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Experiments on spin glasses can now make precise measurements of the exponent z(T ) governing
the growth of glassy domains, while our computational capabilities allow us to make quantitative
predictions for experimental scales. However, experimental and numerical values for z(T ) have
differed. We use new simulations on the Janus II computer to resolve this discrepancy, finding
a time-dependent z(T, tw), which leads to the experimental value through mild extrapolations.
Furthermore, theoretical insight is gained by studying a crossover between the T = Tc and T = 0
fixed points.

The study of spin glasses (SGs) [1, 2] has long been
a key problem in statistical mechanics, providing ideas
that have born fruit in fields as diverse as econophysics,
biology or optimization in computer science. From a fun-
damental point of view, SGs are paradigmatic as the most
approachable model for glassy behavior, both experimen-
tally and theoretically. However, despite this relative
simplicity, SG experiments and theory have traditionally
developed separately, for practical and conceptual rea-
sons. On the one hand, numerical simulations were not
long enough to reach experimental times, while experi-
ments were not precise enough or even able to measure
key physical quantities. On the other hand, experimental
samples are perennially out of equilibrium, while theory
mostly focuses on the (unreachable) equilibrium phase.

In a typical experiment, the system is rapidly cooled
to a subcritical working temperature T < Tc and its off-
equilibrium evolution (aging) studied. As the waiting
time tw increases, the size of the glassy domains is seen
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to grow as ξ(tw) ∝ t
1/z(T )
w , with an exponent that is

expected to behave as z(T ) ' z(Tc)Tc/T [3]. In tra-
ditional experiments [4], based on the shift of the peak
in the relaxation rate S(tw), z(T ) was difficult to mea-
sure. Fortunately, the availability of excellent samples
with a film geometry has suggested a new approach to
the precision measurement of zc = z(T )T/Tc [5]. The
time that ξ(tw) needs to saturate to the film thickness
relates to the activation energies ∆max [6, 7]. Varying the
film thickness from 9 to 20 nm resulted in the measure-
ment zc ≈ 9.62 [5], very far from the value predicted by
numerical simulations zc = 6.86(16) [8], zc = 6.80(15) [9].

Fortunately, recent theoretical progress makes it feasi-
ble to address the above-mentioned disagreement. A key
development has been the introduction of the Janus [10,
11] and Janus II [12] computers, which have extended
the numerical exploration of the dynamics almost to the
experimental scale [8, 13]. In addition, the introduction
of quantitative statics-dynamics dictionaries (first based
on microscopic quantities [8, 14, 15] and more recently on
experimentally measurable features [13]) has clarified the
relevance of the equilibrium phase for the off-equilibrium
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dynamics and showed how to extrapolate simulations to
the experimental scale. Finally, the (macroscopic) exper-
imental measurement of the size of glassy domains was
shown to be consistent with the (microscopic) definition
based on correlation functions [16].

Here we resolve the discrepancy in zc by finding a
(very mild) scale dependence in the dynamical expo-
nent z

(
T, ξ(tw)

)
. We first recognize that time should

be traded by length scales. Gentle extrapolations to the
relevant experimental scales of 20 nm [5] then reconcile
the numerical and experimental measurements. Such a
computation has been possible only thanks to new data
with unprecedented precision, achieved by reducing the
uncertainty due to thermal fluctuations, an issue that was
typically neglected in previous numerical work. From the
theoretical point of view, our study is based on a char-
acterization of the crossover between critical and low-
temperature behavior. This is a very important point,
since it resolves a theoretical controversy on how low a
temperature must be studied to be free of critical effects,
with some authors choosing to work at very low T at the
expense of the system sizes that it is possible to equi-
librate (e.g., [17]) and others trying to find a tradeoff
between temperature and system size (e.g., [14]).

We consider the standard Edwards-Anderson
model [18], defined on a three-dimensional cubic
lattice of side L = 160, on whose nodes we place
spins Sx = ±1 that interact with their lattice nearest
neighbors through

H = −
∑
〈x,y〉

JxySxSy . (1)

For each disorder realization {Jxy} (a sample), each of
the quenched couplings Jxy is ±1 with 50% probability.
We shall refer to thin CuMn films [5], where the film
thickness of 20 nm translates to a distance of 38 lattice
spacings (the typical Mn-Mn distance is 5.3Å).

Our systems are initialized with random orientations
for the spins (representing a very high starting tempera-
ture) and immediately quenched to the working tempera-
ture T < Tc = 1.102(3) [19]. We then follow the evolution
with the waiting time tw (measured in units of full lat-
tice sweeps) at constant temperature. For each sample
{Jxy} we simulate NR real replicas, evolving with differ-
ent thermal noise. We estimate our statistical errors with
a jackknife method [20] (including fit parameters [21]).

