ∈W1,2
N (Ω0), ψ⃗ ∈W1,2

D (Ω0), and ϑ ∈W1,2
D (Ω0).

Now, we look for Galerkin approximation solutions, which solve the projection of the system in finite dimension spaces.
We begin the proof by defining such approximation solutions

τN
= ∑

i=1,2

N

∑
m,n=1

Ai
mnξ

i
mn,

ΠN
= ∑

i=1,2

N

∑
m,n=1

Bi
mnϕ

i
mn,

φN
= −∑

i=1,2

N

∑
m,n=1

Ci
mnξi

mn

αmn
, (4.5)

where the coefficients Ai
mn = Ai

mn(t), Bmn = Bmn(t), Ci
mn = Ci

mn(t) are unknowns.
As customary, we define the Galerkin approximation solutions as the solutions of the projection of the PDE system in a finite dimensional

subspace (whose dimension is in our case 2N2), in such a way that the coefficients of the finite sums verify for all values of i and m, k = 1 . . .
N an ordinary differential equation (ODE) system.

In the present case, the system is constrained by the pressure equation which, in order to get a Galerkin solution, has to be also projected,
as an algebraic equation, in the same finite subspace where we write the ODE system. To this end, we recall the explicit expressions in Ref. 3,

N

∑
n=1

Bi
mnDm

nk = −
βRa
αmk

N

∑
n=1

Ai
mnMnk +

1
Pr∑i′ i″

N

∑
n,l=1

Ci″
rs Ci′

nlQ
i i′i″
rsnlmk,

where

Qi i′i″
rsnlmk =

⎛

⎝

2sϕi′
rs

αrs

π2nli″ϕ−i″
nl

αnl
−

2πri′ξ−i′
rs

αrs

ξi″
nl(πl)2

αnl
, eβziϕ−i

mk2πm
⎞

⎠
− (4.6)

⎛

⎝

πsϕi
rs

αrs

4π2n2ξi″
nl

αnl
+

2πriξ−i′
rs

αrs

2π2nli″ϕnl

αnl
,−eβzkπξi

mk + βeβzϕi
mk
⎞

⎠
, (4.7)

Dm
nk = δnk + β{ −

2
αmk
( 1

n+k + 1
n−k)n, if n + k odd,

0, if n + k even,
(4.8)

Mnk = πn((−1)k+neβ − 1)(
1

π2(n + k)2 + β2 +
1

π2(n − k)2 + β2 ). (4.9)

Finally for β < 2π, the constraint can be substituted in the Galerkin balance momentum equation in this form

Bi
mj = −

βRa
αmj

⎛

⎝

N

∑
l,k=1

Ai
mlMlk +

1
Pr∑i′ i″

N

∑
n,l=1

Ci″
rs Ci′

nlQ
i i′i″
rsnlmk
⎞

⎠
(Dm)−1

kj . (4.10)
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By the second equation in (4.1),

Ċi
mj + 4∑

i′ ,i″

N

∑
s,l,r,n=1

Ci′
sl C

i″
rnGi i′ii″

rnslmj + PrαmjCi
mj = 2πimPr

⎛

⎝
β∑

j
N jkB−i

mk − RaA−i
mj
⎞

⎠
, (4.11)

where

N kj = (1 − e−β(−1)k+j
)(

π(j + k)
π2(j + k)2 + β2 +

π(j − k)
π2(j − k)2 + β2 ).

By the third equation in (4.1), we obtain

Ȧi
mj + 4∑

i′i″

⎛

⎝

N

∑
s,l,r,n=1

Ai′
slC

i″
rnGi i′i″

rnslmj
⎞

⎠
+ αmjAi

mj = −i
C−i

mj

αmj
, (4.12)

where

Gi i′i″
rnslmj = (det J(ξi

rn, ξi′
sl ), ξi″

mj).

The algebraic equations (4.10) leading to the differential equations (4.11) and (4.12) are a constraint for a first order ODE system in
normal form. Namely,

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

˙⃗A = C⃗ ⋅A0(A⃗) + A1(A⃗) + A2(C⃗),
˙⃗C = C⃗ ⋅C0(C⃗) + C1(C⃗) + C2(A⃗) + C3(B⃗),
B⃗ = B0(A⃗) + C⃗ ⋅ B1(C⃗),

(4.13)

where Ai,Bi, and Ci, with i = 0, 1, 2, 3, are linear operators. Once the expression of B⃗ is directly substituted in the system, its right-hand side
is at most quadratic in the “space” variables so that it can be treated by Peano’s Theorem.

Finally, we can give a standard proof that from the sequence of the approximation solutions, one can always extract a subsequence weakly
converging to a weak solution (4.4). Concerning the linear terms in (4.4), the weak convergence is trivially implied by the uniform bounds in
(3.5), (3.6), (3.11), and (3.12), which are fulfilled by the Galerkin solutions too. In fact, they are bounded by the projections of the initial data
in the respective finite dimensional spaces.

The nonlinear terms are all convective-like so that the scheme of the weak convergence can be sketched once for all by writing, for
instance, (4.4)2 in the integral form

1
Pr

(v⃗(t), ψ⃗) +
1
Pr ∫

T

0
(v⃗ ⋅ ∇v⃗, ψ⃗)dt + ∫

T

0
(∇v⃗,∇ψ⃗)dt = − β ∫

T

0
(e−βzΠk⃗, ψ⃗)dt + Ra ∫

T

0
(τk⃗, ψ⃗)dt + (v⃗0, ψ⃗), (4.14)

so we want

∫

T

0
v⃗N ⋅ ∇v⃗N ⇀ ∫

T

0
v⃗ ⋅ ∇v⃗.

Since coefficients CNi
mn(t), defined in (4.5), are uniformly bounded and uniformly continuous, this follows by the convergence to zero a.e.

in t of
((v⃗N − v⃗) ⋅ ∇v⃗N , ψ⃗) + (v⃗ ⋅ ∇(v⃗N − v⃗), ψ⃗) ≤ ∥v⃗N − v⃗∥4∥∇v⃗N∥2∥ψ⃗∥4 + (v⃗ ⊗ ψ⃗,∇(v⃗N − v⃗)).

Since v⃗N ∈ L∞((0, T), W1,2(Ω0)), ∇v⃗N is bounded because of the a priori estimate and ψ⃗ ⊗ v⃗ is allowed as a test function, being in L∞((0, T),
L2(Ω0)), then the sum tends to zero as N →∞. □

Remark 4.1. Since the solution in Theorem 4.1 is found as a limit of a regular divergence-free function, it is divergence-free (as announced).
We have so proved that systems (2.1) and (2.7) are equivalent in that class of solutions.
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