Our basic observable is the spatial autocorrelation of
the overlap field (discussed in detail in [22]),

C4(T, r, tw) = 〈q(a,b)(x, tw)q(a,b)(x + r, tw)〉T , (2)

q(a,b)(x, tw) = S(a)(x, tw)S(b)(x, tw). (3)

In these equations, the indices (a, b) label the different
real replicas; 〈· · · 〉T is the average over the thermal noise
[in practice, an average over the (a, b) pairs] and (· · · ) is
the average over the disorder. In equilibrium simulations,
by far the main source of error are the sample-to-sample
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FIG. 1. Growth of the coherence length ξ12(T, tw) with the
waiting time tw after a quench to temperature T in a log-log
scale [the critical temperature is Tc = 1.102(3)]. Given the
smallness of the statistical errors, instead of error bars we have
plotted two lines for each T , which enclose the error estimate.
At this scale, the curves seem linear for long times, indicating
a power-law growth but, see Fig. 2, there is actually a mea-
surable curvature. Inset: Spatial autocorrelation function of
the overlap field C4(T, r, tw), plotted as a function of distance
at the last simulated time for several temperatures. Note the
six orders of magnitude in the vertical axis.

fluctuations. Therefore, it has been customary to simu-
late the smallest NR that permits definitions such as (2)
and maximize the number NS of samples. Instead, we
have NR = 256 and NS = 16. This choice, motivated
to facilitate future studies of temperature chaos [23], has
proven crucial: contrary to our expectations, the increase
in NR has produced a dramatic reduction of statistical
errors (see Appendix A for details). As a result, we
have been able to follow the decay of C4(T, r, tw) over
six decades (see inset to Fig. 1). A similar dramatic er-
ror reduction with high NR has also been seen in studies
of the Gardner transition in structural glasses [24, 25].

These correlation functions decay with distance as

C4(T, r, tw) = r−θf
(
r/ξ(T, tw)

)
, (4)

so the growing ξ can be computed through integral
estimators [8, 22]: Ik(T, tw) =

∫∞
0

dr rkC4(T, r, tw).
Then ξk,k+1(T, tw) = Ik+1(T, tw)/Ik(T, tw). As in recent
work [13, 16, 22, 26] we use k = 1 (see [27] for technical
details). The resulting ξ12 is plotted in Fig. 1 for all our
working temperatures.

The numerical [8, 22, 26] and experimental [5] state of
the art describes the growth of ξ12 with a power law,

ξ12(T, tw) ' A(T ) t1/z(T )
w . (5)

However, with our increased precision, (5) is no longer
a faithful representation of the dynamics. Indeed, if we
switch to x = log ξ12 as independent variable we can
interpolate our data as

log tw(T, ξ12) = c0(T ) + c1(T ) x+ c2(T ) x2. (6)
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FIG. 2. Deviation of ξ12(tw) from a simple power-law growth.
We plot the quadratic parameter c2 in a fit to (6) (see Ap-
pendix D for fitting parameters). This quantity is zero at
the critical point, but has a positive value at low tempera-
tures, indicating that the growth of ξ12 slows down over the
simulated time range.

Notice that c2 = 0 would reduce to (5), while c2 > 0
would indicate a slowing down of the dynamics for in-
creasing ξ12. Indeed, see Fig. 2, we find that c2 vanishes
only at T = Tc, with zc = z(T = Tc) = 6.69(6) [28]. Of
course, (6), useful as an interpolation, is not suitable to
extrapolate for longer times than simulated. In order to
do that, we need some insight from theory [29].

We can gain much insight into the SG phase by con-
sidering the algebraic prefactor in (4), determined by an
exponent θ. At Tc, θ = 1+η, where η = −0.390(4) [19] is
the anomalous dimension. In the SG phase, there are dif-
fering expectations for θ in the two main theoretical pic-
tures. The droplet description [30–32] expects coarsening
domains and therefore θ = 0. On the other hand, the
replica symmetry breaking (RSB) theory expects space-
filling domains where C4 vanishes at constant r/ξ12 as tw
grows. In particular, θ is given by the replicon, a critical
mode analogous to magnons in Heisenberg ferromagnets
(see [15] for a detailed discussion). The best previous nu-
merical study of θ [22], found θ = 0.38(2), with a small
T dependence that was vaguely attributed to the effect
of the critical point.

We can obtain θ by noticing that I2(T, ξ12) ∝ ξ3−θ12 .
However, again we find that, while θ(Tc) is compati-
ble with 1 + η, for T < Tc we actually have θ(T, ξ12),
slowly decreasing as ξ12 increases (or T decreases). This
may seem an unsatisfactory result, since, in the large-
ξ12 limit, θ(T, ξ12) should tend to a T -independent con-
stant (possibly zero). The simplest explanation is that
low values of ξ12 are affected by the T = Tc fixed point
with θ ≈ 0.61 [an idea supported by the higher measured
θ(T, ξ12) for the higher T ], while for ξ12 →∞ we should
see a crossover to the T = 0 fixed point, with an unknown
θ(T = 0) (see also [26]).

In analogy with the ferromagnetic phase of the O(N)
model, we can model this crossover in terms of a Joseph-
son length `J [33]. Close to Tc, this should grow as
`J ∝ (Tc − T )−ν , with ν = 2.56(4) [19], while scaling
corrections are expected for the lowest temperatures [34].
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FIG. 3. Crossover between the T = Tc and the T = 0
fixed points controlled by a Josephson length `J(T ), with
`J(T ) ∝ (Tc − T )−ν close to Tc (see text). The relevant scal-
ing variable is x = `J(T )/ξ12. The inset considers the ratio
ξ23/ξ12 between two definitions of the coherence length, which
should be constant in the large-ξ12 (or x → 0) limit. For T
close to Tc, this ratio initially grows, approaching the T = Tc

value (represented by the thick gray line) and eventually re-
laxes towards the T = 0 fixed point. Main plot: Evolution of
the replicon exponent θ for several temperatures. We show
two possible extrapolations to infinite ξ12: one with finite θ,
as expected in the RSB picture, and one with θ = 0, as ex-
pected in the droplet picture. For the latter, we also show the
extrapolated value for the experimental scale corresponding
to experiments in CuMn films [5], which we estimate between
ξ12 = 38 and ξ12 = 76.

If this hypothesis is correct, our data for different tem-
peratures should come together when plotted in terms
of a scaling variable x = `J/ξ12. We test this scaling in
the inset to Fig. 3, where we consider the ratio ξ23/ξ12
between two different determinations of the coherence
length, which should be scale invariant in the large-ξ12
limit (different definitions of ξ all grow at the same rate,
but differ in a small constant factor, see Fig. 4 in [22]). As
expected, there is an enveloping curve for the data at dif-
ferent T . In particular, the curves for T = 0.55, 0.625, 0.7
appear free from the influence of the critical point.

Similarly,θ(T, ξ12) = 3 − d log I2/d log ξ12, which we
can compute numerically (see Appendix C), turns out
to be a function of x, see the collapsing curve Fig. 3.
We are interested in estimating θ(x) at the experimen-
tally relevant scale of ξfilms = 38 for thin films, recall
our discussion of (1). As discussed, the RSB and droplet
pictures have diverging expectations for θ(0), that is, for
the ξ12 → ∞ limit, so we can use them as upper and
lower bounds. In the RSB theory, see Appendix C and
Fig. 3, we can compute an extrapolation to θ(0) ≈ 0.30,
although we take θupper = 0.35 as our upper bound for θ.
In the droplet description, we expect θ(x) = Cxζ , where
ζ is in principle the stiffness exponent ζ ≈ 0.24 [35]. As
in [14], we find that the droplet behavior can be reached
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FIG. 4. Value of the experimental aging rate for SGs
Zc(T ) = z(T, ξfilms)T/Tc, extrapolated from our data for
values of the coherence length corresponding to thin CuMn
films. The main plot considers an ansatz (7) with a finite
z(T, ξ12 → ∞), which agrees very well with the experimen-
tal value of Zc(T ) ≈ 9.62 [5], indicated by the straight line,
whose width represents the experimental temperature range.
Notice that critical effects are only visible for T > 0.7. Inset:
Same plot but now considering a crossover to activated dy-
namics (8), as in [36]. This is less successful at reproducing
the roughly constant Zc(T ) observed in experiments.

in the infinite-ξ12 limit, but only with a smaller expo-
nent ζ ≈ 0.15, which, furthermore, is highly sensitive
to the fitting range. Using the droplet extrapolation for
ξfilms = 38 we obtain θ(ξfilms) ≈ 0.28. Since our micro-
scopically determined ξ12 may differ by a small constant
factor from a macroscopic measurement of ξ [16] we have
also considered ξfilms = 76, which brings the exponent
down to θ(ξfilms) = 0.25 (see Fig. 3). In short, as observed
in previous work [14, 15], for the experimentally relevant
scale the physics is well described by a non-coarsening
picture, with 0.25 < θ(ξfilms) < 0.35 depending on the
theory we use to extrapolate the data and the exact value
chosen for the experimental scale.

As discussed in the introduction, experiments observe
a constant z(T )T/Tc ≈ 9.62 [5]. In the previous discus-
sion, on the other hand, we have found zc = 6.69(6)
and a growing z(T, ξ12). Therefore, in order to com-
pare our results with experiments, the first step is find-
ing some way to extrapolate for ξ12 = ξfilms. The most
natural possibility, given the smoothness of the data in
Fig. 1, is to assume that tw = A(T )ξ

z(T,ξ12)
12 , with a

z(T, ξ12) that tends to a finite z∞(T ) when ξ12 → ∞,
z(T, ξ12)− z∞(T ) ∝ ξ−ω12 , thus

log tw = D(T ) + z∞(T ) log ξ12 + E(T ) ξ−ω12 , (7)

where ω is the exponent that controls finite-ξ12(tw) cor-
rections. At Tc, we expect ω = 1.12(10) [9, 19, 26]. For
T < Tc, the leading behavior is given by ω = θ ([15] and
section 4.2 in [14]). When fitting to (7), in principle one

must consider possible systematic effects from the fitting
range ξ12 ≥ ξmin

12 and the increased statistical error due
to our uncertainty in the value of θ. However, see Ap-
pendix D, these effects have little impact on our final
estimates.

An alternative interpretation is to consider a crossover
to activated dynamics, as proposed by the Saclay
group [36, 37]. Free-energy barriers are considered from
a dynamical point of view, with a growth exponent Ψ ,

log tw = F (T ) + zc log ξ12 +G(T )ξΨ12, (8)

hence z(T, ξ12) = d log tw/d log ξ12 = zc + G(T )ΨξΨ12.
Eq. (8) is a refinement of droplet theory [32] and has been
used before in experiments [38] and simulations [39] with
values of Ψ ≈ 1 [40]. RSB theory is neutral with respect
to choosing ansatze (7) or (8). We recall the numerical
result in infinite dimensions [41] of τ ∼ exp(−N b) for
the time scales associated with the largest energy barri-
ers, with b ≈ 1/3 (see also [42, 43]). This result can be
connected with finite D at the upper critical dimensions
Du = 6, which yields Ψ(Du)=6b. We note, in particular,
that (7) can be regarded as a Ψ → 0 limit of (8). With
previous data it was not possible to distinguish the be-
havior of (8) and that of a simple power law [22]. With
the present simulations, we find that (8) also yields good
fits for tw(ξ12), with Ψ ≈ 0.4 (again, the dependence on
the fitting range is minimal, see Appendix D).

Therefore, both (7) and (8) can explain the behavior of
the data for the simulated scales. In order to see whether
they are useful to explain the experiments we consider
the quantity Zc(T ) = z(T, ξfilms)T/Tc, where z(T, ξfilms)
is the derivative of either (7) or (8) at ξfilms. The re-
sult is plotted in Fig. 4 (see Appendix D for the full fit
parameters). Remarkably, the convergent ansatz of (7)
produces an almost constant Zc in a wide T range, which
additionally fits well the experimental value of Zc ≈ 9.62.
The activated dynamics of (8), on the other hand, is not
a good fit for the experimental behavior (inset to Fig. 4).

Using simulations for very large systems with many
replicas on Janus II we have found that the growth of the
SG coherence length is controlled by a time-dependent
z
(
T, ξ(tw)

)
exponent. After describing the dynamics as

governed by a crossover between a critical and a low-
temperature fixed point, we have been able to model this
growth quantitatively and to extrapolate to experimental
length scales. The resulting exponent is consistent with
the most recent experimental measurements for power-
law dynamics. In addition, we find clear evidence of non-
coarsening dynamics at the experimental scale and find
that temperatures T . 0.7 are free of critical effects and
therefore safe for numerical studies of the SG phase.

An open question concerns the generality of these re-
sults. Indeed, CuMn is a Heisenberg, rather than Ising,
SG. However, even the purest Heisenberg system has un-
avoidable anisotropies, such as Dzyaloshinsky-Moriya in-
teractions [44]. These interactions, though tiny, extend
over dozens of lattice spacings, which magnifies their ef-
fect. In fact, we know that Ising is the ruling universality
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overlaps [Nov = NR(NR−1)/2]. For large values of r the error
is essentially linear in 1/NR. The inset shows the whole range
from NR = 2 (the minimum to define C4), while the main plot
is a close up of the large-NR sector. The simulations reported
in this paper have NR = 256.

class in the presence of coupling anisotropies [45]. We
also remark that high-quality measurements on GeMn
are excellently fit with Ising scaling laws [7]. Our results
also match the most recent and accurate measurements
on CuMn [5].

More generally, this study is a clear demonstration of
the importance of high-precision results for the investiga-
tion of glassiness. Indeed, reducing the errors has shown
that the aging rate slows down during the dynamics, con-
trary to previous findings. A similar change of paradigm
might happen for structural glasses.
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Ik integrals in both cases.

Appendix A: Error reduction for high number of
replicas

As mentioned in the main paper, the choice of the num-
ber of replicas (NR) and samples (NS) was taken with the
aim of improving the estimation of observables related to
temperature chaos in future work, where it is important
to maximize the number of possible overlaps (pairs of
replicas) Nov = NR(NR − 1)/2.

Unexpectedly, this has led to a dramatic increase in
precision. Fig. 5 shows the reduction of the statisti-
cal error in the correlation function C4 as a function of
1/
√
Nov. Moreover, this effect is enhanced as r increases,

which leads to a qualitative improvement in the compu-
tation of the Ik(T, r, tw) integrals (Fig. 6).

Appendix B: Controlling finite-size effects

In order to obtain an estimate for ξk,k+1(T, tw) =
Ik+1(T, tw)/Ik(T, tw) we need to compute the integrals

Ik(T, tw) =

∫ ∞
0

dr rkC4(T, r, tw) . (B1)

As discussed in [22], the main difficulty in this compu-
tation is handling the large-r tail where relative errors
[∆C4(T, r, tw)/C4(T, r, tw)] are big. We have to consider
two issues: a) how to minimize the statistical errors and
b) how to check for finite-size effects (which will appear
when ξ/L becomes relatively large).

As explained in more detail in [22, 27], our estimate
of Ik(T, tw) is the sum of the numerical integral of our
measured C4(T, r, tw) up to a self-consistent cutoff and a
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ble I). These curves were generated with the I3

k estimator for
the integrals (B7). The values from the L = 256 simulations
are plotted with conventional error bars. Notice that both
curves are compatible even beyond this cutoff.

tail contribution estimated with a smooth extrapolating
function F (r) ∼ r−θf

(
r/ξ).

In short, the procedure is

1. Obtain F (r) with fits of C4 in a self-consistent re-
gion [rmin, rmax] where the signal-to-noise ratio is
still good.

2. Integrate C4 numerically up to some cutoff and add
the analytical integral of F (r) beyond the cutoff to
estimate the tail contribution.

There are several choices as to how to implement these
steps, which we have used to control for systematic ef-
fects. For the extrapolating function F (r), we consider
first

F1(r) = A1r
−θe−(r/ξ)

β1
. (B2)

Where θ is the replicon exponent discussed in the text
and we fit for A1, β1 and ξ. This analytical form is
motivated by the fact that this is the simplest choice
that avoids a pole singularity in the Fourier transform of
C4(T, r, tw) at finite tw. In order to check for finite-size
effects we also consider a second function F2(r) resulting
from fits that include the first-image term:

F ∗2 (r) = A2

[
e−(r/ξ)

β2

rθ
+

e−((L−r)/ξ)
β2

(L− r)θ

]
, (B3)

T 0.55 0.625 0.7 0.8 0.9 1.0 1.1

ξmax - - - - 18.1 17.3 17

TABLE I. Cutoff values of ξmax
12 (T ) below which we are guar-

anteed no finite-size effects in our L = 160 lattices. For
T < 0.9 the growth of ξ12 is very slow and we never reach
the cutoff value.

so we have a second extrapolating function

F2(r) = A2r
−θe−(r/ξ)

β2
. (B4)

For these fits we used θ = 0.35. However, this value has
very little effect on the final computation of ξk,k+1. We
have checked this by recomputing the integrals with θ = 0
and θ = 1+η ≈ 0.61 (prediction of the droplet theory and
influence of the T = Tc fixed point respectively). The
different choices of θ led to a systematic effect smaller
than 20% of the error bars in the worst case.

Once we have our two extrapolating functions F1 and
F2 we can combine them with the C4 data in several
ways:

I1k =

∫ rmax

0

dr rkC4(T, r, tw) +

∫ ∞
rmax

dr rkF1(r) ,(B5)

I2k =

∫ rmax

0

dr rkC4(T, r, tw) +

∫ ∞
rmax

dr rkF2(r) ,(B6)

I3k =

∫ rmin

0

dr rkC4(T, r, tw) +

∫ ∞
rmin

dr rkF2(r) .(B7)

The difference between I2k and I1k is always under 1 %
in the error, so choosing between them has no effect in
any computation. In contrast, I1k and I3k present measur-
able differences for long tw, at least for our highest tem-
peratures, where the faster dynamics allows us to reach
higher values of ξ12/L. As a (very conservative) cutoff we
have discarded all the tw where |I1 − I3| is larger than
20 % of the error bar, thus obtaining a ξmax

12 (T ) below
which we are assured not to have any finite-size effects in
our L = 160 systems. The reader can find the values in
table I.

As a final check that our data is not affected by finite-
size effects, we have compared our ξ12(T, tw) with that
of [26]. This reference considers shorter simulations but
with L = 256 and 50 samples. As shown in Fig. 7, the
L = 160 and L = 256 data coincide even beyond our
cutoff ξmax

12 .

Appendix C: Josephson Crossover

In this section we will give additional details on the
Josephson crossover which describes how C4(T, r, tw)
changes from being dominated by the T = Tc fixed point
to being dominated by the T = 0 behavior as T and tw
vary. Assuming that ξ(T, tw)� `J(T ) ∼ (T − Tc)−ν , the
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FIG. 8. Integral I2 as a function of ξ12 in a logarithmic scale,
for all our T < Tc temperatures. We use the numerical deriva-
tive of this curve to compute the replicon exponent θ.
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FIG. 9. Value of the replicon exponent θ(T, ξ12) computed
from a numerical derivative of log I2 as a function of log ξ12,
nicely illustrating the crossover between the T = Tc and T = 0
fixed points.

crossover takes the form:

C4(T, r, tw) ∼


1

rD−2+η
, r � `J(T ) ,

`θJ
`D−2+ηJ

1

rθ
fcutoff(r/ξ) , r � `J(T ) .

(C1)
In this equation, fcutoff(x) is an analytical function decay-
ing as exp(−xβ). The prefactor for `θJ/`

D−2+η
J is fixed by

the condition that the two asymptotic expansions con-
nect smoothly at r = `J. We arrive at an asymptotic
expansion for the Ik integrals:

Ik(T, ξ) =
Fk

`D−2+ηJ

(
ξ

`J

)k+1−θ
[

1 + ak

(
ξ

`J

)k+1−θ

+ . . .

]
,

(C2)

where Fk and ak are amplitudes. Finally, we need to
eliminate the unknown ξ in favor of the computable ξ12,

ξ12(T, ξ) =
F2

F1
ξ

[
1 + a′1

(
ξ

`J

)2−θ

+ a2

(
ξ

`J

)3−θ

+ . . .

]
,

(C3)
where a′1 considers contributions both from the numera-
tor (−a1) and from the denominator. The easiest way to
obtain θ is to study the evolution of log I2 as a function
of log ξ. However, we have to settle for using log ξ12 as
independent variable (see Fig. 8).

We can define an effective θ(T, ξ12) as

θ(T, ξ12) = 3− d log I2(T, ξ12)

d log ξ12
(C4)

= θ + b2

(
ξ12
`J

)θ−2
+ b3

(
ξ12
`J

)θ−3
+ . . . .

(C5)

To estimate this derivative for a given ξ∗12, we fit log I2
to a quadratic polynomial in log ξ12 in a [0.75ξ∗12, 1.25ξ∗12]
window. We then take the derivative of this polynomial
at ξ∗. The procedure, as well as the wiggles in the result-
ing values of θ due to the extreme data correlation (see
Fig. 9) may remind the reader of Fig. 1 in [8].

We have computed a fit to the first two terms in (C5)
in the range 0 ≤ `J/ξ12 ≤ 0.33, resulting in the value of
θ ≈ 0.30 reported in the main text.

The previous analysis solves the problem of the
crossover between the T = Tc and T = 0 fixed points.
However, in the framework of the droplet picture one
would also need to consider corrections to scaling at the
T = 0 fixed point. This is precisely what the droplet fit
in the main text to θ(x) ' Cxζ does.

Appendix D: Parameter choices in our fits

We will discuss separately the choice of ξmin for differ-
ent temperatures and the choice of the value of ω.

1. Selection of ξmin
12 for each temperature

We have reported fits of our data to three different
functional forms

log tw = c0(T ) + c1(T ) log ξ12 + c2(T ) log2 ξ12, (D1)

log tw = D(T ) + z∞(T ) log ξ12 + E(T )ξ−ω12 , (D2)

log tw = F (T ) + zc log ξ12 +G(T )ξΨ12 . (D3)

In these fits we have used zc = 6.69 and ω = 0.35
(T < Tc), ω = 1.12 (T = Tc), as discussed in the main
text. Full results for the fits to (D2) and (D3) can be
seen in tables III and IV, for different fitting ranges. We
include for both cases the extrapolated values of z(T, ξ)



8

for the experimental scale (as explained in the main text
we use both ξ12 = 38 and ξ12 = 76) and for (D2) also the
value of the ξ →∞ aging rate z∞.

In order to make the choice of fitting range for the val-
ues plotted in the paper we have followed two criteria.
Firstly we require the parameters of the fit to be stable
inside the error when we increase ξmin

12 . Secondly, we im-
pose that ξmin be monotonically increasing in T (with the
exception of Tc, which has different behavior). Table II
shows our final choices for ξmin

12 (T ), which is the same for
all three fits.

T 0.55 0.625 0.7 0.8 0.9 1.0 1.1

ξmin
12 4 5 6 8 8 9 5

TABLE II. Values of ξmin
12 (T ) determining the common fitting

range ξ12 ≥ ξmin
12 for our three different fits of log tw as a

function of log ξ12.

2. Selection of ω

For our most important result, namely the extrap-
olation of the aging rate to the experimental scale of
ξ12 = 38, 76, we have repeated our fits with our upper
and lower bounds for ω = θ(ξfilms) (RSB and droplet ex-
trapolations, respectively). The results are completely
compatible, as we can see in table V.
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ξmin= 3.5 ξmin= 4 ξmin= 5 ξmin= 6 ξmin= 7 ξmin= 8 ξmin= 9

T = 0.55

z∞ 23.61(28) 24.22(40) 25.30(86) 22.9(31)
z(ξ=38) 19.49(15) 19.80(20) 20.32(41) 19.2(14)
z(ξ=76) 20.38(18) 20.75(24) 21.39(51) 20.0(18)
χ2/dof 40(17)/133 10.2(54)/111 3.0(12)/73 1.71(76)/40

T = 0.625

z∞ 19.85(17) 20.26(23) 20.60(41) 20.16(84)
z(ξ=38) 16.538(91) 16.74(12) 16.90(19) 16.71(37)
z(ξ=76) 17.25(11) 17.50(14) 17.69(24) 17.45(47)
χ2/dof 81(34)/167 18(10)/147 8.3(21)/114 5.1(19)/86

T = 0.7

z∞ 17.04(18) 17.23(21) 17.61(27) 18.23(35) 18.63(62)
z(ξ=38) 14.295(88) 14.38(11) 14.55(13) 14.81(15) 14.96(25)
z(ξ=76) 14.89(11) 15.00(13) 15.21(16) 15.54(19) 15.75(32)
χ2/dof 116(40)/190 66(36)/173 33(24)/144 9.3(84)/119 4.9(21)/98

T = 0.8

z∞ 13.76(15) 14.06(19) 14.53(26) 15.19(35) 15.68(42) 16.18(58) 16.55(78)
z(ξ=38) 11.787(73) 11.921(89) 12.11(12) 12.37(15) 12.55(17) 12.73(22) 12.85(28)
z(ξ=76) 12.211(93) 12.38(11) 12.63(15) 12.98(19) 13.23(23) 13.47(30) 13.65(39)
χ2/dof 351(104)/185 188(72)/170 93(41)/146 27(16)/125 12.4(82)/107 6.2(31)/91 4.9(21)/77

T = 0.9

z∞ 11.00(13) 11.29(18) 11.54(24) 11.80(31) 12.55(41) 13.16(68) 12.3(13)
z(ξ=38) 9.748(65) 9.883(93) 9.98(11) 10.08(13) 10.34(16) 10.55(25) 10.33(41)
z(ξ=76) 10.017(82) 10.18(11) 10.32(14) 10.45(17) 10.82(21) 11.11(34) 10.80(60)
χ2/dof 310(150)/165 129(64)/152 79(44)/131 63(35)/113 22(13)/98 5.9(21)/84 6.4(79)/72

T = 1.0

z∞ 8.60(11) 8.69(15) 8.83(20) 8.97(53) 9.29(45) 9.36(46) 10.28(89)
z(ξ=38) 8.041(59) 8.080(73) 8.132(93) 8.21(22) 8.27(18) 8.34(17) 8.63(32)
z(ξ=76) 8.162(74) 8.210(86) 8.28(11) 8.38(29) 8.46(24) 8.57(24) 8.98(44)
χ2/dof 43(30)/137 27(18)/126 16(13)/107 12(25)/91 10.4(91)/78 8.4(60)/66 2.9(21)/55

T = 1.1

z∞ 6.672(44) 6.671(41) 6.689(63) 6.751(84) 6.80(12) 7.00(18) 7.02(21)
z(ξ=38) 6.682(32) 6.673(41) 6.694(50) 6.732(68) 6.77(10) 6.92(14) 6.94(16)
z(ξ=76) 6.677(33) 6.671(41) 6.691(54) 6.742(72) 6.79(11) 6.96(16) 6.99(16)
χ2/dof 32(19)/119 31(20)/109 26(16)/92 19(10)/78 16.8(74)/66 5.9(20)/55 6.3(27)/46

TABLE III. Parameters of the fits to (D2) for different fitting ranges ξ12 ≥ ξmin
12 . We use ω = 0.35 (ω = 1.12 for T = Tc). The

fitting range that we choose for our final values is highlighted in boldface.
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ξmin= 3.5 ξmin= 4 ξmin= 5 ξmin= 6 ξmin= 7 ξmin= 8 ξmin= 9

T = 0.55

z(ξ=38) 24.07(41) 24.25(55) 24.6(11) 24.7(81)
z(ξ=76) 28.86(69) 29.18(95) 29.9(19) 30(15)
B(T ) 13.78(65) 13.45(92) 12.8(18) 18(13)
Ψ 0.3512(92) 0.355(21) 0.372(33) 0.29(24)

χ2/dof 13.3(47)/133 6.8(20)/111 3.2(15)/73 1.7(27)/40

T = 0.625

z(ξ=38) 19.73(22) 19.72(28) 19.36(45) 18.53(77)
z(ξ=76) 23.33(38) 23.31(49) 22.66(79) 21.1(13)
B(T ) 10.36(37) 10.39(52) 11.3(11) 14.0(30)
Ψ 0.354(14) 0.352(12) 0.334(21) 0.290(39)

χ2/dof 19(10)/167 15(10)/147 8.5(33)/114 4.5(14)/86

T = 0.7

z(ξ=38) 16.58(22) 16.44(23) 16.35(27) 16.51(32) 16.55(52)
z(ξ=76) 19.40(37) 19.14(40) 18.98(47) 19.29(58) 19.4(10)
B(T ) 7.32(34) 7.63(43) 7.84(59) 7.41(75) 7.3(14)
Ψ 0.364(13) 0.354(12) 0.354(24) 0.358(23) 0.360(39)

χ2/dof 49(38)/190 28(20)/173 10.5(83)/144 6.3(31)/119 5.7(29)/98

T = 0.8

z(ξ=38) 13.37(18) 13.39(21) 13.45(25) 13.68(31) 13.80(35) 13.94(45) 14.1(17)
z(ξ=76) 15.44(33) 15.48(37) 15.60(46) 16.06(59) 16.31(68) 16.59(93) 17.1(38)
B(T ) 4.16(25) 4.13(29) 4.01(38) 3.57(43) 3.36(48) 3.13(66) 3.0(19)
Ψ 0.392(13) 0.390(19) 0.395(18) 0.421(27) 0.443(31) 0.447(50) 0.46(18)

χ2/dof 31(19)/185 29(19)/170 22(17)/146 10.0(60)/125 7.5(34)/107 5.5(21)/91 5(11)/77

T = 0.9

z(ξ=38) 10.76(17) 10.86(21) 10.82(24) 10.86(27) 11.23(35) 11.49(54) 11.13(56)
z(ξ=76) 12.12(30) 12.31(39) 12.24(45) 12.31(53) 13.12(73) 13.7(12) 12.9(12)
B(T ) 2.15(19) 2.01(23) 2.07(31) 2.00(39) 1.52(31) 1.18(45) 1.67(77)
Ψ 0.417(23) 0.430(34) 0.431(28) 0.427(41) 0.490(51) 0.546(88) 0.47(10)

χ2/dof 68(44)/165 46(25)/152 41(25)/131 38(24)/113 17(10)/98 8.7(45)/84 4.8(25)/72

T = 1.0

z(ξ=38) 8.53(15) 8.54(18) 8.55(20) 8.56(30) 8.59(60) 8.74(72) 9.22(18)
z(ξ=76) 9.19(27) 9.20(33) 9.22(39) 9.25(58) 9.3(12) 9.7(16) 10.9(45)
B(T ) 0.85(14) 0.84(18) 0.83(22) 0.79(40) 0.7(10) 0.5(10) 1.4(19)
Ψ 0.440(36) 0.441(51) 0.444(64) 0.45(10) 0.49(25) 0.55(30) 0.34(71)

χ2/dof 12.6(95)/137 12.1(90)/126 10.0(87)/107 9.3(83)/91 8.2(97)/78 07(11)/66 11(11)/55

T = 1.1

z(ξ=38) 6.684(12) 6.682(14) 6.684(11) 6.672(31) 6.683(32) 6.694(31) 6.712(41)
z(ξ=76) 6.684(13) 6.681(11) 6.682(14) 6.674(41) 6.684(41) 6.692(31) 6.721(42)
B(T ) 1.9(10) 1.71(91) 0.4(27) 0.02(64) 0.0(26) 1.5(26) 1.2(10)
Ψ -0.0030(49) 0.0037(68) 0.03(15) 0.29(42) 0.37(55) 0.002(16) 0.023(51)

χ2/dof 34(20)/119 33(19)/109 27(18)/92 25(18)/78 23(15)/66 21(14)/55 11.0(26)/46

TABLE IV. Parameters of the fits to (D3) for different fitting ranges ξ12 ≥ ξmin
12 . We use zc = 6.69. The fitting range that we

choose for our final values is highlighted in boldface.
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z(T, ξ12 = 38) z(T, ξ12 = 76)

ω = 0.35 ω = 0.28 ω = 0.35 ω = 0.25

T = 0.55 19.80(20) 20.08(22) 20.75(24) 21.41(27)
T = 0.625 16.90(19) 17.07(20) 17.69(24) 18.13(27)
T = 0.7 14.81(15) 14.93(16) 15.54(19) 15.87(21)
T = 0.8 12.73(22) 12.81(23) 13.47(30) 13.71(32)
T = 0.9 10.55(25) 10.61(26) 11.11(34) 11.28(37)
T = 1.0 8.63(32) 8.68(33) 8.98(44) 9.02(42)

TABLE V. Comparison of our estimates of the experimental
aging rate z(T, ξ12 = ξfilms) for ξfilms = 38 and ξfilms = 76 us-
ing our lower and upper bounds for ω = θ(ξfilms). The choice
of ω is immaterial, since even in the worst case (lowest tem-
peratures for ξfilms = 76) there is only a two-sigma difference.
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